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Abstract Life-cycle assessments (LCAs) of switchgrass
(Panicum virgatum L.) grown for bioenergy production
require data on soil organic carbon (SOC) change and
harvested C yields to accurately estimate net greenhouse
gas (GHG) emissions. To date, nearly all information on
SOC change under switchgrass has been based on modeled
assumptions or small plot research, both of which do not
take into account spatial variability within or across sites
for an agro-ecoregion. To address this need, we measured
change in SOC and harvested C yield for switchgrass fields
on ten farms in the central and northern Great Plains, USA
(930 km latitudinal range). Change in SOC was determined
by collecting multiple soil samples in transects across the
fields prior to planting switchgrass and again 5 years later
after switchgrass had been grown and managed as a
bioenergy crop. Harvested aboveground C averaged 2.5±
0.7 Mg C ha−1 over the 5 year study. Across sites, SOC
increased significantly at 0–30 cm (P=0.03) and 0–120 cm
(P=0.07), with accrual rates of 1.1 and 2.9 Mg C ha−1

year−1 (4.0 and 10.6 Mg CO2 ha−1 year−1), respectively.
Change in SOC across sites varied considerably, however,
ranging from −0.6 to 4.3 Mg C ha−1 year−1 for the 0–30 cm
depth. Such variation in SOC change must be taken into

consideration in LCAs. Net GHG emissions from bioenergy
crops vary in space and time. Such variation, coupled with
an increased reliance on agriculture for energy production,
underscores the need for long-term environmental monitor-
ing sites in major agro-ecoregions.
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Introduction

Environmental and social consequences associated with
large-scale biofuel production from grain, sugar, and
dedicated bioenergy crops are being critically examined
[16, 30, 36]. Utilization of perennial herbaceous crops as
biofuel sources has been purported to mitigate negative
consequences due mainly to their lower requirements of
fertilizers and pesticides relative to annual crops and their
ability to be grown on marginal land [16, 36]. Among the
portfolio of herbaceous perennial crops considered for
adoption throughout the USA, switchgrass (Panicum
virgatum L.) has shown promise as a cellulosic ethanol
source due to its high productivity across a large geograph-
ical domain [26]. Results from life-cycle assessments
(LCAs) of switchgrass grown for bioenergy, however, have
been mixed [1, 8, 32, 33], due in large part to the assigned
net GHG emissions associated with switchgrass production
and assumptions made in indirect land conversion costs.
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Net GHG emissions from switchgrass bioenergy pro-
duction are inextricably linked to carbon dioxide uptake
and subsequent sequestration in soil. Carbon sequestration
by switchgrass has been nearly ubiquitous across a broad
range of growing conditions throughout North America at
rates of 1.7–10.1 Mg C ha−1 year−1 (6.2–37.0 Mg CO2 ha

−1

year−1) [11, 13, 18, 45]. Nearly all measurements of soil
organic carbon (SOC) change under switchgrass have been
based on small plot research. While these assessments are
useful, small plot research does not take into account spatial
variability within or across farmer-managed fields. Further-
more, extension of results from small plot research to an
agro-ecoregion is, at best, tenuous.

To obtain relevant, field-scale information for an agro-
ecoregion, we sought to determine SOC change and
harvested C yield within switchgrass fields on ten farms
in the central and northern Great Plains, USA. Farms were
located in Nebraska, South Dakota, and North Dakota,
encompassing an area where previous modeling efforts
have shown switchgrass production for bioenergy to be
economically feasible [40]. Switchgrass fields included in
the study were the focus of previously published net energy
and economics analyses [29, 32].

