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Minimally-invasive laparoscopic procedures have proven efficacy for a wide range of

surgical procedures as well as benefits such as reducing scarring, infection, recovery

time, and post-operative pain. While the procedures have many advantages, there

are significant shortcomings such as limited instrument motion and reduced dexterity.

In recent years, robotic surgical technology has overcome some of these limitations

and has become an effective tool for many types of surgeries. These robotic platforms

typically have an increased workspace, greater dexterity, improved ergonomics, and

finer control than traditional laparoscopic methods. This thesis presents the designs

of both a four degree-of-freedom (DOF) and 5-DOF miniature in vivo surgical robot

as well as a software architecture for development and control of such robots. The

proposed surgical platform consists of a two-armed robotic prototype, distributed

motor control modules, custom robot control software, and remote surgeon console.

A plug-in architecture in the control software provides the user a wide range of user

input devices and control algorithms, including a numerical inverse kinematics solver,

to allow intuitive control and rapid development of of future robot prototypes. A

variety of experiments performed by a surgeon at the University of Nebraska Medical

Center were used to evaluate the performance of the robotic platform.
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Introduction

Traditional surgical procedures typically require large open incisions to provide the

surgeon access to and visualization of the surgical site. In an effort to reduce recov-

ery time, post-operative pain, and cosmetic effects, many of these procedures have

been converted to minimally invasive surgeries (MIS). In the last 20 years, MIS has

influenced the techniques used in nearly every specialty of surgical medicine. MIS

procedures result in an 18% reduction in post-operative infection, as well as reduc-

ing blood loss, length of hospital stay, morbidity, and complication rates. Typical

MIS procedures replace the large open incision with multiple small incisions which

laparoscopic tools are inserted through. However, several downsides have emerged

with laparoscopic procedures: there is a significant learning curve in the use of la-

paroscopic tools as the control is not intuitive, there is a reduction in visual feedback

and dexterity, and the tools only work well for relatively simple procedures such as

tissue removal and closure [30].

Laparoendoscopic single-site (LESS) surgery is a less common type of MIS which

is performed entirely through a single incision, typically at the belly button. A laparo-

scope and several surgical instruments are inserted through a special gel diaphragm

device at the incision to provide the surgeon access to the surgical site. Special bent

laparoscopic instruments are usually required to accomplish the complex tasks re-

quired by the procedure. The abdominal cavity is filled with carbon dioxide gas to
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create a larger workspace for the surgeon. The gas is evacuated after the procedure

is complete. While this type of MIS has even more benefits than traditional laparo-

scopic surgery, it is also requires more training because the laparoscopic instruments

must be crossed at the incision site to improve triangulation.

In an attempt to reduce the limitations of MIS and LESS procedures, several

laparoscopic surgical robot platforms have been introduced. Platforms such as the

DaVinci Surgical System® from Intuitive Surgical are designed to manipulate laparo-

scopic tools as a natural extension of the surgeon’s hands and eyes by mimicking

the motions of the operator in a master-slave configuration. While these platforms

are mature and greatly mitigate control and dexterity problems, they are still lim-

ited by their multi-incision design. These platforms are also generally very large and

expensive, making them impractical for most smaller hospitals.

Completely insertable LESS in vivo robotic prototypes have been developed to

address the limitations of currently available surgical robots. The surgical robotic

devices were designed to be inserted through a single incision, allowing them to be

rotated in the incision to provide access to all quadrants of the abdominal cavity.

The devices have two independent arms with interchangeable tools and an integrated

vision system. An example of the device within the abdominal cavity is shown in

Figure 1.

This thesis presents the mechanical, electrical, and software design for this robotic

platform. Two surgical robots are discussed, as well as the motor control system and

user interface.
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Figure 1: Miniature LESS robotic device inside an insufflated abdominal cavity.
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Background

Open surgeries involve a large open incision that grants access to the surgical site and

allows the surgeon to easily visualize and and manipulate the tissue and organs. While

this method of surgery is typically the least difficult to perform, there are significant

drawbacks due to the trauma caused by the surgery including increased recovery

time and risk of infection. Many surgeries that were traditionally performed as open

procedures are being converted to minimally invasive surgical (MIS) procedures [31].

MIS replaces the large open incision with one or more small incisions (0.5-1.5 cm) in

which the surgeon inserts long, slender instruments and a camera into the patient’s

abdomen. Benefits of MIS include reduced trauma, postoperative pain, and recovery

time. In fact, the length of post-operative hospital stay was reduced 28% for MIS

abdominal surgeries including colectomy and cholecystectomy [1].

Minimally invasive surgery

Minimally Invasive Surgery

The shift from open to laparoscopic procedures began in the 1980s and initially re-

sulted in significant morbidity and mortality due to lack of training, proper instru-

mentation, and standardization [36]. The single, large incision was replaced with 3-5

small incisions in which special ports, or trocars, are placed. The abdominal cavity
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is then insulffated with carbon dioxide to increase the volume of the abdominal cav-

ity. Special laparoscopic tools are then inserted through the trocars to to grant the

surgeon access to the internal organs. The trocars seal around the tools to maintain

insufflation and tools can be removed and interchanged depending on the needs of

the procedure.

While these procedures now produce superior outcomes over open surgeries, there

are still many disadvantages. The laparoscopic technique suffers from restricted in-

strument motion due to the constraint of passing through the abdominal wall [24].

The surgeon must also learn to operate in a two-dimensional surgical field without

depth perception. Maneuvering laparoscopic instruments results in increased muscle

activity and often requires the surgeon to operate in non-ergonomic positions, in-

creasing shoulder and spine discomfort compared to open procedures [2]. Despite the

greater strain, laparoscopic surgery is still considered the standard of care for many

simple surgical procedures.

Laparoendoscopic Single Site Surgery

Another method to increase the the benefits of MIS is laparo-endoscopic single-site

(LESS) surgery. This form of MIS is similar to conventional laparoscopic procedures

but, instead of using multiple incisions to access the surgical site, a single small

incision (~2 cm) is used to pass multiple tools and camera into the abdominal cav-

ity through a special gel diaphragm. The reduction of incisions provides improved

cosmesis and minimizes the morbidity associated with multiple-incision procedures

[10]. Although LESS improves patient outcomes, it requires special articulated tools

that must be crossed at the incision, resulting in transposed instrument view (i.e, the

instrument in the left hand operates on the right side of the monitor) and increased
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intracorporeal and extracorporeal instrument collisions [32].

Robotic MIS

Robotic Laparoscopic Surgery

With the advances in surgical medicine and robotic technology, many institutions saw

the potential to combine robotics and MIS to reduce the shortcomings of traditional

minimally invasive procedures. While the majority of these systems are not actually

“robots”, they allow the surgeon to control surgical instruments through intuitive

motions and eliminate the need to operate in non-ergonomic positions by using a

master-slave style control scheme. Current robotic surgery results in lower blood

loss, but also is associated with greater cost and longer surgery times [39].

Although it would seem to be a relatively new type of surgery, the first robot-

assisted surgical procedure was actually performed in 1983 with the use of Anthrobot

[30], a robot designed to assist in orthopedic procedures. The first robot approved

by the Food and Drug Administration (FDA) for abdominal procedures was the

Automated Endoscopic System for Optimal Positioning (AESOP) [29]. The platform

consisted of a robotic arm that positioned a camera based on voice commands from

the surgeon.

The most advanced commercially available robot for general surgery is currently

the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA). The system re-

ceived approval from the FDA in 2000 and has since been the standard for robotic

surgery [11]. The platform consists of externally actuated positioning arms, which

control tools similar to laparoscopic instruments with up to 7 degrees of freedom, and

a surgeon console. The robot has a stereoscopic vision system with up to 10x zoom
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Figure 2: The daVinci® Surgical System, model Xi (©2014 Intuitive Surgical, Inc.)

and has the ability to filter out hand tremors and scale motions through an intuitive

control interface [6]. While the platform greatly improves on conventional laparo-

scopic surgery, it also has some limitations including large size, high cost, crowding

of the surgical site, and the need to be repositioned for complex surgeries [4]. The da

Vinci system faces the problems that are inherent to multi-site surgeries, including a

limited workspace and loss of haptic feedback.

Another notable robot MIS system under development is the Raven-II, which is a

collaborative research project between multiple universities. The Raven-II has three

3-DOF arms that position interchangeable 4-DOF tools. The control system is built

on an open-source platform developed by seven different universities [12]. While this

platform offers the ability to develop custom control algorithms, the hardware is static
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Figure 3: da Vinci SP Surgical System [14].

and has the downfalls of multi-incision MIS such as the need to reposition arms during

complex procedures. Also, the dexterity of the tools is limited and there remains the

potential for collisions of the tools outside the body.

Robotic Lapaendoscopic Single Site Surgery

Just as traditional laparoscopic procedures have begun converting to LESS, so have

robotic assisted MIS started converting to robotic LESS, or R-LESS. The da Vinci

platform has an experimental LESS platform which is undergoing clinical evaluation

called the da Vinci SP® which is composed of three flexible arms and a stereoscopic

camera that all go through a single port, as shown in Figure 3. While this platform is

quite dexterous and has successfully performed surgeries through a single port [3], the

system is extremely large and takes up a significant portion of the operating room.
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Another R-LESS device that is being developed is a two-armed robot developed

by the BioRobotics Institute at SSSA (Italy) called SPRINT. This device has two

6-DOF arms with end effectors and is controlled via a haptic interface. The arms

are each 18 mm in diameter and are designed to be inserted through a 30-mm port

[26, 23, 25].

A snake-like LESS robot is under development at Waseda University. It is posi-

tioned by a robotic arm and deploys tools out of the main tubular body. The system

is actuated using a cable-driven system and has demonstrated cautery abilities. How-

ever, the system has problems with global positioning and triangulation and requires

a custom interface of four Phantom Omni (SensAble Technologies, Wilmington, MA)

haptic controllers to provide intuitive control [15, 16].

Development of various types of in vivo surgical devices in the Advanced Surgical

Technologies Laboratory at the University of Nebraska-Lincoln has been occurring

since the early 2000s. Platforms include two-wheeled robots, magnetically-coupled

imaging devices, and rigidly mounted single-port devices [37, 38, 20, 17, 18, 21, 22,

27, 13]. The most recent work has focused on the development of two-armed minia-

ture robots for R-LESS surgeries. These devices are designed to be inserted into

an insufflated abdominal cavity through a single port to perform general abdominal

procedures. These robots have successfully performed such operations as colectomies,

cholecystectomies, and a hysterectomy. This thesis presents a new platform for the

rapid development of such R-LESS devices and two robotic designs that utilize this

platform. The most recent robot developed in the Advanced Surgical Technologies

Laboratory was the Eric-Bot 2.0 (EB-2.0) [20]. This device has two independent

4-DOF arms and is made to be inserted through a single incicsion.
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Figure 4: Eric-Bot 2.0 R-LESS device developed at UNL.
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Design

Design Requirements

Among the factors that need to be considered in the development of in vivo R-

LESS devices are force, velocity, dexterity, workspace, and size. The robot must

be able to transmit enough force to perform surgical procedures and should be fast

enough to give the operator a sense of control. The dexterity and workspace of the

manipulators should be maximized while keeping the profile of the inserted device as

small as possible.

Though it is difficult to quantify the forces and speeds required to perform a certain

procedure, relevant data exists which characterizes the forces and speeds used during

laparoscopic procedures.The BlueDRAGON device developed by the BioRobotics Lab

at the University of Washington was used to measure the forces at the laparoscopic

instrument handles for a variety of surgical procedures [19, 28]. The raw data from

these studies showed a force of about 20 N in the direction of the tool axis and about

5 N perpendicular to the tool axis. Further analysis of the data yielded velocity

data for surgical procedures. Angular velocities about the axes perpendicular to the

instrument were 0.485 rad/sec and the velocity about the axis of the tool was 1.053

rad/sec. The velocity along the axis of the laparoscopic tool was 72 mm/sec. The

linear velocities can be calculated using the reported tool length of 100-150 mm. The
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Table 1: Force and velocity requirements for surgical procedures.

Force Direction Value [N] Velocity Direction Value [mm/sec]
Fx 0.8 Vx 70
Fy 0.8 Vy 70
Fz 2.2 Vz 72

ωgrasper 1.053 rad/s

velocity requirements can be estimated from these data [20].

Force data were also collected in a study to determine the force needed to stretch

the mesocolon for dissection [9]. Clamps were applied to the mesocolon in series with

a spring scale and the surgeon applied tension at an angle of approximately 60 degrees

from horizontal. The average pull force per clamp was 1.9±0.6 N, with a maximum

of 3.1 N. Lehman et al. assumed an even distribution of forces between the remaining

axes, yielding the forces shown in Table 1.

The two arms should have minimal cross-section area when in position for inser-

tion. The shared workspace between the two arms should be maximized. The arms

should be as dexterous as necessary without adding unnecessary complexity. The

device should have a rigid mount outside the body with which to grossly position the

arms within the abdominal cavity.

CubReich-Bot 1.0

The CubReich-Bot 1.0 (CRB-1.0) is a LESS surgical robot with two independent 4-

DOF arms. Each arm is composed of a 2-DOF differential shoulder joint, upper arm

link that houses a 1-DOF elbow joint, and a forearm link which houses a tool with a

1-DOF wrist. A flexible HD endoscope (Endoeye Flex, Olympus®) is inserted down a

5-mm port that runs down the length of the shoulder and is positioned directly below

the shoulder joints. Each link houses the motors and control electronics needed for
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Figure 5: Kinematic frames assigned to CRB-1.0 and link naming convention.

its joints.

Kinematics

The kinematics for each of the robotic arms were analyzed using Denavit-Hartenberg

(DH) parameters, which uses four parameters per joint to characterize manipulator

kinematics. These parameters are d (offset along previous Z to common normal), θ

(angle about previous Z), a (length of the common normal, X), and α (angle about

common normal, X), taken in that order. Coordinate frames were attached to each

joint with the Z axis of the frame along the axis of rotation and the X axis along the

length of the link as shown in Figure 5. DH parameters were assigned based on the

orientation of each of the frames and displayed in Table 2. It should be noted that

the small offsets in the shoulder were disregarded to simplify the kinematic equations

and allow a closed form solution.

Transformation matrices were derived for each frame with respect to the previous

frame using the homogeneous transformation matrix and the DH parameters. The

homogeneous transformation matrix for frame i with respect to the previous frame
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Table 2: DH parameters for the right arm of the CRB-1.0 manipulator.

i αi ai di−1 θi−1
1 0 0 0 0
2 90◦ 0 0 φ1
3 −90◦ L1 = 68.5 mm 0 φ2
4 90◦ 0 0 φ3 + 90º
5 0 0 L2 = 96.4 mm φ4

can be calculated from the definition of the DH parameters as

T i−1
i = Tzi−1(di−1)Rzi−1(θi−1)Tx(ai)Rx(αi)

T i−1
i =



cos θi−1 − cosαi sin θi−1 sinαi sin θi−1 ai cos θi−1

sin θi−1 cosαi cos θi−1 − sinαi cos θi−1 ai sin θi−1

0 sinαi cosαi di−1

0 0 0 1


The transformation matrices multiplied in order from first to last yield the trans-

formation matrix of the end-effector frame {5} with respect to the base frame {0}.
The full derivation can be found in Appendix A.

