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In-situ soil sensor systems based on visible and near infrared spectroscopy is not yet been

effectively used due to inadequate studies to utilize legacy spectral libraries under the field

conditions. The performance of such systems is significantly affected by spectral

discrepancies created by sample intactness and library differences. In this study, four

objectives were devised to obtain directives to address these issues. The first objective was

to calibrate and evaluate VNIR models statistically and computationally (i.e. computing

resource requirement), using four modeling techniques namely: Partial least squares

regression (PLS), Artificial neural networks (ANN), Random forests (RF) and Support

vector regression (SVR), to predict soil carbon and nitrogen contents for the Rapid Carbon

Assessment (RaCA) project. The second objective was to investigate whether VNIR

modeling accuracy can be improved by sample stratification. The third objective was to

evaluate the usefulness of these calibrated models to predict external soil samples. The

final objective was devised to compare four calibration transfer techniques: Direct

Standardization (DS), Piecewise Direct Standardization (PDS), External Parameter

Orthogonalization (EPO) and spiking, to transfer field sample scans to laboratory scans of

dry ground samples. Results showed that non-linear modeling techniques (ANN, RF and

SVR) significantly outperform linear modeling technique (PLS) for all soil properties

investigated (accuracy of PLS <RF <SVR ≤ANN). Local models developed using the

four auxiliary variables (Region, land use/land cover class, master horizon and textural

class) improved the prediction for all properties (especially for PLS models) compared to

the global models (in terms of Root Mean Squared Error of Prediction) with master

horizon models outperforming other local models. From the calibration transfer study, it



was evident that all the calibration transfer techniques (except for DS) can correct for

spectral influences caused by sample intactness. EPO and spiking coupled with ANN

model calibration showed the highest performance in accounting for the intactness of

samples. These findings will be helpful for future efforts in linking legacy spectra to field

spectra for successful implementation of the VNIR sensor systems for vertical or

horizontal soil characterization.

Keywords: Visible and near infrared, Diffuse reflectance spectroscopy, soil organic

carbon, total carbon, total nitrogen, calibration transfer.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 DEVELOPMENT OF VNIR SPECTROSCOPY

The interaction of light and matter aroused human curiosity for nearly two millennia.

Limited by the knowledge on the spectrum, ancient philosophers and scientists such as

Ptolemaeus, Isaac Newton and Von Freiburg demonstrated the phenomenon occurred in

the visible light such as refraction and rainbows until the discovery of infrared part of light

by Sir William Herschel in 1800. Herschel (1800) erroneously referred to this newly

discovered “radiant heat” being different from light. However, André-Marie Ampère in

1835 demonstrated that it has the same optical characteristics as the visible light

introducing the concept of ‘extended spectrum’. By the beginning of the 20th century the

understanding and detection of the electromagnetic (EM) spectrum was expanded with the

contributions from the scientists like James Clerk Maxwell, Gustav Kirchoff, Josef Stefan,

Wilhelm Wien, William Abney and Edward Robert Festing (Burns & Ciurczak, 2007).

With the construction of a spectrometer by Coblentz (1905), the record of spectra

of different compounds started. He discovered the existence of unique fingerprints and

pattern in spectra related to different compounds. This was the origination of a new tool

for chemists: “spectroscopy”, which is the study of the interaction between matter and

EM radiation to identify and quantify the compounds present in materials. The first

quantitative near infrared (NIR) measurement was conducted by Ellis and Bath (1938) at

Mount Wilson Observatory to determine the atmospheric moisture. After that the

expansion of this technology started into diverse fields to achieve different intentions.

In the EM spectrum, which is the range of all possible frequencies of EM

radiation, visible light lies between 350-700 nm range and near infrared (NIR) lies in
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700-2500 nm range, as shown in figure 1.1. Thus the visible and near infrared (VNIR)

region is generally considered from 350 to 2500 nm.

Various chemical substances absorb radiation of different wavelengths, which

represent the bonds in the compounds creating unique spectral signatures in the spectra.

Although fundamental vibrations occur in the middle infrared (MIR) region, overtones

and combinational bands are observed in the NIR region (Burns & Ciurczak, 2007).

However, these overtones are complex in nature and not easily distinguishable, which

necessitates more advanced multivariate calibration techniques to develop models to

detect different compounds. VNIR spectroscopy has emerged as an inexpensive,

non-destructive and powerful tool to identify different compounds/structures and is used

for quality control and process monitoring in industrial settings. With the evolution of

technology and research interest during the past few decades, this technology has

developed as a tool for proximal sensing in natural resources.

tones and combination modes, which can also occur

in the MIR, overlap making qualitative and quantita-

tive interpretations in the visible and NIR more

difficult. Janik et al. (1998) provide a good review

of soil analysis using infrared techniques with

particular attention to MIR.

Quantitative spectral analysis of soil using visible

and infrared reflectance spectroscopy requires sophis-

ticated statistical techniques to discern the response of

soil attributes from spectral characteristics. Various

methods have been used to relate soil spectra to soil

attributes. For example, Ben-Dor and Banin (1995)

used multiple regression analysis (MRA) to relate

specific bands in the NIR to a number of soil

properties. Shibusawa et al. (2001) used stepwise

multiple linear regression (SMLR) for the estimation

of various soil properties from the NIR spectra of soil

acquired by a field-deployed on-the-go soil sensing

system. Shepherd and Walsh (2002) used multivariate

adaptive regression splines (MARS) for the estimation

of soil properties from soil spectral libraries. Fidêncio

et al. (2002) employed radial basis function networks

(RBFN) to relate soil organic matter to soil spectra in

the NIR region. Daniel et al. (2003) implemented

artificial neural networks to estimate soil organic

matter, phosphorus and potassium from the VIS–NIR

spectrum. However, principal components regression

(PCR) (e.g. Chang et al., 2001) and partial least-

squares regression (PLSR) (e.g. McCarty et al., 2002)

are the most common techniques for spectral calibra-

tion and prediction. PLSR is performed in a slightly

different manner to PCR. Rather than first decompos-

ing the spectra into a set of eigenvectors and scores

and performing the regression with soil attributes in a

separate step, PLSR actually uses the soil information

during the decomposition process. PLSR takes

advantage of the correlation that exists between the

spectra and the soil, thus the resulting spectral vectors

are directly related to the soil attribute (Geladi and

Kowalski, 1986). The advantages of PLSR are that it

handles multicollinearity, it is robust in terms of data

noise and missing values, and unlike PCR it balances

the two objectives of explaining response and

predictor variation (thus calibrations and predictions

are more robust) and it performs the decomposition

and regression in a single step. Table 1 provides a

review of the literature comparing quantitative pre-

dictions of various primary and secondary soil

attributes, from aluminium to zinc, using various

multivariate techniques and spectral response in the

ultra violet (UV), VIS, NIR and MIR regions of the

spectrum.

Table 1 demonstrates the potential of quantitative

visible and infrared soil analysis, suggesting the

regions of the spectrum that may be most suitable

for predictions of various soil properties. For example,
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Fig. 1. The electromagnetic (EM) spectrum highlighting the visible and infrared portions (after McBratney et al., 2003).
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Figure 1.1. Electromagnetic spectrum (Source: Viscarra Rossel, Walvoort, McBrat-
ney, Janik, and Skjemstad (2006))
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1.2 IMPORTANCE OF VNIR SPECTROSCOPY IN SOIL SENSING

Soil is a major natural resource which human depends on for the production of food, fiber

and energy. It regulates water movement, filters nutrients, metals and contaminants, and

also acts as a biological habitat for living beings. Soil is also considered as a potential sink

for atmospheric carbon dioxide to mitigate global warming (Blum, 1993; Bouma, 1997;

Karlen et al., 1997). Soil is a complex matrix consisting of organic matter, inorganic

minerals, water, and air. These properties vary spatially and temporally. The distribution

of these properties influences biological activity, nutrient availability and dynamics, soil

structure and aggregation, and water-holding capacity (Stenberg, Viscarra Rossel,

Mouazen, & Wetterlind, 2010). Understanding these soil properties and dynamics is of

paramount importance in human efforts to use this natural resource for food production.

1.2.1 Spectral signatures of soil in VNIR region

EM radiation interacts with soil and causes the individual molecules to vibrate, either by

bending or stretching, and absorb energy in varying degrees. This absorbance is related to

the energy quantum corresponding to different energy levels of the bonds. The resulting

absorbance spectrum produces characteristic patterns (signatures) which can be used for

analytical purposes, i.e., to identify different properties and constituents of soil (Miller,

2001). Though majority of the spectral signatures of soil constituents occur in MIR

region, discernible overtones of these primary absorptions can be observed in the VNIR

region (Figure 1.2), which can be used to build models to derive different soil properties.

Iron containing mineral absorptions occur in the visible region (Sherman & Waite, 1985).

Soil organic matter has signatures in the NIR region which is characterized by the

overtones and combinational absorptions of O–H, C–H and N–H bonds (Clark, 1999;

Clark, King, Klejwa, Swayze, & Vergo, 1990). Clay mineral absorption overtones which

are attributed to the spectral signatures of OH, H2O and CO3, occur in longer wavelengths
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(Stenberg et al., 2010). Moisture absorptions are observed near 1400 and 1900 nm

(Bowers & Hanks, 1965; Dalal & Henry, 1986).

Table 1.1 shows some of these observed spectral signatures for different soil

constituents. Literature is abundant in the use of VNIR spectroscopy to detect different

soil properties such as moisture (Hummel, Sudduth, & Hollinger, 2001; Chang, Laird, &

Hurburgh, 2005; Ben-Dor, Heller, & Chudnovsky, 2008), organic carbon (Chang, Laird,

Mausbach, & Hurburgh, 2001; Islam, Singh, & McBratney, 2003; Shepherd & Walsh,

2002), texture (Brown, Shepherd, Walsh, Dewayne Mays, & Reinsch, 2006; Ge, Morgan,

& Ackerson, 2014; Stenberg, Jonsson, & Börjesson, 2002) and plant nutrients (Stenberg

et al., 2010). Among these properties, soil organic carbon (OC) and clay are two of the

most dominant properties which are extensively researched and proved their potential to

be derived from VNIR spectra due to their unique spectral signatures (Figure 1.3).

However, these soil properties do not pose clearly distinguishable spectral signatures so

that one can easily model for target characteristics.

400 800 1200 1600 2000 2400
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Figure 1.2. Soil VNIR spectra showing approximate occurrence of the combination,
first, second, and third overtone (OT) vibrations (Source: Stenberg, Viscarra Rossel,
Mouazen, and Wetterlind (2010))
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Table 1.1. Fundamental mid-IR absorptions of soil constituents and their overtones
and combinations in the VNIR (Source: Viscarra Rossel and Behrens (2010))

Soil constituent Fundamental (cm−1)
VNIR
wavelength (nm)

Fe oxides
Geothite 434, 480, 650,

920
Haematite 404, 444, 529,

650, 884
Water ν1 O–H 3278 1915

ν2 H–O–H 1645 1455
ν3 O–H 3484 1380, 1135, 940

Hydroxyl ν1 O–H 3575 1400, 930, 700
Clay minerals

Kaolin doublet ν1a O–H 3695 1395
ν1b O–H 3620 1415
δ Al–OH 915 2160, 2208

Smectite ν1 O–H 3620 2206
δa Al–OH 915 2230
δb AlFe–OH 885

Illite ν1 O–H 3620 2206, 2340, 2450
Carbonate ν3 CO2−

3 1415 2336
Organics

Aromatics ν1 C–H 3030 1650, 1100, 825
Amine δ N–H 1610 2060

ν1 N–H 3330 150, 1000, 751
Alkyl asymmetric

symmetric doublet
ν3 C–H 2930 1706

ν1 C–H 2850 1754, 1138,
1170, 853, 877

Carboxylic acids ν1 C=O 1725 1930, 1449
Amides ν1 C=O 1640 2033, 1524
Aliphatics ν1 C–H 1465 2275, 1706
Methyls ν1 C–H 1445–1350 2307–2469,

1730–1852
Phenolics ν1 C–OH 1275 1961
Polysaccharides ν1 C–O 1170 2137
Carbohydrates ν1 C–O 1050 2381
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spectrum is difficult, as several other organic and inorganic molecules may
absorb in these regions (Clark et al., 1990; Goddu and Delker, 1960). This is
particularly so at longer wavelengths beyond 2000 nm. Viscarra Rossel and
Behrens (2010)present a summaryof important fundamental absorptions in the
mid-IR and the occurrence of their overtones and combinations in the vis–
NIR, which can be used to help with interpretation (Table 1). In Fig. 2 the
influence of SOM in vis–NIR is exemplified.