Methods

Experimental Sites

Sites included in the study extended 930 km north to south
and 230 km east to west within the Great Plains states of
Nebraska, South Dakota, and North Dakota (Fig. 1). Major
Land Resource Areas (MLRA) representative of study sites
encompassed approximately 30 Mha and included 53B and
C (Central and Southern Dark Brown Glaciated Plains),
55A, B, and C (Northern, Central, and Southern Black
Glaciated Plains), 65 (Nebraska Sand Hills), 75 (Central
Loess Plains), 102C (Loess Uplands), and 106 (Nebraska
and Kansas Loess Drift Hills) [3]. Climate within the region
is generally classified as semiarid to subhumid continental,
with cold and dry winters, warm to hot summers, and
erratic precipitation [3]. Mean annual precipitation for the
study sites ranges from 432 to 777 mm increasing from
west to east, while mean annual temperature ranges from
4.7°C in the north to 10.6°C in the south. Soils at the sites
possessed high inherent fertility, with Ustolls and Udolls as
the dominant taxonomic suborders [38] (Table 1).

Initial soil conditions at the ten sites were not limiting to
switchgrass establishment and growth [see supplementary
online material]. Medium textured soils were prevalent across
the sites, with the exception of the soil at Atkinson, which was
classified as sand. Values for soil bulk density across sites
were below critical threshold values for restriction of root

growth [17]. Soil pH across sites varied from strongly acid to
moderately alkaline [37] (data not shown), and fell within a
range for successful switchgrass germination [15].

Sites seeded to switchgrass were fields on working farms
previously used for annual crop production. Field character-
istics were such that they would have qualified for enrollment
in the Conservation Reserve Program (CRP) [31]. Field size
across sites averaged 6.7 ha (Range=3.0 to 9.5 ha). Sites at
Douglas, Lawrence, and Crofton were seeded to switchgrass
in 2000, while all other sites were seeded in 2001. Cultivars
used for seeding included Cave-in-Rock (Douglas,
Lawrence), Trailblazer (Douglas, Lawrence, Crofton, Atkinson,
Huron, Highmore, Bristol), Shawnee (Lawrence, Crofton,
Ethan), and Sunburst (Streeter, Munich). With the exception
of Sunburst, all cultivars originated south of 43°N latitude [4].
Switchgrass was seeded at a rate of 322 pure live seeds (PLS)
m−2, or approximately 10 kg ha−1 using minimum or no-till
management practices. Application of N varied in amount and
type across sites based on biomass yield expectations and soil
moisture conditions. Over the 5 year period of the switchgrass
stands, site averages of applied N ranged from 31 to 104 kg
N ha−1 year−1 (Mean=74 kg N ha−1). With the exception of
the establishment year, aboveground biomass was harvested
annually and baled. Most cooperating farmers harvested at
emerged inflorescence to post-anthesis (early to mid-August)
in post-establishment years. In contrast, farmers at Bristol, SD
and Munich, ND harvested after a killing frost [32]. Biomass
samples from switchgrass bales were used to determine dry
matter and C concentration. Harvested C was determined by
multiplying the biomass yield by the biomass C concentration.
To verify machine harvested yields, aboveground biomass
was hand-clipped, dried, and weighed from 1.1 m2 quadrants
at 16 locations within each field [32]. Additional details on
site establishment, management, and biomass harvest and
analysis are outlined elsewhere [31, 32].

Sampling Protocol

To evaluate change in SOC under switchgrass over time, soil
samples were collected from each site on a 5 year time-step.
Sites in Nebraska were sampled in 2000 and 2005, while all
other sites were sampled in 2001 and 2006. Samples were
collected in the spring once soils were no longer frozen and
surface conditions were dry enough to permit vehicular traffic.
In 2000 and 2001, samples were collected immediately prior
to switchgrass planting.

At each site, soil samples were collected from two transects
with three sampling locations each (located approximately
30 m apart), resulting in a total of six sampling locations per
site. Coordinates for each sampling location were recorded
using a handheld GPS devise with an accuracy of <3 m
(Garmin International, Inc., Olathe, KS). Sampling locations
were treated as pseudoreplicates as reviewed by Gomez [14].
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Due to difficulty during initial sample collection at Atkinson,
only two locations per transect were sampled.