T 0
5 =


−c4(s1s3 − c1c2c3) − c1s2s4 s4(s1s3 − c1c2c3) − c1c4s2 c3s1 + c1c2s3 L1c1c2 + L2 (s1c3 − c1c2s3)

c4(c1s3 + c2c3s1) − s1s2s4 −s4(c1s3 + c2c3s1) − c4s1s2 c2s1s3 − c1c3 L1s1c2 − L2 (c1c3 + s1c2s3)

c2s4 + c4c3s2 c2c4 − c3s2s4 s2s3 L1s2 + L2s2s3

0 0 0 1



where ci and si are the sine and cosine of θi, respectively. The forward kinematic

equations can be pulled from the last column of this matrix and are

x = L1c1c2 + L2 (s1c3 + c1c2s3)

y = L1s1c2 − L2 (c1c3 − s1c2s3)

z = L1s2 + L2s2s3
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A closed form of the inverse kinematic equations was found by solving the forward

kinematic equations for the joint angles in terms of x, y, and z. By disregarding

solutions that yield an inverted shoulder or elbow joint, the following are the inverse

kinematic equations:

θ3 = π − arccos
(
L2

1 + L2
2 − L2

12
2L1L2

)

θ2 = ± arctan
(√

1− a2

a

)

θ1 =


arctan

(√
x2+y2−b2

b

)
x > 0 ∨ y > 0

arctan
(√

x2+y2−b2

b

)
− 2π x < 0 ∧ y < 0

where

L12 =
√
x2 + y2 + z2

a = y

L1 + L2c3

b = L1c2 + L1c2c3

The robot was designed to be inserted through the abdominal wall with both

arms pointed straight downward in-line with the shoulder body. To prevent the

manipulators from colliding with internal organs, the arms are bent to reduce their

length along the incision axis, as shown in Figure 6.

Mechanical Design

The joint torques and angular velocities were calculated for each joint using the

following formulas:

Ti = ηniτiηmi
τmi

Tmi
ωi = ωmi

τiτmi
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Figure 6: Robot insertion procedure, with the red line representing the abdominal
wall.

where Ti and ωi are the maximum torque and angular velocity at joint i, respectively,

η is the efficiency of the gear mesh and is assumed to be 95% per gear mesh, ni is

the number of gear meshes in the drive train of joint i, τi is the gear reduction ratio

in the drivetrain of joint i, ηmi
and τmi

are the efficiency and gear reduction ratio of

the planetary gearbox coupled to the motor, and Tmi
and ωmi

are the stall torque

and no-load speed of the motor. The torques and angular velocities for each joint are

tabulated in Table 3 at the end of this section. The motor and gearbox specifications

can be found in the appendix.

A shoulder body was designed to have two independent shoulder joints, a small

rigid profile for inserting into the abdominal cavity, and a small port through the

body for a 5-mm endoscopic camera. The goal of the design was to reduce the size

of the necessary incision and keep as much electronics out of the body as possible. A

cross-section view of the inserted shoulder with a profile area of 8.75 cm2 is shown in

Figure 7.

The shoulder uses a concentric shaft design to transmit power from the four 12-

mm motors housed in the shoulder to the two shoulder joints while maintaining a
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Figure 7: Cross-section view of the inserted portion of the shoulder with endoscope
port.

Figure 8: Four DOF shoulder drive train.

small profile. Absolute position sensors (potentiometers) were installed on each shaft

to provide feedback to the motor controllers. The shafts were extended to allow

for a length of reduced cross-sectional area to be inserted through the abdominal

wall. The innermost shaft is tapped and a single screw provides the preload for the

shoulder drive train. Each of the differential joints’ drive shafts are driven by 12-

mm Faulhaber® 1226 12V BLDC motors coupled to 256:1 planetary gearboxes. The

motor-gearbox combinations drive their respective shafts through a 30:12 spur gear

set. The shoulder yaw and pitch have a range of motion from -90 to 45 degrees.

A differential gear train for each shoulder, shown in Figure 9, allows the two joints
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Figure 9: Differential shoulder joint.

to be compacted tightly together but also couples the two DOFs of the shoulder. Both

the sun gears must rotate at the same rate and direction to produce pure θ1 motion; to

produce pure θ2 motion, the sun gears must rotate at the same rate and in opposite

directions. The upper and lower sun gear angles can be written in terms of the

kinematic angles for use in the control scheme:

θupper = θ1 + θ2 θlower = θ1 − θ2

The planet gear of the shoulder differential is part of the upper arm link of the

manipulator. The upper arm is mounted to the yoke of the differential joint and

has a single DOF elbow joint. The upper arm houses a 6-mm BLDC motor and

an on-board motor controller. The upper arm links were designed to sit in contact

with each other when aligned straight downward. This creates a minimal profile and

allows for a better seal around the robot during insertion into the abdominal cavity.

The length of the upper arm, 68.5-mm, was determined by the length of the motor,

gear train, and motor controller. A 6-mm Faulhaber® 0620 BLDC motor coupled to

a 1024:1 planetary gearbox (60% efficient) transfers mechanical power from a spur

gear set with a gear reduction of 16:10 to the joint through a bevel gear set. The
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Figure 10: Upper arm drive train cross-section view.

elbow joint has a range of motion from -105 to 105 degrees, but is limited to 0 to 105

degrees by the inverse kinematics solution.

The robot forearm links connect to the elbow joint and house two motors, a motor

controller, and a variety of custom tools that use a common interface. The two 6-mm

Faulhaber 0620 12V BLDC motors are housed in the forearm and are constrained

using motor clamping features. For the end effector roll drivetrain, a 12-tooth spur

gear is press-fit onto the output shaft of the gearbox and is coupled to a 24-tooth

spur gear about the circumference of the tool yoke. The tool actuation is driven by a

18:10 spur gear set, with the 10-tooth gear press-fit onto the output of the gearbox. A

recessed feature at the end of the grasper link provides an area to mount a castration

band and seal the robotic arm in a disposable plastic bag. The total length of the

forearm link from elbow joint to grasper midpoint is 96.4 mm. A view exposing the

drivetrain is shown in Figure 11.

A variety of surgical tools have been developed to use the forearm interface and

be easily changed to enable improved functionality. These tools include graspers,

surgical shears, mono-polar cautery hook, mono-polar cautery shears, and bi-polar

cautery graspers. Each of these tools includes the drivetrain to mate to one or more
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Figure 11: Forearm drive train cross-section view.

Figure 12: Cross-section view of an actuated tool.

of the forearm’s motors and can be easy replaced by removing three screws. All tools

have an end-effector roll DOF; the actuated tools (graspers, shears) use an internally

threaded spur gear to drive a lead screw drive pin which, in turn, drives two links

that are mated to the grasper or shear jaws, as shown in Figure 12.

The closing force for the actuated tools can be calculated by considering the force

on the lead screw drive pin [5]:

Fls = 2Tm
dm

(
πdm − fl secα
l + πfdm secα

)
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Figure 13: Tool force as a function of tool position.

where dm is the mean of the major and minor diameters of the thread, f is the friction

coefficient (steel-steel ~0.5), l is the lead of the thread, and α is the thread angle.

Solving this equation for a #3-56 thread (dm = 2.23 mm, l = 0.45 mm, α = 60ř),

the force of the lead screw can be estimated as 133.14 N. The tool drive links act as

two-force members and can only transmit force along the length of the link. The lead

screw force can be set to equal the link force in the direction of the drive pin motion.

The grasper force with respect to tool position can calculated by applying the lead

screw force to the lever arm perpendicular to the force at the linkage pin, as shown

in Figure 13. By setting the sum of forces along the direction of the lead screw to

zero for static equilibrium, the force equation in terms of the tool position is

Ftool = Fls
l3

[
l2 sin θa + tan

(
arcsin

(
doffset + l2 sin θa

l1

))
l2 cos θa

]

where the variables are described in Figure 13 and θa = θtool/2 + 19º.
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Table 3: CRB-1.0 joint torques and angular velocities.

i ni τi ηmi
[%] τmi

Tmi
[mNm] ωmi

[rpm] Ti [mNm] ωi [rpm]
1 2 30:12 = 2.5 60 256 8.99 27,400 3115.57 42.81
2 2 30:12 = 2.5 60 256 8.99 27,400 3115.57 42.81
3 2 16:10 = 1.6 55 1024 0.551 37,300 448.11 22.77
4 1 24:12 = 2 55 1024 0.551 37,300 589.61 18.21

Tool 1 18:10 = 1.8 70 256 0.551 37,300 168.84 80.95

Figure 14: CRB-1.0 workspace slices with changing θ2.

Workspace, Forces, & Velocity

The workspace of a robot can be defined as the volume that is reachable by the

end effector of the manipulator. Because of the two-armed nature of this device,

the workspace is the combined volume reachable by both arms. The volume of the

workspace where both arms intersect is especially important because surgical tasks

such as suturing, dissection, and tissue manipulation often require both arms to work

together.

Due to the nature of the kinematic joint arrangement, the workspace is not uniform

throughout the range of θ2 and is especially narrow when θ2 is 90 degrees and the

arms are pointed straight downward. The workspace is the largest in the plane θ2 = 0.

Slices of the right arm’s workspace with increasing θ2 are shown in Figure 14.

The volume of the workspace is therefore a very strange shape and was estimated

by creating a CAD model. The reachable volume for each arm was found to be
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Figure 15: CRB-1.0 within bubbles of the right arm (red), left arm (blue), and shared
(green) workspace.

3926.3 cm3. The shared workspace volume between the two arms is 2215.8 cm3 and

the total workspace volume for both arms is 5636.8 cm3. The shared workspace

volume accounts for 39.3% of the total reachable volume of the robot. The robot

inside its workspace is shown in Figure 15.

The forces, velocities, and dexterity at the end effector of the robotic arm were

analyzed by considering the Jacobian of the transform matrix from the base frame

to the end effector. The Jacobian is the first order partial derivative of the forward

kinematics. The matrix can be used to derive both the static forces and velocities

of the robotic manipulator. The Jacobian matrix with respect to frame {0} can be

written as
0J(θ) = δx

δθ

where 0J is the Jacobian with respect to the base frame, x is an vector containing

the forward kinematic equations from the last column of the transformation matrix,

and θ is the n x 1 array of joint angles. For the four-DOF robotic arm, the Jacobian
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matrix was derived as

0J(θ) =


L2(c1c3 − c2s1s3)− L1c2s1 −L1c1s2 − L2c1s2s3 −L2(s1s3 − c1c2c3)

L2(c3s1 + c1c2s3) + L1c1c2 −L1s1s2 − L2s1s2s3 L2(c1s3 + c2c3s1)

0 L1c2 + L2c2s3 L2c3s2



The Jacobian matrix can be used to determine the dexterity of a manipulator

through a measure defined by Yoshikawa called the manipulability index [40, 33]. This

measure describes the distance to singular configurations of the robotic manipulator

and is defined as

w =
√
det[J(θ)JT (θ)].

The manipulability index was calculated across a cross-section of the 4-DOF

robot’s workspace of the right arm. The results were normalized to the maximum

manipulability to produce a range with 1 being the highest manipulability and 0 being

the lowest. The results are plotted in Figure 16. The figure shows a high manipula-

bility value throughout the majority of the workspace, with the index dropping lower

toward the edges of the workspace.

The equation for the no-load end effector velocity, assuming no gravitational effects

and a massless arm, can be derived from the definition of the Jacobian with a minimal

amount of manipulation [7].

J(θ) = ∂x

∂θ
= ∂x

∂t

∂t

∂θ
−→ ∂x

∂t
= J(θ)∂θ

∂t

or

ẋ = Jθ̇

where ẋ is the vector of linear and angular velocities and θ̇ is the array of joint an-
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Figure 16: Manipulability index across the right arm workspace.

gular velocities. The theoretical maximum velocity of the end effector was calculated

through a cross-section of the workspace by using the maximum angular velocities

at each joint from Table 3. The maximum velocity of the end effector in the direc-

tion of each principal axis is displayed in Figure 17. While the numbers are only an

estimation, they provide insight into the capabilities of the manipulator throughout

the workspace. The mean velocities for the X, Y, and Z-directions are 489.4 mm/sec,

631.5 mm/sec, and 534.6 mm/sec, respectively. The minimum velocity capability

for the x and y-directions is zero, but this only occurs when the arm is completely

extended in the X or Y-direction, respectively. The minimum velocity capability in

the Z-direction is 195.6 mm/sec and occurs when the elbow is turned to its limit. The

maximum velocity for the X and Y-directions is 969.4 mm/sec and 739.6 mm/sec in

the Z-direction.
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Figure 17: Maximum velocity of the end effector in the X, Y, and Z directions for the
right arm.

The equation that relates joint torques to end effector force through the principle

of virtual work [7] is

τ =0 JTz

where τ is the array of joint torques, 0JT is the transpose of the Jacobian with respect

to the base frame, and zis the 6x1 force/torque array. The forces at the end effector

were numerically solved for across a cross-section of the workspace using the maximum

joint torques from Table 3 and are shown in Figure 18. The forces were bounded with

an upper limit of 30 N. The mean force in the X-, Y-, and Z-directions is 11.14 N,

9.65 N, and 24.81 N, respectively. The minimum forces are 4.6 N for the X and
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Figure 18: Maximum end effector force in the X, Y, and Z directions through a
cross-section of the workspace.

Y-directions and 18.8 N for the Z-direction. The maximum force is 30 N for each

direction.

Lou-Bot 1.0

A second version of miniature surgical robot was designed to take advantage of lessons

learned in the CRB-1.0 design. The primary differences between Lou-Bot and CRB-

1.0 lie in the design of the shoulder. The concentric shaft design was extended to

allow for deeper insertion of the robot and to keep motors and control electronics

outside of the body. An additional motor and driveshaft were added to each shoulder



28

Figure 19: Kinematic frames assigned to the right arm of Lou-Bot 1.0.

drive assembly to create two independent 3-DOF shoulder joints in the same profile

as the previously described shoulder. A custom miniature camera system is used in

place of the endoscope, reducing the shoulder profile further by eliminating the need

for a 5-mm port down the length of the shoulder. The inserted profile of the LB-1.0

shoulder has a cross-section area of 4.13 cm2, which is 47% of the size of the CRB-1.0

shoulder.

Kinematics

Similarly to the previously described robot, kinematic frames were assigned to each

joint of the arm and the DH parameters were extracted. The frame assignment is

shown in Figure 19 with the corresponding DH parameters in Table 4. The sixth

frame represents the end effector position and orientation.
The transformation matrix was derived as previously defined using the homoge-
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Figure 20: Lou-Bot 1.0 with rotation axes defined.