While the absorptions by SOM in the vis–NIR are often weak and not
readily apparent to the naked eye (Fig. 2), the overall absorption due to
SOM in the visible region is broad but clear (Baumgardner et al., 1985;
Bowers and Hanks, 1965; Krishnan et al., 1980). For this reason, a number
of studies have used soil color to estimate SOM (e.g., Viscarra Rossel et al.,
2006b, 2008b). Thus there are various reports suggesting that vis–NIR
relates better to SOM than the NIR alone (Viscarra Rossel et al., 2006c).
For example, Islam et al. (2003) achieved considerably better results for
Australian soils by including the visible region (350–700 nm) in the
calibration and similar observations have been reported for Norwegian
soils (Fystro, 2002). Udelhoven et al. (2003) suggested that the brightness
of the sample is an important factor in the visible region for prediction of
organic C content. However, In Swedish agricultural soils including the
visible range in calibrations resulted in only small improvements (Stenberg,
2010) wheres the opposite was reported for US land resource areas (Chang
et al., 2001) and south-eastern Australia (Dunn et al., 2002). Although the
general observation is that soil becomes darker with increasing organic
matter, many soil properties, such as texture, structure, moisture, and
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Figure 2 (A) Soil vis–NIR 400–2500 nm spectra and (B) the region 1100–2500 nm
showing the spectra of three soils: an organic agricultural soil with 40% SOC and two
with �1% SOC of which one has 87% sand and 4% clay, and the other 12% sand and
44% clay. Drop lines in (B) indicate wavelengths typical of organic matter.
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Figure 2 (A) Soil vis–NIR 400–2500 nm spectra and (B) the region 1100–2500 nm
showing the spectra of three soils: an organic agricultural soil with 40% SOC and two
with �1% SOC of which one has 87% sand and 4% clay, and the other 12% sand and
44% clay. Drop lines in (B) indicate wavelengths typical of organic matter.
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Figure 1.3. (a) Soil VNIR spectra and (b) the region 1100-2500 nm showing the spectra
of three soils: organic agricultural soil with 40% OC, ∼1% OC with 87% sand and
4% clay, ∼1% OC with 12% sand and 44% clay (Source: Stenberg, Viscarra Rossel,
Mouazen, and Wetterlind (2010))

1.2.2 Multivariate calibrations

Overlapping of absorption bands of different soil properties causes the VNIR reflectance

spectra to be non-specific. This is further confounded by scatter effects created by soil

structure or constituents such as quartz. This results in complex absorption patterns which

cannot be used to derive models using simple correlation techniques and require more

advanced multivariate calibrations techniques (Martens & Naes, 1992). Literature

suggests many linear and non-linear techniques to calibrate models in this scenario such

as partial least squares regression (PLS) (Wold, Martens, & Wold, 1983), stepwise

multiple linear regression (Dalal & Henry, 1986; Ben-Dor & Banin, 1995), principle

component regression, artificial neural networks (ANN) (Daniel, Tripathi, & Honda,

2003), boosted regression trees (Brown et al., 2006), random forests (RF) (Viscarra Rossel

& Behrens, 2010) and support vector regression (SVR) (Stevens et al., 2008;

Viscarra Rossel & Behrens, 2010) to obtain robust models. Out of these modeling

techniques, PLS is the most widely used linear regression method whereas ANN, RF and

SVR are considered non-linear modeling techniques with higher capacity to capture
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non-linear behavior of soil spectra (in relation to soil properties). All these modeling

techniques have tuning parameters which are changed iteratively until the optimum level

is reached by considering the cross-validation performance.

PLS is a modeling technique used to build predictive models with highly collinear

data. PLS uses a similar algorithm like principle component analysis to reduce the number

of dimension to several artificial variables (called as “latent variables”) and considering

the response variable simultaneously. A linear model is fitted between the latent variables

and the target response (Helland, 2004). PLS is often preferred by analysts due to its

ability to explain the response variable with a reduced number of predictor variables,

making it more interpretable and also its low computational requirements (Stenberg et al.,

2010). The tuning parameter for this modeling technique is the number of latent variables

(nLV) used for regression.

ANN is a modeling technique which is inspired by networks of biological neurons

where the models contain layers of nodes that operate as non-liner summing devices.

These nodes are interconnected with weights which are adjusted during the training

process iteratively (Dayhoff & DeLeo, 2001). Back-propagation (Rumelhart, Hinton, &

Williams, 1985) is used to minimize the learning error where the end error is propagated

back to the input layer to correct the weights to optimize the model faster (Gallant, 1993).

ANN is effective in situations where high signal-to-noise ratio exists and prediction

without interpretation is the goal. Several parameters including number of hidden layers,

decay of weights at each iteration, and units (nodes) in hidden layer can be used for tuning

ANN models (Hastie, Tibshirani, & Friedman, 2001).

Random Forest is an ensemble learning technique which is a combination of tree

predictors introduced by Breiman (2001). This technique adds an additional layer of

randomness to bagging (Breiman, 1996). After constructing the trees using different

bootstrap samples from the data, each node is split using the best among a subset of

randomly selected predictors (Liaw & Wiener, 2002). RF can be used in both regression



8

and classification problems where average of individual tree outputs is used in regression

and votes of majority is used in classification (Liaw & Wiener, 2002). It has many

advantages such as resistance to noise variables, ability to use even when the predictor

variables are higher than observations, and less overfitting (Diaz-Uriarte &

Alvarez de Andres, 2006; Prasad, Iverson, & Liaw, 2006). The tuning parameter in the

random forest (mtry) is number of variables randomly sampled as candidates at each split

(James, Witten, Hastie, & Tibshirani, 2013).

SVR is focused on constructing an optimal hyperplane in the higher dimensional

feature space (Vapnik, 2013). A margin which is the smallest distance from the

hyperplane to the observations, is calculated as the decision boundary for classification

(Hastie et al., 2001). In the regression setting, a linear regression function is computed in

the higher dimensional feature space for the input data mapped through a kernel function.

This attempts to minimize the generalization error bound, instead of minimizing the

observed training error (Basak, Pal, & Patranabis, 2007).Thissen, Pepers, Üstün, Melssen,

and Buydens (2004) showed the effectiveness of this modeling technique in higher

dimensional modeling of NIR spectra. Viscarra Rossel and Behrens (2010) also showed

that SVR produced smallest root mean squared errors as compared to many modeling

techniques in soil diffuse reflectance spectral modeling. The main tuning parameter for

the SVR used in this study is ‘C’, which determines the number and severity of the

violations to the margin (James et al., 2013).

1.2.3 VNIR in soil sensing

VNIR spectroscopy is rapid and non-destructive in nature, and can infer multiple soil

properties simultaneously due to the presence of spectral signatures for different

constituents. This can be used as a complementary technology to the expensive laboratory

chemical analysis (Kodaira & Shibusawa, 2013). This technology provides a powerful

tool for mapping soil properties such as soil organic carbon (OC), which is a key soil
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property that plays many critical roles from agriculture production to biogeochemical

cycling to ecosystems’ functioning (Adhikari & Hartemink, 2016; Chen, Kissel, West, &

Adkins, 2000; Lal, 2004; van Wesemael et al., 2010).

Producing large-scale (national or continental) baseline soil carbon stock maps is

very useful for researchers, stakeholders and policy makers for a wide variety of

applications ranging from best land management practices to natural resource

conservation to carbon auditing (de Gruijter et al., 2016; Minasny et al., 2011). However,

this is highly challenging. Many studies used legacy soil data (Aitkenhead & Coull, 2016;

Minasny, McBratney, Malone, & Wheeler, 2013; Mulder, Lacoste, Richer-de-Forges,

Martin, & Arrouays, 2016). One problem with this approach is that legacy samples are not

collected at same time frames. Therefore, the OC maps produced in this way do not reflect

the OC distribution at a fixed time point, which will complicate its use and interpretation

in some applications. Direct soil sampling followed by carbon measurement is another

viable method. One challenge is that collecting a large number of soil samples and

analyzing them for carbon in the lab are time consuming and cost prohibitive, particularly

if the spatial resolution of the maps is high or the spatial coverage is large.

VNIR sensing is not limited to large scale applications but also can be used in

local field level soil characterization when used with proper calibration (Brown et al.,

2006; Viscarra Rossel, Walvoort, McBratney, Janik, & Skjemstad, 2006). Numerous

studies have shown the ability of this technology to be applied in field scale to infer

different soil properties such as organic carbon, total nitrogen, moisture and texture

(Aliah Baharom, Shibusawa, Kodaira, & Kanda, 2015; Ben-Dor et al., 2008). This has led

researchers to put efforts on developing different sensor systems for vertical and lateral

in-situ soil characterization. Mouazen, Maleki, De Baerdemaeker, and Ramon (2007),

Christy (2008), Maleki, Mouazen, De Ketelaere, Ramon, and De Baerdemaeker (2008),

and Kodaira and Shibusawa (2013) are some of such endeavors to develop this technology

for in-situ soil sensing.
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1.3 DEVELOPMENT OF VNIR LIBRARIES

VNIR spectroscopy requires calibration samples either from the same field or a soil

archive. Consequently, there has been an increasing interest within the soil community to

setup large spectral libraries to be used for calibration (Brown et al., 2006; Shepherd &

Walsh, 2002). Recent rapid growth of spectral libraries is attributed to the ease of

measuring spectra and decrease in the cost per measurement with the technological

advances of sensors and instruments. This is further stimulated by the fact that libraries

can ensure readily available similar calibration samples to those to predict. This could

provide coherent framework to link soil information with remote sensing information

(Shepherd & Walsh, 2002). Chinese soil spectral library with 3993 samples (Ji et al.,

2016) and Australian spectral library >20,000 samples (Viscarra Rossel & Webster, 2012)

are good examples for such endeavors. Development of the global VNIR soil spectral

library by Viscarra Rossel et al. (2016) is also a unique example of such effort to

aggregate spectra at one central location to study soil dynamics.

The Rapid Carbon Assessment (RaCA) Project which was initiated in 2010 by the

Soil Science Division of USDA-NRCS with the objective of capturing the baseline soil

carbon stocks across the conterminous U.S. (CONUS), is an effort to establish a spectral

library for CONUS. RaCA used a multi-hierarchical design to ensure that samples were

evenly distributed across regions based on major land resources areas (MLRA) and land

use land cover classes (LULC). A detailed description of the sampling design of the

project can be found in Wills et al. (2014). The project visited 6,148 sites across CONUS,

described 32,084 pedons in the field (to determine master horizons and textural classes),

and yielded 144,833 samples. Upon transportation to the lab, the soil samples were

subjected to a standard protocol for spectral scanning. A subset representative of the

whole RaCA samples (19,891, or 13.7%) was also extracted and measured with the

standard procedures for the determination of Total Carbon (TC), Total Nitrogen, Total
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Sulfur, Carbonate, and Organic Carbon (OC). It is planned that VNIR models to be

calibrated from this subset and then applied to the rest of the database to predict these soil

properties for carbon stock mapping.

Although the establishment of large/national spectral libraries to retrieve samples

and calibrate models as per the demand by various users such as farmers, government

agencies and researchers is conceptually attractive, this poses more new challenges. First,

the challenge of utilizing such large spectral libraries is to understand the sources of

uncertainties and build a scheme to subset the library so that the retrieved samples will be

more similar to the target site. Soils are a very complex mixture of mineral and organic

materials with their composition determined by many factors including parental material,

climate and topography (Brady & Weil, 1996). Soil VNIR spectra can exhibit distinct

features for soils from different systems. Most of earlier soil VNIR studies deal with

similar soil samples from a local environment (for example, field scale). When large-scale

soil libraries are used in practice for the prediction of samples from specific “local”

environments, there have been concerns that “local” variabilities are not represented or

captured in the “global” model, giving rise to inferior model performance (Guerrero et al.,

2016). One practical strategy is to select from the library a subset of samples more

“similar” to local samples to calibrate VNIR models.

Literature suggests different approaches of using the global libraries to predict for

local sites and improve model accuracies. Spiking with local samples is one approach

suggested by Wetterlind and Stenberg (2010) where they incorporated local samples to the

model calibration data set and improved Root Mean Squared Error (RMSE) values for the

predicted sites as compared to using the global library alone. However, Gogé, Gomez,

Jolivet, and Joffre (2014) implemented spiking on a national library in France and

observed that addition of local samples did not bring decisive advantage over the global

calibrations. Gogé, Joffre, Jolivet, Ross, and Ranjard (2012) implemented a procedure to

identify neighbors in spectral space by calculating similarity index considering
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Mahalanobis Distance and correlation coefficient to optimize sample selection for local

regressions. Araújo, Wetterlind, Demattê, and Stenberg (2014) introduced a different

method to divide a national dataset of 7172 samples in to subsets using the variation in the

mean-normalized or first derivative of spectra and observed improvements in predictive

power of the models. They also stated that the approach divided the global dataset into

uniform clusters in mineralogy (regardless of geographical origin) and thus improved the

model performances. Still, literature lacks enough evidence to conclude for a rigid

stratification strategy based on inherent soil or sampling characteristics, i.e., geographical

origin, land use and horizon for a large national spectral library.

Development of large spectral libraries is a time consuming, costly and laborious

task. Once established it should have the capability to develop accurate models to derive

target soil properties for different users. However, the aforementioned

under-representation of local field variability can limit the applicability of such libraries

despite the huge effort to build such large spectral libraries. Though literature suggests

some analytical techniques to mitigate this issue, the unavailability of metadata and the

need to obtain new local samples can restrict their applicability. Soils inherent properties

such as geographical region, horizon and texture which often comes as metadata with the

soil sampling, can be potential candidates to stratify such large libraries for local

predictions. Hence it is important to investigate the possibility of stratifying large libraries

based on their inherent properties to calibrate accurate models which can capture the local

variability of soil properties as well.
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CHAPTER 2

PREDICTION OF SOIL CARBON AND TOTAL NITROGEN IN
CONTERMINOUS US: VNIR ANALYSIS OF RAPID CARBON

ASSESSMENT PROJECT

2.1 INTRODUCTION

Soil organic carbon (OC) is a key soil property that plays many critical roles from

agriculture production to biogeochemical cycling to ecosystems functioning (Adhikari &

Hartemink, 2016; Chen, Kissel, West, & Adkins, 2000; Lal, 2004; van Wesemael et al.,

2010). The capability of soils to sequester carbon and therefore regulate atmospheric CO2

concentration and mitigate climate change is widely recognized, and has been an active

area of research (Grunwald, Thompson, & Boettinger, 2011; Lal, 2004; West & Post,

2002). Up-to-date, baseline soil carbon stock maps across different scales are a very

useful tool for researchers, stakeholders, and policy makers for a wide variety of

applications ranging from best land management practices to natural resource

conservation to carbon auditing (de Gruijter et al., 2016; Minasny et al., 2011).

