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Abstract 
This study aims to assess the link between fluoride content in groundwater and its impact on dental 
health in rural communities of the Ethiopian Rift. A total of 148 water samples were collected from 
two drainage basins within the Main Ethiopian Rift (MER). In the Ziway-Shala basin in particular, 
wells had high fluoride levels (mean: 9.4 ± 10.5 mg/L; range: 1.1 to 68 mg/L), with 48 of 50 exceeding 
the WHO drinking water guideline limit of 1.5 mg/L. Total average daily intake of fluoride from 
drinking groundwater (calculated per weight unit) was also found to be six times higher than the 
No-Observed-Adverse-Effects-Level (NOAEL) value of 0.06 mg/kg/day. The highest fluoride levels 
were found in highly alkaline (pH of 7 to 8.9) groundwater characterized by high salinity; high con-
centrations of sodium (Na+), bicarbonate (HCO3−), and silica (SiO2); and low concentrations of cal-
cium (Ca2+). A progressive Ca2+ decrease along the groundwater flow path is associated with an 
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increase of fluoride in the groundwater. The groundwater quality problem is also coupled with the 
presence of other toxic elements, such as arsenic (As) and uranium (U). The health impact of fluoride 
was evaluated based on clinical examination of dental fluorosis (DF) among local residents using the 
Thylstrup and Fejerskov index (TFI). In total, 200 rural inhabitants between the ages of 7 and 40 years 
old using water from 12 wells of fluoride range of 7.8–18 mg/L were examined. Signs of DF (TF score 
of ≥ 1) were observed in all individuals. Most of the teeth (52%) recorded TF scores of 5 and 6, fol-
lowed by TF scores of 3 and 4 (30%), and 8.4% had TF scores of 7 or higher. Sixty percent of the teeth 
exhibited loss of the outermost enamel. Within the range of fluoride contents, we did not find any 
correlation between fluoride content and DF. Finally, preliminary data suggest that milk intake has 
contributed to reducing the severity of DF. The study highlights the apparent positive role of milk 
on DF and emphasizes the importance of nutrition in management efforts to mitigate DF in the MER 
and other parts of the world. 
 
Keywords: fluoride, dental fluorosis, Thylstrup and Fejerskov index, milk consumption, Main Ethi-
opian Rift 
 
1. Introduction 
 
Previous studies suggest that up to 8 million people living in the Ethiopian Rift Valley 
(primarily in the Main Ethiopian Rift, or MER) are at risk from regular exposure to high 
levels of naturally occurring fluoride in the groundwater they consume (Ayenew, 1998; 
Gizaw, 1996; Gossa, 2006; Rango et al., 2009, 2010a, 2010b; Reimann et al., 2003). The high 
fluoride concentrations in water are linked to the geology of the MER; which is composed 
of young volcanic materials and fluvio-lacustrine sediments that release several toxic ele-
ments, including fluoride, into the environment. Previous studies have also provided evi-
dence of high prevalence of dental and skeletal fluorosis in the region (Gossa, 2006; Kloos 
and Tekle-Haimanot, 1999; Tekle-Haimanot et al., 1987). 