Table 4: DH parameters for the right arm of Lou-Bot 1.0.

i αi ai di−1 θi−1
1 0 0 0 0
2 90◦ 0 0 φ1
3 90◦ 0 0 φ2 + 90◦
4 90◦ 0 L1 = 87.6 mm φ3 + 90◦
5 90◦ 0 0 φ4 + 180◦
6 90◦ 0 L2 = 86.6 mm φ5 + 180◦

neous transformation matrix derived earlier.

T 0
6 =



R00 R01 R02 x

R10 R11 R12 y

R20 R21 R22 z

0 0 0 1





30

where

R00 = c5(c4(s1s3 + c1c2c3) + c1s4s2) + s5(c3s1 − c1c2s3) R01 = c1c4s2 − s4(s1s3 + c1c2c3)

R02 = s5(c4(s1s3 + c1c2c3) + c1s4s2) − c5(c3s1 − c1c2s3) R10 = −c5(c4(c1s3 − c2c3s1) − s1s4s2) − s5(c1c3 + c2s1s3)

R11 = s4(c1s3 − c2c3s1) + c4s1s2 R12 = c5(c1c3 + c2s1s3) − s5(c4(c1s3 − c2c3s1) − s1s4s2)

R20 = −c5(c2s4 − c4c3s2) − s5s2s3 R21 = −c4c2 − c3s4s2

R22 = c5s2s3 − s5(c2s4 − c4c3s2)

and
x = L1c1s2 − L2(s4(s1s3 + c1c2c3)− c1c4s2)

y = L2(s4(c1s3 − c2c3s1) + c4s1s2) + L1s1s2

z = −L2(c4c2 + c3s4s2)− L1c2

As can be seen by comparing the transformation matrices of the two robot manip-

ulators, adding the extra degree of freedom significantly increases the complexity of

the forward kinematics. Also, it becomes necessary to define both the position and

orientation of the end effector to solve for the joint angles because there are multiple

orientations possible at each reachable position in the workspace. Due to this added

complexity, a closed form solution for the inverse kinematics was not calculated. In-

stead, a numerical inverse kinematics solver was implemented based on the cyclic

coordinate descent method described by Wang (see section on inverse kinematics

solver) [35].

Mechanical Design

The shoulder body houses six 12-mm Faulhaber® 1226 BLDC motors coupled to 256:1

planetary gearboxes, three for each shoulder joint. The motors are mounted radially

about the driveshafts using face mount screws on each gearbox. A 14-tooth spur

gear is press-fit onto the output of each gearbox and is then coupled to a 30-tooth

spur gear. The 30-tooth spur gears are machined from stock pinion wire, allowing
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Figure 21: LB-1.0 drivetrain cross-section view.

the driveshafts to be turned down from a long piece of the pinion wire and making

the gears and driveshaft a single part. Each of the spur gear shafts is also coupled

to a thin spur gear mounted on an absolute position sensor. The outer and middle

driveshafts are hollow, enabling a compact nested concentric driveshaft design. The

shafts are four inches long to enable the shoulder motors and electronics to remain

outside the body when the arms are inserted. The outer and middle shafts have a

castled feature at their ends and the innermost shaft has a flatted feature to mate

with the differential shoulder joint gears. The torques and angular velocities for each

joint are tabulated at the end of this section.

The 3-DOF shoulder joint is similar to the 2-DOF shoulder joint but has added

complexity to produce a spherical joint. The same differential joint as CRB-1.0 is

used to produce the shoulder pitch and yaw joints with the outer shaft driving the

upper sun bevel gear and the innermost shaft driving the lower sun bevel gear, both of

which mate to a planet bevel gear machined into the shoulder output body. In order

to create a third DOF which intersects the axes of the first two shoulder DOFs and
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Figure 22: LB1.0 shoulder joint cross-section view.

therefore creates a spherical joint, a relatively complicated drivetrain is needed. The

middle driveshaft mates to a smaller bevel gear which is nested inside the upper bevel

gear. This smaller bevel gear drives an identical gear housed in the shoulder output

body which is geometrically mated to a spur gear, both of which are mounted on

the differential yoke output shaft. The spur gear drives an identical spur gear which

is then geometrically mated to another bevel gear. An L-shaft is inserted through

both the spur and bevel gear and is geometrically constrained to the shoulder output

body. Finally, the bevel gear drives another bevel gear which is mounted to the other

end of the L-shaft to produce the shoulder roll DOF. The upper arm is attached to

this final bevel gear. This 3-DOF shoulder joint is not truly spherical as the shoulder

yaw and roll become aligned when the arm is pointed straight downward. Similar to

the 2-DOF differential joint, there is coupling between the three shoulder DOFs. The

equations for the three bevel gear angles in terms of the kinematic angles are

θupper = θ1 + θ2 θlower = θ1 − θ2 θmiddle = θ3 − θ1 − θ2
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Figure 23: LB-1.0 upper arm link cross-section view.

The upper arm link of LB-1.0 is very similar to the upper arm of CRB-2.0. A

6-mm Faulhaber 0620 12V BLDC motor coupled to a 1024:1 gearbox is constrained

inside the link through a motor clamping feature. A 12-tooth spur gear is press-fit

onto the output of the gearbox and is coupled to an 18-tooth spur gear. The 18-tooth

spur gear is geometrically mated to a bevel gear through a castle feature which drives

the output shaft of the elbow joint. The main difference between with the LB-1.0

elbow design is in how the upper arm forearm link is attached to the elbow joint. The

elbow joint range of motion was increased by removing the ability to move to negative

positions. This greatly increased the workspace of the manipulator by allowing the

elbow to move to a position from 0-150 degrees. The length of the upper arm link,

87.6-mm, is longer than MB-2.0 due to the added DOF in the shoulder joint.

The LB-1.0 forearm link overlaps the elbow joint which reduces its overall length.

The forearm links connect to the elbow joint and house two motors, a motor controller,

and a variety of custom tools that use a common interface. The two 6-mm Faulhaber

0620 12V BLDC motors are housed in the forearm and are constrained using motor

clamping features. For the end effector roll drivetrain, a 12-tooth spur gear is press-fit

onto the output shaft of the gearbox and is coupled to a 24-tooth spur gear about the

circumference of the tool yoke. The tool actuation is driven by a 24:12 spur gear set,

with the 12-tooth gear press-fit onto the output of the gearbox. The total length of
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Figure 24: LB-1.0 forearm link with labeled components.

Table 5: LB-1.0 theoretical joint torques and angular velocities.

i ni τi ηmi
[%] τmi

Tmi
[mNm] ωmi

[rpm] Ti [mNm] ωi [rpm]
1 2 30:14 = 2.14 60 256 8.99 27,400 2670.49 49.95
2 2 30:14 = 2.14 60 256 8.99 27,400 2670.49 49.95
3 4 30:14 = 2.14 60 256 8.99 27,400 2410.12 49.95
4 2 18:12 = 1.5 55 1024 0.551 37,300 420.10 24.28
5 1 24:12 = 2 55 1024 0.551 37,300 589.61 18.21

the forearm link from elbow joint axis to grasper midpoint is 86.6-mm. The forearm

with components labeled is shown in Figure 24.

Workspace, Forces, & Velocity

The workspace of LB-1.0 was greatly increased over the CR-1.0 workspace through

the additional DOF and the increased range of the θ4 elbow joint. The volume of the

LB-1.0 workspace was modeled using CAD software. The workspace volume for each

arm is 9467.7 cm3, with 7658.9 cm3 of shared workspace between the two arms. This

results in a total of 11276.5 cm3of workspace for the robot. The shared workspace is

67.9% of the total robot workspace. The robot with its reachable workspace is shown

in Figure 25.

The velocity, force, and dexterity at the end effector were analyzed using the same
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Figure 25: LB-1.0 within bubbles of the right arm (red), left arm (blue), and shared
(green) workspace.

methods as for CRB-1.0. The Jacobian matrix with respect to the base frame was

calculated using the MATLAB jacobian() function as

0J(θ) =


JX1 JX2 JX3 JX4 JX5

JY 1 JY 2 JY 3 JY 4 JY 5

JZ1 JZ2 JZ3 JZ4 JZ5


where

JX1 = −L2(s4(c1s3 − c2c3s1) + c4s1s2)− L1s1s2

JY 1 = L1c1s2 − L2(s4(s1s3 + c1c2c3)− c1c4s2)

JX2 = L2(c1c4c2 + c1c3s4s2) + L1c1c2

JY 2 = L2(c4c2s1 + c3s1s4s2) + L1c2s1

JZ2 = L2(c4s2 − c2c3s4) + L1s2

JX3 = −L2s4(c3s1 − c1c2s3)



36

Figure 26: LB-1.0 manipulabilty index across cross-section of workspace.

JY 3 = L2s4(c1c3 + c2s1s3)

JZ3 = L2s4s2s3

JX4 = −L2(c4(s1s3 + c1c2c3) + c1s4s2)

JY 4 = L2(c4(c1s3 − c2c3s1)− s1s4s2)

JZ4 = L2(c2s4 − c4c3s2)

JZ1 = 0 JX5 = 0 JY 5 = 0 JZ5 = 0

The manipulabilty index for LB-1.0 was calculated using the formula described

previously. The values were normalized to the maximum value resulting in a high

values near 1 and low values near zero. The values across a cross-section of the right

arm’s workspace are shown in Figure 26.

The theoretical maximum velocities in the direction of each of the three princi-

pal axes were calculated assuming a massless arm using the the maximum angular

velocities for each joint in Table 5. The results for a cross-section of the workspace

are plotted in Figure 27. The mean velocities for the X-, Y-, and Z-directions are
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Figure 27: LB-1.0 theoretical end effector velocities in the direction of the three
principal axes.

486.8 mm/sec, 601.9 mm/sec, and 865.6 mm/sec, respectively. The minimum veloc-

ity capability for the X and Y-directions is zero, but this only occurs when the arm

is completely extended in the X or Y-direction, respectively. The minimum velocity

capability in the Z-direction is 292.8 mm/sec and occurs when the elbow is turned to

its limit. The maximum velocity for the X and Y-directions is 1131.2 mm/sec and

1098.6 mm/sec in the Z-direction.

The theoretical end effector forces were calculated based on the maximum joint

torques in Table 5. The forces in the directions of the three principal axes are shown

in Figure 28. The forces were bounded with an upper limit of 30 N. The mean force
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Figure 28: LB-1.0 theoretical end effector forces in the direction of the three principal
axes.

in the X-, Y-, and Z-directions is 10.53 N, 10.71 N, and 23.39 N, respectively. The

minimum forces are 4.8 N for the X and Y-directions and 15.3 N for the Z-direction.

The maximum force is 30 N for each direction.

Motor Control Modules

Each joint of the previously described robots has a local motor control module that

is responsible for controlling the motor in that joint. Each of these modules share

the same bus for power and data . This simplifies cable management, as there are

only four wires that run the length of each arm. The modules are composed of a 75
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Figure 29: Shoulder and arm versions of the motor control modules.

MHz Cortex-M0+ microcontroller, two brushless DC bridge drivers, a 9-DOF inertial

measurement unit, high-speed non-volatile FRAM memory, and a RS-485 transceiver

connected to the data bus [8]. The schematic for the electrical design in shown in the

appendix.

The modules interface with the bus using micro-pitch 2x5 crimp-on headers and

0.25” pitch cable, enabling very easy cable assembly. Since the bus uses only four

wires, the unused wires on the 10-pin ribbon cable can either be removed or used for

local auxiliary functionality; the unused wires can be used as analog or digital I/O,

or as an I2C bus, with the local motor control module acting as a bus master.

Two different forms of the PCB were created; one version was designed to drive

four motors and be housed on the shoulder body and the other was designed to drive

two motors and be installed on the arms. The two versions are shown in Figure 29

and an example of the motor control module layout is shown in Figure 30.
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Figure 30: Motor control module layout for the 4-DOF robot, where (M) are motors
and [P] are absolute position sensors.

Position Control

The brushless DC motors for each joint are commuted using three Hall effect sensors

built into the actuators. This Hall sensor feedback is also used for relative position

control of each joint through a simple proportional control scheme. The BLDC bridge

drivers are controlled through an 8-bit pulse width modulated (PWM) pin on the

MCU which sets the power sent to the motor as a value from 0-255.

The angular resolution for each joint is sufficient due to the high gear ratios

coupled to each motor (256:1 or higher). Internal counters on the MCU are updated

on interrupt events driven by changes in the Hall sensor signals. The direction of the

motor can be determined by looking at two of the Hall signals when the interrupt is

triggered, as shown in Figure 31. If the both of the signals are in the same state, the

motor is rotating clockwise and the counter is increased; if the signals are opposite,

the motor is rotating counter-clockwise and the counter is decreased. Initially the

counters were updated only on the rising edge of the Hall signal, but this was found

to lose position when close to the angular setpoint and changing directions quickly.

Modifying the interrupt to trigger on both the rising and falling edges of the Hall
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Figure 31: Hall sensor feedback from rotating brushless DC motor.

signal solved this problem.

Absolute position feedback is provided by potentiometers installed at the outputs

of each joint. The potentiometers are wired as voltage dividers with the outputs wired

to the analog inputs at the local motor module bus. These sensors could be used in

the position control loop, but the small potentiometers used in the robot design have

a non-linear position-to-output ratio which would require additional computation in

the control loop. The sensors are instead used to provide absolute positioning during

robot initialization.

Current-Torque Control

The current consumption of each of the BLDC bridge drivers is fed into the MCU

for measurement. This data signal is fairly noisy and not very useful without condi-

tioning. A moving average of the current measurement is used to reduce the noise in

the signal and produce usable data. Instead of keeping a large array of past current

values, computing the sum, and dividing it by the total number of samples, a more
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computationally efficient method was used. The moving average was calculated as

MA = (MAp + I −MAp/N)/N

where MA is the moving average, MAp is the previous moving average, I is the

current measurement, and N is the number of samples in the moving average. This

technique has the advantage of not needing to store measurement values. If N is a

power of two the division can be performed as a bit-shift, which is computationally

efficient.

The conditioned data is used to perform current limiting for each motor. This

is accomplished by setting a current threshold for each motor. The position control

scheme is overridden when the current measurement is above the set threshold and

the BLDC bridge driver PWM control pin is incremented down until the current falls

below the limit. An example of the current limiting is shown in Figure 32. The

current limiting method effectively limits the torque of the motor because the motor

current is proportional to the output torque. This is useful to protect the mechanical

components of each joint’s drivetrain from overloading.

Non-Volatile Memory

The motor control modules use the non-volatile FRAM (Ferroelectric Random-Access

Memory) to retain motor control information while powered off. The motor control

mode, proportional gain, setpoint, current position, gear ratio, speed limit, current

limit, and home value for the absolute position sensor are stored for each joint. This

is very helpful in the event of power loss during operation because the robot can

simply be re-powered and continue operation without any initialization.
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Figure 32: Current versus time for a non-limited and limited motor load.