Producing large-scale (national or continental) soil carbon maps is highly

challenging. Many previous studies have used legacy soil data (Aitkenhead & Coull, 2016;

Minasny, McBratney, Malone, & Wheeler, 2013; Mulder, Lacoste, Richer-de-Forges,

Martin, & Arrouays, 2016). One problem with this approach has been that legacy samples

were not collected at the same time frames. Therefore, the OC maps produced in this way

do not reflect the OC distribution at a fixed time point, which will complicate its use and

interpretation in some applications. Direct soil sampling followed by carbon measurement

is another viable method. One challenge is that collecting a large number of soil samples

and analyzing them for carbon contents in the lab is time consuming and cost prohibitive,
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particularly if the spatial resolution of the maps is high or the spatial coverage is large.

Visible and near infrared reflectance spectroscopy (VNIR) has now been used

widely and routinely for characterization of soil carbon and other properties (Brown,

Shepherd, Walsh, Dewayne Mays, & Reinsch, 2006; Viscarra Rossel, Walvoort,

McBratney, Janik, & Skjemstad, 2006). The biggest advantage of VNIR over the

traditional lab soil analysis is that it is rapid and cost effective. Therefore, VNIR is

suggested as an essential tool in large-scale digital soil mapping where the cost for soil

analysis will be prohibitive (due to very large numbers of samples to be expected).

2.1.1 A brief introduction of the U.S. Rapid Carbon Assessment Project (RaCA)

The Rapid Carbon Assessment Project (RaCA) was initiated in 2010 by the Soil Science

Division of USDA-NRCS. The goal of the project was to capture the baseline soil carbon

stocks across the conterminous U.S. (CONUS). RaCA used a multi-hierarchical design to

ensure that samples were evenly distributed across regions based on major land resources

areas (MLRA) and land use land cover classes (LULC). A detailed description of the

sampling design of the project can be found in Wills et al. (2014). The project visited

6,148 sites across CONUS (Figure 2.1), described 32,084 pedons in the field (to determine

master horizons and textural classes), and yielded 144,833 samples. Upon transportation

to the lab, soil samples were subjected to a standard protocol for spectral scanning (see

Section 2.2.1). A subset, representative of the whole RaCA samples (19,891, or 13.7%),

was also extracted and measured with the standard procedures for the determination of

Total Carbon (TC), Total Nitrogen (TN), Total Sulfur, Carbonate, and Organic Carbon

(OC) (see Section 2.2.1). It is planned that VNIR models to be calibrated from this subset

and then applied to the rest of the database to predict these soil properties for carbon stock

mapping.

The first objective of this study was to calibrate and evaluate VNIR models

statistically and computationally (i.e. processing resource requirement), using four
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the time of sampling as RaCA regions.  Within each RaCA region, sampling was 

RaCA region had one to three project coordinators who were responsible for project 
planning and for coordination of sample and data collection following guidance 
from the NSSC.

In order to cover the full range of possible carbon stocks across the most 
combinations of soil and land use, we developed an algorithm to group soil series 

of the algorithm was to group, by region, soils that were likely to have similar 
SOC stocks and to respond similarly to changes in land use.  For each mapped 

supplemented with additional information from the soil data access portal (Soil 
Survey Staff, 2010b).  The combined information was translated into scores that 

Figure 1.—Regions used to stratify sampling for SOC sampling project of the conterminous United States. Regions are based on 

2010. (USDA–NRCS, 2010).

(a)

that could be used for bulk density calculation.  All mineral samples were scanned 
using a LabSpec® 2500 (Analytical Spectral Devices, Boulder, Colorado) Visible 
Near Infrared Spectrometer (VNIR).  Each region had an identical VNIR and 

percent of the mineral samples were sent to the Kellogg Soil Survey Laboratory.  
Those samples were scanned with another LabSpec 2500, and carbon was 

2004).  Organic carbon was measured with dry combustion.  Inorganic carbon was 
measured by manometer after HCl treatment.

scans were uploaded to the National Soil Information System (NASIS).  All 
further data processing and analysis were done by NSSC staff with assistance from 
university cooperators.  A list of information about each sample was compiled from 
all description information uploaded into NASIS (based on SQL queries for RaCA 
site ID).  Information in the list included RaCA site, pedon number within the site, 

available), and a volumetric estimate of coarse fragments for each horizon.  Figure 
2 shows the location of all RaCA sites.  Table 2 lists the number of sites sampled by 
region and LULC.

Figure 2.—Locations of sampled RaCA sites.

All mineral samples 
were scanned using 
a visible near infrared 
spectrometer.  
Samples from organic 
horizons and 3 percent 
of the mineral samples 
were sent to the 
Kellogg Soil Survey 
Laboratory for further 
analysis.

(b)

Figure 2.1. Map of the U.S. Rapid Carbon Assessment sampling sites. (a) RaCA
regions, (b) sampling sites and areas of different color shades denote regions made
up of multiple Major Land Resource Areas. Source: Wills et al. (2014). Used with
Permission.
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modeling techniques namely: Partial least squares regression (PLS), Artificial neural

networks (ANN), Random forests (RF) and Support vector regression (SVR), to predict

soil carbon and total nitrogen contents for the RaCA project. To the best of our

knowledge, this is the first VNIR study that involves close to 20,000 soil samples

collected from CONUS at one fixed time frame. There have been a number of studies that

reported the VNIR modeling of soil databases at the national scales (Brown et al., 2006;

Terra, Demattê, & Viscarra Rossel, 2015; Viscarra Rossel & Webster, 2012); but all of

them used legacy soil samples. The number of samples being analyzed and modeled in

this study is one of the largest in the soil VNIR literature.

Soils are a very complex mixture of mineral and organic materials with their

composition determined by many factors including parental material, climate and

topography (Brady & Weil, 1996). Soil VNIR spectra can exhibit distinct features for

soils from different systems. Most of the earlier soil VNIR studies deal with similar soil

samples from a local environment (for example, field scale). When large-scale soil

libraries are used in practice for the prediction of samples from specific “local”

environments, there have been concerns that “local” variabilities are not represented or

captured in the “global” model, giving rise to inferior model performance (Gogé, Joffre,

Jolivet, Ross, & Ranjard, 2012; Guerrero et al., 2016; Sankey, Brown, Bernard, &

Lawrence, 2008). One practical strategy is to select a subset of samples which are more

“similar” to local samples, from the library to calibrate VNIR models.

Therefore, the second objective of this study was devised to investigate whether

VNIR modeling accuracy can be improved (prediction error reduced) by sample

stratification. In particular, we used readily-available auxiliary variables including RaCA

Region, LULC, master horizon (HZ), and textural class (TEX) as the stratifying criterion.
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2.2 MATERIALS AND METHODS

2.2.1 Dataset

As stated in section 2.1.1, a subset of the RaCA samples with lab data, VNIR spectral

measurement, and auxiliary data (Region, LULC, HZ, and TEX) are used in this study (n

= 19,891). RaCA Region was geographically defined and the first level of strata in RaCA

sampling. They were based on MLRA regional offices in place in 2010 (USDA-NRCS,

2010). LULC was based on National Resource Inventory classes and definitions

(USDA-NRCS, 2007) which were correlated to the National Land Cover Dataset (Fry

et al., 2011). At the time of sampling, a description of each pedon was done including

horizon nomenclature (HZ) and field texture (TEX) for each horizon (Schoeneberger,

Wysocki, Benham, & Soil Survey Staff, 2012).

Spectral scanning of the samples was carried out on an ASD Labspec

Spectrometer (formerly Analytical Spectral Devices, Boulder, Colorado, USA, now part

of PANalytical). Each air-dried, ground and 2 mm sieved sample was placed on a puck

sample holder with a clear fused silica window on the bottom and scanned with an ASD’s

MugLite R© accessory. The spectral range was from 350 to 2500 nm with a spectral

sampling interval of 1 nm. Each scan was an average of 100 instantaneous internal scans

to reduce random noise in the spectrum. A standard Spectralon panel was used to obtain

the white reference at 15-minute intervals. Total Carbon (TC), Total Nitrogen (TN) of the

soil samples were analyzed using the dry combustion method. Inorganic Carbon (IC) was

measured with the modified pressure-calcimeter method (Sherrod, Dunn, Peterson, &

Kolberg, 2002). Organic Carbon (OC) was derived as TC less IC. Additional details of the

sample analysis procedures can be found in Soil Survey Staff (2014). Prediction of soil

carbon contents is the purpose of this study and we therefore focus on OC and TC.

Soil spectra were first averaged along the wavelength domain using 10-nm

window, which reduced the number of predictor variables from 2150 to 215. This reduced
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the dimensionality of the dataset, decreased the processing time, and avoided over

parameterization for ANN model calibration (see Section 2.2.2). Principal Component

Analysis of the soil spectra was performed and identified 87 outliers in the spectral space

(including six erroneously recorded white reference spectra, 25 apparently faulty scans,

and 56 outliers in the Principal Component space); and these samples were excluded from

subsequent analyses.

2.2.2 VNIR model calibration and validation

The remaining 19,804 samples represented 17 Regions (Region 1 to 16, and 18), six

LULC classes, five master horizons, and ten textural classes. Table 2.1 gives a summary of

the number of samples in each class of these auxiliary variables. Stratified random

sampling (Region as strata) was used to split the entire set into a training set (60%) and a

test set (40%) (i.e., 60% random samples from Region 1, 60% random samples from

Region 2, etc., and then composited to form the training set). After the split, a check was

implemented to verify that, by all other auxiliary variables (LULC, HZ, and TEX),

roughly 60% of each class is presented in the training set. This verification is important

for two reasons. First, it ensures that the variation in the entire sample set is well

represented in the calibration and test set (not biased toward a particular class). Second, it

ensures a balanced assessment scheme for model validation. Table 2.2 gives the summary

statistics of the soil properties in both training and test set.

We first calibrated a global model by using all the samples in the calibration set.

This global model was evaluated with two schemes: (1) using all the samples in the test

set, and (2) using the samples that only belong to one class in auxiliary variables (for

example, Region 1 or Horizon A). We refer to the first scheme as “global-global” and

second scheme as “global-local”. We then calibrated a group of “local” models by using

only the samples from a class in an auxiliary variable in the training set, and then evaluate

these “local” models with their “counterpart” classes in the test set. We refer to this third
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Table 2.1. Summary of numbers of samples in each class of Region, Land Use Land
Cover (LULC), field described Master Horizon (HZ), and Textural Class (TEX) in the
calibration and test set. The numbers in the brackets indicate samples in calibration
and test sets.

REGION LULC HZ TEX

1 - (1381|919) Cropland - (2362|1598) O - (3575|2380) Clay - (471|300)
2 - (266|177) Forestland - (4069|2703) A - (3549|2369) Clay Loam - (552|335)
3 - (167|111) Pastureland - (1803|1179) E - (314|208) Loam - (1077|698)
4 - (467|312) Rangeland - (1357|916) B - (3644|2405) Loamy Sand - (525|323)
5 - (957|638) Wetland - (1660|1082) C - (762|528) Sandy Clay Loam - (263|179)
6 - (212|141) CRPa - (635|440) Sandy Loam - (1213|818)
7 - (268|178) Sand - (478|338)
8 - (111|74) Silty Clay - (411|248)
9 - (1081|720) Silty Clay Loam - (1037|718)
10 - (1120|746) Silt Loam - (2001|1398)
11 - (1319|879)
12 - (940|626)
13 - (721|481)
14 - (616|409)
15 - (401|268)
16 - (955|636)
18 - (904|603)

aConservation Reserve Program

Table 2.2. Summary statistics of soil Organic Carbon (OC), Total Carbon (TC) and
Total Nitrogen (TN) for the calibration and validation set in this study.

Library
No. of

samples Indicator OC (%) TC (%) TN (%)

Global -
Training set

11886

Min 0.00 0.02 0.00
1st quartile 0.51 0.68 0.08
Median 1.61 2.11 0.18
Mean 11.87 12.12 0.56
3rd quartile 19.58 19.77 0.83
Max 65.05 65.05 4.72

Global - Test
set

7918

Min 0.00 0.01 0.00
1st quartile 0.51 0.68 0.08
Median 1.57 1.95 0.18
Mean 11.88 12.11 0.56
3rd quartile 19.18 19.49 0.83
Max 64.07 64.07 4.90
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scheme as “local-local”. We were particularly interested in comparing the results of

“global-local” to “local-local”, as we hypothesized that “local-local” prediction will

outperform “global-local” prediction.

Four modeling techniques were employed and compared in this study: PLS as a

linear method and ANN, RF, SVR as nonlinear methods. Several studies have shown that

nonlinear techniques outperform PLS in soil carbon modeling (Viscarra Rossel &

Behrens, 2010; Wijewardane, Ge, & Morgan, 2016). In this study we were interested in

examining whether nonlinear modeling techniques show superiority to PLS for the RaCA

dataset for both global and local models. For PLS, the number of latent factors (nLV) was

allowed to vary from 1 to 30, and the size of a calibration model was selected for the nLV

that gave the minimum RMSECV (Root Mean Squared Error of Cross Validation). For

ANN, a grid search with two tuning parameters (the number of nodes in the hidden layer

from 3 to 15, and the decay of weight at each iteration set at 0.01, 0.1 and 0.3) was

conducted to find the minimum RMSECV. Feed-forward ANN models with one hidden

layer, linear activation function and back-propagation were calibrated. For RF, the number

of predictors randomly sampled as candidates at each split (mtry) was varied from 10 to

200 in 10 increment in each step and the optimum tuning parameter was obtained by

lowest RMSECV. Similar to ANN, a grid search of two tuning parameters (the severity of

the violations to the margin from 8 to 80 by 8 incremental steps and inverse kernel width

for the Radial Basis kernel function as 0.0005 and 0.001) was used to optimize SVR

models.