Optimum fluoride intake plays an essential role in the development of tooth enamel, 
but excessive fluoride consumption interferes with the normal formation of tooth enamel 
and bones (Erdal and Buchanan, 2005; Fejerskov et al., 1994). The WHO standard for fluo-
ride in drinking water is 1.5 mg/L (WHO, 2006); the recommended level to achieve maxi-
mum protection from dental caries is considered to be 0.5–1 mg/L (Dissanayaka, 1991; 
WHO, 2002). Fluoride exposure above the guideline level during enamel formation may 
increase risk of dental fluorosis (DF) (Dissanayaka, 1991; Grobler et al., 2001). It is generally 
assumed that the principal source of fluoride intake is drinking water, but other sources, 
such as fluoride-rich beverages and agricultural products and foods prepared with fluo-
ride-rich water, could also be significant source of exposure (Kaseva, 2006; Malinowska et 
al., 2008; Mandinic et al., 2009; Martinez-Mier et al., 2003; Viswanathan et al., 2009, 2010). 
Several recent studies in African countries, including Tanzania, Sudan, and Nigeria, have 
found a high prevalence of DF even among populations that consume drinking water with 
relatively low fluoride content (< 0.5 mg/L) (El-Nadeef and Honkala, 1998; Ibrahim et al., 
1995; Van Palenstein Helderman et al., 1997). This was partially attributed to fluoride in-
take from dietary sources, such as the consumption of tea (Opinya et al., 1991) and the use 
of fluoride-containing trona (Awadia et al., 2000; Mabelya et al., 1997). 
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In contrast, increased intake of calcium may reduce the severity of fluorosis by interfer-
ing with the rate of fluoride absorption. Some foods, such as milk, are known to be an 
excellent source of calcium and have been found to diminish fluoride availability in the 
gastrointestinal tract by 20% to 50% (Ekstrand and Ehrnebo, 1979; Spak et al., 1983; Tra-
utner and Sibert, 1986; Whitford, 1996). Milk is also rich in fats, which increase the lag time 
of food and beverages in the stomach (Trautner and Sibert, 1986; Whitford, 1996). Animal 
studies have further elucidated the relationships between calcium bioavailability and DF, 
revealing that calcium plays a key role in the formation of enamel by increasing the secre-
tion of amelogenin, which neutralizes proton obstruction during the growth phase of 
enamel (Bronckers et al., 2006, 2009; Chen et al., 2009). Chen et al. (1997) reported that the 
occurrence of fluorosis among milk-consuming children was lower than that of non-milk-
consuming children. Similarly, studies in India have shown an association between vita-
min D and nutritional deficiencies and some of the clinical features of fluorosis (Misra et 
al., 1992), and have documented reductions in DF among populations receiving calcium 
and vitamin D supplements (Gupta et al., 1994). 

Thus, while it is generally thought that the prevalence and severity of DF increases with 
higher fluoride intake (Fejerskov et al., 1977; Thylstrup and Fejerskov, 1978), it seems that 
other nutritional factors may also play an important role. This hypothesis is supported by 
several studies from the field. For example, they do not appear to be significant differences 
in the prevalence and severity of DF among inhabitants of northern parts of Tanzania, 
where drinking-water fluoride concentrations are low (0.2 mg/L), and those among resi-
dents from neighboring areas with drinking water exposures of 3.6 mg/L (Awadia et al., 
1999, 2000; Thylstrup and Fejerskov, 1978; Van Palenstein Helderman et al., 1997; Yoder et 
al., 1998). 

The precise threshold for fluoride concentration and DF risk has not been established 
(Sohn et al., 2009). For the US, an approximate population threshold for severe DF was 
evaluated at 2 mg/L (Selwitz et al., 1998), while other studies in Ethiopia have not shown 
evidences for a clear threshold (Haimanot et al., 1987). Differences in the thresholds could 
be, at least in part, due to differences in susceptibility to fluoride exposure, and country-
/population-specific varying amounts and sources of drinking water and other dietary 
sources of fluoride (Acharya, 2005; Chandrashekar and Anuradha, 2004; EPA, 2006). 

Dental fluorosis has several stages. At first, the teeth become chalky and opaque as a 
result of subsurface hypomineralization. As DF progresses, the teeth lose enamel and in-
creasingly develop pits and grooves. The severity of DF was first measured using the four-
level Dean’s index (DI), developed in 1934 (Dean, 1934). Subsequently, the Thylstrup and 
Fejerskov index (TFI) was created to allow for an extended range of scores from 0 to 9 
(Thylstrup and Fejerskov, 1978). For high fluoride exposures (for example, when ground-
water concentrations exceed 5 mg/L of fluoride), TFI is a better choice than DI because of 
additional sensitivity in the measurement of DF severity (Fejerskov et al., 1988; Rozier, 
1994). 

It is likely that different types of teeth have different sensitivity to fluoride exposure: 
more sensitive permanent maxillary central incisors have the highest risk period during 
the first three years of life, while for other teeth which appear to be less sensitive the period 



R A N G O  E T  A L . ,  E N V I R O N M E N T  I N T E R N A T I O N A L  4 3  (2 0 1 2 )  

4 

of highest risk is at 6–8 years (Franzman et al., 2006; Levy et al., 2002). However, the sever-
ity of DF depends not only on the tooth-specific critical periods for tooth development; 
cumulative exposure throughout the entire maturation stage is also important in deter-
mining the extent of DF (DenBesten, 1999). 

