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Modern swine facilities were developed mainly based on logistics of feeding and 

moving animals. In recent years, however, the public has become increasingly concerned 

about animal care and well-being.  A better understanding of the animal space utilization 

in current facilities could lead to improved facility design and better animal well-being.  

This study was conducted to determine whether an active RFID tag tracking system could 

accurately provide animal locomotion data on an individual animal basis.  The system is 

composed of four sensors, located in the corners of a swine pen, and compact tags, which 

attach to the animals and transmit a signal.  The sensors use the tag signals to determine 

3-D positions in real-time.  A data acquisition system was developed to capture raw data 

from the system software into a database for analysis.  A single-location test was 

performed with 34 tags placed in close proximity to a known location, followed by three 

trials of a second test with 34 tags randomly arranged in a 1-meter by 1-meter grid across 

the pen.  Results from the single-location test were relatively consistent with the 

manufacturer’s claim of 15 cm accuracy.  Error was much higher in the three trials of the 

grid test, particularly in the Z-direction.  The system was used to track four pigs for a 

period of two days, with visual data analysis showing 84.4% tracking accuracy.  Finally, 

the system was used to track animals from different genetic lines and temperaments.  



 

 

Statistical analysis of this data indicated significant differences in movement data with 

regard to sex of the animal, genetic lineage, and temperament scores, particularly in 

distance traveled and time spent near the feeder and nipple drinkers. Further work 

revealed that the system is prone to generate large, random jumps in the data that need to 

be filtered if the desired use is for instantaneous measurements.  Without data filtering, 

the system would be best suited for monitoring hourly or daily average values for animal 

movement parameters.  
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A REVIEW OF PRECISION LIVESTOCK FARMING 
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1.1 Overview of Swine Production 

Pigs have played an important role in the production of food and animal-based 

products, such as soap, since their domestication.  The versatility of pigs and pig products 

has allowed the swine industry to evolve and remain competitive in agricultural 

enterprise on a global level (Moeller and Crespo, 2015). Today, pork is the most widely 

consumed meat in the world.  Traditionally, lard was used in cooking and in many 

household products, so pigs with a balance of fat and muscle were desirable.  However, 

as animal fat became less useful, feeding for conversion to muscle mass became the 

primary focus of swine production, leading to the much leaner hogs seen today (U.S. 

EPA, 2015). 

 Prior to the 1960s, most swine production operations were small and based on 

open lots or pasture systems.  Over the last 50 years, these operations have followed a 

long-term trend toward fewer and larger operations.  In the last 15 years alone, the 

number of hog farms has been reduced by 70 percent.  Meanwhile, the majority of U.S. 

pigs are now raised in confinement operations with more than 5000 animals (Giamalva, 

2014).  Developments in housing and manure management strategies have allowed for 

the enclosure of large operations in confined buildings with controlled environments.  

The main advantage of a controlled, confined production environment is the ability for 

year-round swine production (USDA, 2016) as well as improved food safety and animal 

well-being.  Over the years these larger, more efficient operations have made it difficult 

for smaller farms to remain profitable.  Geographically, the large operations tend to be 

concentrated around major feed sources, usually corn and soybean, as feed costs are the 
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greatest expense in hog raising operations.  As a result, the Midwestern and Southeastern 

states are the major pig producers in the U.S. (USDA, 2016). 

 The United States is the third largest producer and consumer of pork products, 

accounting for roughly 10 percent of global production.  The U.S. is the largest exporter 

of pork and a relatively small importer, as most U.S. pork is consumed domestically.  

Additionally, the U.S. is the largest importer of live swine and a small exporter.  The 

majority of these are wean-to-finish pigs, as well as a large number for direct slaughter 

and consumption (Moeller and Crespo, 2015). 

 Generally speaking, there are three types of operations in today’s swine industry: 

farrow-to-finish, farrow-to-wean, and wean-to-finish.  In farrow-to-finish operations, 

hogs are raised from birth and sold at slaughter weight (~250 pounds).  Farrow-to-wean 

hogs are raised from birth to a specified weight (between 10 and 60 pounds) and then 

sold to a finishing operation.  Wean-to-finish operations purchase the wean hogs and 

grow them to be sold at slaughter weight.  Generally, large operations tend to specialize 

in only one phase of production (Chiba, 2004).  Some producers use a continuous flow 

production system, in which animals continuously arrive and leave a particular phase.  

Many producers opt for all in, all out (AIAO) systems, in which a whole group of pigs 

moves from one phase to the next, with gaps in between for building cleaning and 

maintenance.  AIAO systems offer improved control of disease spread and reduced 

animal stress as a result of the smaller number of interactions with new animals from 

other populations (U.S. EPA, 2015). 
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 The swine industry is presented with challenges and opportunities on several 

fronts.  Animal health and welfare is of major concern, particularly as the trend continues 

toward larger farms in confined building.  Ethical questions have arisen with increased 

public exposure to industrialized livestock production.  These questions often regard the 

space afforded to animals in gestation stalls and farrowing crates, or the docking of tails 

for the prevention of tail biting.  These practices have played a key role in increasing 

production efficiencies, so any new legal requirements would have a major impact on pig 

production.  The underlying question is: How do we provide animal care on and 

individual basis in the face of progressively larger swine operations? 

 Environmental sustainability is another other major concern for the future of the 

swine industry.  The geographical concentration of progressively larger swine operations 

will continue to cause problems with odors, water quality, and air quality that must be 

sustainably managed.  Additionally, demands for feed will continue to increase, but the 

amount of arable land delegated to feed production will not.  Increasing feed efficiency 

will be crucial for maintaining swine production. 

 Going forward, livestock producers will continue to be challenged by the rapidly 

increasing demand for food by a growing global population.  Producers must continue to 

lower overhead costs and increase production efficiencies to remain competitive.  Doing 

so will require a greater understanding of the physical and biological processes involved 

on all levels of livestock production. 
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1.2 Introduction to Precision Livestock Farming 

 As long as global population continues to grow, food production industries will 

constantly be challenged to cope with the proportional increase in demand for safe and 

sustainable food.  The projected global population of 9.1 billion by 2050 will consume 

around 70 percent more food than in 2007, according to a 2009 report by the Food and 

Agricultural Organization of the United Nations (FAO).  The report indicates a 

corresponding increase in meat production of 200 million metric tons by 2050 to 

compensate for the growth.  Moreover, the concept of “safe” and “sustainable” food 

sources adds a layer of complexity to the increase in demand, presenting a unique set of 

challenges to each major food production industry. 

 The livestock production industry is facing increased pressure from multiple 

sources.  Public exposure to livestock management methods has led to more intense 

scrutiny of animal care and well-being.  Ethical questions often regard the living space 

afforded to animals and their treatment in confined operations.   In pig production, for 

example, these include the size of gestation stalls and farrowing crates, or the docking of 

tails for the prevention of tail biting.  Additional health concerns have been raised about 

the widespread use of antibiotics to combat the spread of disease among confined 

animals, and to promote muscle growth in cattle, swine, and poultry.  Overuse of 

antibiotics can lead to antibiotic resistant bacteria, some of which can affect human 

health. 

Between ethical concerns raised by the animal rights movement and the potential 

implications of meat animal treatment on human health, improving animal welfare has 



6 
 

 

become a major hurdle for sustainable livestock production (Berckmans, 2014).  With the 

rapid expansion of the industry, the labor force has struggled to produce enough 

employees well trained in animal husbandry, making it difficult to provide care on an 

individual basis while the number of animals per pen continues to increase.  Minimizing 

the treatment of livestock with antibiotics, particularly those that show correlations with 

human pathogens, will also be necessary as the medical field struggles to combat 

antimicrobial resistance in bacteria (Mathew, 2007).  Simultaneously, animal waste and 

gas production poses threats to soil, air, and water quality that must be sustainably 

managed (Berckmans, 2014). 

 If the livestock production industry is to remain economically competitive, 

farmers must address these challenges while continuing to lower overhead and improve 

production efficiencies.  The industry has recognized that optimizing livestock 

production will require an understanding of the complex interaction between the physical 

and biological processes involved (Wathes 2008).  Precision livestock farming (PLF) 

applies sensors and modeling techniques to livestock systems and aims to provide real-

time information on individual animals in a large group setting.  This information could 

be used to track a range of factors important to animal management, including feeding 

behaviors, drinking behaviors, access to cooling methods, resting time, specific animal 

interactions, growth, and reproduction. 

1.3 Precision Livestock Farming Techniques 

 According to Wathes (2008), “PLF requires (i) continuous sensing of the process 

responses (or outputs in the terminology of the process engineer) at an appropriate 



7 
 

 

frequency and scale with information fed back to the process controller; (ii) a compact, 

mathematical model, which predicts the dynamic responses of each process output to 

variation of the input(s) and can be – and is best – estimated on-line in real time; (iii) a 

target value and trajectory for each process output, e.g. a behavioural pattern, growth rate 

or pollutant emission; and (iv) actuators and a model-based predictive controller for the 

process inputs.” 