Model performances were evaluated by calculating R2, Bias, RMSEP (Root Mean

Squared Error of Prediction) and RPD (Ratio of Performance to Deviation).

2.2.3 Assess computational requirements for modeling

Recalibrating models is essential to ensure the long term survivability of a spectral library

to be able to predict new samples. With large spectral libraries, computational requirement
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is a vital parameter to decide the feasibility of model recalibration. To assess the

computational resource requirement for the aforementioned modeling techniques, first we

selected a subset of 2,000 samples and used to build models with different numbers of

predictor variables (i.e. numbers of wavelengths in the spectrum) from 200 to 2,000 with

an incremental step of 200. Second, we set the number of predictor variables constant at

400 and used different number of samples from 1,000 to 10,000 with 1,000 increments at

each step. For each modeling instance, 25 random cross-validation was used to optimize

the model.

All the model calibrations in this study were implemented in the supercomputer

cluster at the Holland Computing Center of University of Nebraska-Lincoln (Computing

resources used: 64 2.1 GHz cores and 250GB RAM). Data analysis was implemented in

the R environment (R Core Team, 2015) with the following packages: pls (Mevik,

Wehrens, & Liland, 2013) for PLS, nnet (Venables & Ripley, 2002) for ANN modeling,

kernlab (Karatzoglou, Smola, Hornik, & Zeileis, 2004) for SVR, randomForest (Breiman,

2001) for RF, caret (Max et al., 2015) as the modeling wrapper, ggplot2 (Wickham, 2009),

extrafont (Chang, 2014) and RColorBrewer (Neuwirth, 2014) for plotting, and doParallel

(Analytics & Weston, 2015) for parallel processing.

2.3 RESULTS AND DISCUSSION

2.3.1 Global modeling

Table 2.3 gives the results of global-global modeling scheme for OC and TC with the PLS

and ANN method. The validation accuracy was very similar to the cross validation

accuracy for both soil properties. This indicates that VNIR models are stable and the split

of the dataset into the calibration and validation sets are balanced (not biased toward a

particular group). In comparing the two modeling methods, it was clear that ANN is more

accurate than PLS for OC, TC and TN. This validates some earlier findings in the

literature that non-linear modeling methods outperform linear ones for soil carbon
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modeling (Viscarra Rossel & Behrens, 2010; Wijewardane et al., 2016).

Table 2.3. Cross-validation and validation results for Organic Carbon (OC), Total
Carbon (TC) and Total Nitrogen (TN) with different modeling techniques in global-
global modeling scheme.

Soil
Property

Modeling
Technique

Cross-validation Validation

R2 RMSECV
a

(%) R2 RMSEP
b

(%)
Bias (%) RPDc

OC

PLSd 0.82 7.42 0.83 7.38 -0.01 2.41
ANNe 0.96 3.59 0.96 3.61 -0.15 4.92
RFf 0.92 5.00 0.92 4.92 -0.01 3.61
SVRg 0.95 3.98 0.95 3.79 -0.07 4.68

TC

PLS 0.82 7.41 0.83 7.36 -0.01 2.40
ANN 0.96 3.62 0.94 4.38 0.81 4.04
RF 0.92 5.07 0.92 4.96 0.00 3.57
SVR 0.95 4.01 0.95 3.81 -0.06 4.63

TN

PLS 0.72 0.40 0.72 0.39 0.00 1.90
ANN 0.92 0.21 0.91 0.23 0.00 3.28
RF 0.82 0.32 0.82 0.32 0.00 2.38
SVR 0.87 0.27 0.87 0.27 -0.01 2.74

aRoot Mean Squared Error of Cross Validation; bRoot Mean Squared Error of Predic-
tion; cRatio of Performance to Deviation; dPartial Least Squares Regression; eArtificial
Neural Networks; f Random Forests; gSupport Vector Regression

Two factors led to PLS’s poorer performance (Figure 2.2). First, negative values

were predicted for many low OC samples (which are mostly mineral soils). This is a

problem that is commonly observed for PLS OC modeling (Leone, Viscarra Rossel,

Amenta, & Buondonno, 2012; Minasny & McBratney, 2008). Second, the scatter for high

OC samples was very large (Figure 2.2a). These samples were all organic horizon soils (O

Horizon) and account for nearly 30% of the whole dataset. It seems that when the spectral

library is large and diverse, PLS (as a linear method) can capture and model the overall

variation of the dataset (mineral versus organic soils) but by doing so, becomes less

effective in modeling the local variations in the different parts of the dataset (that is,

variations within mineral and organic soils). On the other hand, ANN and other nonlinear

methods appear to be flexible enough to account for both the overall and local variations in
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the model. The scatter of the plot is almost constant across the OC range (Fig. 2.2b to d).

While we only show OC plots here, the pattern in TC and TN are very similar to figure 2.2.

For OC, TC and TN validation R2 ranged from 0.72 to 0.96 and RPD from 1.90 to

4.92. From a VNIR modeling perspective, the performance of these models was quite

satisfactory and can be categorized as good to “analytical quality” models (Fearn, 2001).

However, we should also see that the model RMSEP is quite high (3.61% and 7.38% for

OC ANN and PLS). This level of prediction error will be too high for many local

applications, such as field scale carbon mapping and inventory. Even for the goal of

RaCA, the VNIR models will be applied to the remainder of the dataset to predict the soil

properties for upscaling and carbon mapping. The prediction error will be propagated

through multiple steps and integrated into a final uncertainty measurement. Higher

RMSEP like this will make the final uncertainty of the carbon stock maps very large and

thus negatively impact their usage and interpretation. Therefore, exploring local models to

reduce RMSEP is essential.

Overall, PLS had lower modeling performances as compared to non-linear

modeling techniques. ANN and SVR had similar modeling performances while RF falls

above PLS and below ANN/SVR. Since this is common for all global and local modeling

instances, hereinafter we will only discuss PLS versus ANN as the representative linear

and non-linear modeling techniques.

2.3.2 Local modeling with Region, LULC, HZ and TEX

Local modeling refers to the stratification of the calibration set according to samples’ class

in each auxiliary variable and then the development of a series of local models. Only the

results of ANN modeling are presented (Tables 2.4, 2.5, 2.6, & 2.7). PLS followed the

same trend as the global modeling (Section 2.3.1) with lower model accuracy. PLS results

are discussed in the next section when we compare the global model with the local models.

The majority of the local Region models showed the same level of accuracy and
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Figure 2.2. Scatterplot of lab-measured versus VNIR predicted Organic Carbon (OC)
for the validation set with Partial Least Squares Regression (a), Artificial Neural Net-
work (b) Random Forest (c) and Support Vector Regression (d) in global modeling
scheme. The inset in (a) shows the samples with large negative predictions for the
PLS method. The color shade indicates the density of points as indicated by the leg-
end.
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performance as the global ANN model with some fluctuations (Table 2.4). Exceptions

were Regions 8 and 16 that showed poorer prediction than other Regions (in terms of R2

and RPD). A close examination of the dataset revealed that the range of OC, TC and TN

for these two regions is small compared to other Regions. We speculate that the range of

soil carbon in these two Regions is not large enough to calibrate robust models due to the

RaCA samples being selected for this analysis.

All local LULC models with the ANN method (Table 2.5) showed similar

performance as the global models, with high R2 and RPD values. Forestland and Wetland

exhibited higher RMSEP values than Cropland, Pastureland, Rangeland and CRP

(Conservation Reserve Program), due to the higher ranges of OC, TC and TN in these two

LULC classes.

The local HZ models behaved quite differently (Table 2.6). Using HZ as the

stratification variable effectively separated high organic samples (O Horizon) from

mineral soils. It could be seen that, compared to the global model, R2 and RPD dropped

significantly for all local HZ models. The model of O Horizon performed best, followed

by A Horizon, and then B horizon. The models for C and E horizons were particularly

poor, with R2 only about 0.5 and RPD near 1.4 for OC and TC while it drops ever further

for TN. On the other hand, it was notable that RMSEP for all mineral HZ models are much

lower than that of the global model, a clear advantage of developing local models to

improve prediction accuracy.

The local TEX models are given in table 2.7. Loamy Sand, Sandy Clay Loam, and

Silty Clay models had consistently poorer performance compared to other textural classes.

Note that organic soils (those from O Horizons) are not included in this table, as textural

class is only described on mineral soils. R2 and RPD of these models were lower than the

global model. When comparing models in table 2.7 to those in table 2.6, it can be seen

that, in general, local TEX models have a higher R2 and RPD than local HZ models.
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2.3.3 Comparison of global and local models with PLS and ANN

Figure 2.3 summarizes the comparison between the global and local models with the PLS

and ANN method for OC. We used RMSEP as a criterion for comparison because this

statistic measures the average deviation of a new prediction to its actual value and is a

more relevant index (than R2 and RPD) to assess the model accuracy when it comes to

new predictions. The figure incorporates and compares all three assessment schemes

(global-global, the black line; global-local, the black bars; and local-local, the gray bars)

and a fourth assessment scheme where all the “local-local” predictions were pooled

together to calculate an overall RMSEP (gray line).

First, in comparing black bars with gray bars, it was quite clear that local models

of all auxiliary variables generally show lower RMSEP than the global model. This is

strong evidence that using these auxiliary variables can effectively group similar soil

samples together to build more robust VNIR models. When these models are applied to

similar samples in the same group, their prediction accuracy can be improved compared to

a global model.

When we compare PLS with ANN (left versus right columns), it is obvious that

local models improve the prediction more substantially for PLS than ANN (black line

versus gray line). This is expected, because PLS as a linear modeling approach is not as

effective or robust as ANN to model all variations in the entire training set (global

modeling). When the training set is stratified with the auxiliary variables to develop local

models, the variation in each stratum becomes smaller and tractable, allowing better

modeling with PLS and therefore large improvements for these local models as compared

to the global PLS model. On the other hand, the global ANN already shows a much better

modeling performance (account for nonlinearity and robustness), leaving a small room for

the local models to improve.

For PLS, local models by Region and LULC showed only slight improvement but

those by HZ and TEX showed large improvements. Overall, HZ-specific and
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Figure 2.3. Comparison of the prediction accuracy of the Organic Carbon global
model and local models with the Partial Least Squares Regression (left column) and
Artificial Neural Network (right column). The first row is Region. The second row is
Land Use Land Cover (LULC). The third row is Master Horizon (HZ). The forth row
is Textural Class (TEX). The black line is the RMSEP in the “global-global” validation
scheme; the black bars are the “global-local” scheme; the gray bars are the “local-
local” scheme; and the gray line is the “local-global” scheme where an overall RMSEP
was calculated for all the test samples with the local models.
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TEX-specific PLS models performed quite similarly to their ANN counterparts (the gray

line in Fig. 2.3e vs. 2.3f, and Fig. 2.3g vs. 2.3h). This suggested that HZ and TEX are

better auxiliary variables to group samples to develop local HZ or TEX models, or use

them to select specific models for new prediction. This is not surprising. HZ and TEX

reflect intrinsic attributes of soils, and therefore they are more effective for segregating

samples into more homogeneous groups (spectrally and/or compositionally) than Region

and LULC (which are more related to geographical origin or management aspect of soils).

Figure 2.4 and 2.5 give the same comparison for TC and TN, and it can be seen

that all the foregoing observations on OC apply to TC and TN as well, which strengthens

our discussion on the comparison of global and local modeling with PLS and ANN

methods.

2.3.4 Computational resource requirement for modeling

Figure 2.6 shows the computational time requirements for different modeling techniques

with varying number of predictors (a) and number of calibration samples (b).

Except for RF, all the modeling techniques increased the time requirement for

modeling with the increasing number of predictors (Figure 2.6a). Since we used 20 fixed

levels of mtry (number of predictors randomly sampled as candidates at each split) as the

tuning parameter for RF modeling in this study, increasing the number of predictors in the

samples did not have any effect on the modeling. However, changing the tuning

parameters will have a significant effect on RF modeling time requirement since it can lead

to build trees with different levels and increase the time requirement for model calibration.

ANN required lower time than RF with low number of predictors. However, when

increasing the number of predictors more than 600, it increased exponentially exceeding

the time requirement of RF and demanded the highest time for modeling (∼100,000

seconds). PLS required the lowest time (between 10–100 seconds) for modeling, while

SVR showed higher time requirement than PLS but lower than other modeling techniques.
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Figure 2.4. Comparison of the prediction accuracy of the Total Carbon global model
and local models with the Partial Least Squares Regression (left column) and Artificial
Neural Network (right column). The first row is Region. The second row is Land
Use Land Cover (LULC). The third row is Master Horizon (HZ). The forth row is
Textural Class (TEX). The black line is the RMSEP in the “global-global” validation
scheme; the black bars are the “global-local” scheme; the gray bars are the “local-
local” scheme; and the gray line is the “local-global” scheme where an overall RMSEP
was calculated for all the test samples with the local models.
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Figure 2.5. Comparison of the prediction accuracy of the Total Nitrogen global model
and local models with the Partial Least Squares Regression (left column) and Artificial
Neural Network (right column). The first row is Region. The second row is Land
Use Land Cover (LULC). The third row is Master Horizon (HZ). The forth row is
Textural Class (TEX). The black line is the RMSEP in the “global-global” validation
scheme; the black bars are the “global-local” scheme; the gray bars are the “local-
local” scheme; and the gray line is the “local-global” scheme where an overall RMSEP
was calculated for all the test samples with the local models.
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Figure 2.6. Computational time requirements for different modeling techniques
namely; Partial Least Squares Regression (PLS), Random Forests (RF), Artificial
Neural Networks (ANN) and Support Vector Machines (SVR), with (a) varying num-
ber of predictors and (b) number of calibration samples.
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Overall, PLS and SVR showed little dependence on the number of predictors while ANN

showed the highest dependence. This is consistent with the literature on time complexity

of modeling techniques as explained in Witten, Frank, and Hall (2011) and Bordes,

Ertekin, Weston, and Bottou (2005).