Here in this study we hypothesize that long-term consumption of fluoride-rich ground-
water results in DF, and a dose-response relationship may differ for the fluoride content 
of drinking water, and certain dietary patterns (such as cow milk consumption) may nota-
bly influence a severity of DF. In order test this hypothesis we conducted a systematic 
study that evaluates the relationships between the groundwater quality in rural areas of 
the MER and the DF. Based on numerous studies (see review in Vengosh, 2004) we assume 
that the groundwater quality is stable over time and fluoride fluctuations are negligible. 
The main objectives of the study are (1) to evaluate the occurrence of contaminants, with 
emphasis on fluoride, in groundwater that is used as the principal water supply for drink-
ing and cooking by the rural population of the MER; (2) to identify and map high-fluoride 
“hot spots” that present high health risks and to determine the prevalence and severity of 
DF among populations of these areas using the TFI; and (3) to investigate the role of dietary 
factors (i.e., milk consumption) in the severity of DF observed among individuals exposed 
to high levels of fluoride in their drinking water. 
 
2. Study area and regional setting 
 
The study area comprises two large basins; the Ziway-Shala and Abaya-Chamo basins, 
and a small catchment (Awasa) located in the central sector of the Main Ethiopian Rift 
(MER) valley. The MER is characterized by a chain of lakes (Ziway-Langano-Abijata-Shala-
Awasa-Abaya-Chamo) that lie at an average altitude of 1600 m above sea level (m.a.s.l.). 
These lakes receive surface inflow from rivers and springs that drain western and eastern 
highlands (elevation above 2500 m.a.s.l. on average) bordering the MER. 

The climatic conditions characterizing the highlands, the escarpment, and the Rift valley 
differ greatly. Mean annual rainfall in the highlands ranges from about 800 mm to more 
than 2400 mm, while the Rift valley is semiarid to arid, with rainfall varying from 300 mm 
to 800 mm (Ethiopian Mapping Authority, 1988). The mean annual temperature in the 
highlands is less than 15°C and evaporation is less than 1000 m; on the Rift floor, mean 
temperature is greater than 20°C and evaporation exceeds 2500 mm (Le Turdu et al., 1999). 
Rainfall in the Rift is concentrated during the summer months from June to September, 
with additional modest rains coming from March to May. During the long dry period be-
tween October and February, water availability is low. As evapotranspiration significantly 
exceeds rainfall, water quality in the Rift valley, particularly in its lakes, is negatively af-
fected by evaporative enrichment, which increases concentrations of fluoride and other 
naturally occurring elements. 

Despite widespread awareness of the fluoride problem among local water agencies in 
the MER, rural communities still rely primarily on groundwater wells for drinking and 
domestic uses. This situation is largely because of a lack of economic development and 
infrastructure that provides affordable fluoride-free water supply alternatives. In addition, 
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groundwater is also used by the region’s small-scale agro-industries, commercial irriga-
tion, and floriculture farms. In contrast, most of the major towns in the MER use treated 
water from the rivers and high-discharge freshwater springs that emerge within the rift 
and along the rift margin. 
 
3. Materials and methods 
 
3.1. Water sampling and analysis 
Two field studies were carried out in April–May 2010 and March 2011, during which a 
total of 148 water samples were collected from various sources (112 groundwater wells, 8 
cold springs, 19 geothermal springs, and 9 lakes; Fig. 1). The groundwater samples were 
collected typically from active pumping wells, allowing the water to flow for a few minutes 
from the sources prior to sampling. Water from springs and lakes was collected at the 
mouth of the source and 50–100 m away from the shore, respectively. Fifty samples were 
collected in the Ziway-Shala basin during the first field study, and 49 were taken in the 
Abaya-Chamo basin. Subsequently, 13 of the original groundwater wells in Ziway-Shala 
basin were resampled during a second field visit that was also organized for the purpose 
of conducting DF examinations. 