Soil samples were collected using a truck-mounted
Giddings hydraulic probe (Giddings Machine Company,
Windsor, CO, USA) with an inner tip diameter of 4.2 or
4.4 cm, depending on soil conditions at the time of
sampling. Soil depths sampled were 0–5, 5–10, 10–20,
20–30, 30–60, 60–90, and 90–120 cm for three Nebraska
sites (Crofton, Douglas, Lawrence) and 0–5, 5–10, 10–20,
and 20–30 cm for the remaining sites. To ensure adequate
sample mass for laboratory analyses, seven soil cores were
composited at each sampling location (approximately 1 m2)
for the 0–5 and 5–10 cm depths, five soil cores for the 10–
20 and 20–30 cm depths, and two soil cores for the 30–60,
60–90, and 90–120 cm depths. Following collection, each
sample was saved in a double-lined plastic bag, stored in

coolers while in transit to the laboratory, and then placed in
cold storage at 5°C until processing.

Laboratory Analyses

Prior to analyses, whole soil samples were dried at 35°C for 3
to 4 days and then ground by hand to pass a 2.0 mm sieve.
Identifiable plant material (>2.0 mm in diameter, >10 mm in
length) was removed during sieving. Total soil C was
determined by dry combustion on soil ground to pass a
0.106 mm sieve using a Carlo Erba NA 1500 CN analyzer
(Thermo Scientific, Waltham, MA, USA). Using the same
fine-ground soil, inorganic C was measured on soils with a
pH≥7.2 by quantifying the amount of CO2 produced using a
volumetric calcimeter after application of dilute HCl stabilized
with FeCl2 [24]. Soil organic C was calculated as the difference

Fig. 1 Sampling sites for eval-
uating change in soil organic
carbon under switchgrass
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between total C and inorganic C. Gravimetric data were
converted to a volumetric basis for each sampling depth using
field measured soil bulk density, which was determined using
the oven-dry weight and known volume of the composited
samples [5]. All data were expressed on an oven-dry basis.

Biomass samples were ground to pass a 1 mm screen prior
to C determination by near infrared spectrophotometry
(NIRS) [34]. A switchgrass NIRS prediction equation was
based on total C analyses of a set of 108 switchgrass samples
using combustion analysis [41]. The NIRS standard error of
calibration and prediction for biomass C were 2.13 and
3.95 g kg−1, respectively.

Statistical Analyses

Changes in SOC between sampling times were calculated by
subtracting initial values from values after 5 years within a
sampling location. Calculated changes were then evaluated
within a site by depth using a paired t-test in PROC MIXED
[22]. Changes in SOC over time for cumulative sampling
depths (0–30 and 0–120 cm) within and across sites were
evaluated similarly.

Results

Soil organic C changed in response to switchgrass biomass
production at all sites within a 5 year period (Table 2). Soil
organic C generally increased across sites; only at Huron and

Ethan were significant SOC decreases observed. Soil bulk
density decreased significantly in near-surface depths at
Huron and Ethan, contributing to decreased SOC. Changes
in SOC across sites were most prevalent at 0–5 and 20–30 cm.
No significant changes in SOC were observed at 10–20 cm.
Of the 52 site-depths evaluated, increases in SOC over 5 years
exceeded 2 Mg C ha−1 in 18 site-depths, while increases
>5 Mg C ha−1 were observed in six site-depths. Gravimetric
and volumetric expressions of changes in SOC were
correlated (r=0.55; P<0.01), as were changes in SOC
(volumetric) and soil bulk density (r=0.51; P<0.01).