PLS and ANN depicted insensitive behavior to the increase in the number of

samples in the calibration set as compared to RF and SVR (figure 2.6b). PLS needed the

lowest time requirement, followed by SVR, ANN, and RF. For libraries consisting of less

than 5000 samples, SVR required lower time than ANN but exceeds afterwards. RF

showed the highest sample number dependence, indicating its limitations to be used with

larger libraries. Overall, PLS stand out as the fastest algorithm to model larger libraries

for multivariate data followed by SVR. However, selection of a suitable modeling

technique is a compromise between the target model accuracy and effort of model

recalibration, and should be implemented with caution. For example, if the objective is to

develop local models for a smaller library and needs higher accuracies for field

application, SVR and ANN can be good candidate modeling techniques. If larger libraries

are available to produce global models with the need of recalibration with local samples,

PLS should be used to reduce the computational efforts.

2.4 PRACTICAL ISSUES WITH THE UTILIZATION OF RACA VNIR MODELS

Constructing a large soil spectral library is the most expensive part of VNIR. In the case of

our dataset, it is a nation-wide coordinated effort of collection, field description,

processing, scanning, and analysis of nearly 20,000 samples over 5 years. Once it is

compiled, it is always desirable that it can be broadly used by practitioners to predict new

soil samples (to justify and spread out its initial investment). One challenge of using these

large soil spectral libraries, as mentioned earlier, is that their prediction accuracy is not

good enough for many applications. Developing “local” models by selecting a subset of

samples from the library to improve prediction is a commonly strategy; and several
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approaches such as subsetting by geophysical area (Sankey et al., 2008), neighborhood

selection (Gogé et al., 2012) and spectral clustering (Araújo, Wetterlind, Demattê, &

Stenberg, 2014) have been tested. In this study, we used four auxiliary variables as the

criteria to select samples from the RaCA library to build local models. The biggest

advantage is that these auxiliary variables are readily obtainable through field description,

and no sophisticated spectral selection algorithm or additional lab analysis is needed. The

results showed that local models developed from all these four auxiliary variables

generally improve the OC, TC and TN prediction; and stratifying by Horizon and Textural

Class is particularly effective.

The results of our study also indicated that ANN (as a nonlinear technique)

outperforms PLS for both global and local modeling. In practice, however, the

computational resources needed for these modeling techniques should also be taken into

consideration. This is particularly relevant when modeling a large spectral library. In our

experiment, the calibration of the ANN global model (the number of calibration samples

N = 11,866, the number of predictor variables p = 215) on the supercomputing cluster

(again 64 2.1 GHz cores and 250GB RAM) took about 2600 seconds. This is in contrast

to PLS modeling that took less than 100 seconds. ANN modeling will take much longer

(weeks to months) if this is done on a personal computer. Evolution of the soil spectral

libraries requires periodic update and recalibration (Sequeira et al., 2014) when sufficient

new samples are incorporated into the libraries. In this sense, PLS becomes a more

favorable technique.

Taken together, we recommend that to calibrate a series of local HZ or TEX PLS

models is most accurate and economic for the RaCA VNIR library. To predict a new

sample, checks can be done on its auxiliary variables to select a suitable local model so

that the expected prediction error can be minimized. For the goal of the RaCA project,

where all the remaining samples need be predicted, this would increase our confidence on

the prediction accuracy and make the uncertainty of the final carbon stock maps more
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tractable. The low RMSEP of many local models (for example, a majority of local TEX

models have RMSEP ranging from 0.5 to 1.5%, Table 2.7) would make these models quite

useful for some real applications.

2.5 CONCLUSIONS

In this study, we used nearly 20,000 soil samples from the Rapid Carbon Assessment

project and calibrated and validated VNIR models for the prediction of OC, TC and TN.

The models were calibrated with four different techniques: Partial Least Squares

Regression, Artificial Neural Network, Random Forests and Support Vector Regression.

We compared the performance of global modeling versus local modeling (where samples

were stratified by four auxiliary variables: RaCA Region, Land Use Land Cover, Master

Horizon, and Textural Classes). The major conclusions drawn from this study are as

follows.

• Non-linear modeling techniques (ANN, RF and SVR) significantly outperformed

linear modeling technique (PLS) for all the properties considered. Accuracy of

ANN models was the highest, SVR performed similar or slightly lower than ANN

and RF showed reduced performance compared to ANN and SVR.

• The global ANN models of OC, TC and TN (validation R2 > 0.91 and RPD > 3.28)

showed higher accuracy than the PLS models (validation R2 < 0.83 and RPD <

2.41). While these global models performed satisfactorily, their high RMSEP (for

instance, 3.61% for the ANN OC model) indicated that the use of these global

models directly for new sample prediction should be cautioned.

• Overall, the local models developed using the four auxiliary variables (Region,

LULC, HZ and TEX) improved the prediction of OC, TC and TN compared to the

global models (in terms of RMSEP). The improvements were marginal for the ANN

models, but quite substantial for the PLS models.
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• Local models developed from HZ or TEX showed higher overall prediction

accuracy than Region and LULC. This indicated that HZ and TEX were more

effective to stratify samples into more homogeneous groups (spectrally or

compositionally), which lead to accurate local models. For the majority of TEX

models, RMSEP of OC range from nearly 0.5 to 1.5%. This enhances the utility of

these local models for new sample prediction.

The advantage of ANN over PLS is obvious when VNIR models are to be

developed from large-scale spectral libraries. However, it is computationally intensive.

This is an important issue to consider when large soil spectral libraries need to be updated

and re-calibrated with the inclusion of new samples.
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CHAPTER 3

EXTERNAL VALIDATION OF RACA MODELS AND
CALIBRATION TRANSFER OF VNIR SOIL SPECTRA

3.1 INTRODUCTION

High resolution soil mapping is an important tool for precision agriculture decision

making, which often requires some form of proximal soil sensing. Financial constraints

usually limits sufficient sampling at higher densities, which leads to the employment of

different sensing technologies (de Gruijter, McBratney, & Taylor, 2010; Viscarra Rossel

& McBratney, 1998). Researchers are continuously trying to develop more accurate and

efficient soil sensors to detect different soil properties using different sensing technologies

(Adamchuk, Hummel, Morgan, & Upadhyaya, 2004; Hummel, Gaultney, & Sudduth,

1996; Sudduth & Hummel, 1993). Electromagnetic induction (EMI) and electric

resistivity for measuring bulk electrical conductivity, ground penetrating radar (GPR) for

water content, passive gamma ray spectrometry for quantifying K, U, and Th, VNIR

spectroscopy for OC, clay content, mineral composition, are some of the example sensing

technologies applied to develop in-situ soil sensors (Adamchuk & Viscarra Rossel, 2010).

Due to its ability to infer multiple soil properties such as moisture (Ben-Dor,

Heller, & Chudnovsky, 2008; Hummel, Sudduth, & Hollinger, 2001; Mouazen,

De Baerdemaeker, & Ramon, 2005), organic carbon (OC) (Brown, Shepherd, Walsh,

Dewayne Mays, & Reinsch, 2006; Kuang & Mouazen, 2013; Minasny et al., 2011;

Nocita, Stevens, Noon, & van Wesemael, 2013), texture (Brown et al., 2006; Ge, Morgan,

& Ackerson, 2014; Viscarra Rossel, 2009; Sørensen & Dalsgaard, 2005) simultaneously,

VNIR spectroscopy has the potential to be used to develop multi-property sensor system

as compared to other sensing principles (Kodaira & Shibusawa, 2013). Researchers have
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been trying to implement such efforts worldwide to employ this technology to develop

in-situ soil sensors. The real time organic matter sensor developed by Shonk, Gaultney,

Schulze, and Van Scoyoc (1991), the moisture and organic carbon sensor by Hummel

et al. (2001), the real-time soil attribute sensor by Christy (2008) and the more recently

developed VNIR sensor by Kodaira and Shibusawa (2013) are such examples of real-time

horizontal soil sensors. There have been efforts to develop vertical sensors based on this

technology (Poggio, Brown, & Bricklemyer, 2015) to widen its applicability in profile soil

mapping and yet to be validated in the field conditions.

Deployment of VNIR sensor in the field is a two-step process: calibration

sampling and sensor sampling. First, calibration samples are acquired to build models to

infer target properties. Then the developed models are applied to field sensor scans to

predict target soil properties. Though the locally calibrated models are more accurate, it

can be expensive to obtain sufficient numbers of calibration samples and analyze them in

the lab. Hence there is a tendency to develop large spectral libraries for model calibration

(Brown et al., 2006; Shepherd & Walsh, 2002).

In an effort to use a global spectral library to calibrate models for local

application, prediction errors can be introduced from three sources of spectral variations.

The first source is the library difference. A global library may not necessarily include the

local variation of the target field which can cause the calibrated model to perform poorly

(Sudduth & Hummel, 1996; Wetterlind & Stenberg, 2010). For this reason, it is important

to find possible techniques to improve the performance of global models in local

conditions. The second source of variation is from scanning discrepancies (i.e., errors

originated from differences in spectrometers, sensor set-up and operating environment)

(Fearn, 2001; Feudale et al., 2002; Ge, Morgan, Grunwald, Brown, & Sarkhot, 2011). The

third source is the soil variation. The global spectral libraries are usually developed by

scanning dry ground soil samples. However, field scans heavily deviate from these

baseline spectra due to variations in soil moisture (Ge et al., 2014; Lobell & Asner, 2002),
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temperature, and aggregation (Minasny et al., 2011), which can introduce errors to sensor

predictions.

Literature sufficiently addresses the second source of variation by scanning

instruments. Different calibration transfer techniques such as slope-bias (Osborne &

Fearn, 1983), Direct Standardization (Feudale et al., 2002; Wang, Veltkamp, & Kowalski,

1991) and Piecewise direct standardization (Wang et al., 1991) are the major techniques

suggested to correct for instrument variations. External parameter orthogonalization (Ge

et al., 2014; Wijewardane, Ge, & Morgan, 2016) and the aforementioned instrument

calibration transfer techniques can also be used to correct for the variations in soil

moisture. Some researchers suggest these techniques and spiking (Gogé, Gomez, Jolivet,

& Joffre, 2014; Guerrero et al., 2016) can be used to account for field – laboratory

variation as a whole (Ji, Viscarra Rossel, & Shi, 2015a). However, in the case of field

application of a VNIR sensor system, the use of different correction methodologies for

different sources of errors may not be preferred due to the requirement of cumbersome

computations. Therefore, the identification and use of a common correction technique,

which can comprehensively account for all sources of variations is more desirable.

To address these issues, we devised two main objectives for this study. The first

objective was to evaluate the use of models calibrated using a global spectral library to

predict non-library soil VNIR spectra for OC, TC and TN. This objective could direct us

to identify the means of improving the applicability of the global library for external soil

sets. The second objective was to compare calibration transfer techniques namely: Direct

Standardization (DS), Piecewise Direct Standardization (PDS), External Parameter

Orthogonalization (EPO) and spiking, to transfer field scans to laboratory scans. This

could provide insight to different calibration transfer techniques and their potential to

correct for possible sources of spectral variations.
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3.2 METHODOLOGY

3.2.1 Modeling library (RaCA)

The library models used in this study were initially developed from a subset of the RaCA

(Rapid Carbon Assessment of conterminous US) project’s spectral library. This project

was initiated in 2010 by the Soil Science Division of USDA-NRCS with the goal of

capturing the baseline soil carbon stocks across the conterminous U.S. (CONUS). RaCA

used a multi-hierarchical design to ensure that samples were evenly distributed across

regions based on major land resources areas (MLRA) and land use land cover classes

(LULC). A detailed description of the sampling design of the project can be found in

Wills et al. (2014).

The library used for model calibration consisted of 11,886 representative samples.

These samples were scanned in dry ground condition with <2 mm fraction using an ASD

Labspec 2500 spectrometer (formerly Analytical Spectral Devices, Boulder, Colorado,

USA, now part of PANalytical) attached with MugLite R© accessory. All the spectra (from

350 to 2500 nm) were preprocessed with 10 nm averaging to reduce the number of

predictors for modeling. Models were build using four different modeling techniques as

PLS, ANN, RF and SVR, for three different soil properties: OC, TC and TN. In this study

two types of models were calibrated; “global” models which considered the whole data set

as one library and “local” models which are based on stratification criteria. Two criteria

were employed to stratify samples based on master horizon (HZ - A, B, C, E and O) and

textural class (TEX - clay, clay loam, loam, loamy sand, sandy clay loam, sandy loam,

sand, silty clay, silty clay loam and silt loam) to calibrate models separately. Table 3.1

shows the sample size of each stratum used for local model calibration. All the model

calibrations in this study were implemented in the supercomputer cluster at the Holland

Computing Center of University of Nebraska-Lincoln (Computing resources used: 64 2.1

GHz cores and 250 GB RAM). Additional details of the library and model calibration can
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be found in sections 2.2.1 and 2.2.2.