Concentrations of major cations of calcium (Ca2+), magnesium (Mg2+), sodium (Na2+), 
and silica (SiO2) were measured using a direct-current plasma spectrometer (DCP) cali-
brated using solutions prepared from plasma-grade single-element standards. Major ani-
ons of chloride (Cl−), sulfate (SO42−), and nitrate (NO3−) were analyzed using an ion 
chromatograph (IC). Fluoride content was determined by ion-selective electrode (ISE). 
Samples were mixed at a 1:1 volume ratio with a total ionic strength adjustment buffer 
(TISAB) of pH 5–5.5, which allows optimum analyses of fluoride in the aqueous solution. 
Alkalinity (as HCO3−) was measured using titration techniques to pH 4.5. Trace elements 
(As, U, B, Mo, and V) were analyzed via a Perkin-Elmer Elan 5000 inductively coupled 
plasma-mass spectrometer (ICP-MS) calibrated to the National Institute of Standards and 
Technology (NIST) 1643e standard. 
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Figure 1. Distribution and identification of water sampling sites in this study according 
to type (groundwater, hot and cold springs, and lakes) and range of fluoride levels. 
Groundwater concentrations are color coded. Note that the squared block represents the 
site selected for examination of DF. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

 
3.2. Survey questionnaire and examination of dental fluorosis 
A total of 73 randomly selected inhabitants consuming well water (n = 50) in the Ziway-
Shala basin were interviewed during the first field visit. During these interviews, data were 
collected on subject gender, age, ethnicity, tobacco use, amount and source of drinking 
water consumption, dietary patterns, (in particular related to the frequency of milk con-
sumption), and severity of DF. DF severity was identified based on visual interpretation 
of individuals’ teeth (confirmed by digital images). 
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Subsequently, rural villages in and around the localities of Wonji, Alemtena, Meki, and 
Ziway were targeted for follow-up investigation during the second study visit (Fig. 1). The 
selected communities were characterized by use of high-fluoride groundwater sources 
(7.8–18 mg/L; n = 12) and indications of high DF (based on results obtained during the first 
survey). A 13th groundwater well with relatively low fluoride (1.1 mg/L) was also included 
in this second survey visit for the purpose of comparison. During these revisits, a second 
set of water samples was collected in order to confirm the stability of fluoride concentra-
tions measured during the first visit; fluoride levels in the two field samplings were found 
to be highly correlated (R2 = 0.98). At the same time, survey data were collected for 200 
individuals born and raised near the 13 selected wells. These data included all information 
collected during the first set of surveys plus additional measurements of height, weight, 
and TFI-based measures of DF. 

All dental examinations were conducted at convenient locations such as well sites, local 
community centers, and schools. After cleaning and drying the vestibular (buccal) surfaces 
of each study participant’s teeth with sterile gauze, DF was evaluated in natural light using 
the TFI (based on Thylstrup and Fejerskov, 1978). A TFI score of 0 indicates that the tooth 
enamel has normal translucency (absence of fluorosis). Increasing values of the index de-
note an increase in the severity of fluorosis; scores of 1 to 4 correspond to increasing de-
grees of opacity with no loss of enamel, and scores of 5 or more denote increasing degrees 
of enamel loss (pitting of teeth). 

Only buccal surfaces were examined, as prevalence studies have shown that no extra 
information is gained by including other surfaces (Thylstrup and Fejerskov, 1978). To im-
prove the quality of the TFI field examination, each study participant was examined by 
two independent and qualified experts. The two experts carried out a preliminary discus-
sion and TFI scoring calibration exercises prior to the actual examination. 

Teeth with cavities or any sign of dental caries were excluded from the examination and 
marked accordingly. Overall, a total of 5226 teeth were classified by the examiners, and the 
assigned scores were then discussed and compared to obtain the final recorded measure-
ments. The reliability of the TF scores was later reassessed using photos (of both maxillary 
and mandibular teeth); this quality control measure yielded scores generally consistent 
with those of the field examiners (R2 = 0.7). Generally, the scores based on interpretation of 
photos were lower than those given in the field, probably due to the lower visibility of 
teeth in the photos. 

The survey questionnaire design and study were conducted after ethical approval (Pro-
tocol No. A0045) by the Duke University Institutional Review Board (IRB). Additional per-
mission to carry out the survey was also obtained from the Addis Ababa University and 
local institutes in the studied region (schools, water bureaus, hospitals) after an explana-
tion of the objectives and the method of study. The anonymity of all investigated subjects 
has been maintained. 
 