 Recent research in precision livestock farming has focused primarily on 

establishing and evaluating sensor-based data collection techniques on livestock 

operations.  Robust and affordable technologies have begun to emerge during this time, 

expanding the possibilities for continuous sensing of animal outputs (Berckmans 2014).  

Affordability of sensing and computing equipment has been a challenge for PLF, but 

basic biological sensors, cameras and microphones continue to become more affordable 

and improve in quality.  Adequate storage for large data files is more widely available, 

and computing power continues to improve, making cameras and microphones 

particularly powerful tools for PLF research.  Systems based on image, video and audio 

capture are referred to as remote sensing systems.  These systems are advantageous, as 

they minimize disturbance to the animals and often eliminate the need for sensing units 

for each individual (Wathes 2008).  However, the problem with image, video, and audio 

is that it is difficult to discern individuals out of a group. 

Pigs in confinement are highly prone to bouts of aggressive behavior, often 

culminating in tail biting, which can lead to animal stress and serious injury (Oczak, 

2013).  Aggressive interactions between growing pigs in confinement have been analyzed 
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using top-down (or overhead) video recordings (Oczak, 2013 and Viazzi, 2014).  Manual 

labeling of aggressive interactions is possible but takes considerable time (Oczak, 2013).  

Converting video to image sequences and using image feature extraction software allows 

for aggressive behavior classification to be automated with 89 percent accuracy (Viazzi, 

2014).  Furthermore, image processing methods has been used to determine individual 

animal identity by marking animals with ink patterns (Kashiha, 2013), allowing for 

identification of resting behaviors.  Image processing can also be used to determine 

thermal comfort (Shao, 2008) and other indicators of animal well-being, but is limited by 

the number of animals in a pen. 

Microphones offer more opportunities for continuous remote sensing of physical, 

behavioral, and psychological characteristics.  Speech recognition software can be 

adapted to analyze cow calls, translating calls to text messages indicating the condition of 

the cow (Jahns, 2008).  Similarly, analysis of resonant frequencies of cow calls can be 

used to identify distinct types of psychological stress (Ikeda, 2008).  Through a variety of 

modeling techniques, it is possible to detect cow calls associated with hunger, separation 

from calf or mother, oestrus (heat), labored breathing, and coughing (Jahns, 2008 and 

Ikeda, 2008).  Coughing is an important indicator of illness in both humans and animals 

and is an early symptom associated with several diseases (Guarino, 2008).  Like image 

analysis, sound analysis can be applied to any livestock animal.  Field tests of cough 

detection algorithms have been performed in pig houses, as well (Guarino, 2008). 

Many precision livestock farming techniques utilize sensors that make direct 

contact with the animal.  Pedometers have been used to detect oestrus in cattle (Brehme, 
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2008).  Automatic detection of fertile animals will aid livestock farmers in optimizing 

reproduction.  Automatic weighing systems have been in place for some time (Wathes, 

2008).  In addition to monitoring weight, some feeder scale systems can now measure 

behavioral characteristics (Gates, 2008), including feeding duration, total intake, and 

frequency.  Load sensors have been used during cattle milking to detect not only body 

weight, but load distribution on each leg (Pastell et al., 2008).  Load distribution data can 

serve as an early indicator of hoof injuries, leg injuries, and lameness. 

The applications given in this review are only a broad sample of data collection 

and interpretation techniques.  In addition to continuous monitoring of animal outputs, 

environmental information is also an important factor in determining overall animal 

health at a given moment.  Fortunately, environmental data is easy to collect, particularly 

in confined livestock systems.  Relatively cheap sensors for continuous monitoring of 

temperature, humidity, air quality, etc. are available and can be helpful in identifying 

sources of animal stress. 

1.4 Limitations 

 Ethical issues will continue to be a hurdle for the livestock industry, because 

optimizing food animal production will always involve balancing animal welfare with 

economic return.  In other words, the most economically favorable process will likely not 

always be the most ethically favorable.  Public perception of precision livestock farming 

will also be important.  There is public opposition to mechanized animal management, 

and precision livestock farming could be viewed as furthering the treatment of animals 
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simply as production systems.  It is possible that system failures could lead to animal 

harm, and system reliability must be balanced with cost if PLF is to be feasible. 

1.5 Future Perspectives 

 Advances in technology over the last 5-7 years have helped researchers develop 

reliable animal monitoring systems while cutting costs associated with sensing 

equipment.  Researchers must strive to continue optimizing system performance and 

balancing costs, as economic feasibility will ultimately determine whether companies 

choose to invest at the large scale.  PLF systems that scale up easily will fare better with 

investors.  Most of the current research on PLF is geared toward collecting reliable data 

and creating data-based predictive models to link physical parameters with biological 

parameters.  If PLF is to be successful, researchers need to develop more robust models 

that can handle the interactions of multiple physical and biological parameters, and 

provide meaningful outputs to farmers in real-time. 
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2.1 Introduction 

Food production industries will constantly be challenged to cope with increased 

demand for safe and sustainable food.  The projected global population of 9.1 billion by 

2050 will consume around 70 percent more food than in 2007, according to a 2009 report 

by the Food and Agricultural Organization of the United Nations (FAO, 2009).  The 

report indicates a corresponding increase in meat production of 200 million metric tons 

by 2050 to compensate for the growth.  Moreover, the need for “safe” and “sustainable” 

food sources adds a layer of complexity to the increase in demand, presenting a unique 

set of challenges to each major food production industry. 

The livestock production industry is facing increased pressure from multiple 

sources. Between ethical concerns raised by the animal rights movement and the potential 

implications of meat animal treatment on human health, improving animal welfare has 

become a major hurdle for sustainable livestock production (Berckmans, 2014).  With the 

rapid expansion of the industry, the labor force has struggled to produce enough 

employees well trained in animal husbandry, making it increasingly difficult to track 

health parameters and provide care on an individual animal basis.  A reliable solution to 

this problem has not been established.  If the livestock production industry is to remain 

economically competitive, farmers must address this challenge while continuing to lower 

overhead and improve production efficiencies. 

 Radio-frequency identification (RFID) technology is a powerful tool for tracking 

the location of objects in real time.  In an active RFID system, battery-powered tags are 
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attached to the objects to be tracked and sensors are placed around the tracking area.  The 

tags emit a signal at a specified time interval, which is received by the sensors and used 

to calculate the 3-dimensional position of the tags.  We hypothesized that an active RFID 

system applied in a swine facility would provide accurate positional data on individual 

animals over time.  Therefore, the first objective of this study was to deploy and evaluate 

an active RFID system within a swine facility to determine positional accuracy and 

ability to track individual animal movement.  The second objective of this study was to 

determine if the system can detect differences in activity level and space utilization based 

on genetic lineage.  The third objective was to determine if the system can detect 

differences in activity level and space utilization based on temperament scores. 

2.2 Materials and Methods 

2.2.1 Site and Equipment Setup 

 The active RFID tag tracking system (Real-Time Location System, Ubisense Inc., 

Denver, CO) was deployed in a swine pen in a finishing facility at the USDA Meat 

Animal Research Center in Clay Center, Nebraska.  The pen had dimensions 6.33 m (W) 

× 5.09 m (L) with 1 m high fences and contained one five-hole feeder, four nipple 

drinkers, and a spray cooling system along the width of one side.  A diagram of the swine 

pen, including key elements, can be found in Appendix A.  The Real-Time Location 

System (RTLS) is composed of two hardware elements: sensors (Series 7000 Sensor, 

Ubisense Inc., Denver, CO) and tags (Series 7000 Compact Tag, Ubisense Inc., Denver, 

CO), shown in Figure 2.1.  The sensors are placed around the perimeter of the desired 
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tracking area and face inward.  Tags are attached to the objects to be tracked, and 

transmit an Ultra-Wideband (UWB) signal, which is received by the sensors.  According 

to the Ubisense RTLS training materials, at least two sensors need to receive a tag signal 

to calculate location.  Two sensors provide five pieces of information to the position 

calculation algorithm: the azimuths for each sensor, the height of each sensor, and the 

time difference of arrival of the signal between the sensors.  When more sensors receive a 

tag signal, more information is passed into the position calculation algorithm, yielding a 

more accurate tag position.  This process is illustrated in Figure 2.2. (Ubisense Limited, 

2014) 

 For this study, four sensors were mounted in the corners of the pen at a height of 

2.2 meters and oriented toward the center of the pen, angled downward at 30 degrees.  