Table 3.1. Numbers of samples in each class of field described Master Horizon (HZ),
and Textural Class (TEX) in the modeling library, dry ground sample scans (DGS)
and field sample scans (FS).

Stratification
scheme

Strata
Modeling
library

Dry ground
samples (DGS)

Field samples
(FS)

Master
Horizon (HZ)

O 3575 17 1
A 3549 1995 381
E 314 128 36
B 3644 4510 802
C 762 1278 152

Textural class
(TEX)

Clay 471 987 232
Clay Loam 552 956 231
Loam 1077 1099 190
Loamy Sand 525 599 136
Sandy Clay Loam 263 478 121
Sandy Loam 1213 1451 207
Sand 478 422 59
Silty Clay 411 927 216
Silty Clay Loam 1037 1212 177
Silt Loam 2001 1530 133

3.2.2 Validation dataset

Validation library consisted of two sets of data: scans of dry ground samples (DGS) and

scans of field samples (FS). Dry ground sample set contained 9,661 samples scanned with

ASD Labspec 2500 spectrometer. Each air-dried, ground and 2 mm sieved sample was

placed on a puck sample holder with a clear fused silica window on the bottom and

scanned with an ASD’s MugLite R© accessory. The DGS dataset was scanned with three

different ASD Labspec 2500 spectrometers and labeled as SP1, SP2 and SP3. 3300, 6136

and 225 samples in DGS were scanned from SP1, SP2 and SP3 instruments, respectively.

FS dataset consisted of 1702 samples scanned from SP1 and SP2 instruments. Each field

moist bulk sample was scanned using an ASD contact probe accessory in three different

locations and the scans were averaged to obtain a representative spectrum for the sample.
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The dataset contained 19 and 1683 samples scanned by SP1 and SP2 spectrometers

respectively. There were 1583 common samples for both DGS and FS datasets which

were scanned by the SP2 spectrometer.

For both datasets, the spectral range was from 350 to 2500 nm with a spectral

sampling interval of 1 nm. Each scan was an average of 100 instantaneous internal scans

to reduce random noise in the spectrum. A standard Spectralon panel was used to obtain

the white reference at 15 minutes intervals. All the spectra were preprocessed with 10 nm

averaging to reduce the number of predictors for modeling and to match the modeling

library. All the samples in DGS and FS datasets had OC, TC and TN properties measured

at the USDA-NRCS-NCSS-KSSL laboratory and their master horizon and textural class

specified (Table 3.1). TC, TN of the soil samples were analyzed using the dry combustion

method. Inorganic Carbon (IC) was measured with the modified pressure-calcimeter

method (Sherrod, Dunn, Peterson, & Kolberg, 2002). OC was derived as TC less IC.

Additional details of the sample analysis procedures can be found in Soil Survey Staff

(2014). Table 3.2 shows the summary statistics of soil OC, TC and TN for all the datasets

used in this study.

3.2.3 External validation (RaCA models to non-RaCA samples)

We used dry ground validation dataset (i.e. DGS) for the external validation of the models

calibrated for RaCA library. DGS dataset was stratified into groups according to master

horizon (HZ) and textural classes (TEX). These stratification schemes are same as the

horizon and textural classes used in section 3.2.1 to develop local models for the RaCA

library. Global models, which were calibrated using all the spectra in the RaCA library,

were evaluated using the validation library. Local models were evaluated by using the

relevant local sample group stratified according to aforementioned master horizon or

textural class. Model performances were evaluated by calculating R2, Bias, RMSEP and

RPD.
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Table 3.2. Summary statistics of soil Organic Carbon (OC), Total Carbon (TC) and
Total Nitrogen (TN) for the modeling library, dry ground sample scans (DGS) and
field sample scans (FS).

Library No. of samples Indicator OC (%) TC (%) TN (%)

Modeling
library

11886

Min 0.00 0.02 0.00
1st quartile 0.51 0.68 0.08
Median 1.61 2.11 0.18
Mean 11.87 12.12 0.56
3rd quartile 19.58 19.77 0.83
Max 65.05 65.05 4.72

Dry ground
samples
(DGS)

9661

Min 0.00 0.00 0.00
1st quartile 0.20 0.50 0.03
Median 0.52 1.27 0.07
Mean 1.25 2.09 0.12
3rd quartile 1.36 2.54 0.14
Max 51.51 51.53 4.04

Field
sample
(FS)

1702

Min 0.00 0.01 0.00
1st quartile 0.21 0.55 0.01
Median 0.50 1.44 0.05
Mean 1.04 1.89 0.09
3rd quartile 1.22 2.41 0.11
Max 25.89 25.87 2.38

3.2.4 Calibration transfer

We used the 1583 samples which had both dry ground sample (DGS) scans and field

sample (FS) scans for the calibration transfer study and conducted independently to the

RaCA external validation study. Since all these scans were from the same spectrometer

(SP2), the spectral discrepancies are solely attributed to the variations in the sample

scanning conditions (i.e. dry ground vs field moist). First, we used Kennard-stone

algorithm (Kennard & Stone, 1969) to select 100 spectrally representative samples from

the calibration transfer dataset to calculate all the transformation matrices. One thousand

samples from the rest of the sample set was randomly selected as the model calibration

dataset. Remaining 483 samples were used as the independent validation dataset to

evaluate the performance of four different calibration transfer techniques: EPO, DS, PDS
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and spiking. A brief introduction to the implementation of these methods are as follows.

Interested readers can find additional details and mathematical treatments of these

techniques with the provided references.

EPO was initially introduced by Roger, Chauchard, and Bellon-Maurel (2003) to

remove the effect of temperature on Brix prediction of intact apples from their NIR

spectra. Minasny et al. (2011) applied EPO to minimize the effect of soil moisture for OC

prediction. More recently, EPO was tested by Ge et al. (2014), Ji et al. (2015a), Ackerson,

Demattê, and Morgan (2015) and Wijewardane et al. (2016) to remove moisture effect

from soil VNIR spectra and obtained positive results. The main objective of EPO is to

decompose the spectrum into two orthogonal components: a useful component that has a

direct relationship with the response variable, and a parasitic component that is influenced

by an external parameter. Figure 3.1 shows the implementation of this technique to correct

FS to DGS.

𝑋(𝐼 − 𝑄 ) 

Deciding EPO components by 

PLS-CV with EPO transformed spectra  

𝐺 𝐺 𝑇 
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Figure 3.1. EPO transformation algorithm.

First the dry ground scans (DGS) of the selected calibration transfer samples by
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Kennard-stone algorithm (100) is subtracted from the corresponding field scans (FS) to

obtain the difference matrix (D). Then the DTD is subjected to principle component

analysis to obtain eigenvectors. With selected first g eigenvectors (G), the residual matrix

Q is estimated and used to calculate transformation matrix P (P = I - Q) which is then

used to transform the field scans to the dry ground space. The number of eigenvectors g is

optimized by lowest PLS cross validation RMSE of the transformed field scans. In this

study we used TC as the response variable for PLS calibrations to optimize g. With the

optimum EPO components g, that final transformation matrix P is calculated and used to

transform all spectra in the calibration transfer dataset. This transformation significantly

changes the spectra and thus the models needs to be re-calibrated with the transformed

DGS spectra. A detailed account on the EPO algorithm can be found in Roger et al.

(2003) and Minasny et al. (2011).

DS was introduced as a calibration transfer approach that allows a model

calibrated on a primary instrument to be applied to the spectra acquired by a secondary

instrument (Feudale et al., 2002; Wang et al., 1991). Ge et al. (2011) demonstrated the

usefulness of DS for the transfer of soil VNIR models among multiple spectrometers.

Recently, Ji et al. (2015a) showed that DS could be a potential method to remove or

minimize the effect of soil moisture for VNIR modeling. The rationale is that the dry

ground spectra set is from a “virtual” primary instrument whereas the field spectra set is

from a “virtual” secondary instrument and assumes a linear spectral relationship between

this primary and secondary spectra (Eq. 3.1). The key step in DS is to find the DS

transformation matrix F that transforms secondary spectra to primary spectra (Eq. 3.2).

Once calculated, F can be used to transform field scans to dry ground state so that the

models calibrated for dry ground spectra can be directly used without recalibration.

DGS = F×FS (3.1)
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F = FS+×DGS (3.2)

Where F is the transformation matrix, FS is the field scans, DGS is the dry ground

scans and FS+ is the pseudoinverse of FS. Additional details of the implementation can be

found in Wang et al. (1991), Feudale et al. (2002), and Ji, Viscarra Rossel, and Shi

(2015b).

Since all wavelengths in primary spectra are directly related to all the wavelengths

in secondary spectra simultaneously, the ranks of both spectra should match each other. If

secondary spectrum is shifted along the wavelength axis with respect to primary spectrum,

DS performs poorly (Feudale et al., 2002). To address this issue PDS was introduced by

Wang et al. (1991). Unlike DS, PDS assumes that the window of wavelengths around a

specific wavelength i of secondary spectrum (xi,s) is related to ith wavelength of primary

spectrum (xi,p) as shown in Eq 3.3.

xi,p = Xi,s×bi (3.3)

Where Xi,s is the waveband of field spectra with j one side length of window (i.e.

Xi,s = [x(i− j,s), ...,x(i+ j,s)], in this study we used j = 2), bi is a vector with the transfer

coefficient for the ith wavelength. All the transfer coefficient vectors correspondent to

each wavelength i, is computed using PLS and the transfer matrix B is formulated as

shown in Eq 3.4.

B = diag(bT
1 ,b

T
2 , ...,b

T
m) (3.4)

Where m is the number of wavelengths used for transfer algorithm. This transfer

matrix B can be then used to transfer field spectra to the dry ground condition. Additional

details on the implementation can be found in Ji et al. (2015b).

Spiking is the incorporation of local samples to the model calibration library in

order to capture local variations of the target properties and thus to improve model
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robustness. Wetterlind and Stenberg (2010) showed that spiking significantly improve

model performance at local scales when a national library is used for model calibration.

Viscarra Rossel, Cattle, Ortega, and Fouad (2009), Gogé et al. (2014), Ji et al. (2015b),

and Guerrero et al. (2016) are some of other example scenarios where spiking was

successfully employed to improve model robustness for local application. In this study we

used 100 field scans initially selected from the Kennard-Stone algorithm to spike the

modeling sample set (i.e. randomly selected 1000 samples from calibration transfer

dataset). The spike set was extra weighted (replicated 10 times) to match the modeling

sample set to include the local variations in the model as explained by Guerrero et al.

(2014).

All the model calibrations and mathematical implementations in this study were

conducted in the R environment (R Core Team, 2015) with the following packages: pls

(Mevik, Wehrens, & Liland, 2013) for PLS, nnet (Venables & Ripley, 2002) for ANN

modeling, kernlab (Karatzoglou, Smola, Hornik, & Zeileis, 2004) for SVR, randomForest

(Liaw & Wiener, 2002) for RF, caret (Max et al., 2015) as the modeling wrapper, soil.spec

(Sila, Hengl, & Terhoeven-Urselmans, 2014) for Kennard-Stone algorithm

implementation, gnm (Turner & Firth, 2015) for matrix pseudo-inverse calculations,

ggplot2 (Wickham, 2009) and RColorBrewer (Neuwirth, 2014) for plotting, and

doParallel (Analytics & Weston, 2015) for parallel processing.

3.3 RESULTS AND DISCUSSION

3.3.1 External validation of RaCA Global models

Table 3.3 shows the prediction performance of RaCA global models on the validation set.

External validation of RaCA models showed varying R2 from 0.09 – 0.73 with a

RPD of 0.34 – 1.62. For OC, TC and TN RMSEP varied from 1.76 – 7.14, 4.01 – 7.26 and

0.12 – 0.59 respectively. Bias varied from 0.45 – 1.46, 0.73 – 1.55 and 0.03 – 0.10 for OC,

TC and TN respectively. It was evident that non-linear modeling techniques outperformed
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Table 3.3. External validation performance of RaCA global models for Organic Car-
bon (OC), Total Carbon (TC) and Total Nitrogen (TN) with different modeling tech-
niques.

Property
Modeling
technique R2 RMSEP

a

(%)
Bias (%) RPDb

OC

PLSc 0.19 7.14 1.46 0.38
ANNd 0.73 1.76 0.45 1.55
RFe 0.45 3.77 1.46 0.73
SVR f 0.33 4.65 0.90 0.59

TC

PLS 0.15 7.26 1.10 0.42
ANN 0.21 4.67 1.55 0.66
RF 0.32 4.01 1.22 0.76
SVR 0.32 4.69 0.73 0.65

TN

PLS 0.09 0.59 0.10 0.34
ANN 0.68 0.12 0.03 1.62
RF 0.44 0.20 0.08 0.98
SVR 0.58 0.15 0.04 1.32

aRoot Mean Squared Error of Prediction; bRatio of Per-
formance to Deviation; cPartial Least Squares Regression;
dArtificial Neural Networks; eRandom Forests; f Support
Vector Regression

the linear modeling techniques (i.e. PLS), suggesting the non-linear behavior of the VNIR

spectra in relation to soil property and the ability of the non-linear modeling techniques to

capture subtle local variations as explained in section 2.3.1. This confirms with the

literature as shown by Viscarra Rossel and Behrens (2010) and Wijewardane et al. (2016).

Figure 3.2 shows the prediction plots for different modeling techniques for OC.

According to figure 3.2, higher prediction accuracies were observed with

non-linear modeling techniques and ANN was the robust modeling technique with lowest

RMSEP. PLS showed higher number of negative predictions increasing RMSEP and bias.