Custom Software Stack

Instead of using off-the-shelf control/automation software (such as the National In-

struments LabVIEW package), a custom software stack built on the .NET framework

was developed to provide a flexible control structure to accommodate a wide variety

of input and output devices. The program was designed to provide the core robot

services and move all other functionality to an extensible plug-in infrastructure. The

software architecture is composed of a communications layer (which abstracts the

hardware communication transport between the computer and robot), a robot layer

(which abstracts a specific set of motors, control modules, and robot-specific param-

eters), motor command and feedback layer (which defines joint-specific gear ratios,

current limits, setpoints, jogging capabilities, and position feedback), and a plug-in
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Figure 33: Robot control software user interface.

architecture (where all other run-time function is programmed) [8]. A screenshot of

the software’s controller configuration user interface is shown in Figure 33.

Communication Layer

The communication layer provides an architecture that abstracts computer-robot

communication, allowing support to be built for serial ,USB, Bluetooth, or any other

arbitrary communication interface. The current robot hardware only allows for se-

rial communication, abstracted using a USB interface on the computer side. This
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abstraction also allows for a “virtual robot” simulation interface to be built to be

used as a software dummy for development of control algorithms without the need

for hardware to be present [8].

Robot Layer

The robot layer handles control and data services to discover, control, configure, and

read motor control modules. Each robot configuration has a collection of zero or

more controllers, which themselves can have zero, one, or two motors. Controllers

are auto-discovered and identified by unique controller ID numbers. Each controller

has a “friendly name” property that can be used to describe information such as the

location of the motor control module. Motors can be added to the controller once

it is instantiated. Each motor has a “name” property which can be used to describe

the joint, as well as controls for jogging the motor, keying in setpoints manually,

and setting the joint properties (gear ratio, current limits, maximum joint speed, and

proportional gain for the position control loop). Each motor also has a button that

can be used to home the joint based on the absolute position senor. Each motor also

has two outputs which can routed arbitrarily: motor current and position [8].

Plug-in Layer

The robot control software utilizes an extensible plug-in infrastructure that allows

individual software modules to publish and subscribe to data. Each plug-in is com-

posed of a configuration pane, any number of named inputs, and any number of

named outputs. To increase performance, the plug-ins are implemented as a derived

class with no dynamic typing. This restricts all inputs and outputs to real-valued

numbers represented by double-precision floating point numbers. Because each plug-
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in is implemented as a class, the programming language includes built-in capabilities

to discover plug-ins that are part of the compiled assembly and instantiate the same

plug-in one or more times [8].

Once a plugin is instantiated, its input list (containing zero or more items) is

added to the global input registry. When a plugin is removed, its inputs are also

removed from the list. Plug-ins can also have zero or more outputs. The base plugin

GUI provides an interface to direct the outputs to zero or more inputs in the global

input registry. Data is “pushed” from plug-in to plug-in, starting at the user input

and ending with commands to the robot.

Besides the core robot control functionality, all other functionality during run-time

is written into plug-ins. The plug-ins handle the basic functions necessary to control

the robot, such as inverse kinematics and user input interfaces, as well as others that

provide higher level functionality. Some provide haptic workspace functionality, the

ability to record and play back robot actions, or scale the workspace for finer control

of robot motion. A section of the most relevant plug-ins will be discussed next.

Geomagic Touch

The Geomagic Touch plug-in interfaces to the popular off-the-shelf haptic controller

with the robot control software. The Geomagic Touch® is a cable-driven, motorized

haptic device that provides position and orientation feedback from the controller as

well as three-DOF of force feedback into the user’s hand. As such, the plug-in provides

bi-directional communication between the controller and master computer allowing

the controller to output raw position and orientation with respect to the controller’s

base frame as well as receive force input from any number of plug-ins.

Several plug-ins were developed to condition the raw position data from the con-
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Figure 34: Flow chart of a typical plug-in architecture for the surgical robot.

troller. Among these plug-ins are are homing, scaling, and clutching functions. The

homing plug-in was developed to reduce the complexity of the inverse kinematics by

allowing the user to invert the raw position data and set a new base frame for the

device, allowing the use of the same kinematic model for both arms. The scaling

plug-in was developed to allow scaling of the input position by a user-defined ratio.

This function allows the user to have very fine control of the robot position, if desired.

When the user input is scaled down, the controller may run into the physical limits

of the device before the physical limits of the robot arm. To address this issue, a

clutching plug-in was developed. This function allows the user to press and hold an

input button and move the controllers back into their useful volume without changing

the position of the robot.
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Hardware Interface

Plug-ins have been developed to interface additional hardware with the control soft-

ware. Any microcontroller with serial communications can be combined with digital

or analog input hardware to create custom controllers that easily integrate with the

robot control architecture. Currently, the only input hardware used are a set of

foot-pedals to complement the haptic controllers.

Haptic Workspace

The haptic feedback capabilities of the controllers allow the implementation of force

barriers to keep the controller inside the robot’s reachable workspace. Viscous forces

are also applied to the controllers to try to reduce hand tremors in the operator and

damp oscillations if the controllers are dropped. Additionally, a plug-in function to

haptically lock the controllers and pause the position output to the robot has been

developed.

In an effort to make the haptic workspace as generic as possible, haptic forces are

calculated using the forward kinematics of the robot and joint limits. If the controller

enters a spot that the robot cannot reach, the forward kinematics are calculated for

the actual robot position based on the limited joint angles and subtracted from the

position of the controller. The resulting displacement vector is multiplied by a spring

constant to yield a force vector pushing the controller to the actual robot position,

shown in the following equation:

~F = ks(Pd − Ph)

where ks is the spring constant, Pd is the desired position, and Ph is the actual position
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from the forward kinematics.

Numerical Inverse Kinematics Solver

While deriving a closed form inverse kinematic solution for a simple manipulator

is fairly simple, the difficulty increases quickly as the number of joints is increased.

Some manipulator configurations do not have a closed form solution at all. To address

this problem and allow rapid development of different manipulator configurations, a

numerical inverse kinematics solver algorithm was implemented based on the work

of Li-Chung Tommy Wang [35]. This algorithm uses a cyclic coordinate descent

(CCD) method to iteratively solve the inverse kinematics problem with only the DH

parameters of the manipulator.

The algorithm starts with an initial guess for the joint angles and applies forward

recursion formulas to determine the location and orientation of each of the kinematic

frames with respect to the base frame [34]. The forward recursion formulas are

xi+1 = xicosθi + yisinθi

zi+1 = zicosαi + (xi+1 × zi)sinαi

yi+1 = zi+1 × xi+1

p∗i = dizi + aixi+1

0pi+1 =0 pi − p∗i

for i = 0 to n − 1 and where xi, yi, zi are the the unit vectors for the orientation

of the frame [i], p∗i is the position of frame [i] with respect to the previous frame,

and 0pi is the position of frame [i] with respect to the base frame. These equations

show that the position and orientation of each kinematic frame can be calculated if

the base frame location/orientation and DH parameters are known. The position and
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orientation of the base frame are static and are defined as

x0 =


1

0

0

 y0 =


0

1

0

 z0 =


0

0

1


0p0 =


0

0

0



Once the position of each of the frames is defined, the current end effector position

(Ph) is defined as the position of the last kinematic frame. The relative positions of

each of the kinematic frames with respect to the end effector position is calculated

and is defined as Pih for each joint i. The error between the the desired position (Pd)

and current position is

∆P (~θ) = (Pd − Ph) · (Pd − Ph)

∆O(~θ) =
3∑
j=1

σj(Rdj ·Rhj(~θ)− 1)2

E = ∆P (~θ) + ∆O(~θ)

where ~θ is the vector containing the joint variable values, ∆P (~θ) is the position error,

∆O(~θ) is the orientation error, and E is the total error of using the current joint

angles. In some practical applications, the orientation of the end effector may not

need to be specified. In these cases,

σj =


1

0

if the jth direction needs specifiying

otherwise.

where j = 1, 2, 3 correspond to the X, Y, and Z components of the end effector frame,

respectively. In the case of the four-DOF robot arm, only wrist roll orientation is

possible, which corresponds to the z-component of the frame, so σ1and σ2 would be
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set equal to zero.

The objective function to minimize is the equation for the error (E). The CCD

method is a heuristic direct search method with each cycle consisting of n steps. At

the ith step of each cycle (i varying from 1 to n) only the ith joint angle variable

is changed to minimize the objective function. The position and orientation of the

end effector is updated only after each completed cycle through the joints. The cyclic

process is continued until the value of the error function reaches a predetermined

small tolerance.

In the case of a rotational joint, as is the case with all of the surgical robot joints,

Pih can be considered as a vector from the ith joint to the end effector. The expression

for the Pih vector rotated about the zi axis by angle φ can be written as

P ′ih(φ) = R(zi, φ)Pih

where R(zi, φ) is the 3×3 rotation matrix about zi. Because the other joints are not

allowed to move, the position error for the joint then becomes

∆p(φ) = (Pid − P ′ih(φ)) · (Pid − P ′ih(φ)).

Substituting the equation for P ′ih into the error equation and noting that the equation

for R is orthogonal yields

∆p(φ) = Pid · Pid + Pih · Pih − 2Pid · (R(zi, φ)Pih).

Minimizing the position error equation becomes the same as maximizing the negative

part of the expression because the values of Pid and Pih are constants for the cycle,
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yielding the following expression to be maximized:

g1(φ) = Pid · (R(zi, φ)Pih).

Using the same logic for the orientation error, the expression for the end effector

orientation vectors are rotated about zi by the angle dθ is

r′hj(φ) = R(zi, φ)Rhj for j = 1 to 3

and the orientation error becomes

∆o(φ) =
3∑
j=1

(Rdj · r′hj(φ)− 1)2

Since both Rdj and r′hj are both unit vectors, they can be related to the direction

angle ψj(φ) between them with the following expression:

Rdj · r′hj(φ) = cosψj(φ).

The orientation error can then be written

∆o(φ) =
3∑
j=1

(cosψj(φ)− 1)2.

Due to the fact that cosψj is bounded between +1 and -1, minimizing the orientation

error is the same as maximizing

g2(φ) =
3∑
j=1

σjcosψj(φ)

where σj is defined as before. Combining the two expressions to be maximized yields
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the new objective function for the joint

g(φ) = wpg1(φ) + wog2(φ)

where wp and wo are arbitrary weighting factors for the position and orientation,

respectively.

The problem now becomes finding the value of φ such that the objective function

is maximized. This can be accomplished analytically by utilizing the vector form of

Rodrigues’ equation and substituting the expression into the new objective function.

The objective function becomes

g(φ) = k1(1− cosφ) + k2cosφ+ k3sinφ

where k1, k2, and k3 are constant coefficients defined as

k1 = wp(Pid · zi)(Pih · zi) + wo
3∑
j=1

σj(Rdj · zi)(Rhj · zi)

k2 = wp(Pid · Pih) + wo
3∑
j=1

σj(Rdj ·Rhj)

k3 = zi ·

wp(Pih × Pid) + wo
3∑
j=1

σj(Rhj ×Rdj)
 .

The objective function is maximized when

dg(φ)
dφ

= (k1 − k2) sinφ+ k3 cosφ = 0

and
d2g(φ)
dφ2 = (k1 − k2) cosφ− k3 sinφ < 0.

A value for φ can be found easily by solving the first derivative equation and checking



54

the result with the second derivative condition

φ = arctan
(

k3

k2 − k1

)
φ > arctan

(
k1 − k2

k3

)
.

The value of φ should bounded at the upper and lower mechanical limits of the joint

for solutions outside of the joint’s range. The implemented code is shown in the

appendix.

V-REP Simulation Interface

A plugin has been created in our robot control application to interface with the Vir-

tual Robot Experimental Platform (V-REP) (Coppeliar Robotics) software and allow

direct control of the virtual robot using our kinematic models. The V-REP software

has many features including the ability to place vision sensors on the robot, view the

simulation through the vision sensor’s perspective, as well as physics modeling and

primitive collision detection. The plugin is very simple to use and the operation of

the virtual robot is the same as operating the robot hardware. The plug-in uses the

open-source V-REP Remote API framework to connect to the V-REP software as a

client and starts a communication thread over a network IP. The thread is used to

request all joint handles for the currently open model. An input is added to the input

signal registry for each joint, at which point any other plug-in can output joint angles

to the robot simulation using the same input/output mapping used to communicate

with the actual robot as shown in Figure 35.

The V-REP platform is specifically built for the modeling of robotic systems. It in-

cludes tools to quickly generate kinematic models from DH parameters and vise-versa

which, coupled with the numerical inverse kinematics solver, enables rapid testing of

new manipulator configurations without the need to build any hardware. The simu-
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Figure 35: V-REP simulation of the four-DOF robot inside the insuflated abdominal
cavity with simulated robot view.

lated vision sensors also allow the testing of proposed vision systems also shown in

Figure 35.

Surgeon Console

A mobile surgeon console was constructed from an Ergotron WorkFit-C sit-stand

computer cart. The keyboard platform was removed and replaced with a custom

controller mount. Brackets were made to attach a rack-mounted computer to the

stand. A power strip which powers all of the needed user control devices is attached

to the side of the cart, making only a single outlet need to power the entire user in-

terface. The monitor and controllers can be adjusted independently to the operator’s

preference. A HD-SDI/HDMI video recorder card (Blackmagic DeckLink BDLKMIN-

REC) was added to the computer to enable interfacing with the HD endoscope video

feed. The console is a convenient mobile platform, and additional user input devices

can easily be added through the extra USB ports and the software plug-in interface.
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Figure 36: Remote surgeon user interface for the robot control platform.
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Experimental Results

CRB-1.0 has been extensively tested in both benchtop and live animal studies in a

porcine model. The live animal studies were performed when the platform was not

quite mature, and hardware failures occurred in all tests. The hardware failures all

occured during the insertion process of the robot through a gel diaphragm into the

abdominal cavity. These procedures had to be converted to an open procedure, shown

in Figure 37. The robot demonstrated sufficent strength to manipulate organs and

also demonstrated mono-polar cautery cabability. The surgeon felt that the robot

responded accurately to the given commands and provided smooth and intuitive

control of the robotic manipulators.

In order to prevent further hardware failures during the insertion process, the arms

Figure 37: Live animal tests with robot inserted through gel diaphragm (left), and
open procedure (right).
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Figure 38: Insertion procedure test using a pressurized chamber.

were modified and the insertion procedure was tested extensively using a pressurized

chamber in place of the abdominal cavity, shown in Figure 38. CRB-1.0 was able to

successfully perform the insertion procedure in the benchtop test bed 15 consecutive

times without any hardware or electrical failures.