The sensors were connected to each other by cat6e Ethernet cables for the calculation of 

the difference in signal arrival time between each sensor.  The sensors were also 

connected by cat6e Ethernet cables to a power-over-Ethernet (PoE) switch, for 

transmitting power and data to a computer (PowerEdge T320, Dell) (Figure 2.3).  Water 

proof backings with cable glands (IP67 Sensor Backplate, Ubisense Inc., Denver, CO) 

were added to the sensors to prevent water and dust from damaging the cable 

connections. 
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Figure 2.1   Ubisense Series 7000 Sensor (top) and Series 7000 Compact Tag (bottom). 

 

 

Figure 2.2   Illustration of how the active RFID system works.  Tags are attached to the object of interest 

and emit a signal, which is received by the sensor and used to calculate position.  Only two sensors are 
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shown here for simplicity, but the setup for this study uses four sensors. (Image: Ubisense Limited. (2014). 

Ubisense RTLS Training-Overview [PowerPoint Slides]) 

 

Figure 2.3   Diagram of the Ubisense RTLS system connections.  Red lines represent cat6e Ethernet 

cables.  The platform server and DHCP server are software services that run on the PC and support the 

Ubisense operating system. (Image: Ubisense Limited. (2014). Ubisense RTLS Training-Overview 

[PowerPoint Slides]) 

 The Ubisense Smart Factory software (Ubisense Inc., Denver, CO) was used to 

calibrate the sensors to the shape and size of the swine pen.  The system tracks and 

displays the last known position of a tag at a user-defined time interval, which is set by 
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altering the update rate within the Ubisense software’s data filtering options.  The system 

is also capable of tracking when tags enter and exit certain zones within the tracking area, 

which are created by the user within the Location Engine (Figure 2.4). This project 

required the logging of tag locations and entry/exit event data, so a custom software 

service was developed to intercept the tag data from the Ubisense software and store it in 

a MySQL database for later download and analysis (Figure 2.5). 

 This application required that the system be able to run for undetermined 

durations and collect data for that entire time.  Due to the long unknown durations of 

runtime, storage of data in simple files was determined to be inadequate. The potential for 

very large files and the volatility of the environment added additional risk for corruption 

or data loss.  In accordance with best practices, a piece of server hardware (Dell 

PowerEdge T320) was procured to run the system.  Advantageous features of this 

hardware include redundant power supplies and RAID6 storage array to enhance 

robustness.  The software installed on the system includes Windows Server 2008 R2, 

Ubisense software suite, MySQL Server as well as a custom written Windows service.  

The custom Windows service simply registers for events that are available via the 

Ubisense .NET API and subsequently populates two different tables within the MySQL 

environment.  One table is populated with tag location data, and the other with entry/exit 

event data. 
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Figure 2.4   Ubisense Location Engine.  The Location Engine provides tools for the setup and calibration 

of the tracking area.  Additionally, it displays the last known position of active tags in real time and allows 

the user to monitor zone entry/exit events (known as spatial relations in the software). (Screenshot) 
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Figure 2.5   MySQL Workbench provides a graphical interface for the user to view, manage, and export 

data stored in a MySQL database. (Screenshot) 

2.2.2 Stationary Tag Tests 

 Two tests were performed to evaluate the ability of the system to accurately locate 

stationary tags in the pen.  Each pen holds a maximum of 40 animals, and 34 tags were 

used for tracking.  For the first test, all tags were grouped together on a flat cardboard 

box in a 6×7 array, which was set on top of a bucket measuring 0.39 m in height (Figure 

2.6).   The bucket was centered on a single known location within the pen, and data were 

collected for one hour with tags updating positions every 15 seconds. 
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Figure 2.6   Setup for the single location test.  Tags were placed on top of a bucket measuring 0.39 m in 

height, so that the tags would not be directly on the floor. 

For the second test, boards were placed on top of buckets to create a 1 m × 1 m 

grid across the pen at a height of 0.39 m (Figure 2.7).  The second test was performed 

three times, ensuring that each location on the grid was tested at least once.  Also, 

performing three trials provided a way to distinguish whether any tracking issues at a 

given grid location were related to the tag placed at that location or if the issues were 

specific to that location in the pen. Each trial of the second test was performed with tag 

locations updating every 15 seconds for 24 hours. 
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Figure 2.7   Setup for the grid test.  Columns of buckets and boards were spaced 1 m apart, and 

tags were placed in 1 m intervals along the boards to create a grid. 

For each test, the absolute error and standard deviation of the error of measured 

tag locations in the x, y, and z directions was calculated.  Absolute error was calculated 

by subtracting the actual position from each measured position, and taking the absolute 

value.  The Euclidean distance for each measured position was calculated using the 

formula: 

 𝐸𝑑𝑖𝑠𝑡 =  √𝑋𝑒𝑟𝑟
2 + 𝑌𝑒𝑟𝑟

2 + 𝑍𝑒𝑟𝑟
2 (Eq. 1) 

Where Edist is the Euclidean distance, Xerr is the error in the X direction, Yerr is the error 

in the Y direction, and Zerr is the error in the Z direction.  For this application, the 

Euclidean distance is a linear distance by which the measured tag position is displaced 
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from the actual tag position.  During analysis of the first test, the actual location of each 

tag was adjusted by the distance of the tag from the center of the array. 

2.2.3 Mobile Tag Test  

 To test the ability of the system to locate the animals in the pen, four finishing 

gilts were tagged and tracked over two days.  The tags were small enough (38 mm × 39 

mm ×16.5 mm) to fit on the pigs’ ears.  It was desirable to have the tags near the head of 

the animal, so custom ear tag enclosures were printed using a 3D printer (Airwolf 3D, 

Costa Mesa, CA) (Figure 2.8 and 2.9).  The enclosures were printed from NinjaFlex 

(NinjaTek, Manheim, PA), a thermoplastic elastomer.  NinjaFlex was chosen for the 

combination of flexibility and durability it provided.  After starting the print, it took 

roughly two hours for the printer to build up the back of the enclosure and the walls, at 

which point the tag was slipped in to the enclosure.  It took approximately one hour for 

the printer to complete the top of the tag, leaving the tag completely sealed from the 

surrounding environment.  It is worth noting here that the UWB signal emitted by the 

tags is minimally affected by passing through plastic or similar materials.  In general, 

only passing the signal through a water-based medium has a detrimental effect on the tag 

signals (personal communication with Ubisense service representative, July 8, 2014). 
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Figure 2.8   Airworld 3D printer used to print tag enclosures from NinjaFlex filament. 

 

Figure 2.9   A completed 3D printed tag enclosure.  A small plastic insert was added to the point of 

attachment to prevent the NinjaFlex material from stretching around the pin that attaches the tag to the ear 

of the animal. 
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 During the test, three cameras were programmed to take pictures along the X axis 

and Y axis of the pen once per minute, and the pigs were marked with distinct patterns 

for visual identification (Figure 2.10).  Three cameras were needed, as two were required 

to capture the full x-axis view.  Colored tape was used to mark off 1 m intervals on the 

railings or wall in the foreground and background of images along the X and Y axis. This 

process established thirty 1 m × 1 m zones in the XY plane, with columns labeled A 

through F and rows 1 through 5 (Figure 2.11). Three sets of images per hour were 

selected where each pig was clearly visible in a zone, at times when the pigs appeared to 

be stationary.  The corresponding location data at the time of each image were then 

compared to the images for verification of accurate tracking. 

 

Figure 2.10   Example image along the Y axis of the swine pen.  The orange tape marking 1 m intervals 

can be seen on the railings in the foreground and background. 
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Figure 2.11   Thirty 1 m × 1 m zones were established by marking 1 m intervals along the X and Y axes 

and then capturing images along those two axes.  The feeder is shown in gray as a point of reference. 

2.2.4 Tracking Animals from Three Genetic Lines 

 For this test, a total of 18 pigs were tagged and placed in the pen, including six 

each from the Duroc, Yorkshire, and Landrace sire lines.  During the first trial of this test, 

nine of the tags were chewed and disabled, so replacement tags were 3D-printed into 

enclosures for a second trial.  Data were then collected for five full days, during which 3 

tags were disabled.   This left a total of 15 tags that produced usable data, including five 

each from the Duroc, Yorkshire, and Landrace lines. 

Next, the data were separated by date for analysis.  Before moving on to the 

description of the parameters calculated for this study, it is important to remember that 

the parameters themselves were simply chosen as baseline indicators of movement or 

activity level.  Again, the overall goal was to determine if the location data collected by 
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the Ubisense system was accurate and could be used to monitor animals with different 

characteristics.  A summary of the parameters calculated and recorded for each day is 

presented in Table 2.1, and detailed descriptions of the calculation methods follow below. 