3.3. Statistics 
A spreadsheet-based statistical package (Microsoft Excel 2010 and IBMSPSS Statistics 19) 
was used for data collection and analysis. Bivariate analyses were performed using t-tests. 
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A multivariate regression analysis was conducted using Stata SE version 11 to further con-
sider the associations between fluoride concentration in drinking water, milk consump-
tion, BMI and socioeconomic variables, on the one hand, and the severity of dental damage 
(with the TFI value as a main outcome), on the other. 
 
4. Results and discussion 
 
4.1. Water quality 
The data generated in this study confirm previous reports of high concentrations of fluo-
ride in groundwater, predominantly within the basin of the MER, i.e., the lowlands of the 
surveyed basins (Fig. 1). The highest fluoride concentrations measured for different types 
of waters in the basin were 435 mg/L in Lake Abijata, 68 mg/L for groundwater sampled 
from a well north of Lake Abijata, and 65mg/L at a hot spring east of Lake Shala. All sam-
pled cold springs in the basins had much lower fluoride concentrations (0.2 to 2.2 mg/L). 

As this study is mainly focused on the effect of fluoride-rich groundwater on dental 
tissue, emphasis is given to the detailed distribution of fluoride concentrations in the local 
groundwater. The data show wide variations in fluoride content across the studied basins; 
wells in the Abaya-Chamo basin in the southern MER had lower fluoride levels than wells 
in the Ziway-Shala basin in the north (Fig. 1). All groundwater wells in Abaya-Chamo had 
fluoride concentrations below 3 mg/L (mean 0.7 ± 0.87 mg/L) except one (13 mg/L). The 
inhabitants of the Abaya-Chamo basin also consume surface water from low-fluoride riv-
ers and cold springs originating in the highlands. However, a few communities in this area 
have no access to groundwater resources or have malfunctioning wells. For example, the 
residents of Dimitu village utilize high-fluoride hot springs (13 mg/L; n = 2) for drinking, 
cooking, and other household activities (Fig. 1). Likewise Lake Awasa (fluoride level of 8.3 
mg/L) is used by nearby communities for domestic purposes. 

Most high-fluoride zones within our sampling frame were found in the Ziway-Shala 
basin in the central part of the MER, with fluoride concentrations ranging from 1.1 to 68 
mg/L (mean 9.4 ± 10.5 mg/L). In this area, 48 of the 50 (96%) sampled wells were found to 
have fluoride concentrations exceeding the guideline value of 1.5 mg/L for drinking water 
recommended by the World Health Organization (WHO). In addition, the data reveal that 
a large fraction of the wells in basin have concentrations of arsenic (As) (27 wells, 54%), 
uranium (U) (29 wells, 62%), boron (B) (10 wells, 20%), and molybdenum (Mo) (4 wells, 
8%) exceeding the WHO drinking water guideline values of 10, 15, 500, and 70 μg/L, re-
spectively. The As concentrations in groundwater ranged from 0.58 to 190 μg/L (mean 20.4 
± 33.5 μg/L), B ranged from 14.8 to 2100 μg/L (mean 310 ± 353 μg/L), U ranged from 0.06 
to 69 μg/L (mean 10.4 ± 14.3 μg/L), and Mo ranged from 1.53 to 128 μg/L (mean 24.3 ± 30.2 
μg/L). Overall, about 45% of the wells in the Ziway-Shala basin exceeded the WHO recom-
mended limits for combined fluoride and arsenic. These results suggest that groundwater 
quality problems extend to naturally occurring contaminants other than fluoride. 
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4.2. Groundwater geochemistry: mobilization of major elements and relationships with 
fluoride abundance 
The MER is composed of pyroclastic volcanic materials and reworked fluvio-lacustrine 
sediments (Fig. 2a). Previous studies have suggested that dissolution of glass phases of 
these volcanic materials releases fluoride to the groundwater system (Rango et al., 2009). 
This glass dissolution produces water with high alkalinity (pH up to 8.9) and high sodium 
(Na+), bicarbonate (HCO3−), and silica (SiO2) content, with the latter ranging from 57 to 111 
mg/L (mean 86 ± 11.3 mg/L; n = 50). The rise of Na+ concentration and salinity is associated 
with a progressive decrease of Ca2+ content (Fig. 2b). This relationship is explained by a 
process of cation exchange that is associated with weathered clay-rich volcanic rocks, in 
which Ca2+ uptake by the aquifer matrix is balanced by the release of Na+ into groundwater. 