Both mono-polar and bipolar cautery were tested in benchtop studies with animal

tissue, as shown in Figure 39. Significant shielding was required on the mono-polar

cautery power wire to prevent electromagnetic noise from resetting the motor control

modules. It was also learned that the end effectors needed to be completely isolated

from any ground due the nature of mono-polar cautery; the pad that is placed under-

neath the tissue to be cauterized provides the high voltage and the tool acts as the
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Figure 39: Mono-polar cautery (top) and bi-polar cautery (bottom) benchtop tests
with animal tissue.

ground. The RS-485 serial communication protocol was found to provide sufficient

protection from the electromagnetic noise generated by the cautery. The bi-polar

cautery uses a much lower power than the mono-polar cautery and did not cause any

problems with the control electronics.

The LB-1.0 device has not been tested as extensively as the CRB-1.0. This is due

to the later development of the robot and the significant time that was required to

develop the numerical inverse kinematics algorithm for its control. Successful control

of a single arm has been demonstrated, but further benchtop studies are needed to

more fully evaluate the devices capabilities.
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Conclusions

This thesis presents several advancements in the field of single-incision robotic surgery.

Two miniature surgical robots using the same distributed motor control modules have

been developed to run on a flexible software stack purposely built to facilitate rapid

development. The theoretical analyses of the devices were presented and both meet

the proposed requirements to perform surgical tasks.

Both devices met the design requirments set at the beginning of the design chapter

throughout almost all of their workspaces. The only areas where the target velocities

were not met are on the very edges of the workspace when the manipulators start

hitting singularities in the kinematics. The force requirement of 2.2 N was well

exceded, with minimum forces of 4.6 N in CRB-1.0 and 4.8 N in LB-1.0. These

minimum forces were much greater than the previous device, EB-2.0, which had

minimum force values in the range of 0.8 N in some areas of the workspace. The

average velocities for both designed devices was greater than the average velocity of

EB-2.0.

The CRB-1.0 device has a total workspace volume of 5636.8 cm3 and and shared

workspace volume of 2215.8 cm3. The limited range of the elbow joint made this

workspace smaller than the EB-2.0 workspace, which had a total volume of 7431.2

cm3 and shared volume of 3838.2 cm3 [20]. CRB-1.0 was evaluated through multiple

benchtop and in vivo animal experiments where it demonstrated the dexterity needed
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to perform simple laparoscopic procedures. While several shortcomings were found

in the dexterity and workspace of the robot, the tests proved the effectiveness of the

control system, electro-cautery tools, and insertion protocol. LB1.0 was developed to

enhance the dexterity and workspace deficiencies of the CRB-1.0 device.

The LB-1.0 device greatly improves on the workspace of CRB-1.0. LB-1.0 has

a 200% larger total workspace (11276.5 cm3) than the CRB-1.0, and a 345% larger

shared workspace (7658.9 cm3). The LB-1.0 workspace surpasses the capabilities

of the EB-2.0. The LB-1.0 also has an inserted profile which is 47% of the size of

the CRB-1.0 and an integrated camera system. Further benchtop studies will be

performed with this device to more completely evaluate its capabilities.

The overall system is compact and low-power, with all robot communications

through a single USB port. The control software package can be run on any computer

with a Windows operating system. The motor control modules provide joint position

and torque control, with additional motor controllers easily added to a system by

simply plugging them into the power/data bus.
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Kinematic Analysis

The homogeneous transformation matrix as derived from the definition of the Denavit-

Hartenberg parameters is

T i−1
i = Tzi−1(di−1)Rzi−1(θi−1)Tx(ai)Rx(αi)

where

Tzi−1(di−1) =



1 0 0 0

0 1 0 0

0 0 1 di−1

0 0 0 1


, Rzi−1(θi−1) =



cos θi−1 − sin θi−1 0 0

sin θi−1 cos θi−1 0 0

0 0 1 0

0 0 0 1


,

Tx(ai) =



1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1


, Rx(αi) =



1 0 0 0

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1


.
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Multiplying these matrices in order yields the homogeneous transformation matrix

through linear algebra:

T i−1
i =



cos θi−1 − cosαi sin θi−1 sinαi sin θi−1 ai cos θi−1

sin θi−1 cosαi cos θi−1 − sinαi cos θi−1 ai sin θi−1

0 sinαi cosαi di−1

0 0 0 1



CubReich-Bot 1.0

The transformation matrices for each kinematic from with respect to the previous

frame are found by plugging in the DH parameters:

i αi ai di−1 θi−1

1 0 0 0 0

2 90◦ 0 0 φ1

3 −90◦ L1 = 68.5 mm 0 φ2

4 90◦ 0 0 φ3 + 90º

5 0 0 L2 = 96.4 mm φ4

T 0
1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, T 1

2 =



c1 0 s1 0

s1 0 −c1 0

0 1 0 0

0 0 0 1


, T 2

3 =



c2 0 −s2 L1c2

s2 0 c2 L1s2

0 −1 0 0

0 0 0 1


,
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T 3
4 =



c3 0 s3 0

s3 0 −c3 0

0 1 0 0

0 0 0 1


, T 4

5 =



c4 −s4 0 0

s4 c4 0 0

0 0 1 L2

0 0 0 1


Multiplying these in order yields the transformation matrix of the end effector with

respect to the base frame:

T 0
5 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5

T 0
5 =


−c4(s1s3 − c1c2c3) − c1s2s4 s4(s1s3 − c1c2c3) − c1c4s2 c3s1 + c1c2s3 L1c1c2 + L2 (s1c3 − c1c2s3)

c4(c1s3 + c2c3s1) − s1s2s4 −s4(c1s3 + c2c3s1) − c4s1s2 c2s1s3 − c1c3 L1s1c2 − L2 (c1c3 + s1c2s3)

c2s4 + c4c3s2 c2c4 − c3s2s4 s2s3 L1s2 + L2s2s3

0 0 0 1



Lou-Bot 1.0

The transformation matrices for each kinematic from with respect to the previous

frame are found by plugging in the DH parameters:
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i αi ai di−1 θi−1

1 0 0 0 0

2 90◦ 0 0 θ1

3 90◦ 0 0 θ2 + 90◦

4 90◦ 0 L1 = 87.6 mm θ3 + 90◦

5 90◦ 0 0 θ4 + 180◦

6 90◦ 0 L2 = 86.6 mm θ5 + 180◦

T 0
1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, T 1

2 =



c1 0 s1 0

s1 0 −c1 0

0 1 0 0

0 0 0 1


, T 2

3 =



c2 0 s2 0

s2 0 −c2 0

0 1 0 0

0 0 0 1


,

T 3
4 =



c3 0 s3 0

s3 0 −c3 0

0 1 0 L1

0 0 0 1


, T 4

5 =



−c4 0 −s4 0

−s4 0 c4 0

0 1 0 0

0 0 0 1


, T 5

6 =



−c5 0 −s5 0

−s5 0 c5 0

0 1 0 L2

0 0 0 1



Multiplying these in order yields the transformation matrix of the end effector with

respect to the base frame:

T 0
6 =



R00 R01 R02 x

R10 R11 R12 y

R20 R21 R22 z

0 0 0 1
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where

R00 = c5(c4(s1s3 + c1c2c3) + c1s4s2) + s5(c3s1 − c1c2s3) R01 = c1c4s2 − s4(s1s3 + c1c2c3)

R02 = s5(c4(s1s3 + c1c2c3) + c1s4s2) − c5(c3s1 − c1c2s3) R10 = −c5(c4(c1s3 − c2c3s1) − s1s4s2) − s5(c1c3 + c2s1s3)

R11 = s4(c1s3 − c2c3s1) + c4s1s2 R12 = c5(c1c3 + c2s1s3) − s5(c4(c1s3 − c2c3s1) − s1s4s2)

R20 = −c5(c2s4 − c4c3s2) − s5s2s3 R21 = −c4c2 − c3s4s2

R22 = c5s2s3 − s5(c2s4 − c4c3s2)

and
x = L1c1s2 − L2(s4(s1s3 + c1c2c3)− c1c4s2)

y = L2(s4(c1s3 − c2c3s1) + c4s1s2) + L1s1s2

z = −L2(c4c2 + c3s4s2)− L1c2
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Supplemental Code

CubReich-Bot 1.0 Capabilities MATLAB Function

1 function [X,Y,w,Vx ,Vy,Vz,Fx ,Fy,Fz] = MEATBOTcapabilities(savePics)
2 % define step size in degrees
3 step = 1;
4 % define length of upper arm (L1) and forearm (L2) links
5 L1 = 68.58;
6 L2 = 96.393;
7 % set theta2 to zero to keep arm in X-Y plane
8 t2 = 0;
9 % preallocate memory for data arrays

10 xSize = (135/ step)+1;
11 ySize = (105/ step)+1;
12 X = zeros(xSize ,ySize);
13 Y = zeros(xSize ,ySize);
14 w = zeros(xSize ,ySize);
15 Vx = zeros(xSize ,ySize);
16 Vy = zeros(xSize ,ySize);
17 Vz = zeros(xSize ,ySize);
18 Fx = zeros(xSize ,ySize);
19 Fy = zeros(xSize ,ySize);
20 Fz = zeros(xSize ,ySize);
21 % set maximum velocities for each joint in rad/s
22 jointVel = zeros (3);
23 jointVel (1) = 4.4831;
24 jointVel (2) = 4.4831;
25 jointVel (3) = 2.3845;
26 % set maximum joint torques for each joint in mN -m
27 jointTorque = zeros (3);
28 jointTorque (1) = 3115.57;
29 jointTorque (2) = 3115.57;
30 jointTorque (3) = 448.11;
31 % set maximum starting force and force step for the numerical force solver
32 forceMax = 30;
33 forceStep = 0.1;
34
35 m = 0;
36 for t1 = -90:step :45
37 m = m + 1;
38 n = 0;
39 for t3 = 0:step :105
40 n = n + 1;
41
42 % calculate forward kinematics
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43 X(m,n) = L2*(cosd (90 + t3)*sind(t1) + cosd(t1)*cosd(t2)*sind (90 + t3)) + L1*
cosd(t1)*cosd(t2);

44 Y(m,n) = L1*cosd(t2)*sind(t1) - L2*(cosd(t1)*cosd (90 + t3) - cosd(t2)*sind(t1
)*sind (90 + t3));

45 % calcuate Jacobian matrix
46 J = [ L2*(cosd(t1)*cosd (90 + t3) - cosd(t2)*sind(t1)*sind (90 + t3)) - L1*cosd

(t2)*sind(t1), - L1*cosd(t1)*sind(t2) - L2*cosd(t1)*sind(t2)*sind (90 + t3), -L2*(
sind(t1)*sind (90 + t3) - cosd(t1)*cosd(t2)*cosd (90 + t3)); L2*(cosd (90 + t3)*sind
(t1) + cosd(t1)*cosd(t2)*sind (90 + t3)) + L1*cosd(t1)*cosd(t2), - L1*sind(t1)*
sind(t2) - L2*sind(t1)*sind(t2)*sind (90 + t3), L2*(cosd(t1)*sind (90 + t3) + cosd
(t2)*cosd (90 + t3)*sind(t1)); 0, L1*cosd(t2) + L2*cosd(t2)*sind (90 + t3), L2*cosd
(90 + t3)*sind(t2)];

47 % calcuate Jacobian transpose matrix
48 Jt = [ L2*(cosd(t1)*cosd (90 + t3) - cosd(t2)*sind(t1)*sind (90 + t3)) - L1*

cosd(t2)*sind(t1), L2*(cosd (90 + t3)*sind(t1) + cosd(t1)*cosd(t2)*sind (90 + t3))
+ L1*cosd(t1)*cosd(t2), 0; - L1*cosd(t1)*sind(t2) - L2*cosd(t1)*sind(t2)*sind (90
+ t3), - L1*sind(t1)*sind(t2) - L2*sind(t1)*sind(t2)*sind (90 + t3), L1*cosd(t2) +
L2*cosd(t2)*sind (90 + t3); -L2*(sind(t1)*sind (90 + t3) - cosd(t1)*cosd(t2)*cosd

(90 + t3)), L2*(cosd(t1)*sind (90 + t3) + cosd(t2)*cosd (90 + t3)*sind(t1)), L2*
cosd (90 + t3)*sind(t2)];

49 % calculate manipulability index
50 w(m,n) = sqrt(abs(det(J*Jt)));
51 % calculate velocity
52 for i=-1:1
53 for j=-1:1
54 for k=-1:1
55 V = J*[i*jointVel (1);j*jointVel (2);k*jointVel (3)];
56 if abs(V(1)) > Vx(m,n)
57 Vx(m,n) = abs(V(1));
58 end
59 if abs(V(2)) > Vy(m,n)
60 Vy(m,n) = abs(V(2));
61 end
62 if abs(V(3)) > Vz(m,n)
63 Vz(m,n) = abs(V(3));
64 end
65 end
66 end
67 end
68 % calculate force in x direction
69 testForce = forceMax;
70 weak = true;
71 while weak
72 strong = true;
73 T = Jt*[ testForce ;0;0];
74 for i = 1:3
75 if abs(T(i)) > jointTorque(i)
76 strong = false;
77 end
78 end
79 if strong
80 weak = false;
81 Fx(m,n) = testForce;
82 else
83 testForce = testForce - forceStep;
84 end
85 end
86 % calculate force in y direction
87 testForce = forceMax;
88 weak = true;
89 while weak
90 strong = true;
91 T = Jt*[0; testForce ;0];
92 for i = 1:3
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93 if abs(T(i)) > jointTorque(i)
94 strong = false;
95 end
96 end
97 if strong
98 weak = false;
99 Fy(m,n) = testForce;