Table 2.1   Summary of key parameters calculated for each day for genetic line test 

and temperament test  

Location Data 

Parameter Definition 

Total Distance Total distance traveled in meters when moving ≥ 0.5 m 

Avg Speed When Moving Average instantaneous speed (m/s) when moving ≥ 0.5 m 

Direction Changes # of times the animal turns, methods in Fig. 2.12 & 2.13 

Event Data 

Parameter Definition 

Number of Events Number of times a tag entered the feeding/drinking zone 

Total Time Total elapsed time between each entry and exit of a zone 

Avg Event Duration Total time divided by the number of events  

 

For each tag, the distance covered between each tag update was measured using 

the standard formula: 

𝐷 = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 (Eq. 2) 

Where D is the distance (meters), X1 and Y1 are the initial positions, and X2 and Y2 are 

the final positions.  The sum of these distances was taken to determine the total distance 

traveled by each pig over the course of each day.  Instantaneous speed was calculated by 

dividing the distance traveled between each tag update by the time elapsed between 

updates.  The instantaneous speed was used to determine each pig’s average speed while 

moving around the pen (i.e. not lying down or sleeping).  To be considered moving, the 

animal needed to move at least 0.5 meters between tag updates.  The 0.5-meter threshold 
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value for movement to be counted was chosen in order to avoid counting small 

movements of the head or shifting from side to side while lying down as intentional 

movements from one place in the pen to another.  For the same reason, the 0.5-meter 

threshold for movement to be counted was also applied to the total distance. 

 The final objective for analysis of the tag location data was to determine the 

number of times each pig changed direction each day.  Two methods were used to 

calculate the number of direction changes.  In the first method, a change of direction was 

defined as a negative change in either the X or Y direction between tag updates (ΔX< 0 m 

or ΔY< 0 m) coupled with a change in distance of at least 0.5 meters (Figure 2.12).  The 

first method will be referred to as the “quadrant method” for the remainder of this paper.  

The issue with the quadrant method is that it assumes that the tag is moving in the 

positive X and positive Y direction, which is not always true.  In the second method, a 

trigonometry-based approach was used to calculate the angular change in direction 

between the two previous movements after each positional update of a tag (Figure 2.13).  

The second method will be referred to as the “trig method” from this point forward. 
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Figure 2.12   Diagram illustrating the parameters used to define a change of direction for a given animal in 

the genetic line test and the temperament test using the quadrant method.  As a baseline, the tag must move 

at least 0.5 meters between tag updates.  If this condition is met and the change in X or Y is negative 

between tag updates, a change of direction is counted.  

 

Figure 2.13  Diagram illustrating the parameters used to define a change of direction for a given animal in 

the genetic line test and the temperament test using the trig method.  P3 is the current position of the tag, 

while P1 and P2 are the two previous positions.  D1-2, D2-3, and D1-3 are the distances between those points. 

The angle θ was calculated using Equation 3. 
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 The angle θ, shown in Figure 2.13, was calculated using the following equation 

for a triangle where all side values are known: 

 θ = sec (
𝐷1−2

2+𝐷2−3
2−𝐷1−3

2

2(𝐷1−2)(𝐷2−3)
) (Eq. 3) 

In this equation, D1-2, D2-3, and D1-3 are the distances between the current position (3) and 

the previous two positions (1 and 2) of a tag.  Because the angle θ is relative to the 

previous movement of a tag, the trig method avoids the issue associated with the quadrant 

method.  Direction changes were calculated by setting a threshold value for θ and a 

minimum distance for D1-2 and/or D2-3.  For this experiment, direction changes were 

calculated using 135 degrees, 90 degrees, and 60 degrees as threshold values for θ.  For 

each θ value, a minimum distance of 0.5 meters was first used only for D2-3, and then for 

both D1-2 and D2-3.  Setting a minimum distance for only the most recent movement (D2-3) 

accounts for movements where a pig is standing still and then turns and moves away.  

Setting a minimum distance for both of the previous two movements requires that the pig 

be moving in one direction, then turn and continue moving in another.  This was done to 

discover if the number of direction changes would stay consistent as the restrictions for 

what constitutes a direction change increase. 

 As previously mentioned, the Ubisense software is also capable of monitoring 

spatial interactions between tags and user-created zones within the tracking area.  Each 

time a tag moves into or out of a zone, it triggers an event notification.  However, the 

software does not allow the user to identify specific coordinates for the boundaries of the 

zones, so the boundaries must be visually approximated by placing vertices around the 
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area of interest to create the desired zone shape.  For this project, zones were created 

around the feeder and the drinking area.  The events that occurred during each day of 

testing were stored in a table in the MySQL database using the same program that stored 

the location data. 

 For the analysis of the event data, each time a pig entered and then exited either 

the feeder or drinking area was considered one feeding or drinking event.  The sum of 

these events was used to determine the number of times each pig visited each zone during 

each day.  To calculate the total time spent in each zone, the elapsed time between each 

entrance and exit of a zone was summed over each day.  Dividing the total time spent in 

each zone by the number of visits over the course of the day yielded the average duration 

of each feeding and drinking event.   

2.2.5 Tracking Animals with High and Low Temperament Scores 

 The final objective of this project was to track pigs with high and low 

temperament scores.  Temperament was scored on a scale from one to five, based on 

activity level and vocalization displayed while the pig is confined in the scale (Holl, 

Rohrer, & Brown-Brandl, 2010).  For this test, a total of eight pigs were tagged, with four 

having high temperament scores (scale score = 3) and four having low temperament 

scores (scale score = 1).  Data were then collected for nine days. 

 The location data for this test were imported to Excel and analyzed using identical 

methods to those described in the previous section for the calculation of total distance 

traveled, average speed, instantaneous speed, average speed while moving, and number 
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of direction changes.  Likewise, event data for this test were analyzed using the methods 

from the previous section for the calculation of the number of visits to each zone, total 

time spent in each zone, and the average duration of each feeding and drinking event 

(Table 2.1). 

2.2.6 Statistical Analysis 

 Statistical analysis was carried out using SAS 9.4 (SAS Institute, Cary, NC) for 

the genetic line test and for the temperament test.  Data were analyzed using a Proc GLM 

(general linear models) procedure, including an LSMEANS comparison to test for 

significant differences (p<0.05) among day, sex, and genetic line (or temperament) 

effects, as well as interaction effects between sex/line and sex/temperament.  The SAS 

source code and full output for the genetic line test and temperament test can be found in 

Appendices B and C, respectively. 
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2.3 Results and Discussion 

2.3.1 Stationary tag tests 

 To determine how tag grouping would impact system accuracy, we placed all of 

the tags at a known location for one hour.  The average X, Y, and Z errors and the 

Euclidean distance for the 34 functional tags are displayed in Table 2.2.  For this test, the 

errors in both the X and Y direction were roughly twice as large as the error in the Z 

direction. 

 

Table 2.2   Average X, Y, and Z errors and average Euclidean distance for all tags 

during single location test 

  X error Y error Z error 

Euclidean 

Distance 

Average 0.101 0.093 0.058 0.166 

Stdev 0.086 0.080 0.050 0.105 
 *All table values given in meters. 

To determine how well the system tracked tags throughout the pen we performed 

three trials of a grid test, randomizing the location of each tag in the grid for each 

successive trial.  The average X, Y, and Z errors and the Euclidean distances for all three 

trials are presented in Table 2.3.  We found that the average of the X and Y errors were 

roughly doubled in each trial when compared to the single location test.  The average Z 

error showed the largest increase between the single location and grid test, rising between 

four- and five-fold in each trial. 
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Table 2.3   Average X, Y, and Z errors and average Euclidean distance for all tags 

during three grid tests 

Trial 1 

  X error Y error Z error 

Euclidean 

Distance 

Average 0.213 0.171 0.260 0.424 

Stdev 0.288 0.167 0.431 0.509 

Trial 2 

  X error Y error Z error 

Euclidean 

Distance 

Average 0.182 0.147 0.197 0.346 

Stdev 0.189 0.143 0.344 0.386 

Trial 3 

  X error Y error Z error 

Euclidean 

Distance 

Average 0.214 0.170 0.255 0.413 

Stdev 0.261 0.157 0.406 0.476 

*All table values in meters. 

  

 The introductory materials from the manufacturer state that accuracy of up to 

within 15 centimeters is possible with the Ubisense RTLS system.  Results from the 

single location test were relatively consistent with this claim. However, results from the 

grid tests indicate that the system tracked tags at a higher accuracy in some locations 

within the pen than others.  As shown above, the largest change in tracking error was in 

the Z direction.  We also observed an increase in Euclidean distance between the single 

location and grid tests, which was largely a reflection of the substantial increase in Z 

error.  During initial testing and setup in a laboratory setting, the system did not appear to 

have any increase in error when tracking tags in the Z direction.  However, the data 

acquisition service had not been completed at that time, so our ability to log and analyze 

the data was limited.  Moving the tracking system back into a laboratory setting and 
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repeating the grid test would reveal whether the design of the swine facility or pen 

contributes to the Z error.  The lack of variability in the Z direction in our swine pen 

application does not give a good estimate of Z error, which could be addressed in a lab 

setting.  The addition of two or more sensors around the tracking area could provide a 

simple solution.  As noted earlier, if more sensors have a clear line of sight to a tag, the 

calculated position will be more robust to errors. 