The results presented in this study thus confirm previous findings that fluoride content 
in groundwater is positively correlated with salinity, Na+, and HCO3− (Rango et al., 2009). 
Fluoride levels in groundwater are also negatively correlated with calcium concentrations 
(Fig. 2b,c). In fact, the groundwater sample with the highest measured fluoride level in this 
study (68.5 mg/L) also had the lowest Ca2+ content (0.93 mg/L). Furthermore, solubility 
measurements indicate that low Ca2+ concentrations in the water limit the precipitation of 
fluoride in the form of calcium fluoride (CaF2) (mean saturation index −0.4 ± 0.5; n = 48); 
fluoride therefore mobilizes readily and becomes a stable soluble species in Ca-depleted 
groundwater. The gradual decrease of Ca2+ is associated with an increase of the overall 
salinity and fluoride contents along a cross-section through the Rift Valley. 
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Figure 2. (a) Geological and topographic cross-sections (west of Lake Ziway) with zones 
of DF occurrences, (b) changing groundwater chemistry as a function of distance from 
escarpment to the rift, and (c) inverse relationship between Ca2+ and F− in sampled 
groundwater wells. 

 
4.3. Sociodemographic information, dietary patterns, and tobacco use 
Table 1 presents the water quality characteristics for the samples taken from the 13 wells 
in the Ziway-Shala basin selected for the DF examinations. The specific geographic loca-
tions of these wells are shown in Figure 3. Demographic data for the 200 individuals living 
near these wells and examined for signs of DF are summarized in Table 2. The investigated 
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population was equally represented by males and females, with a mean age of 13.6 ± 5 
years (93.5% are 7 to 20 years old). The three dominant ethnicities in the sample are Oromo 
(62%), Kembata (19%), and Amhara (10%). The predominant ethnic group at nine of the 
sites is Oromo; the other locations are characterized by a mix of two or more ethnic groups. 
This is especially the case in the communities of the Wonji Shoa Sugar Estate (WSSE), 
which comprise diverse ethnicities (Kembata, Amhara, Oromo, and Hadya). 
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Table 1. Concentration of fluoride, major ions (represented as EC and TDS) and trace elements (As, U, B, Mo, and V) in high-salinity groundwater 
wells where examinations for DF were conducted. In addition, the elemental concentrations of the wells were compared with WHO standards, 
where nm: not mentioned (WHO, 2006). 

Village name 

Salinity  Fluoride  Calcium  Silica  Trace elements 
EC TDS  F−  Ca2+  SiO2  As U B Mo V 

μS/cm mg/L  mg/L      μg/L     
Oda 470 480  1.1  31.4  57  2.6 1.7 32 1.5 0.7 
Tejitu 943 891  7.8  11.0  84  5.6 1.7 202 10.0 9.1 
Berta site 1041 —  8.0  2.5  —  4.9 1.2 223 9.2 5.2 
Tuchigabriel 2847 2705  8.7  4.1  76  42.0 68.6 797 58.1 26.7 
Aneno 1148 1025  8.8  3.4  85  22.8 4.1 294 12.5 38.9 
Wonji-camp 3 1268 1161  9.7  15.0  90  3.2 0.6 557 27.8 0.4 
Tuchigrabona 1940 1761  10.7  15.6  74  15.1 32.8 253 10.6 2.7 
Wulumbula 1984 1868  10.8  3.9  82  73.4 26.6 606 19.5 71.3 
Woyogabriel 1784 1759  11.3  5.0  85  44.7 18.9 524 8.4 63.9 
Wonji-camp 7 1409 1229  13.0  41.2  84  10.3 2.0 497 46.5 0.8 
Wegea 2397 1832  13.2  3.0  86  67.0 35.6 512 94.0 81.2 
Wonji-camp 9 1301 1215  13.3  41.3  84  12.3 2.2 573 49.3 0.7 
Chelelki 1850 1786  18.0  6.2  94  55.1 25.5 650 17.9 46.0 
Mean ± SD 1568 1476  10 ± 4  14 ± 14.5  82 ± 9.6  28 ± 25.6 17 ± 20.5 440 ± 219 28 ± 26.7 27 ± 30 
WHO drinking water quality standards  1.5  nm  nm  10 15 500 70 nm 
Number of wells exceeding the standards (in %)  92%  —  —  69% 46% 54% 7.7% — 
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Figure 3. Location and fluoride concentrations in wells selected for DF analysis using the 
Thylstrup and Fejerskov Index (TFI). 
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Table 2. Demographic characteristics of the individuals who participated in the DF examinations. N = number of individuals, n = number of counts, 
SD—standard deviation 