100 else
101 testForce = testForce - forceStep;
102 end
103 end
104 % calculate force in z direction
105 testForce = forceMax;
106 weak = true;
107 while weak
108 strong = true;
109 T = Jt *[0;0; testForce ];
110 for i = 1:3
111 if abs(T(i)) > jointTorque(i)
112 strong = false;
113 end
114 end
115 if strong
116 weak = false;
117 Fz(m,n) = testForce;
118 else
119 testForce = testForce - forceStep;
120 end
121 end
122
123 end
124 end
125 % normalize manipulability index to maximum
126 w = w/max(w(:));
127 % plot figure for manipulability index
128 figure (1)
129 surface(X,Y,zeros(size(X)),w,’LineStyle ’,’none’);
130 view (-90,90)
131 colorbar;
132 axis equal tight
133 grid on
134 xlabel(’X␣[mm]’)
135 ylabel(’Y␣[mm]’)
136 zlabel(’Z␣[mm]’)
137 title(’MB2␣Manipulability␣Index ’)
138 if savePics
139 saveas(gcf ,’MB2 -manipulability.tif’)
140 end
141 % plot figure for Vx
142 figure (2)
143 surface(X,Y,zeros(size(X)),Vx,’LineStyle ’,’none’);
144 view (-90,90)
145 colorbar;
146 axis equal tight
147 grid on
148 xlabel(’X␣[mm]’)
149 ylabel(’Y␣[mm]’)
150 zlabel(’Z␣[mm]’)
151 title(’MB2␣Vx␣[mm/s]’)
152 if savePics
153 saveas(gcf ,’MB2 -Vx.tif’)
154 end
155 % plot figure for Vy
156 figure (3)
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157 surface(X,Y,zeros(size(X)),Vy,’LineStyle ’,’none’);
158 view (-90,90)
159 colorbar;
160 axis equal tight
161 grid on
162 xlabel(’X␣[mm]’)
163 ylabel(’Y␣[mm]’)
164 zlabel(’Z␣[mm]’)
165 title(’MB2␣Vy␣[mm/s]’)
166 if savePics
167 saveas(gcf ,’MB2 -Vy.tif’)
168 end
169 % plot figure for Vz
170 figure (4)
171 surface(X,Y,zeros(size(X)),Vz,’LineStyle ’,’none’);
172 view (-90,90)
173 colorbar;
174 axis equal tight
175 grid on
176 xlabel(’X␣[mm]’)
177 ylabel(’Y␣[mm]’)
178 zlabel(’Z␣[mm]’)
179 title(’MB2␣Vz␣[mm/s]’)
180 if savePics
181 saveas(gcf ,’MB2 -Vz.tif’)
182 end
183 % plot figure for Fx
184 figure (5)
185 surface(X,Y,zeros(size(X)),Fx,’LineStyle ’,’none’);
186 view (-90,90)
187 colorbar;
188 axis equal tight
189 grid on
190 xlabel(’X␣[mm]’)
191 ylabel(’Y␣[mm]’)
192 zlabel(’Z␣[mm]’)
193 title(’MB2␣Fx␣[Newtons]’)
194 if savePics
195 saveas(gcf ,’MB2 -Fx.tif’)
196 end
197 % plot figure for Fy
198 figure (6)
199 surface(X,Y,zeros(size(X)),Fy,’LineStyle ’,’none’);
200 view (-90,90)
201 colorbar;
202 axis equal tight
203 grid on
204 xlabel(’X␣[mm]’)
205 ylabel(’Y␣[mm]’)
206 zlabel(’Z␣[mm]’)
207 title(’MB2␣Fy␣[Newtons]’)
208 if savePics
209 saveas(gcf ,’MB2 -Fy.tif’)
210 end
211 % plot figure for Fz
212 figure (7)
213 surface(X,Y,zeros(size(X)),Fz,’LineStyle ’,’none’);
214 view (-90,90)
215 colorbar;
216 axis equal tight
217 grid on
218 xlabel(’X␣[mm]’)
219 ylabel(’Y␣[mm]’)
220 zlabel(’Z␣[mm]’)
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221 title(’MB2␣Fz␣[Newtons]’)
222 if savePics
223 saveas(gcf ,’MB2 -Fz.tif’)
224 end

Lou-Bot 1.0 Capabilities MATLAB Function

1 function [X,Y,w,Vx ,Vy,Vz,Fx ,Fy,Fz] = LOUBOTcapabilities(savePics)
2 % define step size in degrees
3 step = 1;
4 % define length of upper arm (L1) and forearm (L2) links
5 L1 = 87.57;
6 L2 = 86.59;
7 % set theta2 and theta3 to zero to keep arm in X-Y plane
8 t2 = 0;
9 t3 = 0;

10 % preallocate memory for data arrays
11 xSize = (135/ step)+1;
12 ySize = (150/ step)+1;
13 X = zeros(xSize ,ySize);
14 Y = zeros(xSize ,ySize);
15 w = zeros(xSize ,ySize);
16 Vx = zeros(xSize ,ySize);
17 Vy = zeros(xSize ,ySize);
18 Vz = zeros(xSize ,ySize);
19 Fx = zeros(xSize ,ySize);
20 Fy = zeros(xSize ,ySize);
21 Fz = zeros(xSize ,ySize);
22 % set maximum velocities for each joint in rad/s
23 jointVel = zeros (4);
24 jointVel (1) = 5.2308;
25 jointVel (2) = 5.2308;
26 jointVel (3) = 5.2308;
27 jointVel (4) = 2.5426;
28 % set maximum joint torques for each joint in mN -m
29 jointTorque = zeros (4);
30 jointTorque (1) = 2670.49;
31 jointTorque (2) = 2670.49;
32 jointTorque (3) = 2410.12;
33 jointTorque (4) = 420.1;
34 % set maximum starting force and force step for the numerical force solver
35 forceMax = 30;
36 forceStep = 0.1;
37
38 m = 0;
39 for t1 = -90:step :45
40 m = m + 1;
41 n = 0;
42 for t4 = 0:step :150
43 n = n + 1;
44
45 % calculate forward kinematics
46 X(m,n) = L1*cosd(t1)*sind (90 + t2) - L2*(sind(t4)*(sind(t1)*sind (90 + t3) +

cosd(t1)*cosd (90 + t2)*cosd (90 + t3)) - cosd(t1)*cosd(t4)*sind (90 + t2));
47 Y(m,n) = L2*(sind(t4)*(cosd(t1)*sind (90 + t3) - cosd (90 + t2)*cosd (90 + t3)*

sind(t1)) + cosd(t4)*sind(t1)*sind (90 + t2)) + L1*sind(t1)*sind (90 + t2);
48 % calcuate Jacobian matrix
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49 J = [ - L2*(sind(t4)*(cosd(t1)*sind (90 + t3) - cosd (90 + t2)*cosd (90 + t3)*
sind(t1)) + cosd(t4)*sind(t1)*sind (90 + t2)) - L1*sind(t1)*sind (90 + t2), L2*(
cosd(t1)*cosd(t4)*cosd (90 + t2) + cosd(t1)*cosd (90 + t3)*sind(t4)*sind (90 + t2))
+ L1*cosd(t1)*cosd (90 + t2), -L2*sind(t4)*(cosd (90 + t3)*sind(t1) - cosd(t1)*cosd
(90 + t2)*sind (90 + t3)), -L2*(cosd(t4)*(sind(t1)*sind (90 + t3) + cosd(t1)*cosd
(90 + t2)*cosd (90 + t3)) + cosd(t1)*sind(t4)*sind (90 + t2)); L1*cosd(t1)*sind (90
+ t2) - L2*(sind(t4)*(sind(t1)*sind (90 + t3) + cosd(t1)*cosd (90 + t2)*cosd (90 +
t3)) - cosd(t1)*cosd(t4)*sind (90 + t2)), L2*(cosd(t4)*cosd (90 + t2)*sind(t1) +
cosd (90 + t3)*sind(t1)*sind(t4)*sind (90 + t2)) + L1*cosd (90 + t2)*sind(t1), L2*
sind(t4)*(cosd(t1)*cosd (90 + t3) + cosd (90 + t2)*sind(t1)*sind (90 + t3)), L2*(
cosd(t4)*(cosd(t1)*sind (90 + t3) - cosd (90 + t2)*cosd (90 + t3)*sind(t1)) - sind(
t1)*sind(t4)*sind (90 + t2)); 0, L2*(cosd(t4)*sind (90 + t2) - cosd (90 + t2)*cosd
(90 + t3)*sind(t4)) + L1*sind (90 + t2), L2*sind(t4)*sind (90 + t2)*sind (90 + t3),
L2*(cosd (90 + t2)*sind(t4) - cosd(t4)*cosd (90 + t3)*sind (90 + t2))];

50 % calcuate Jacobian transpose matrix
51 Jt = [ - L2*(sind(t4)*(cosd(t1)*sind (90 + t3) - cosd (90 + t2)*cosd (90 + t3)*

sind(t1)) + cosd(t4)*sind(t1)*sind (90 + t2)) - L1*sind(t1)*sind (90 + t2), L1*cosd
(t1)*sind (90 + t2) - L2*(sind(t4)*(sind(t1)*sind (90 + t3) + cosd(t1)*cosd (90 + t2
)*cosd (90 + t3)) - cosd(t1)*cosd(t4)*sind (90 + t2)), 0; L2*(cosd(t1)*cosd(t4)*
cosd (90 + t2) + cosd(t1)*cosd (90 + t3)*sind(t4)*sind (90 + t2)) + L1*cosd(t1)*cosd
(90 + t2), L2*(cosd(t4)*cosd (90 + t2)*sind(t1) + cosd (90 + t3)*sind(t1)*sind(t4)*
sind (90 + t2)) + L1*cosd (90 + t2)*sind(t1), L2*(cosd(t4)*sind (90 + t2) - cosd (90
+ t2)*cosd (90 + t3)*sind(t4)) + L1*sind (90 + t2); -L2*sind(t4)*(cosd (90 + t3)*
sind(t1) - cosd(t1)*cosd (90 + t2)*sind (90 + t3)), L2*sind(t4)*(cosd(t1)*cosd (90 +
t3) + cosd (90 + t2)*sind(t1)*sind (90 + t3)), L2*sind(t4)*sind (90 + t2)*sind (90 +
t3); -L2*(cosd(t4)*(sind(t1)*sind (90 + t3) + cosd(t1)*cosd (90 + t2)*cosd (90 + t3

)) + cosd(t1)*sind(t4)*sind (90 + t2)), L2*(cosd(t4)*(cosd(t1)*sind (90 + t3) -
cosd (90 + t2)*cosd (90 + t3)*sind(t1)) - sind(t1)*sind(t4)*sind (90 + t2)), L2*(
cosd (90 + t2)*sind(t4) - cosd(t4)*cosd (90 + t3)*sind (90 + t2))];

52 % calculate manipulability index
53 w(m,n) = sqrt(abs(det(J*Jt)));
54 % calculate maximum velocity
55 for i=-1:1
56 for j=-1:1
57 for k=-1:1
58 for l=-1:1
59 V = J*[i*jointVel (1);j*jointVel (2);k*jointVel (3);l*jointVel

(4)];
60 if abs(V(1)) > Vx(m,n)
61 Vx(m,n) = abs(V(1));
62 end
63 if abs(V(2)) > Vy(m,n)
64 Vy(m,n) = abs(V(2));
65 end
66 if abs(V(3)) > Vz(m,n)
67 Vz(m,n) = abs(V(3));
68 end
69 end
70 end
71 end
72 end
73 V = J*[ jointVel (1);jointVel (2);jointVel (3);jointVel (4)];
74 Vx(m,n) = abs(V(1));
75 Vy(m,n) = abs(V(2));
76 Vz(m,n) = abs(V(3));
77 % calculate force in x direction
78 testForce = forceMax;
79 weak = true;
80 while weak
81 strong = true;
82 T = Jt*[ testForce ;0;0];
83 for i = 1:4
84 if abs(T(i)) > jointTorque(i)
85 strong = false;
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86 end
87 end
88 if strong
89 weak = false;
90 Fx(m,n) = testForce;
91 else
92 testForce = testForce - forceStep;
93 end
94 end
95 % calculate force in y direction
96 testForce = forceMax;
97 weak = true;
98 while weak
99 strong = true;

100 T = Jt*[0; testForce ;0];
101 for i = 1:4
102 if abs(T(i)) > jointTorque(i)
103 strong = false;
104 end
105 end
106 if strong
107 weak = false;
108 Fy(m,n) = testForce;
109 else
110 testForce = testForce - forceStep;
111 end
112 end
113 % calculate force in z direction
114 testForce = forceMax;
115 weak = true;
116 while weak
117 strong = true;
118 T = Jt *[0;0; testForce ];
119 for i = 1:4
120 if abs(T(i)) > jointTorque(i)
121 strong = false;
122 end
123 end
124 if strong
125 weak = false;
126 Fz(m,n) = testForce;
127 else
128 testForce = testForce - forceStep;
129 end
130 end
131
132 end
133 end
134 % normalize manipulability index to maximum
135 w = w/max(w(:));
136 % plot figure for manipulability index
137 figure (1)
138 surface(X,Y,zeros(size(X)),w,’LineStyle ’,’none’);
139 view (-90,90)
140 colorbar;
141 axis equal tight
142 grid on
143 xlabel(’X␣[mm]’)
144 ylabel(’Y␣[mm]’)
145 zlabel(’Z␣[mm]’)
146 title(’LB1␣Manipulability␣Index ’)
147 if savePics
148 saveas(gcf ,’LB1 -manipulability.png’)
149 end
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150 % plot figure for Vx
151 figure (2)
152 surface(X,Y,zeros(size(X)),Vx,’LineStyle ’,’none’);
153 view (-90,90)
154 colorbar;
155 axis equal tight
156 grid on
157 xlabel(’X␣[mm]’)
158 ylabel(’Y␣[mm]’)
159 zlabel(’Z␣[mm]’)
160 title(’LB1␣Vx␣[mm/s]’)
161 if savePics
162 saveas(gcf ,’LB1 -Vx.png’)
163 end
164 % plot figure for Vy
165 figure (3)
166 surface(X,Y,zeros(size(X)),Vy,’LineStyle ’,’none’);
167 view (-90,90)
168 colorbar;
169 axis equal tight
170 grid on
171 xlabel(’X␣[mm]’)
172 ylabel(’Y␣[mm]’)
173 zlabel(’Z␣[mm]’)
174 title(’LB1␣Vy␣[mm/s]’)
175 if savePics
176 saveas(gcf ,’LB1 -Vy.png’)
177 end
178 % plot figure for Vz
179 figure (4)
180 surface(X,Y,zeros(size(X)),Vz,’LineStyle ’,’none’);
181 view (-90,90)
182 colorbar;
183 axis equal tight
184 grid on
185 xlabel(’X␣[mm]’)
186 ylabel(’Y␣[mm]’)
187 zlabel(’Z␣[mm]’)
188 title(’LB1␣Vz␣[mm/s]’)
189 if savePics
190 saveas(gcf ,’LB1 -Vz.png’)
191 end
192 % plot figure for Fx
193 figure (5)
194 surface(X,Y,zeros(size(X)),Fx,’LineStyle ’,’none’);
195 view (-90,90)
196 colorbar;
197 axis equal tight
198 grid on
199 xlabel(’X␣[mm]’)
200 ylabel(’Y␣[mm]’)
201 zlabel(’Z␣[mm]’)
202 title(’LB1␣Fx␣[Newtons]’)
203 if savePics
204 saveas(gcf ,’LB1 -Fx.png’)
205 end
206 % plot figure for Fy
207 figure (6)
208 surface(X,Y,zeros(size(X)),Fy,’LineStyle ’,’none’);
209 view (-90,90)
210 colorbar;
211 axis equal tight
212 grid on
213 xlabel(’X␣[mm]’)
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214 ylabel(’Y␣[mm]’)
215 zlabel(’Z␣[mm]’)
216 title(’LB1␣Fy␣[Newtons]’)
217 if savePics
218 saveas(gcf ,’LB1 -Fy.png’)
219 end
220 % plot figure for Fz
221 figure (7)
222 surface(X,Y,zeros(size(X)),Fz,’LineStyle ’,’none’);
223 view (-90,90)
224 colorbar;
225 axis equal tight
226 grid on
227 xlabel(’X␣[mm]’)
228 ylabel(’Y␣[mm]’)
229 zlabel(’Z␣[mm]’)
230 title(’LB1␣Fz␣[Newtons]’)
231 if savePics
232 saveas(gcf ,’LB1 -Fz.png’)
233 end