However, the Z direction was not of significant importance for the purpose of this 

paper, as the head movement is not indicative of pig movement and therefore was not 

used.  As described in the materials and methods, the mobile tag test, genetic line test, 

and temperament test involved collection and analysis of data in only the X and Y 

directions. 

2.3.2 Mobile tag test 

 To verify that the system could track moving objects accurately, we divided the 

pen into a 1m × 1m grid and checked their measured positions against a series of images 

taken during the trial.  We found that the system accurately predicted the zone a given tag 

was in at a rate of 84.4% (Table 2.4). 

Table 2.4   Percent of observations matched by visual verification for mobile tag test 

Total observations = 192 

# of matches = 162 

Percent matched = 84.375 
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 During analysis of the mobile tag test data, we encountered some issues related to 

the programmable cameras used to photograph the X and Y axes of the pen.  As shown in 

(Figure 2.10), the timestamp on each image includes the hour and minute, but not the 

second at which the image was taken.  This created an issue during the visual verification 

of the mobile tag test data, in that we were forced to compare each image with data over 

the entire minute instead of at the exact second the image was captured.  By looking at 

images from the preceding and proceeding minutes, we were able to identify observation 

times in which the animals were largely stationary within one zone.  However, the 

majority of the pigs’ stationary time was spent lying down in their designated resting area 

or at the feeder or nipple drinkers.  Therefore, the majority of our observations occurred 

while the pigs were in one of those three areas, leaving out many areas of the pen for this 

test.  Future work will include repeating this test with a top-down camera that can be 

programmed to take images at a time interval that is accurate to the second.  Top-down 

video recordings would also solve this issue. 

2.3.3 Tracking Animals from Three Genetic Lines 

 Statistical analysis of the genetic line test was carried out to determine differences 

(p<0.05) in total distance, average speed while moving, and number of direction changes 

by day, sex, line, and sex*line (Table 2.5).  Results for the statistical analysis of location 

tracking data for the genetic line test are displayed in Table 2.6.  Sex, line, and sex*line 

were significant effects.  As shown in Table 2.6, total distance and direction changes 

were higher in males than in females.  Likewise, total distance and direction changes 

were both higher in the Yorkshire line than in Duroc or Landrace.  Male Landrace pigs 
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had the highest total distance and direction changes, while female Landrace pigs had the 

lowest. These trends were consistent between the quadrant method and trig method for 

direction changes.  Day was not significant for any parameter.  For this project, it is 

preferable for day to be statistically insignificant for all parameters, because this indicates 

that the system is performing consistently from day to day.  In the following tables, 

letters are used as superscripts to denote significant differences between the mean values 

of each parameter based on day, sex, and line or temperament.  For a given parameter, 

mean values that have the same letter in their superscript are not significantly different.   
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 Statistical analysis of the genetic line test was carried out to determine differences 

(p<0.05) in number of feeding events, total time, and average event duration by day, sex, 

line, and sex*line (Table 2.7).  Results for the statistical analysis of feeder event data for 

the genetic line test are displayed in Table 2.8.  Line was significant for number of 

feeding events, while sex*line was significant for number of feeding events and average 

duration.  Yorkshire pigs had a higher average number of feeding events than both Duroc 

and Landrace. The average durations of feeding events for male Duroc and female 

Landrace pigs were significantly higher than all other sex* line groups.  Day and Sex 

were not significant for any parameter. 

Table 2.7   Significance (Pr>F values at the 0.05 level) by source for feeding events 

during the genetic line test 

Source 
# of Feed 

Events 
Total Time Avg Duration 

Day 0.2483 0.5903 0.4749 

Sex 0.7445 0.7567 0.8843 

Line 0.0043 0.1111 0.2553 

Sex*Line 0.0001 0.7662 0.0001 
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Table 2.8   LSMEANS and significance (p<0.05) by Line and Sex*Line for feeding 

events during the genetic line test 

Line 
# of Feed 

Events 

Duroc 172.5a 

Landrace 135.8a 

Yorkshire 243.5b 

 

Sex Line 
# of Feed 

Events 

Avg Duration 

(s) 

Male Duroc 111.1ae 70.8a 

Male Landrace 190.5bdf 15.8b 

Male Yorkshire 279.1cdf 15.2b 

Female Duroc 233.9bcdf 14.2b 

Female Landrace 81.1ae 74.1a 

Female Yorkshire 207.8bcdf 24b 

 

 Statistical analysis of the genetic line test was carried out to determine differences 

(p<0.05) in number of drinking events, total time, and average event duration by day, sex, 

line, and sex*line (Table 2.9).  Results for the statistical analysis of drinking event data 

for the genetic line test are displayed in Table 2.10.  Sex was significant for number of 

drinking events and total time, while sex*line was significant for total time and average 

duration.  Number of drinking events and the total drinking time were higher in males 

than females.  Male Duroc pigs had the highest mean total drinking time, while female 

Landrace pigs had the highest drinking event duration among all sex*line groups.  Day 

and line were not significant for any parameter.   
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Table 2.9   Significance (Pr>F values at the 0.05 level) by source for drinking events 

during the genetic line test 

Source 
# of Water 

Events 

Total 

Time 

Avg 

Duration 

Day 0.8598 0.6053 0.5442 

Sex 0.0005 0.0204 0.0557 

Line 0.1563 0.432 0.2066 

Sex*Line 0.427 0.0155 0.0411 

 

Table 2.10   LSMEANS and significance (p<0.05) by Sex and Sex*Line for drinking 

events during the genetic line test  

Sex 
# of Water 

Events 

Total Time 

(s) 

Male 173.1a 3338.3a 

Female 96.8b 2225.1b 

 

Sex Line 
Total Time 

(s) 

Avg Duration 

(s) 

Male Duroc 4514.2ac 28.3a 

Male Landrace 2345bcdef 13.6a 

Male Yorkshire 3155.8abcef 17a 

Female Duroc 1642bdef 31.4a 

Female Landrace 2510.3bcdef 68b 

Female Yorkshire 2523bcdef 20.7a 

 

2.3.4 Tracking Animals with High and Low Temperament Scores 

 Statistical analysis of the temperament test was carried out to determine 

differences (p<0.05) in total distance, average speed while moving, and number of 

direction changes by day, sex, temperament, and sex*temperament (Table 2.11).  Results 
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for the statistical analysis of location tracking data for the temperament test are displayed 

in Table 2.12.  Sex was a significant effect for total distance and direction changes.  

Males showed significantly higher daily total distance and direction changes than 

females.  This effect was consistent for both the quadrant method and trig method of 

measuring direction changes. Day, temperament, and sex*temperament were not 

significant for any parameter.  
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 Statistical analysis of the temperament test was carried out to determine 

differences (p<0.05) in number of feeding events, total time, and average event duration 

by day, sex, temperament, and sex*temperament (Table 2.13).  Results for the statistical 

analysis of feeder event data for the temperament test are displayed in Table 2.14.  Sex, 

temperament, and sex*temperament were significant effects for the number of feeding 

events.  Temperament was also significant for the total feeding time.  Males nearly 

doubled the average number of feeding events compared to females.  Unexpectedly, low 

(1) temperament animals had a significantly larger number of feeding events and higher 

total feeding time than high (3) temperament animals.  Male low temperament pigs had 

the highest number of feeding events among all sex*temperament groups.  Day was not 

significant for any parameter. 

Table 2.13   Significance (Pr>F values at the 0.05 level) by source for feeding events 

during the temperament test 

Source 
# of Feed 

Events 

Total 

Time 

Avg 

Duration 

Day 0.0779 0.3815 0.536 

Sex <.0001 0.0735 0.2303 

Temperament <.0001 0.0096 0.2915 

Sex*Temperament 0.0212 0.8396 0.5677 
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Table 2.14   LSMEANS and significance (p<0.05) by Sex, Temperament, and 

Sex*Temperament for feeding events during the temperament test 

Sex 
# of Feed 

Events 

Male 456.7a 

Female 268.5b 

 

Temperament 
# of Feed 

Events 

Total Time 

(s) 

1 459.5a 8957.0a 

3 265.6b 6149.5b 

 

Sex Temperament 
# of Feed 

Events 

Male 1 599.5a 

Male 3 313.9bc 

Female 1 319.7bc 

Female 3 217.3b 

 

 Statistical analysis of the temperament test was carried out to determine 

differences (p<0.05) in number of drinking events, total time, and average event duration 

by day, sex, temperament, and sex*temperament (Table 2.15).  Results for the statistical 

analysis of drinking event data for the temperament test are displayed in Table 2.16.  Sex 

was a significant effect for the number of drinking events and the average duration, while 

temperament was significant only for the average duration.  The number of drinking 

events was nearly double in males compared to females.  Interestingly, the average 

duration of drinking events was significantly higher in females than in males.  Possible 



48 
 

 

causes for this effect are discussed below.  Day and sex*temperament were not 

significant for any parameter. 