Villages 

F− 
 

Age groups 
 

Age 
 

Gender 
 Water intake/person/day 

(in liter) 
 

Milk access 
(mg/L)  (n)   (years)  (n)     (n)  
  7–20 20–40  Mean ± SD  M F  0.5–1 > 1–2 Mean ± SD  Yes No 

Oda  (N = 5) 1.1  4 1  16 ± 6.2  4 1  2 3 1.6 ± 0.5  3 2 
Tejitu  (N = 10) 7.8  9 1  15 ± 4.8  4 6  10 0 1 ± 0  2 8 
Berta  (N = 19) 8  19 0  12.9 ± 1.9  8 11  16 3 1.1 ± 0.3  9 10 
Tuchigabriel  (N = 11) 8.7  10 1  13 ± 4.9  4 7  7 4 1.23 ± 0.56  1 10 
Aneno  (N = 11) 8.8  11 0  11.3 ± 3.5  8 3  7 4 1.23 ± 0.56  7 4 
Wonji-3  (N = 10) 9.7  10 0  12.4 ± 3.4  5 5  9 1 1 ± 0.41  3 7 
Tuchigrabona  (N = 16) 10.7  16 0  12.4 ± 3.5  8 8  13 3 1.13 ± 0.51  4 12 
Wulumbula  (N = 10) 10.8  10 0  13.4 ± 3.2  4 6  9 1 1.1 ± 0.32  8 2 
Woyogabriel  (N = 21) 11.3  20 1  12.1 ± 3.9  7 14  16 5 1.14 ± 0.42  10 11 
Wonji-7  (N = 11) 13  11 0  14.3 ± 3.3  2 9  8 2 1.14 ± 0.4  3 8 
Wegea  (N = 18) 13.2  18 0  12.8 ± 2.1  9 9  15 3 1.1 ± 0.2  13 5 
Wonji-9  (N = 43) 13.3  34 9  16 ± 8  29 14  26 17 1.35 ± 0.68  10 33 
Chelelki  (N = 15) 18  15 0  12.5 ± 2.7  6 9  10 5 1.33 ± 0.65  2 13 
Total —  187 13  —  98 102  122 34 —  75 125 
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The socio-economic status and dietary habits of individuals in the study area were sim-
ilar. The diet is primarily cereal-based (maize, teff, and wheat), with occasional intake of 
vegetables and fruits. Meat is rarely consumed: the average frequency of meat intake (from 
cows and other sources) is about 11 times per year. 

Most of the Oromo practice farming, and many also raise livestock. As a result, 37.5% 
of the investigated individuals regularly consume milk, with an average frequency of 5.6 
times per week (ranging from 2 to 7 times per week), while the rest of the investigated 
individuals have no intake of milk. 

None of the individuals examined in the sample smoke tobacco, which rules out the 
option of fluoride intake through tobacco consumption documented in some studies 
(Sengupta and Pal, 1971). 
 
4.4. Fluoride intake through drinking groundwater 
Total daily fluid intake through drinking water was evaluated taking into account the in-
dividuals’ body weight (bw). The data from the survey indicated that each inhabitant con-
sumes between 0.5 and 3 L of water per day from groundwater sources (on average 1.2 L 
of water per day). These values were used to calculate the amount of daily fluoride intake 
among four age groups (Table 3a). The results were compared with the No-Observed-Adverse-
Effects-Level (NOAEL) value for fluoride (0.06 mg/kg bw/day) published by US EPA 
(2002), as well as the “optimal” range of fluoride intake for children, which is considered 
to be 0.05–0.07 mg/kg bw/day (Casarin et al., 2007; Ketley and Lennon, 2001). 