Inverse Kinematics Solver

1 using System;
2 using System.Diagnostics;
3 using System.Windows;
4 using System.Windows.Media.Media3D;
5
6 namespace Kinematics
7 {
8 public class IKSolver : Kinematic
9 {

10 private double [] radAngle; // array of joint angles in radians
11 private double [] thetaOffset; // array of theta offsets from DH parameters
12 private Vector3D[,] frame; // array of joint frame vectors
13 private Vector3D Pd; // desired position vector
14 private Vector3D Ph; // position of end effector
15 private Vector3D [] Rd; // desired orientation of end effector
16 private Vector3D [] Rh; // orientation of end effector
17 private Vector3D [] Pih; // array of relative position of end effector

with respect to each frame
18 private double Eo; // orientation error
19 private double Ec; // current error
20 private double Ep; // previous error
21 private bool Initialized = false;
22 private double maxForce = 4;
23
24 const int IK_MAX_TRIES = 15000;
25
26 /// <summary >
27 /// index = 0 1 2 3
28 /// alpha(i-1) a(i-i) d(i) theta(i)
29 /// </summary >
30 public double[,] DHparameters { get; set; }
31
32 /// <summary >
33 /// This returns the number of links in the manipulator
34 /// </summary >
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35 public int N { get; set; }
36
37 /// <summary >
38 /// This returns the weights (0 or 1) of each end effector orientations
39 /// </summary >
40 public bool[] Sigma { get; set; }
41
42 /// <summary >
43 /// This returns the minimum and maximum angles for each joint in degrees
44 /// </summary >
45 public Point [] MinMax { get; set; }
46
47 /// <summary >
48 /// This returns the joint coupling of the manipulator
49 /// </summary >
50 public CouplingType Coupling { get; set; }
51
52 /// <summary >
53 /// This returns whether or not to output workspace forces
54 /// </summary >
55 public bool OutputWorkspace { get; set; }
56
57 /// <summary >
58 /// This returns whether or not to invert workspace forces
59 /// </summary >
60 public bool[] InvertForces { get; set; }
61
62 /// <summary >
63 /// This returns the names of the angle outputs
64 /// </summary >
65 public string [] OutputStrings { get; set; }
66
67 /// <summary >
68 /// Stop criteria for CCD
69 /// </summary >
70 public double IK_POS_THRESH { get; set; }
71
72 /// <summary >
73 /// Criteria to begin BGFS optimizer
74 /// </summary >
75 public double BETA { get; set; }
76
77 protected override double [] getJointAngles(Point3D Position , Point3D Orientation)
78 {
79 if (! Initialized)
80 {
81 radAngle = new double[N + 1];
82 radAngle.Initialize ();
83
84 thetaOffset = new double[N + 1];
85 thetaOffset [0] = 0;
86 for (int i = 1; i <= N; i++)
87 {
88 thetaOffset[i] = DHparameters[i - 1, 3] * Math.PI / 180;
89 }
90
91 Initialized = true;
92 }
93 // create desired position vector
94 Pd = new Vector3D(Position.X, Position.Y, Position.Z);
95 // create desired orientation vector from roll , pitch , yaw
96 Rd = new Vector3D [3];
97 // convert to radians
98 Orientation.X = Orientation.X * Math.PI / 180;
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99 Orientation.Y = Orientation.Y * Math.PI / 180;
100 Orientation.Z = Orientation.Z * Math.PI / 180;
101 // convert roll/pitch/yaw to rotation matrix
102
103 Rd[0].X = Math.Cos(Orientation.Y) * Math.Cos(Orientation.Z);
104 Rd[0].Y = Math.Sin(Orientation.Z) * Math.Cos(Orientation.Y);
105 Rd[0].Z = -Math.Sin(Orientation.Y);
106 Rd[1].X = Math.Cos(Orientation.Z) * Math.Sin(Orientation.Y) * Math.Sin(

Orientation.X) - Math.Sin(Orientation.Z) * Math.Cos(Orientation.X);
107 Rd[1].Y = Math.Sin(Orientation.X) * Math.Sin(Orientation.Y) * Math.Sin(

Orientation.Z) + Math.Cos(Orientation.X) * Math.Cos(Orientation.Z);
108 Rd[1].Z = Math.Cos(Orientation.Y) * Math.Sin(Orientation.X);
109 Rd[2].X = Math.Cos(Orientation.X) * Math.Sin(Orientation.Y) * Math.Cos(

Orientation.Z) + Math.Sin(Orientation.X) * Math.Sin(Orientation.Z);
110 Rd[2].Y = Math.Sin(Orientation.Z) * Math.Sin(Orientation.Y) * Math.Cos(

Orientation.X) - Math.Cos(Orientation.Z) * Math.Sin(Orientation.X);
111 Rd[2].Z = Math.Cos(Orientation.Y) * Math.Cos(Orientation.X);
112
113 Rh = new Vector3D [3];
114 // declare 3D array for each joint frame axis (xi, yi, zi, Pi)
115 frame = new Vector3D[N + 1, 4];
116 frame.Initialize ();
117 // set base frame
118 frame[0, 0].X = 1;
119 frame[0, 1].Y = 1;
120 frame[0, 2].Z = 1;
121
122 Vector3D [] Pstar = new Vector3D[N];
123 Pstar.Initialize ();
124
125 int link = N;
126 int tries = 0;
127 bool solved = false;
128 // begin Cyclic Coordinate Descent loop
129 do
130 {
131 // initialize frame positions
132 for (int i = 0; i < N + 1; i++)
133 {
134 frame[i, 3].X = 0;
135 frame[i, 3].Y = 0;
136 frame[i, 3].Z = 0;
137 }
138 // forward recurrsion formulas for frame position and orientation
139 for (int i = 1; i <= N; i++)
140 {
141 // x(i) orientation vector
142 frame[i, 0] = Vector3D.Add(( Vector3D.Multiply ((Math.Cos(radAngle[

i - 1] + thetaOffset[i])), frame [(i - 1), 0])), (Vector3D.Multiply ((Math.Sin(
radAngle[i - 1] + thetaOffset[i])), frame[(i - 1), 1])));

143 // z(i) orientation vector
144 frame[i, 2] = Vector3D.Add(( Vector3D.Multiply(Math.Cos(

DHparameters[i - 1, 0] * Math.PI / 180), frame [(i - 1), 2])), Vector3D.Multiply(
Math.Sin(DHparameters [(i - 1), 0] * Math.PI / 180), Vector3D.CrossProduct(frame[i
, 0], frame [(i - 1), 2])));

145 // y(i) orientation vector
146 frame[i, 1] = Vector3D.CrossProduct(frame[i, 2], frame[i, 0]);
147 }
148 // P* --> relative positions of next frame wrt present frame
149 for (int i = 0; i < N; i++)
150 {
151 Pstar[i] = Vector3D.Add(Vector3D.Multiply(DHparameters[i, 2],

frame[i, 2]), Vector3D.Multiply(DHparameters[i, 1], frame[i + 1, 0]));
152 }
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153 //P(i) --> frame positions wrt base frame
154 for (int i = 1; i < N + 1; i++)
155 {
156 frame[i, 3] = frame[i - 1, 3] + Pstar[i - 1];
157 }
158 // set position of end effector
159 Ph = frame[N, 3];
160
161 // compute relative positions
162 Pih = new Vector3D[N + 1];
163 for (int i = N - 1; i >= 0; i--)
164 {
165 Pih[i] = Vector3D.Subtract(Ph, frame[i, 3]);
166 }
167 // set end effector orientation
168 Rh[0] = frame[N, 0];
169 Rh[1] = frame[N, 1];
170 Rh[2] = frame[N, 2];
171 // calculate orientation error
172 Eo = 0;
173 for (int i = 0; i < 3; i++)
174 {
175 if (Sigma[i])
176 {
177 Eo += Math.Pow(( Vector3D.DotProduct(Rd[i], Rh[i]) - 1), 2);
178 }
179 }
180 // calculate current position error
181 Ec = Eo + Vector3D.DotProduct(Vector3D.Subtract(Pd, Ph), Vector3D.

Subtract(Pd, Ph));
182
183 if (solved)
184 break;
185
186 if ((Ec > IK_POS_THRESH) && (Ec < BETA) && (Ec > Math.Pow(Ep, 2))) //

begin BFGS optimization
187 {
188 double epsg = 0.0000000001;
189 double epsf = 0;
190 double epsx = 0;
191 int maxits = 0; // maximum number of iterations , for

unlimited = 0
192 double stpmax = 0;
193 double [] scale = new double[N];
194 double [] optiAngle = new double[N];
195 for (int i = 0; i < N; i++)
196 {
197 scale[i] = 2;
198 optiAngle[i] = radAngle[i + 1];
199 }
200 alglib.minlbfgsstate state;
201 alglib.minlbfgsreport rep;
202
203 alglib.minlbfgscreate (4, optiAngle , out state); // create

optimizer with current joint angles for initial values
204 alglib.minlbfgssetcond(state , epsg , epsf , epsx , maxits);

// set optimizer options
205 alglib.minlbfgssetstpmax(state , stpmax);
206 alglib.minlbfgsoptimize(state , function1_grad , null , null);

// optimize
207 alglib.minlbfgsresults(state , out optiAngle , out rep);

// get results
208 for (int i = 0; i < N; i++)
209 {
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210 radAngle[i + 1] = optiAngle[i];
211 // adjust angle based on joint limits
212 if (radAngle[i + 1] < (MinMax[i].X * Math.PI / 180))
213 radAngle[i + 1] = MinMax[i].X * Math.PI / 180;
214 else if (radAngle[i + 1] > (MinMax[i].Y * Math.PI / 180))
215 radAngle[i + 1] = MinMax[i].Y * Math.PI / 180;
216 }
217 solved = true;
218 }
219 else if (Ec > IK_POS_THRESH) // begin Cyclic Coordinate Descent loop
220 {
221
222 // create target effector position vector
223 Vector3D Pid = Vector3D.Subtract(Pd , frame[link , 3]);
224 double wp = 1; // position weight
225 double wo = 1; // orientation weight
226 // calculate values for adjustment angle
227 double k1 = 0;
228 for (int i = 0; i < 3; i++)
229 {
230 if (Sigma[i])
231 k1 += wo * Vector3D.DotProduct(Rd[i], frame[link , 2]) *

Vector3D.DotProduct(Rh[i], frame[link , 2]);
232 }
233 k1 += wp * Vector3D.DotProduct(Pid , frame[link , 2]) * Vector3D.

DotProduct(Pih[link], frame[link , 2]);
234
235 double k2 = 0;
236 for (int i = 0; i < 3; i++)
237 {
238 if (Sigma[i])
239 k2 += wo * Vector3D.DotProduct(Rd[i], Rh[i]);
240 }
241 k2 += wp * Vector3D.DotProduct(Pid , Pih[link]);
242
243 double k3 = 0;
244 Vector3D ko3 = new Vector3D ();
245 for (int i = 0; i < 3; i++)
246 {
247 if (Sigma[i])
248 ko3 = Vector3D.Add(ko3 , wo * Vector3D.CrossProduct(Rh[i],

Rd[i]));
249 }
250 k3 = Vector3D.DotProduct(frame[link , 2], Vector3D.Add(wp *

Vector3D.CrossProduct(Pih[link], Pid), ko3));
251 double turnAngle;
252 // minimize position and orientation error
253 if ((k1 - k2) != 0)
254 turnAngle = Math.Atan(-k3 / (k1 - k2));
255 else
256 turnAngle = 0;
257 radAngle[link] += turnAngle;
258 // adjust angle based on joint limits
259 if (radAngle[link] < (MinMax[link - 1].X * Math.PI / 180))
260 radAngle[link] = MinMax[link - 1].X * Math.PI / 180;
261 else if (radAngle[link] > (MinMax[link - 1].Y * Math.PI / 180))
262 radAngle[link] = MinMax[link - 1].Y * Math.PI / 180;
263 if (double.IsNaN(radAngle[link]))
264 radAngle[link] = 0;
265
266 // backward recurssion through joints for CCD
267 if (link -- < 2) link = N;
268 }
269 // set previous error value for next loop
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270 Ep = Ec;
271 }
272 while (tries++ < IK_MAX_TRIES && Ec > IK_POS_THRESH);
273
274 if (solved)
275 Debug.WriteLine("BFGS");
276 Debug.WriteLine("Error:␣"+Convert.ToString(Ec));
277 Debug.WriteLine("Iterations:␣" + Convert.ToString(tries));
278
279 double [] angles;
280 // check if we are outputting workspace forces
281 if (OutputWorkspace)
282 {
283 double forceGain = 0.5;
284 angles = new double[N + 2];
285 // calculate workspace forces if our position error is greater than

the threshold
286 if (Ec > IK_POS_THRESH)
287 {
288 Vector3D forces = Vector3D.Multiply(forceGain , Vector3D.Subtract(

Pd, Ph));
289 // invert forces if desired
290 angles[N - 1] = InvertForces [0] ? -forces.X : forces.X;
291 angles[N] = InvertForces [1] ? -forces.Y : forces.Y;
292 angles[N + 1] = InvertForces [2] ? -forces.Z : forces.Z;
293 for (int i = N - 1; i < N + 2; i++)
294 {
295 if (angles[i] > maxForce) angles[i] = maxForce;
296 else if (angles[i] < -maxForce) angles[i] = -maxForce;
297 }
298 }
299 else
300 {
301 // no workspace force if we can reach desired point
302 angles[N - 1] = 0;
303 angles[N] = 0;
304 angles[N + 1] = 0;
305 }
306 }
307 else
308 angles = new double[N];
309 // change output angles based on joint coupling
310 switch (Coupling)
311 {
312 case CouplingType.None:
313 // convert angles to degrees
314 for (int i = 0; i < N; i++)
315 {
316 angles[i] = radAngle[i + 1] * 180 / Math.PI;
317 }
318 break;
319 case CouplingType.ShoulderTwoDOF:
320 angles [0] = (radAngle [1] + radAngle [2]) * 180 / Math.PI;
321 angles [1] = (radAngle [1] - radAngle [2]) * 180 / Math.PI;
322 for (int i = 2; i < N - 1; i++)
323 {
324 angles[i] = radAngle[i + 1] * 180 / Math.PI;
325 }
326 break;
327 }
328 return angles;
329 }
330
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331 public void function1_grad(double [] q, ref double func , double [] grad , object
obj)

332 {
333 Vector3D [] Pstar = new Vector3D[N];
334 Pstar.Initialize ();
335
336 // initialize frame positions
337 for (int i = 0; i < N + 1; i++)
338 {
339 frame[i, 3].X = 0;
340 frame[i, 3].Y = 0;
341 frame[i, 3].Z = 0;
342 }
343 // forward recurrsion formulas for frame position and orientation
344 for (int i = 1; i <= N; i++)
345 {
346 // x(i) orientation vector
347 frame[i, 0] = Vector3D.Add(( Vector3D.Multiply ((Math.Cos(radAngle[i -