Table 2.15   Significance (Pr>F values at the 0.05 level) by source for drinking 

events during the temperament test 

Source 
# of Water 

Events 

Total 

Time 

Avg 

Duration 

Day 0.1892 0.1391 0.4785 

Sex <.0001 0.1252 0.0003 

Temperament 0.5784 0.1866 0.0357 

Sex*Temperament 0.176 0.3332 0.6726 

 

Table 2.16   LSMEANS and significance (p<0.05) by Sex and Temperament for 

temperament test drinking events 

Sex 
# of Water 

Events 

Avg Duration 

(s) 

Male 62.4a 14.5a 

Female 32b 24b 

 

Temperament 
Avg Duration 

(s) 

1 21.5a 

3 17b 

 

 Based on the results of our statistical analyses presented in Tables 2.5-2.10, we 

can conclude that it is possible to detect some differences in swine activity and space 

utilization between animals with different genetic lineage and temperament scores 

through location tracking with the active RFID tracking system.  It is worth noting, 
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however, that total number of events and the average event duration for the feeding and 

drinking event data is likely not an accurate representation of the true number of visits to 

either zone or the average duration of an event in either zone.  It is very likely that the 

tags pass into and out of a zone multiple times during an actual visit to the feeder or 

nipple drinker.  For example, an animal may be standing near the edge of the established 

feeder zone, and even slight movements of the head would generate repeated entry and 

exit events.  Likewise, simply walking past the feeder or nipple drinker may generate one 

or more entry and exit events.  The overall effect of these false events is to drive up the 

total number of feeder or drinker events, resulting in a decrease in average event time.  

This may also explain why low temperament animals would have a higher number of 

feeding or drinking events, as seen in Table 2.14 and Table 2.16.  A pig with a low 

temperament may get pushed out of the feeding or drinking zone, and any subsequent re-

entries would trigger extra feeding or drinking events. This effect could be mitigated by 

importing the data to MATLAB or a similar program, which would give greater control 

over the establishment of zone boundaries than is possible within the Ubisense software. 

2.4 Data Jumps 

 Discussion of some of the future work needed to address system issues is 

presented in the previous section, but there is one further point that should be addressed 

as we look toward taking the next steps.  Dr. Matti Pastell from the Natural Resources 

Institute Finland (Luke) is also working with the Ubisense active RFID system.  Through 

Dr. Pastell, we learned that the Ubisense system has shown a tendency to create large 

jumps in the location data (personal communication with Dr. Pastell, June 28, 2016).  
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Analysis indicates that our data has a similar issue.  An example of a large jump in the 

data is presented in Figure 2.14.  The jump in the data can be seen in the middle of the 

plot, where the tag does not update positions for 17 seconds.  When it reappears, it has 

moved nearly 4 meters in the X direction.  In the following tag updates, the X position 

settles back around the original location.  Similarly, jumps can be seen in the Y values, 

but were not as large during this sampling window. 

 

Figure 2.14   Plotting X values for a single tag over one minute during the genetic line test.  The jump in 

the data can be seen in the middle of the plot, where the tag disappears for 17 seconds and then reappears 4 

meters away before settling back to the previously measured location. 

 For the purpose of this thesis, we wanted to further characterize these jumps to 

determine if filtering them out is possible or necessary.  First, we wanted to know how 

often data jumps occur and if they occur more frequently in specific tags.  To do so, we 

needed to identify the conditions for a movement that would make us suspect a jump in 
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the data had occurred.  Figure 2.15 shows how often certain time intervals (Δt) occur 

between tag updates during a given day.  The vast majority of the time, only 1-2 seconds 

elapsed between tag updates.  Therefore, we chose to focus on movements of 3 meters or 

greater, as it seems at least unlikely that a pig would move that far in under 2 seconds. 

 

Figure 2.15   Frequency distribution showing the number of times in a given day that each time interval 

occurs between tag positional updates. 
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 For both the genetic line test and the temperament test, we extracted all of the 

movements of 3 meters or greater and sorted them into tables by tag and by day (Figure 

2.16 and Figure 2.17).  As shown in Figures 2.16 and 2.17, the daily percentage of 

movements that were 3 meters or greater was around 0.3% for both tests.  This indicates 

that the data jumps, at least those of this magnitude, do not occur very frequently.  

Additionally, there does not appear to be any individual tag that consistently measures 

more movements of 3 meters or greater than the other tags.  In many cases, the number of 

movements of 3 meters or greater varies by nearly double from day to day for a single 

tag.  Figure 2.18 shows the frequency distribution for the daily number of movements of 

3 meters or greater for both the genetic line test and the temperament test.  The spike at 

the zero level for the temperament test distribution is due to days where certain tags were 

disabled and did not generate data.  Excluding that spike, the histograms for both tests 

show relatively normal distributions for the daily number of movements of 3 meters or 

greater.  Taken together, these results indicate that the data jump issue is related to the 

system as a whole, and affects each tag with random frequency. 
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Figure 2.16   For the genetic line test, how many times per day each tag makes a movement of greater than 

3m between tag updates, and the daily percentage of movements that were >3m. 

 

Figure 2.17   For the temperament test, how many times per day each tag makes a movement of greater 

than 3m between tag updates, and the daily percentage of movements that were >3m.  Data labeled n/a 

refers to days where a tag was disabled and had to be replaced. 

Tag# Day 1 Day 2 Day 3 Day 4 Day 5 Average

tag03 95 43 62 63 33 59.2

tag19 48 33 56 43 49 45.8

tag20 20 37 38 53 37 37

tag21 102 57 106 45 55 73

tag22 40 51 44 47 41 44.6

tag23 35 54 36 26 34 37

tag24 29 41 31 49 54 40.8

tag25 60 61 72 76 47 63.2

tag26 58 26 18 11 27 28

tag27 33 84 76 30 52 55

tag28 62 52 68 53 50 57

tag29 48 49 38 37 66 47.6

tag30 51 28 15 26 26 29.2

tag31 88 66 47 66 51 63.6

tag32 34 19 39 65 79 47.2

Total 803 701 746 690 701 728.2

# of Daily Updates 304561 286281 291657 308000 285174 295135

% of moves >3m 0.26% 0.24% 0.26% 0.22% 0.25% 0.25%

Tag# Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Average

tag19 64 30 40 57 70 43 53 40 n/a 49.6

tag20 53 63 58 55 41 43 66 42 64 53.9

tag21/33 36 15 n/a n/a n/a 20 46 23 45 30.8

tag23 29 19 35 45 43 69 80 43 69 48.0

tag26/34 66 61 45 n/a n/a 43 61 96 49 60.1

tag29 71 84 65 82 59 63 24 n/a n/a 64.0

tag30 76 36 34 62 56 121 54 92 93 69.3

tag32 111 117 88 107 95 118 92 73 87 98.7

Total 506 425 365 408 364 520 476 409 407 431.1

# of Daily Updates 167726 150197 130478 106055 124740 120093 104573 97819 87832 121057.0

% of moves >3m 0.30% 0.28% 0.28% 0.38% 0.29% 0.43% 0.46% 0.42% 0.46% 0.36%
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Figure 2.18   Histograms showing the frequency distributions for the daily number of movements of 3m or 

great for both the genetic line test (Top) and the temperament test (bottom).  The spike at the zero level is 

due to days where certain tags were disabled and did not generate data. 
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Finally, we wanted to compare the tag movements of 3 meters or greater with the 

entire set of tag movements throughout the day.  This was done in order to see if the large 

jumps occurred primarily in either the X or Y direction, and if their movement pattern 

matched that of normal movements throughout the day.  We extracted all of the 

movements of 3 meters or greater for a full day and calculated the percentage of each 

movement that occurred in the X and Y directions, then performed the same analysis on 

all of the movements from the entire day.  Figure 2.19 shows the distributions in the X 

and Y directions for each analysis.  The distributions in the X and Y direction are 

consistent between the data for movements larger than 3 meters and the data for the entire 

day, indicating that movement pattern is similar regardless of the distance travelled 

between tag updates. 

 

Figure 2.19   Frequency distribution for %X-direction (top-left) and %Y-direction (top-right) of 

movements >3m during a full day, and %X-direction (bottom-left) and %Y-direction (bottom-right) for all 

movements during a full day. 
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Overall, our analysis suggests that the data jumps affect the entire population of 

tags, and that the occurrence of these jumps is random.  Additionally, movements of 

greater than 3 meters between tag updates only occur around 0.3% of the time.  These 

results lead us to believe that in its current form, the Ubisense system would be best 

suited for monitoring hourly or daily movement data, in which a level of certainty can be 

assumed.  If the desired use of the system is to take instantaneous measurements, a 

method of filtering out the random data jumps will be needed. 