This negative predictions are commonly observed with PLS modeling of OC (Leone,

Viscarra Rossel, Amenta, & Buondonno, 2012; Minasny & McBratney, 2008). Though

ANN showed improved accuracies as compared to other modeling techniques, the

practical use of this global model may be limited due to its RMSEP of 1.76 %.
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Figure 3.2. Prediction plot for OC with (a) PLS, (b) ANN, (c) RF and (d) SVR global
models. Insert in (a) shows the negative predictions with PLS global model.
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3.3.2 External validation of RaCA Local models

Since the same pattern of model performances were observed with linear and non-linear

modeling techniques for local model predictions, only performances of ANN local models

are shown in tables 3.4 and 3.5.

According to table 3.4, horizon specific models yielded R2 of 0. 16 – 0.91 and

RPD of 0.85 – 2.33 across all the properties tested. OC, TC and TN showed RMSEP

varying from 0.81 – 1.22, 0.96 – 3.78 and 0.07 – 0.33 respectively. All the horizon models

significantly improved the accuracies of predictions as compared to global models

supporting the fact that local models are more appropriate in practical applications than

using global models.

Textural class specific models showed higher range of varying R2 from 0.02 –

0.82 and RPD from 0.2 – 2.24. Note that organic horizon soils (O Horizons) are not

included in this table, as textural class is only described on mineral soils. Clay, Clay

Loam, Silty Clay Loam and Silt Loam showed higher model performances as compared to

other textural classes. However, RMSEP values were not as satisfactory as showed by

master horizon specific models.

Overall, it was evident from tables 3.3 – 3.5 that local models with non-linear

modeling can significantly improve prediction accuracies for external validation and ANN

master horizon specific models showed the highest performance in this regard.

3.3.3 Global versus local models performance

Figure 3.3 shows OC prediction performance of ANN/PLS global and local models (i.e.

master horizon and textural class based models) for different strata. We used RMSEP as a

criterion for comparison. It measures the average deviation of a new prediction to its

actual value and is a direct indicator of model accuracy.

In comparison of global versus local models, it was evident that in general, master

horizon models outperformed global models regardless of the modeling technique used.



64

Ta
bl

e
3.

4.
Va

lid
at

io
n

pe
rf

or
m

an
ce

of
O

rg
an

ic
C

ar
bo

n
(O

C
),

To
ta

lC
ar

bo
n

(T
C

)a
nd

To
ta

lN
itr

og
en

(T
N

)w
ith

m
as

te
r

ho
ri

zo
n

(H
Z

)s
pe

ci
fic

m
od

el
s.

H
Z

O
C

T
C

T
N

R
2

R
M

SE
P

a

(%
)

B
ia

s
(%

)
R

PD
b

R
2

R
M

SE
P

(%
)

B
ia

s
(%

)
R

PD
R

2
R

M
SE

P
(%

)
B

ia
s

(%
)

R
PD

O
0.

45
0.

81
0.

34
1.

10
0.

91
3.

78
0.

30
2.

33
0.

43
0.

33
-0

.0
9

1.
18

A
0.

66
1.

22
0.

20
1.

58
0.

61
1.

58
0.

17
1.

50
0.

62
0.

11
0.

03
1.

47
E

0.
45

0.
81

0.
34

1.
10

0.
29

1.
03

0.
33

0.
93

0.
16

0.
07

0.
04

0.
85

B
0.

40
0.

68
0.

06
1.

27
0.

77
0.

96
-0

.1
7

2.
04

0.
27

0.
07

0.
02

1.
13

C
0.

30
1.

03
0.

07
1.

13
0.

54
1.

40
-0

.0
5

1.
45

0.
25

0.
06

0.
02

1.
01

a R
oo

tM
ea

n
Sq

ua
re

d
E

rr
or

of
Pr

ed
ic

tio
n;

b R
at

io
of

Pe
rf

or
m

an
ce

to
D

ev
ia

tio
n



65

Ta
bl

e
3.

5.
Va

lid
at

io
n

pe
rf

or
m

an
ce

of
O

rg
an

ic
C

ar
bo

n
(O

C
),

To
ta

lC
ar

bo
n

(T
C

)
an

d
To

ta
lN

itr
og

en
(T

N
)

w
ith

te
xt

ur
al

cl
as

s(
T

E
X

)s
pe

ci
fic

m
od

el
s.

T
E

X
O

C
T

C
T

N

R
2

R
M

SE
P

a

(%
)

B
ia

s
(%

)
R

PD
b

R
2

R
M

SE
P

(%
)

B
ia

s
(%

)
R

PD
R

2
R

M
SE

P
(%

)
B

ia
s

(%
)

R
PD

C
la

y
0.

64
1.

60
0.

02
1.

66
0.

69
1.

70
-0

.1
7

1.
79

0.
62

0.
13

0.
02

1.
57

C
la

y
L

oa
m

0.
82

0.
67

0.
08

2.
24

0.
78

1.
07

-0
.0

3
2.

03
0.

65
0.

08
0.

01
1.

65
L

oa
m

0.
53

3.
79

0.
69

0.
72

0.
69

2.
05

0.
21

1.
54

0.
46

0.
17

0.
04

1.
14

L
oa

m
y

Sa
nd

0.
37

1.
49

-0
.0

5
1.

19
0.

38
1.

89
-0

.2
8

1.
11

0.
48

0.
07

0.
00

1.
35

Sa
nd

y
C

la
y

L
oa

m
0.

40
0.

72
-0

.0
1

1.
24

0.
65

1.
03

0.
08

1.
60

0.
37

0.
07

0.
01

1.
23

Sa
nd

y
L

oa
m

0.
32

4.
69

0.
98

0.
42

0.
33

2.
46

0.
07

0.
99

0.
61

0.
09

0.
03

1.
23

Sa
nd

0.
02

7.
08

1.
73

0.
13

0.
06

5.
63

0.
25

0.
20

0.
07

0.
17

0.
05

0.
40

Si
lty

C
la

y
0.

38
1.

96
-0

.0
3

1.
23

0.
42

2.
25

-0
.3

9
1.

28
0.

51
0.

13
0.

02
1.

38
Si

lty
C

la
y

L
oa

m
0.

74
2.

09
0.

03
1.

75
0.

78
2.

08
-0

.1
7

1.
85

0.
63

0.
18

0.
02

1.
54

Si
lt

L
oa

m
0.

77
2.

76
0.

51
1.

45
0.

76
2.

65
0.

59
1.

52
0.

66
0.

18
0.

04
1.

55
a R

oo
tM

ea
n

Sq
ua

re
d

E
rr

or
of

Pr
ed

ic
tio

n;
b R

at
io

of
Pe

rf
or

m
an

ce
to

D
ev

ia
tio

n



66

0

2

4

6

8

10

12

A B C E O

R
M

S
E

P
(%

)

HZ model Global model

(a)

0

2

4

6

8

10

12

A B C E O

R
M

S
E

P
(%

)

HZ model Global model

(b)

0

2

4

6

8

10

12

c cl l ls scl sl s sic sicl sil

R
M

S
E

P
(%

)

TEX model Global model

(c)

0

2

4

6

8

10

12

c cl l ls scl sl s sic sicl sil

R
M

S
E

P
(%

)

TEX model Global model

(d)

Figure 3.3. Prediction performance of global and local models for Organic Carbon
(OC) at different strata. First and second rows show the prediction for different mas-
ter horizons and textural classes respectively. First and second columns indicates
prediction with PLS and ANN models respectively. Solid lines indicate the aggregated
RMSEP of global and local models.

The overall RMSEP was also lower with horizon specific models as compared to global

models. Same behavior was observed when linear modeling technique was used for

textural class based model calibration. However, textural class specific models showed

higher errors as compared to global models except for clay loam, loam sand and sandy

clay loam classes with ANN. This may due to the over-fitting of texture specific models

for the RaCA dataset. Figure 3.4 shows the overall global versus local prediction

performance for different properties with different modeling techniques.

According to figure 3.4, non-linear modeling techniques consistently

outperformed linear modeling technique (PLS). ANN showed the lowest RMSEP values,
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Figure 3.4. Prediction RMSEP for (a) Organic Carbon (b) Total Carbon and (c) Total
Nitrogen with four modeling techniques: partial least squares (PLS), artificial neural
network (ANN), random forest (RF), and support vector regression (SVR).

indicating its superiority for robust modeling as compared to other modeling techniques.

When it comes to the improvements of using local models as compared to global models,

it was evident that the improvements were more substantial for the linear modeling

technique than the non-linear modeling techniques. This suggest that ANN can capture

even the local variations in the samples, allowing little improvement with local models

developed with axillary variables (i.e., master horizon or textural class). Regardless of

improvements for the internal validation (as shown in section 2.3.2), textural class based

ANN models showed inferior performance as compared to global models for OC and TN.

This may be due to over-fitting of textural class specific models increasing errors in

external validation.

Overall, it was evident that ANN modeling technique can improve model
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robustness and local models calibrated based on the master horizon can be used to further

improve the accuracy of the predictions.

3.3.4 Spectral differences and transformations

The original dataset we used in this study had two sources of variations. First, the samples

in the dataset were scanned from three different spectrometers. Second source is by the

sample scanning conditions or intactness (i.e. dry ground scans (DGS) and field sample

scans (FS)). Figure 3.5 shows the convex hull indicating the spectral variations of these

different sources in principle component (PC) space.
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Figure 3.5. Convex hull of spectral differences caused by spectrometer variation (SP1
vs SP2) and sample conditions (Dry ground vs Field) in PC space.

According to figure 3.5, the centers of two spectrometers were closer to each other
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as compared to the distance between the dry ground (DGS) and field scans (FS). The

shapes of the convex hulls also showed similar behavior indicating higher variation

between sample conditions. This provides evidence that the spectral variation caused by

the spectrometers is less than the variation caused by the sample conditions. Literature

shows that instrumental variations can be accounted for by different calibration transfer

techniques such as DS and PDS (Bergman, Brage, Josefson, Svensson, & Sparén, 2006;

Fearn, 2001; Feudale et al., 2002; Ge et al., 2011). However, the spectral discrepancies

caused by sample conditions are more significant and complex since it is a combination of

different effects such as moisture, soil aggregation and texture. So it is important to

evaluate the effectiveness of different techniques to account for variation caused by

sample condition. Figure 3.6 shows the spectral transformations by DS, PDS and EPO for

a randomly selected sample.
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Figure 3.6. Spectral discrepancy between dry ground (DGS) and field sample scans
(FS), and the transformed spectra by direct standardization (DS), piecewise direct
standardization (PDS) and external parameter orthogonalization (EPO) of a ran-
domly selected sample.

According to figure 3.6, field scans had lower reflectance in the wavelength

domain. Both PDS and DS tried to correct the field spectra to the dry ground spectra and
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failed to perfectly match it. PDS showed successful transformation in the lower

wavelengths and failed at the higher wavelength region where as DS showed

approximately same error along the whole wavelength region. Unlike DS, PDS considers

a moving wavelength window to implement the transformations allowing to follow the

subtle variation along the wavelength domain. Also it requires a lower number of samples

than DS to achieve the same accuracy (Feudale et al., 2002; Ji et al., 2015b). EPO

transforms the spectra completely to a new space where it is not sensitive to the external

variation caused by scanning conditions and thus requires the model to be re-calibrated

with transformed spectra (Roger et al., 2003; Wijewardane et al., 2016). To assess the

spectral transformations of all spectra, we plotted the convex hulls in PC space in figure

3.7.
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Figure 3.7. Convex hull for dry ground spectra (DGS), field spectra (FS) and trans-
formed spectra by direct standardization (DS) and piecewise direct standardization
(PDS) in PC space.
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Figure 3.7 showed that both DS and PDS try to correct for the intactness of the

samples since the centers of the convex hulls moves closer to the dry ground spectra with

the transformations. However, the shapes of the convex hulls were not adequately

matching the DGS, indicating a failure to correct for intactness equally for the whole

dataset. DS showed some extreme outlier samples, which affected the shape of the convex

hull to deviate significantly from the DGS.

3.3.5 Prediction performance of calibration transfer techniques

For complete assessment of the performance of different calibration transfer techniques to

account for the field conditions of the samples, the prediction accuracy has to be

evaluated. Table 3.6 shows the validation performance of different calibration transfer

techniques used in this study.

According to table 3.6 validation showed high range of R2 from 0.05 to 0.85 and

RPD from 0.27 to 2.53. It was evident that field scans show significantly inaccurate

predictions (R2 <0.45 and RPD <1.13) with the models calibrated for the dry ground

spectra due to spectral discrepancies caused by intact conditions of the field samples. To

have a practical use of a calibration transfer technique, it should have a higher accuracy

than the direct application of the dry ground models to intact scans. However, DS did not

show any improvement over the predictions for field scans indicating its failure to

sufficiently correct for the intactness of the samples. Figure 3.7 provides evidence that

some of the samples showed higher deviation from the dry ground spectra with DS

transformation which can cause highly inaccurate predictions. PDS transformations

showed higher accuracies than DS.

Figure 3.8 shows the prediction plots for Organic carbon predictions for different

calibration transfer techniques with ANN modeling.

According to figure 3.8, DS failed to improve the prediction performance while

PDS showed improved accuracies. Spiking and EPO increased the prediction accuracy
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Figure 3.8. Prediction plot of (a) dry ground spectra (b) field sample spectra (c) DS
transformed field spectra (d) PDS transformed field spectra (e) with spiking (f) EPO
transformed field spectra for Organic Carbon with ANN modeling.
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Table 3.6. External validation performance of RaCA global models for Organic Car-
bon (OC), Total Carbon (TC) and Total Nitrogen (TN) with different modeling tech-
niques.