1] + thetaOffset[i])), frame [(i - 1), 0])), (Vector3D.Multiply ((Math.Sin(radAngle
[i - 1] + thetaOffset[i])), frame[(i - 1), 1])));

348 // z(i) orientation vector
349 frame[i, 2] = Vector3D.Add(( Vector3D.Multiply(Math.Cos(DHparameters[i

- 1, 0] * Math.PI / 180), frame[(i - 1), 2])), Vector3D.Multiply(Math.Sin(
DHparameters [(i - 1), 0] * Math.PI / 180), Vector3D.CrossProduct(frame[i, 0],
frame[(i - 1), 2])));

350 // y(i) orientation vector
351 frame[i, 1] = Vector3D.CrossProduct(frame[i, 2], frame[i, 0]);
352 }
353 // P* --> relative positions of next frame wrt present frame
354 for (int i = 0; i < N; i++)
355 {
356 Pstar[i] = Vector3D.Add(Vector3D.Multiply(DHparameters[i, 2], frame[i

, 2]), Vector3D.Multiply(DHparameters[i, 1], frame[i + 1, 0]));
357 }
358 //P(i) --> frame positions wrt base frame
359 for (int i = 1; i < N + 1; i++)
360 {
361 frame[i, 3] = frame[i - 1, 3] + Pstar[i - 1];
362 }
363 // set position of end effector
364 Ph = frame[N, 3];
365
366 // compute relative positions
367 Pih = new Vector3D[N + 1];
368 for (int i = N - 1; i >= 0; i--)
369 {
370 Pih[i] = Vector3D.Subtract(Ph, frame[i, 3]);
371 }
372 // set end effector orientation
373 Rh[0] = frame[N, 0];
374 Rh[1] = frame[N, 1];
375 Rh[2] = frame[N, 2];
376 // calculate orientation error
377 Eo = 0;
378 for (int i = 0; i < 3; i++)
379 {
380 if (Sigma[i])
381 {
382 Eo += Math.Pow(( Vector3D.DotProduct(Rd[i], Rh[i]) - 1), 2);
383 }
384 }
385 // function to be minimized
386 func = Eo + Vector3D.DotProduct(Vector3D.Subtract(Pd, Ph), Vector3D.

Subtract(Pd, Ph));
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387 // declare gradient vector elements for each joint
388 for (int i = 0; i < N-1; i++)
389 {
390 Vector3D gradO = new Vector3D ();
391 for (int j = 0; j < 3; j++ )
392 {
393 if (Sigma[j])
394 gradO = Vector3D.Add(gradO , (Vector3D.DotProduct(Rd[j], Rh[j

]) - 1) * Vector3D.CrossProduct(Rh[j], Rd[j]));
395 }
396 grad[i] = Vector3D.DotProduct(Vector3D.Multiply(2, frame[i, 2]),

Vector3D.Add(( Vector3D.CrossProduct(Vector3D.Subtract(Pd, Ph), Pih[i])), gradO));
397 }
398 }
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Motor Control Module Schematics
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Brushless DC-Servomotors
2 Pole Technology 1,7 W

0,36 mNm

Series 0620 ... B
Values at 22°C and nominal voltage 0620 K  006 B 012 B

1 Nominal voltage UN  6 12 V
2 Terminal resistance, phase-phase R  8,8 60,2 Ω
3 Efficiency, max. ηmax.  51 50 %
4 No-load speed n0  48 600 37 300 min-1

5 No-load current, typ. (with shaft ø 1 mm) I0  0,056 0,018 A
6 Stall torque MH  0,732 0,551 mNm
7 Friction torque, static C0  0,011 0,011 mNm
8 Friction torque, dynamic CV  1,02·10-6 1,02·10-6 mNm/min-1

9 Speed constant kn  8 761 3 386 min-1/V
10 Back-EMF constant kE  0,114 0,295 mV/min-1

11 Torque constant kM  1,09 2,82 mNm/A
12 Current constant kI  0,917 0,355 A/mNm
13 Slope of n-M curve Δn /ΔM  70 730 72 289 min-1/mNm
14 Terminal inductance, phase-phase L  28 192 µH
15 Mechanical time constant τm  7 7,2 ms
16 Rotor inertia J  0,0095 0,0095 gcm2

17 Angular acceleration αmax.  771 580 ·103rad/s2

   
18 Thermal resistance Rth1 / Rth2 13,2 / 84,3 K/W
19 Thermal time constant τw1 / τw2 1,1 / 89 s
20 Operating temperature range:

– motor -20 ... +100 °C
– winding, max. permissible +125 °C

21 Shaft bearings ball bearings, preloaded  
22 Shaft load max.:  

– with shaft diameter 1 mm 
– radial at 10 000 min-1 (4 mm from mounting flange) 2 N 
– axial at 10 000 min-1 (push only) 0,6 N 
– axial at standstill (push only) 10 N 

23 Shaft play:  
– radial ≤ 0,012 mm 
– axial = 0 mm 

24 Housing material aluminium, black anodized
25 Mass 2,5 g
26 Direction of rotation electronically reversible
27 Speed up to nmax. 100 000 min-1

28 Number of pole pairs 1
29 Hall sensors digital
30 Magnet material NdFeB

Rated values for continuous operation
31 Rated torque MN  0,28 0,3 mNm
32 Rated current (thermal limit) IN  0,311 0,122 A
33 Rated speed nN  21 820 7 290 min-1

M [mNm]
0,05 0,15 0,20,1 0,30,25 0,35 0,450,40

Watt

1,5 210,5

20 000

0

  40 000

  60 000

  80 000

 100 000

  120 000

0620K006B
0620K006B (Rth2 -50%)

UN

n [min-1]

Intermittent operation
Operating point 
at nominal value

Recommended operation areas (example: nominal voltage 6V) 

Note:

The diagram indicates the recommended
speed in relation to the available torque
at the output shaft for a given ambient
temperature of 22°C.

The diagram shows the motor in a
completely insulated as well as thermally
coupled condition (Rth2 50% reduced).

The nominal voltage (UN) curve shows
the operating point at nominal voltage 
in the insulated and thermally coupled
condition.  Any points of operation above
the curve at nominal voltage will require
a higher operating voltage.  Any points
below the nominal voltage curve will
require less voltage.

Note: Rated values are calculated with nominal voltage and at a 22°C ambient temperature. The Rth2 value has been reduced by 25%.

For notes on technical data and lifetime performance  
refer to “Technical Information”.

© DR. FRITZ FAULHABER GMBH & CO. KG
Specifications subject to change without notice.
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Planetary Gearheads
  

25 mNm
For combination with
DC-Micromotors
Brushless DC-Motors
Stepper Motors

Series 06/1
06/1 06/1K

Housing material steel steel
Geartrain material steel steel
Recommended max. input speed for:   
– continuous operation 8 000 min-1 8 000 min-1

Backlash, at no-load ≤ 3 ° ≤ 3 °
Bearings on output shaft sintered bearings ball bearings
Shaft load, max.:   
– radial (3,5 mm from mounting face) ≤ 0,5 N ≤ 5 N
– axial ≤ 0,5 N ≤ 3 N
Shaft press fit force, max. ≤ 3,5 N ≤ 5 N
Shaft play   
– radial (3,5 mm from mounting face) ≤ 0,06 mm ≤ 0,06 mm
– axial ≤ 0,1 mm ≤ 0,05 mm
Operating temperature range - 30 ...  + 100 °C - 30 ...  + 100 °C

06/1 06/1 K (L1, L2 = + 1)

ø3
+0,02
+0,01ø6

0,8 -0,03
 0

ø1-0,008

4

4,5 ±0,2

±0,2

L2 ±0,25

L1 ±0,5

-0,002
-0,05
 0

2

0,5

2,8

ø4
0

-0,008

1,3 -0,03
 0

ø1,5 -0,008

4,9

5,4 ±0,2

±0,2

-0,002

3

4,1

For more combinations see table.
Example of combination with 0615...S.

For notes on technical data and lifetime performance  
refer to “Technical Information”.

© DR. FRITZ FAULHABER GMBH & CO. KG
Specifications subject to change without notice.

Specifications
Number of gear stages 1 2 3 4 5 6
Continuous torque mNm 25 25 25 25 25 25
Intermittent torque mNm 35 35 35 35 35 35
Mass without motor, ca. g 2 2,8 3,4 4 4,4 5
Efficiency, max. % 90 80 70 60 55 48
Direction of rotation, drive to output = = = = = =

Reduction ratio
(exact)

4:1 16:1 64:1 256:1 1 024:1 4 096:1

L2 [mm] = length without motor 9,2 11,9 14,6 17,3 20,0 22,7
L1 [mm] = length with motor 0615C...S 24,2 26,9 29,6 32,3 35,0 37,7

0515C...B 23,8 26,5 29,2 31,9 34,6 37,3
0620C...B 29,2 31,9 34,6 37,3 40,0 42,7
FDM0620...-35 18,7 21,4 24,1 26,8 29,5 32,2
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Brushless DC-Servomotors
2 Pole Technology 9,9 W

2,6 mNm

Series 1226 ... B
Values at 22°C and nominal voltage 1226 S  006 B 012 B

1 Nominal voltage UN  6 12 V
2 Terminal resistance, phase-phase R  2,2 5,45 Ω
3 Efficiency, max. ηmax.  71 72 %
4 No-load speed n0  21 000 27 400 min-1

5 No-load current, typ. (with shaft ø 1,2 mm) I0  0,07 0,054 A
6 Stall torque MH  7,24 8,99 mNm
7 Friction torque, static C0  0,073 0,073 mNm
8 Friction torque, dynamic CV  5,3·10-6 5,3·10-6 mNm/min-1

9 Speed constant kn  3 563 2 318 min-1/V
10 Back-EMF constant kE  0,281 0,431 mV/min-1

11 Torque constant kM  2,68 4,12 mNm/A
12 Current constant kI  0,373 0,243 A/mNm
13 Slope of n-M curve Δn /ΔM  2 925 3 066 min-1/mNm
14 Terminal inductance, phase-phase L  36 85 µH
15 Mechanical time constant τm  4,4 4,7 ms
16 Rotor inertia J  0,15 0,15 gcm2

17 Angular acceleration αmax.  499 621 ·103rad/s2

   
18 Thermal resistance Rth1 / Rth2 7,3 / 36,6 K/W
19 Thermal time constant τw1 / τw2 3,2 / 207 s
20 Operating temperature range:

– motor -20 ... +100 °C
– winding, max. permissible +125 °C

21 Shaft bearings ball bearings, preloaded  
22 Shaft load max.:  

– with shaft diameter 1,2 mm 
– radial at 10 000 min-1 (4 mm from mounting flange) 5 N 
– axial at 10 000 min-1 (push only) 2,5 N 
– axial at standstill (push only) 11 N 

23 Shaft play:  
– radial ≤ 0,012 mm 
– axial = 0 mm 

24 Housing material aluminium, black anodized
25 Mass 13 g
26 Direction of rotation electronically reversible
27 Speed up to nmax. 79 000 min-1

28 Number of pole pairs 1
29 Hall sensors digital
30 Magnet material NdFeB

Rated values for continuous operation
31 Rated torque MN  2,13 1,97 mNm
32 Rated current (thermal limit) IN  0,932 0,573 A
33 Rated speed nN  12 480 19 670 min-1

M [mNm]
0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,20

Watt

20 000

0

  40 000

  60 000

  80 000

 100 000

1226S006B
1226S006B (Rth2 -50%)

UN

8 1064

n [min-1]

Intermittent operation
Operating point 
at nominal value

Recommended operation areas (example: nominal voltage 6V) 

Note:

The diagram indicates the recommended
speed in relation to the available torque
at the output shaft for a given ambient
temperature of 22°C.

The diagram shows the motor in a
completely insulated as well as thermally
coupled condition (Rth2 50% reduced).

The nominal voltage (UN) curve shows
the operating point at nominal voltage 
in the insulated and thermally coupled
condition.  Any points of operation above
the curve at nominal voltage will require
a higher operating voltage.  Any points
below the nominal voltage curve will
require less voltage.

Note: Rated values are calculated with nominal voltage and at a 22°C ambient temperature. The Rth2 value has been reduced by 25%.

For notes on technical data and lifetime performance  
refer to “Technical Information”.

© DR. FRITZ FAULHABER GMBH & CO. KG
Specifications subject to change without notice.
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Planetary Gearheads
  

0,3 Nm
For combination with
DC-Micromotors
Brushless DC-Motors
Stepper Motors

Series 12/4
12/4 12/4K

Housing material metal metal
Geartrain material metal metal
Recommended max. input speed for:   
– continuous operation 5 000 min-1 5 000 min-1

Backlash, at no-load ≤ 3 ° ≤ 3 °
Bearings on output shaft sintered bearings ball bearings, preloaded
Shaft load, max.:   
– radial (6 mm from mounting face) ≤ 4 N ≤ 20 N
– axial ≤ 3 N ≤ 5 N
Shaft press fit force, max. ≤ 15 N ≤ 5 N
Shaft play   
– radial (6 mm from mounting face) ≤ 0,05 mm ≤ 0,04 mm
– axial ≤ 0,1 mm = 0 mm
Operating temperature range - 30 ...  + 100 °C - 30 ...  + 100 °C

ø6 +0,015
+0,023

2,8 -0,05
 0

ø3 -0,012

6

9±0,3

10±0,3

L2 ±0,3

L1±0,8

±0,1

-0,006

7,3

9,5

M2
2x

2 

±0,3

ø12 ±0,1 ø6 -0,008
0

8 ±0,3

12/4 12/4 K

Orientation with respect to motor
terminals not defined 

deep

For more combinations see table.
Example of combination with 1224...SR.

For notes on technical data and lifetime performance  
refer to “Technical Information”.

© DR. FRITZ FAULHABER GMBH & CO. KG
Specifications subject to change without notice.

Specifications
Number of gear stages 1 2 3 4 5
Continuous torque mNm 300 300 300 300 300
Intermittent torque mNm 450 450 450 450 450
Mass without motor, ca. g 12 15 18 21 24
Efficiency, max. % 90 80 70 60 55
Direction of rotation, drive to output = = = = =

Reduction ratio
(exact)

4:1 16:1 64:1 256:1 1 024:1

L2 [mm] = length without motor 15,1 19,7 24,3 28,9 33,5
L1 [mm] = length with motor 1024A...S 38,8 43,4 48,0 52,6 57,2

1224A...SR 39,3 43,9 48,5 53,1 57,7
1028A...B 43,2 47,8 52,4 57,0 61,6
1218A...B 33,1 37,7 42,3 46,9 51,5
1226A...B 41,1 45,7 50,3 54,9 59,5
ADM1220S...-59 32,5 37,1 41,7 46,3 50,9
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