2.5 Conclusions 

 This study was conducted to determine whether an active RFID tracking system 

could be applied in a swine pen to reliably monitor animal activity and space utilization.  

Recent research in precision livestock farming, including the work presented here, has 

focused primarily on establishing and evaluating sensor-based data collection techniques 

on livestock operations.  With an accuracy of 84.4%, the results of our initial evaluation 

of the active RFID system are consistent with other work in the field of PLF.  Top-down 

image processing techniques have been used in swine research to automatically 

determine individual animal identity with 88.7% accuracy (Kashiha et al., 2013).  

Kashiha et al. were able to use the information to track each individual’s appearances in 

the feeding, drinking, resting, and defecating zones within the pen.  Aggressive 

interactions between finishing pigs in confinement have also been analyzed using top-

down video recordings (Oczak et al., 2013 and Viazzi, 2014).  Oczak et al used a human 

observer to manually label the phases of aggressive interactions with the goal of the 

eventual creation of a program that could recognize these interactions.  Viazzi continued 
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this work, using image analysis techniques to detect aggressive interactions with 89.0% 

accuracy.  The primary advantage of the active RFID system is that once it is properly 

calibrated, the data do not need post processing by image or video analysis.  The data is 

stored in a simple format that could be directly fed into a decision making model. 

 We found that grouping the tags at a single location did not produce any 

interference that affected the ability of the system to locate tags in the pen (Table 2.1).  

However, placing the tags in a grid across the pen resulted in a higher average location 

error, particularly in the Z direction, indicating that there are areas in the pen where the 

tags track more accurately than others (Table 2.2).  The more sensors that receive a 

signal, the more robust they are to this error. 

The active RFID system provides a new stream of location data that can be 

applied to behavioral research of pigs in confinement.  Initial testing of the system was 

performed with animals from different genetic lines and animals with high and low 

temperament scores. Statistical analysis of this data suggests that there are differences 

(p<0.05) in animal activity, primarily in total distance traveled and time spent feeding or 

drinking, based on genetic and temperament factors. 

 In conclusion, this study shows that an active RFID tracking system is capable of 

providing accurate location data in a finishing swine pen.  The data generated could be 

used to map feeding behaviors, drinking behaviors, access to cooling systems, and animal 

interactions.  Most importantly, the system could be combined with other biological 

sensors to provide more complete individual animal health profiles.  As detailed in the 
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previous section, the system is prone to generate large data jumps.  The work presented 

here shows that this effect is random and affects all of the tags, meaning that 

instantaneous measurements cannot necessarily be trusted.  Without a reliable data 

filtering method, the data should only be used to calculate average values over several 

hours or days.  Therefore, future work into development of a filtering method for the data 

jumps would be highly beneficial to the overall capabilities of the active RFID tracking 

system. 
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APPENDIX A 

 

DIAGRAM OF SWINE BUILDING, SWINE PEN AND KEY ELEMENTS 

  



61 
 

 

  



62 
 

 

 

 

 

APPENDIX B 

 

SAMPLE OF SAS SOURCE CODE AND OUTPUT FOR GENETIC LINE TEST 
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This a sample of one SAS output, only including significant effects, for the Genetic 

Line Test.  Full SAS outputs are located in the supplemental electronic materials. 

 

Source Code: 

 
Proc GLM; 

class Day Sex Line; 

model Total_Dist Avg_Moving_Speed Dir_Change = Day Sex Line Sex*Line; 

lsmeans Sex Line Sex*Line /stderr pdiff; 

run; 

 
The GLM Procedure 

Class Level Information 

Class Levels Values 

Day 5 06APR2016 07APR2016 08APR2016 09APR2016 10APR2016 

Sex 2 1 2 

Line 3 Duroc Landrace Yorkshire 

 

Number of Observations Read 75 

Number of Observations Used 75 

 
 
 
 

The SAS System 
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The SAS System 

 
The GLM Procedure 

  
Dependent Variable: Total_Dist Total_Dist 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 9 65192493.5 7243610.4 7.69 <.0001 

Error 65 61264886.3 942536.7     

Corrected Total 74 126457379.8       

 

R-Square Coeff Var Root MSE Total_Dist Mean 

0.515529 23.08704 970.8433 4205.144 

 

Source DF Type I SS Mean Square F Value Pr > F 

Day 4 2069215.52 517303.88 0.55 0.7005 

Sex 1 9972603.55 9972603.55 10.58 0.0018 

Line 2 10281082.20 5140541.10 5.45 0.0065 

Sex*Line 2 42869592.22 21434796.11 22.74 <.0001 

 

Source DF Type III SS Mean Square F Value Pr > F 

Day 4 2069215.52 517303.88 0.55 0.7005 

Sex 1 12501318.13 12501318.13 13.26 0.0005 

Line 2 11864481.55 5932240.78 6.29 0.0032 

Sex*Line 2 42869592.22 21434796.11 22.74 <.0001 
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The SAS System 

 
The GLM Procedure 

  
Dependent Variable: Avg_Moving_Speed Avg_Moving_Speed 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 9 0.01731814 0.00192424 3.82 0.0007 

Error 65 0.03278211 0.00050434     

Corrected Total 74 0.05010025       

 

R-Square Coeff Var Root MSE Avg_Moving_Speed Mean 

0.345670 5.321777 0.022458 0.421993 

 

Source DF Type I SS Mean Square F Value Pr > F 

Day 4 0.00226808 0.00056702 1.12 0.3528 

Sex 1 0.00172025 0.00172025 3.41 0.0693 

Line 2 0.00009691 0.00004845 0.10 0.9085 

Sex*Line 2 0.01323290 0.00661645 13.12 <.0001 

 

Source DF Type III SS Mean Square F Value Pr > F 

Day 4 0.00226808 0.00056702 1.12 0.3528 

Sex 1 0.00156544 0.00156544 3.10 0.0828 

Line 2 0.00017972 0.00008986 0.18 0.8372 

Sex*Line 2 0.01323290 0.00661645 13.12 <.0001 
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The SAS System 

 
The GLM Procedure 

  
Dependent Variable: Dir_Change Dir_Change 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 9 23333890.43 2592654.49 6.97 <.0001 

Error 65 24168453.52 371822.36     

Corrected Total 74 47502343.95       

 

R-Square Coeff Var Root MSE Dir_Change Mean 

0.491216 25.64252 609.7724 2377.973 

 

Source DF Type I SS Mean Square F Value Pr > F 

Day 4 781641.95 195410.49 0.53 0.7173 

Sex 1 3966689.88 3966689.88 10.67 0.0017 

Line 2 3087244.63 1543622.32 4.15 0.0201 

Sex*Line 2 15498313.97 7749156.99 20.84 <.0001 

 

Source DF Type III SS Mean Square F Value Pr > F 

Day 4 781641.95 195410.49 0.53 0.7173 

Sex 1 4805000.00 4805000.00 12.92 0.0006 

Line 2 3848701.67 1924350.84 5.18 0.0082 

Sex*Line 2 15498313.97 7749156.99 20.84 <.0001 
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The SAS System 

 
The GLM Procedure 

Least Squares Means 

Sex Total_Dist LSMEAN Standard 

Error 

H0:LSMEAN=0 H0:LSMean1=LSMean2 

Pr > |t| Pr > |t| 

1 4504.44919 167.11377 <.0001 0.0005 

2 3671.07192 156.32062 <.0001   

 

Sex Avg_Moving_Speed 

LSMEAN 

Standard 

Error 

H0:LSMEAN=0 H0:LSMean1=LSMean2 

Pr > |t| Pr > |t| 

1 0.41481697 0.00386567 <.0001 0.0828 

2 0.42414270 0.00361600 <.0001   

 

Sex Dir_Change LSMEAN Standard 

Error 

H0:LSMEAN=0 H0:LSMean1=LSMean2 

Pr > |t| Pr > |t| 

1 2566.17778 104.96170 <.0001 0.0006 

2 2049.51111 98.18268 <.0001   

 
 

Line Total_Dist LSMEAN Standard 

Error 

Pr > |t| LSMEAN Number 

Duroc 4012.23052 198.17256 <.0001 1 

Landrace 3632.67863 198.17256 <.0001 2 

Yorkshire 4618.37252 198.17256 <.0001 3 

 

Least Squares Means for effect Line 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Total_Dist 

i/j 1 2 3 

1   0.1803 0.0342 

2 0.1803   0.0008 

3 0.0342 0.0008   
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Line Avg_Moving_Speed 