Sites at Streeter, Highmore, Atkinson, and Lawrence
exhibited significant increases in SOC when summed over
the 30 or 120 cm sampling depths (Fig. 2). Soil organic
C accrual rates for responsive sites ranged from 0.8–1.2 Mg
C ha−1 year−1 for the 0–30 cm depth. The only site with a
significant increase in SOC over the 120 cm sampling
depth was Lawrence, with an accrual rate of 3.8 Mg C ha−1

year−1. Across sites, SOC increased significantly at 0–
30 cm (P=0.03) and 0–120 cm (P=0.07) (Fig. 2). Rates of
SOC accrual across sites were 1.1 and 2.9 Mg C ha−1

year−1 for the 0–30 and 0–120 cm depths, respectively. No
significant associations were observed between annual
change in SOC at 0–30 cm and relevant edaphic and
climatic attributes (data not shown).

Harvested aboveground C averaged 2.5±0.7 Mg C ha−1

over a 5 year period across all ten farms (Figs. 2
and 3). Increased biomass yields contributed to greater
harvested aboveground C over time, which peaked in the

Table 1 Location, climate, and soil attributes for sites included in study (listed by decreasing latitude)

Site MAP (mm) MAT (°C) Prevalent soil type Soil classification

Munich, ND 460 4.7 Barnes–Buse loams, 3% to 6% slopes Fine-Loamy, Mixed, Superactive, Frigid Calcic
Hapludolls and Argiudolls

Streeter, ND 432 5.5 Barnes–Svea loams, 0% to 6% slopes Fine-loamy, Mixed, Superactive, Frigid Calcic and
Pachic Hapludolls

Bristol, SD 559 5.6 Forman–Buse–Aastad loams, 2% to
9% slopes

Fine-Loamy, Mixed, Superactive, Frigid Calcic and
Pachic Argiudolls

Highmore, SD 538 8.7 Glenham–Prosper loams, 2% to 6%
slopes

Mixed, Superactive, Mesic Typic and Pachic
Argiustolls

Huron, SD 531 7.5 Houdek–Prosper loams, 2% to 6% slopes Fine-Loamy, Mixed, Superactive, Mesic Typic and
Pachic Argiustolls

Ethan, SD 577 9.1 Houdek–Prosper loams, 0% to 2% slopes Fine-Loamy, Mixed, Superactive, Mesic Typic and
Pachic Argiustolls

Crofton, NE 704 9.3 Crofton–Nora complex, 6% to 11%-
slopes, eroded

Fine-Silty, Mixed, Superactive, Calcareous, Mesic
Udic Ustorthents and Fine-Silty, Mixed, Superactive,
Mesic Udic Haplustolls

Atkinson, NE 625 9.1 Dunn loamy sand, 0% to 3% slopes Sandy Over Loamy, Mixed, Superactive, Mesic
Oxyaquic Haplustolls

Douglas, NE 777 10.6 Wymore silty clay, 2% to 7% slopes,
eroded

Fine, Smectitic, Mesic Aquertic Argiudolls

Lawrence, NE 668 10.0 Hastings silt loam, 1% to 3% slopes Fine, Smectitic, Mesic Udic Argiustolls

MAP mean annual precipitation, MAT mean annual temperature
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fourth year at 3.7±0.8 Mg C ha−1 (Fig. 3). Variation in
harvested C was largely due to variation in biomass yield, as
variation in biomass C concentration was limited (Biomass
CMean=444.1±6.1 g C kg−1, Biomass CRange=425–454 g
C kg−1). Weather conditions as well as deviations from
recommended management practices contributed to variation
in biomass yield across sites [32]. Full biomass yield
potential of switchgrass often is not achieved until one to
two growing seasons following establishment. However,
once mature, switchgrass stands have been shown to produce
consistent biomass yields over time [9]. Harvested above-
ground C was positively correlated with annual change in
SOC at 0–30 cm, though the relationship was weak
(Harvested CMean, r=0.50; P=0.14). Annual change in
SOC was more strongly associated with mean and maximum
aboveground biomass hand-clipped from quadrants located

throughout each field (YieldMean, r=0.68, P<0.05; YieldMax,
r=0.77, P<0.01).