Property
Calibration
transfer
technique

PLSa ANNb

R2 RMSEP
c

(%)
Bias
(%) RPDd R2 RMSEP

(%)
Bias
(%) RPD

OC

None - DGSe 0.67 0.90 -0.04 1.74 0.85 0.62 -0.02 2.53
None - FS f 0.45 1.39 0.74 1.13 0.18 1.79 0.27 0.88
DSg 0.08 3.04 0.17 0.52 0.11 2.51 -0.13 0.63
PDSh 0.40 1.42 -0.26 1.11 0.29 1.44 -0.40 1.09
Spiking 0.41 1.57 0.77 1.00 0.62 1.12 0.07 1.40
EPOi 0.54 1.12 -0.05 1.41 0.52 1.23 -0.01 1.28

TC

None - DGS 0.67 1.02 0.01 1.73 0.82 0.74 -0.03 2.39
None - FS 0.19 2.22 1.50 0.79 0.36 1.55 0.19 1.14
DS 0.11 3.28 -0.27 0.54 0.09 6.59 1.52 0.27
PDS 0.05 2.05 0.60 0.86 0.12 1.93 0.81 0.91
Spiking 0.12 2.87 0.78 0.61 0.50 1.36 0.47 1.29
EPO 0.38 1.42 0.32 1.24 0.43 1.59 0.59 1.11

TN

None - DGS 0.58 0.09 0.00 1.53 0.67 0.08 0.00 1.71
None - FS 0.41 0.10 0.02 1.27 0.29 0.13 -0.03 1.04
DS 0.06 0.24 0.02 0.54 0.05 0.22 0.04 0.61
PDS 0.15 0.12 -0.01 1.08 0.14 0.12 0.00 1.08
Spiking 0.18 0.16 0.06 0.84 0.15 0.28 0.10 0.47
EPO 0.42 0.10 -0.01 1.30 0.40 0.10 -0.01 1.29

aPartial Least Squares Regression; bArtificial Neural Networks; cRoot Mean Squared Error of
Prediction; dRatio of Performance to Deviation; eDry ground scans with no transformations;
f Field sample scans with no transformation; gDirect Standardization; hPiecewise Direct Stan-
dardization; iExternal Parameter Orthogonalization;

significantly. We speculate the failure of DS to correct for spectral disparity can be

attributed to two reasons. The first reason is the inadequacy of representative samples.

Since DS considers the whole wavelength domain for the spectral transformation at once,

it needs higher number of representative samples to capture the subtle changes in spectra

(Feudale et al., 2002; Ji et al., 2015b). If these criteria are not met, DS can lead to

inaccurate transformations.

The second reason is the complexity of the spectral disparity. Unlike the

spectrometer differences, intactness of samples is an accumulation of different external
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effects such as moisture, aggregation and texture. These factors can introduce more

complex and larger spectral variations. Figure 3.5 also provides evidence that intactness

can influence spectra more than a uniform effect like instrument differences. Though DS

can effectively capture the spectral variations caused by spectrometer difference as shown

by Ge et al. (2011) and Bergman et al. (2006), it may not be able to account for more

complex spectral discrepancies created by intactness. Conversely, improvements achieved

by EPO and spiking suggest that these techniques are more robust to capture complex

spectral variations.

3.4 FIELD APPLICABILITY OF LIBRARY MODELS

The successful implementation of an in-situ VNIR sensing system mainly depends on

three requirements. The first requirement is the presence of a representative legacy sample

library with high quality lab-measured property values to be able to build robust models.

The second requirement is a well-designed flexible sensor system to acquire high quality

field spectra. Lastly, there needs to be analysis techniques to link field spectra to dry

ground spectra.

The analysis techniques or processing of spectra in such a system should account

for two key sources of variations in order to achieve high accuracy and precision. The first

is the inherent disparity between two libraries (i.e. legacy/global vs local). Legacy samples

may represent a wide variety of soils (i.e., different soil types, textures, geographic regions

and etc.), which may not necessarily represent the local conditions of the target site. These

errors can be rectified through two approaches. One is to use a robust modeling technique

such as ANN to capture the subtle variations of spectra so that the models can identify the

local site specific variations. However, with a larger library and limited computational

resources, building ANN models can be time consuming. The other approach is to

calibrate local models based on an axillary variable. According to our findings, “master

horizon” can be such an axillary variable which can improve the applicability of legacy
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sample library in local conditions. Since most of the soil samples already have field

described master horizon, this can be implemented without the increase of cost.

The second source of spectral variation is the external influence by sample

intactness. Legacy soil sample libraries are often stored and acquired in dry ground

condition while field soil scans are influenced by factors such as moisture, aggregation,

texture and temperature. This effect of intactness is complex in nature and can

significantly influence the spectra, limiting the ability to use models calibrated on legacy

libraries. More robust techniques are needed to correct for this source of variation.

According to our findings, EPO and spiking with ANN models can successfully correct

for intactness of samples. However, both of these techniques require posterior model

recalibration, which will restrict the online monitoring of soil properties. PDS can be the

alternative correction approach if the online monitoring of soil properties is the objective,

but may have a lower prediction accuracy compared to EPO and spiking.

3.5 CONCLUSIONS

This study comprised of two main stages to answer two key questions. The first question

was how to improve the applicability of legacy soil sample library for external soil

samples. To answer this, we used global and local models developed for RaCA spectral

library and applied to non-RaCA samples. The second question was how to use dry

ground models for samples scanned in field condition. We used different calibration

transfer techniques to evaluate their performance to correct for spectral disparity caused

by intactness. The results lead to the following conclusions.

1. Non-linear modeling techniques outperformed linear modeling techniques for OC,

TC and TN; and ANN based models outstand as the most robust models.

2. Local models based on axillary variable (i.e. master horizon) can improve

performance of library models independent external samples.
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3. Except for DS, all calibration transfer techniques used in this study can correct for

spectral influences caused by sample intactness. EPO and spiking coupled with

ANN model calibration showed the highest performance in spectral correction.
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CHAPTER 4

GENERAL CONCLUSIONS AND WAY FORWARD

The overall aim of the studies mentioned in this thesis was to understand the possible

analytical barriers for the implementation of a VNIR based system for in situ soil sensing

and evaluate methods to solve these issues. This was further expanded into several specific

objectives. The first objective was to calibrate and evaluate VNIR models statistically and

computationally, using four different modeling techniques, namely: Partial least squares

regression (PLS), Artificial neural networks (ANN), Random forests (RF) and Support

vector regression (SVR), to predict soil carbon and nitrogen contents for the RaCA

project. The second objective was to investigate whether VNIR modeling accuracy can be

improved by sample stratification. In particular, we used readily-available auxiliary

variables including RaCA Region, LULC, master horizon (HZ), and textural class (TEX)

as the stratifying criterion. The third objective was to evaluate the use of these calibrated

models to predict external soil samples.

These first three specific objectives investigated the different means of capturing

and accounting for the local variability when a global spectral library was used for model

calibration. However, this is only one source of variability that can affect spectra. The

second source of significant spectral variation is the laboratory – field discrepancy.

Spectral libraries usually contains spectra of dry ground soil samples while the field scans

are different due to the variations in moisture, aggregation and temperature. Hence, the

fourth objective was devised to compare calibration transfer techniques, including Direct

Standardization (DS), Piecewise Direct Standardization (PDS), External Parameter

Orthogonalization (EPO) and spiking, to transfer field scans to laboratory dry ground

scans. We used an spectral dataset consisting of soil VNIR spectra obtained at field moist



83

and dry ground states to calibrate models and implement aforementioned calibration

transfer techniques. This provided insight to different calibration transfer techniques and

their potential to correct for possible sources of spectral variations.

From the results it was evident that non-linear modeling techniques (ANN, RF and

SVR) significantly outperform linear modeling technique (PLS) for all the soil properties

tested. ANN models showed the highest accuracy, followed by SVR and RF. The global

ANN models (i.e., ANN models calibrated using the whole RaCA spectral library) of OC,

TC and TN (validation R2 >0.91 and RPD >3.28) showed higher accuracy than the PLS

models (validation R2 <0.83 and RPD <2.41). While these global models performed

satisfactorily, their high RMSEP (for instance, 3.61% for the ANN OC model) indicated

that the use of these global models directly for new sample prediction should be

cautioned. Conversely, the local models developed using the four auxiliary variables

(Region, LULC, HZ and TEX) improved the prediction of OC, TC and TN compared to

the global models (in terms of RMSEP). The improvements were marginal for the ANN

models, but quite substantial for the PLS models. It was observed that calibration of

non-linear models for a large spectral library is a computationally intensive process as

compared to linear modeling technique.

Internal validation of the calibrated models (i.e. using a part of RaCA library as

the validation dataset) showed that the local models developed from HZ or TEX achieved

higher overall prediction accuracy than Region and LULC. This indicated that HZ and

TEX are more effective in stratifying samples into more homogeneous groups (spectrally

or compositionally), which lead to accurate local models. For the majority of TEX

models, RMSEP of OC ranged from nearly 0.5 to 1.5%. External validation of these

models (i.e. using non-RaCA samples as the validation dataset) showed similar results to

internal validation. Again, local models outperformed global models for all the properties.

Especially local models based on master horizon consistently showed improvements over

the global models.
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From the calibration transfer study, it was evident that all the techniques used in

this study (except for DS) can correct for spectral influences caused by sample intactness

(i.e. laboratory – field variation). Among the effective methods, EPO and spiking coupled

with ANN showed the highest performance in accounting for the intactness of samples.

The findings of these studies provide directions for successful implementation of a

field VNIR sensor system for vertical or horizontal soil sensing. Linking legacy soil

sample spectra to field spectra is the first challenge to overcome in such a system since it

lead to two sources of errors. Models calibrated for a global legacy dataset may not

necessarily represent the local variations occur in the target field which is the first source

of errors. The second source of errors is derived from the sample intactness. Legacy

samples are often scanned in the dry ground conditions while field spectra are significantly

different due to inherent soil characteristics such as moisture, temperature and texture.

According to the results and conclusions derived in these studies, it was evident

that non-linear models (especially ANN) calibrated according to the master horizons

provide a way to address the first source of errors. However, a higher number of samples

in the legacy dataset hinder the use of non-linear modeling techniques due to

computational intensity. Therefore, the selection of the modeling technique should depend

on the number of calibration samples and the computational resources available.

The second source of errors can be addressed using EPO or spiking coupled with

non-linear modeling techniques. EPO requires a common sample set scanned under both

dry ground and field conditions. Its’ mathematical implementation is also more complex

compared to spiking. Conversely, spiking only requires a local sample set to be scanned

under the field condition and analyzed for target soil properties. However, with a larger

library, modeling can be computationally exhaustive. Therefore, selection of the technique

should depend on the availability of a library which includes adequate local variability

(i.e. adequate local representative samples), intact samples and computational resources.

Overall, though the aforementioned techniques are conceptually attractive to
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address the two sources of errors, corrections implemented as a two-step method may not

be preferred under the field implementation of a VNIR sensor system due to

computational demand and mathematical complexity. It may be more desirable to have

one “catch-all” technique to address both sources of errors. Spiking can be one candidate

approach for such an effort. However, the real implications and challenges of utilizing

such a single method still remains as a research question.

Our long term goal is to develop a complete VNIR in-situ sensor system for

vertical monitoring of field soil characteristics. This should use legacy sample library for

model calibration and employ necessary correction techniques to improve accuracy. Being

able to leverage the external soil spectral libraries is critical to make this technology

economically viable in the practical setting, because retrieval and laboratory analysis of

local calibration samples for each field can become costly for most of the users. Such an

in-situ VNIR system would provide an economical and cost effective technique for high

resolution monitoring of soil properties for different disciplines.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 6-2016

	Using a VNIR Spectral Library to Model Soil Carbon and Total Nitrogen Content
	Nuwan K. Wijewardane

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	GENERAL INTRODUCTION
	DEVELOPMENT OF VNIR SPECTROSCOPY
	IMPORTANCE OF VNIR SPECTROSCOPY IN SOIL SENSING
	Spectral signatures of soil in VNIR region
	Multivariate calibrations
	VNIR in soil sensing

	DEVELOPMENT OF VNIR LIBRARIES
	REFERENCES

	PREDICTION OF SOIL CARBON AND TOTAL NITROGEN IN CONTERMINOUS US: VNIR ANALYSIS OF RAPID CARBON ASSESSMENT PROJECT
	INTRODUCTION
	A brief introduction of the U.S. Rapid Carbon Assessment Project (RaCA)

	MATERIALS AND METHODS
	Dataset
	VNIR model calibration and validation
	Assess computational requirements for modeling

	RESULTS AND DISCUSSION
	Global modeling
	Local modeling with Region, LULC, HZ and TEX
	Comparison of global and local models with PLS and ANN
	Computational resource requirement for modeling

	PRACTICAL ISSUES WITH THE UTILIZATION OF RaCA VNIR MODELS
	CONCLUSIONS
	REFERENCES

	EXTERNAL VALIDATION OF RaCA MODELS AND CALIBRATION TRANSFER OF VNIR SOIL SPECTRA
	INTRODUCTION
	METHODOLOGY
	Modeling library (RaCA)
	Validation dataset
	External validation (RaCA models to non-RaCA samples)
	Calibration transfer

	RESULTS AND DISCUSSION
	External validation of RaCA Global models
	External validation of RaCA Local models
	Global versus local models performance
	Spectral differences and transformations
	Prediction performance of calibration transfer techniques

	FIELD APPLICABILITY OF LIBRARY MODELS
	CONCLUSIONS
	REFERENCES

	GENERAL CONCLUSIONS AND WAY FORWARD