LSMEAN 

Standard 

Error 

Pr > |t| LSMEAN Number 

Duroc 0.42114165 0.00458412 <.0001 1 

Landrace 0.41735549 0.00458412 <.0001 2 

Yorkshire 0.41994236 0.00458412 <.0001 3 

 

Least Squares Means for effect Line 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Avg_Moving_Speed 

i/j 1 2 3 

1   0.5612 0.8538 

2 0.5612   0.6912 

3 0.8538 0.6912   

 
 

 
 

 

Line Dir_Change LSMEAN Standard 

Error 

Pr > |t| LSMEAN Number 

Duroc 2252.76667 124.46927 <.0001 1 

Landrace 2056.26667 124.46927 <.0001 2 

Yorkshire 2614.50000 124.46927 <.0001 3 

 

Least Squares Means for effect Line 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Dir_Change 

i/j 1 2 3 

1   0.2684 0.0439 

2 0.2684   0.0023 

3 0.0439 0.0023   
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Sex Line Total_Dist LSMEAN Standard 

Error 

Pr > |t| LSMEAN Number 

1 Duroc 3948.84446 307.00761 <.0001 1 

1 Landrace 5138.08755 250.67066 <.0001 2 

1 Yorkshire 4426.41557 307.00761 <.0001 3 

2 Duroc 4075.61658 250.67066 <.0001 4 

2 Landrace 2127.26972 307.00761 <.0001 5 

2 Yorkshire 4810.32947 250.67066 <.0001 6 

 

Least Squares Means for effect Sex*Line 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Total_Dist 

i/j 1 2 3 4 5 6 

1   0.0038 0.2754 0.7501 <.0001 0.0334 

2 0.0038   0.0772 0.0039 <.0001 0.3586 

3 0.2754 0.0772   0.3794 <.0001 0.3363 

4 0.7501 0.0039 0.3794   <.0001 0.0422 

5 <.0001 <.0001 <.0001 <.0001   <.0001 

6 0.0334 0.3586 0.3363 0.0422 <.0001   

 
 

 
 

 

Sex Line Avg_Moving_Speed 

LSMEAN 

Standard 

Error 

Pr > |t| LSMEAN Number 

1 Duroc 0.41665226 0.00710169 <.0001 1 

1 Landrace 0.42920899 0.00579851 <.0001 2 

1 Yorkshire 0.39858967 0.00710169 <.0001 3 

2 Duroc 0.42563104 0.00579851 <.0001 4 

2 Landrace 0.40550199 0.00710169 <.0001 5 

2 Yorkshire 0.44129506 0.00579851 <.0001 6 
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Least Squares Means for effect Sex*Line 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Avg_Moving_Speed 

i/j 1 2 3 4 5 6 

1   0.1755 0.0767 0.3310 0.2710 0.0091 

2 0.1755   0.0014 0.6641 0.0120 0.1453 

3 0.0767 0.0014   0.0044 0.4937 <.0001 

4 0.3310 0.6641 0.0044   0.0317 0.0605 

5 0.2710 0.0120 0.4937 0.0317   0.0002 

6 0.0091 0.1453 <.0001 0.0605 0.0002   

 
 

 
 

Sex Line Dir_Change LSMEAN Standard 

Error 

Pr > |t| LSMEAN Number 

1 Duroc 2152.20000 192.82696 <.0001 1 

1 Landrace 2969.73333 157.44255 <.0001 2 

1 Yorkshire 2576.60000 192.82696 <.0001 3 

2 Duroc 2353.33333 157.44255 <.0001 4 

2 Landrace 1142.80000 192.82696 <.0001 5 

2 Yorkshire 2652.40000 157.44255 <.0001 6 

 

Least Squares Means for effect Sex*Line 

Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Dir_Change 

i/j 1 2 3 4 5 6 

1   0.0017 0.1245 0.4221 0.0004 0.0487 

2 0.0017   0.1191 0.0073 <.0001 0.1589 

3 0.1245 0.1191   0.3731 <.0001 0.7617 

4 0.4221 0.0073 0.3731   <.0001 0.1839 

5 0.0004 <.0001 <.0001 <.0001   <.0001 

6 0.0487 0.1589 0.7617 0.1839 <.0001   
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APPENDIX C 

 

SAMPLE OF SAS SOURCE CODE AND OUTPUT FOR TEMPERAMENT TEST 
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This a sample of one SAS output, only including significant effects, for the 

Temperament Test.  Full SAS outputs are located in the supplemental electronic 

materials. 

 

Source Code: 

 
Proc GLM; 

class Day Sex Temperament; 

model Total_Dist Avg_Moving_Speed Dir_Change = Day Sex Temperament 

Sex*Temperament; 

lsmeans Day Sex Temperament Sex*Temperament /stderr pdiff; 

run; 

The SAS System 

 
The GLM Procedure 

Class Level Information 

Class Levels Values 

Day 9 15APR2016 16APR2016 17APR2016 18APR2016 19APR2016 

20APR2016 21APR2016 22APR2016 23APR2016 

Sex 2 1 2 

Temperament 2 1 3 

 

Number of Observations Read 72 

Number of Observations Used 62 
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The SAS System 

 
The GLM Procedure 

  
Dependent Variable: Total_Dist Total_Dist 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 11 67553944.5 6141267.7 5.19 <.0001 

Error 50 59184373.1 1183687.5     

Corrected Total 61 126738317.6       

 

R-Square Coeff Var Root MSE Total_Dist Mean 

0.533019 27.52662 1087.974 3952.444 

 

Source DF Type I SS Mean Square F Value Pr > F 

Day 8 14062068.83 1757758.60 1.48 0.1865 

Sex 1 53457750.14 53457750.14 45.16 <.0001 

Temperament 1 61.07 61.07 0.00 0.9943 

Sex*Temperament 1 34064.47 34064.47 0.03 0.8660 

 

Source DF Type III SS Mean Square F Value Pr > F 

Day 8 15121447.53 1890180.94 1.60 0.1496 

Sex 1 51571295.08 51571295.08 43.57 <.0001 

Temperament 1 2902.70 2902.70 0.00 0.9607 

Sex*Temperament 1 34064.47 34064.47 0.03 0.8660 
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The SAS System 

 
The GLM Procedure 

  
Dependent Variable: Avg_Moving_Speed Avg_Moving_Speed 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 11 0.00314665 0.00028606 0.49 0.9000 

Error 50 0.02913037 0.00058261     

Corrected Total 61 0.03227702       

 

R-Square Coeff Var Root MSE Avg_Moving_Speed Mean 

0.097489 5.604897 0.024137 0.430646 

 

Source DF Type I SS Mean Square F Value Pr > F 

Day 8 0.00237168 0.00029646 0.51 0.8440 

Sex 1 0.00047437 0.00047437 0.81 0.3712 

Temperament 1 0.00026176 0.00026176 0.45 0.5058 

Sex*Temperament 1 0.00003883 0.00003883 0.07 0.7973 

 

Source DF Type III SS Mean Square F Value Pr > F 

Day 8 0.00243248 0.00030406 0.52 0.8344 

Sex 1 0.00061353 0.00061353 1.05 0.3097 

Temperament 1 0.00029670 0.00029670 0.51 0.4788 

Sex*Temperament 1 0.00003883 0.00003883 0.07 0.7973 
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The SAS System 

 
The GLM Procedure 

  
Dependent Variable: Dir_Change Dir_Change 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 11 25717559.99 2337960.00 6.42 <.0001 

Error 50 18198979.70 363979.59     

Corrected Total 61 43916539.69       

 

R-Square Coeff Var Root MSE Dir_Change Mean 

0.585601 26.97979 603.3072 2236.145 

 

Source DF Type I SS Mean Square F Value Pr > F 

Day 8 5271635.58 658954.45 1.81 0.0971 

Sex 1 19575373.66 19575373.66 53.78 <.0001 

Temperament 1 557721.69 557721.69 1.53 0.2216 

Sex*Temperament 1 312829.06 312829.06 0.86 0.3583 

 

Source DF Type III SS Mean Square F Value Pr > F 

Day 8 5869808.92 733726.12 2.02 0.0635 

Sex 1 17173090.64 17173090.64 47.18 <.0001 

Temperament 1 745216.16 745216.16 2.05 0.1587 

Sex*Temperament 1 312829.06 312829.06 0.86 0.3583 
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The SAS System 

 

Sex Total_Dist LSMEAN Standard 

Error 

H0:LSMEAN=0 H0:LSMean1=LSMean2 

Pr > |t| Pr > |t| 

1 5118.08290 230.27932 <.0001 <.0001 

2 3195.76963 178.63999 <.0001   

 
 
 

 
 

Sex Dir_Change LSMEAN Standard 

Error 

H0:LSMEAN=0 H0:LSMean1=LSMean2 

Pr > |t| Pr > |t| 

1 2889.03767 127.69530 <.0001 <.0001 

2 1779.74951 99.06008 <.0001   
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