Discussion

The capacity of perennial grasses to affect change in soil
properties over time is well documented [10], but information
specific to switchgrass managed for bioenergy production is
limited. In this study, switchgrass significantly affected
change in SOC, a parameter known to respond slowly to
changes in management in semiarid agro-ecosystems [27]. In
addition to the relatively rapid response, change in SOC was
detected on working farms, where spatial variation and
potential measurement errors can increase the minimum
detectable change in SOC over time.

Table 2 Change in soil bulk density and soil organic C at each site after 5 years under switchgrass

Soil depth (cm)

Site 0–5 5–10 10–20 20–30 30–60 60–90 90–120

Soil bulk density (Mg m−3)
Munich, ND −0.17** −0.04 0.00 0.07** – – –
Streeter, ND −0.08** −0.05 −0.05 −0.06 – – –
Bristol, SD 0.07* 0.06 0.05 0.13** – – –
Highmore, SD −0.30 −0.09 −0.06** 0.03 – – –
Huron, SD −0.42** −0.04 −0.06** −0.01 – – –
Ethan, SD −0.20** −0.06 −0.06 0.05 – – –
Crofton, NE 0.25** 0.10** 0.03* 0.09** 0.14** −0.01 −0.09*
Atkinson, NE 0.14* 0.18 0.04 0.04 – – –
Douglas, NE 0.23** 0.10* 0.00 0.09 0.06 0.10** 0.03*
Lawrence, NE 0.00 −0.01 0.07* 0.05 0.04 0.01 −0.02

Soil organic C (g C kg−1)
Munich, ND 4.7 2.6* 4.3 0.8 – – –
Streeter, ND 1.8 1.4 1.9 5.4** – – –
Bristol, SD 2.6* 2.3 2.0 6.7 – – –
Highmore, SD 7.8** 0.3 2.5 3.8** – – –
Huron, SD −2.1 −0.9 0.9 2.4 – – –
Ethan, SD 1.9** −1.2** −0.4 −0.4 – – –
Crofton, NE 0.0 −1.1 −0.7 0.6 0.8 −0.6 0.1
Atkinson, NE 0.0 1.8 1.1 0.3 – – –
Douglas, NE 1.1 −0.2 −0.3 −0.1 0.8 1.3 0.3
Lawrence, NE 2.1 0.5 0.7 1.0** 0.8** 1.3** 1.4**

Soil organic C (Mg C ha−1)
Munich, ND 0.31 1.19 5.37 1.51 – – –
Streeter, ND −0.54 −0.10 0.83 4.01** – – –
Bristol, SD 2.52* 2.21* 3.97 12.97 – – –
Highmore, SD 0.55 −0.76 1.69 5.23** – – –
Huron, SD −5.28** −1.06 0.35 3.32 – – –
Ethan, SD −0.75 −1.23** −1.29 0.05 – – –
Crofton, NE 2.32** 0.16 −0.51 1.70* 6.19 −2.77 −0.79
Atkinson, NE 0.77 2.20** 2.01 0.74 – – –
Douglas, NE 3.38** 0.82 −0.25 1.19 5.04 6.71 1.51
Lawrence, NE 1.32 0.28 1.53 1.55** 3.62** 5.24** 5.29

*P≤0.1 (change from initial sampling significant); **P≤0.05 (change from initial sampling significant)
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Increases in SOC under switchgrass were likely caused
by belowground C input from root biomass and rhizode-
position [11, 45] and decreased soil organic matter losses
by erosion [6]. Research conducted by ecologist John
Weaver and his graduate students over 60 year ago provide
ancillary support for increased SOC under switchgrass [35,
42, 43]. Their detailed surveys of prairie grass roots
indicated switchgrass to have the deepest root system of
all grasses examined, with roots extending to a soil depth of
3 m [42]. This finding, coupled with observations that
prairie grass roots regenerate by replacing dying roots with
new, live roots [43] indicates the potential for significant
C input to the soil under switchgrass.

Depth distribution of increased SOC has relevance to
nutrient conservation, water infiltration, and erosion control
[12]. Potential improvements in near-surface soil functions
resulting from increased SOC are particularly important
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should switchgrass be included as a perennial phase in
cropping systems, as these attributes would be expected to
enhance crop productivity following the transition to annual
cropping [7]. Accordingly, increases in SOC below the
microbially-active surface horizon act to enhance the role of
soil as a repository for atmospheric C, as mineralization and
loss of C decreases with increasing depth. Increased SOC
under switchgrass at depths below 30 cm is common,
having been observed in other studies in the northern Great
Plains [11, 18, 20]. In contrast to the assumptions made
recently [33], it is likely much of the carbon sequestered
during switchgrass production would be conserved because
plowing is no longer necessary to rotate from pasture
grasses to grain crops and back again because of advances
in no-till technology. The same technology can be applied
to switchgrass grown for bioenergy [28].

Accrual rates of SOC under switchgrass contribute signifi-
cantly to its potential to provide a favorable net GHG balance [8,
32]. Though inclusive GHG flux field assessments of
switchgrass are lacking, SOC accrual rates under switchgrass
appear—in this, and other related studies [18]—large enough to
easily offset nitrous oxide (N2O) emissions. Greenhouse gas
flux measurements from fertilized perennial grasses support this
notion. Annual N2O emission from a crested wheatgrass
pasture fertilized with synthetic N was found to be 3.4 kg N
ha−1 year−1 [19], equating to 1.6 Mg CO2e ha−1 year−1, or
approximately 40% of the C sequestration rate at 0–30 cm
observed across sites in this study. Methane (CH4) flux
contributions to net GHG emission from switchgrass would
likely be negligible, as perennial grasses in semiarid regions are
a minor sink for atmospheric CH4 [21]. Field-based assess-
ments of both N2O and CH4 flux are urgently needed to assign
greater confidence to estimates of net GHG emission for
switchgrass.

U.S. federal law [39] will require renewable biofuels to
meet certain GHG emission reductions from conventional
gasoline using LCAs. Accordingly, data generated in this
study should prove useful for scientists and policy makers
conducting and/or using LCAs of bioenergy production
systems. Previous LCAs including switchgrass production
for biomass energy have utilized C offset rates four- to
11-fold lower than the C sequestration rates observed in this
study [1, 32, 33]. It is important to acknowledge, however,
LCAs have included GHG emissions associated with
fertilizer and machinery use (e.g., GREET-derived C offset)
[44], which would act to decrease net C offsets. Further-
more, LCAs generally calculate C sequestration over 30 or
100 year time periods, during which time the soil C accrual
rate would be expected to plateau [2].

Results from this study underscore the importance of LCAs
to account for inter- and intra-site variability inherent to key
input parameters such as SOC. Variability in SOC change
across sites within the studied agro-ecoregion was significant,

from −0.6 to 4.3 Mg C ha−1 year−1 for the 0–30 cm depth.
Similar variation would likely exist in other agro-ecoregions.
Accordingly, LCAs should acknowledge this variability by
including confidence intervals in addition to means for
estimating the effects of agricultural production practices on
the environment.

Research conducted on working farms can provide critical
information regarding agroecosystem effects on agronomic and
environmental performance under conditions not available at
research stations [23]. Placement of studies on working farms,
however, has drawbacks. As an example, farmers in this study
participated via a 5 year contract. It was not feasible to extend
the contract for an array of reasons that differed with each
farmer. Yet measurement of SOC change under switchgrass
beyond 5 year represents a critical research need in order to
quantify GHG balance over the long-term. Such a situation
highlights the need for an expansion of the Long Term
Ecological Research (LTER) Network to sites devoted to
evaluation of agricultural production systems [25]. Agriculture
is now being asked to supply food, feed, fiber, and energy for
a growing population. Because of the potentially large positive
or negative effects associated with the added requirements of
energy production within agro-ecosystems, expansion of
Agricultural LTER sites in major agro-ecoregions needs to
be seriously considered for monitoring environmental effects
over the long-term.
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