The comparison of the measured values with the NOAEL value of 0.06 mg/kg bw/day 
shows that individuals’ fluoride exposure is on average six times higher than the NOAEL 
value. In terms of per-person exposure from drinking water sources, the residents in the 
high-fluoride area are exposed to fluoride concentrations ranging from 4 to 54 mg/per-
son/day (Table 3b). These levels are much higher than the required total fluoride intake 
levels (0.2mg/person/day in infants and 5.0 mg/person/day in adults) proposed by Murray 
(1986). 
 

Table 3. Summary of daily fluoride exposure through drinking groundwater expressed in terms 
of body weight and per person 
Age 
group 

Fluoride intake  BMI 
(a) in mg/kg bw/day  (b) in mg/person/day  (c) in kg/m2 

Min Max Mean ± SD N  Min Max Mean ± SD N   
7 to 10 0.15 1.07 0.41 ± 0.21 50  4.4 26.6 11.0 ± 4.9 50  16.2 ± 2.4 
11 to 15 0.10 0.93 0.34 ± 0.16 101  4.0 36.0 13.3 ± 6.3 103  18.0 ± 2.7 
16 to 20 0.09 1.02 0.32 ± 0.20 30  4.8 54.0 17.5 ±10.5 30  19.2 ± 2.8 
> 20 0.13 0.60 0.37 ± 0.15 12  7.8 39.9 21.9 ± 9.2 12  19.6 ± 3.3 

 
Table 3c also shows the calculated body mass indices (BMI, expressed as weight (in 

kg)/height (in m2)) by age group. The BMI values range from 11.1 to 26.6 kg/m2 and in-
crease with the examined individuals’ age. 
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4.5. Prevalence and severity of dental fluorosis 
The prevalence of DF (TF score of ≥ 1) on maxillary and mandibular teeth among inhabit-
ants consuming water from the 12 wells with high fluoride levels was 100%. More than 
half of the teeth examined (51.7%) had TF scores of 5 and 6, followed by 29.7% with TF 
scores of 3 and 4, 10.2% with TF scores of 1 and 2, 7.6% with a TF score of 7, and 0.8% with 
TF scores of 8 and 9 (see Fig. 4 for the frequency distribution of TF scores for maxillary 
teeth). The maxillary teeth show a higher frequency of severe DF (TF score of ≥ 5; 67.7% vs. 
52.2% for mandibular teeth, p < 0.05), whereas the mandibular teeth show high frequency 
of mild to moderate DF (TF score of ≤ 4; 47.7%). In these high-fluoride areas, it was ob-
served that even partially erupted permanent teeth appeared to be fully chalky white (TF 
score of 4), followed by more severe cases of pitting and discoloration, and finally loss of 
enamel (TF score of ≥ 5). Our data show that even the low fluoride site (Oda; fluoride level 
of 1.1 mg/L), more than 60% of maxillary teeth and about 35% of mandibular teeth had 
signs of DF (TF scores ranging from 1 to 3). 
 

 
 

Figure 4. Percentage distribution of TF-scores in examined individuals’ maxillary teeth at 
each of the 13 sampled wells. 

 
The frequencies of TF scores (i.e., severity of DF) do not seem to vary directly with 

drinking-water fluoride levels. The fluoride impact is predominantly reflected in TF scores 
of 5 and 6 in all investigated wells with fluoride levels greater than 7.8 mg/L. The lack of a 
linear dose-response relationship at the fluoride range of 7.8–18 mg/L has important im-
plications for the need to establish a threshold level of fluoride at which DF is minimal 
(such as a TF score of less than 4) for the Rift valley population in Ethiopia. This threshold 
could be used as the fluoride-level goal to which defluoridation efforts may be targeted. 
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In accordance with their mineralization and age of eruption, all examined teeth were 
categorized as either early-erupting (i.e., incisors and first molars) or late-erupting (i.e., 
canines, premolars, and second molars). The severity of fluorosis for categories of teeth 
was expressed as the mean TF score, with TF score of ≥ 5 categorized as severe fluorosis. 
Severity of DF was significantly higher in maxillary teeth (relative to mandibular ones), 
with average TF scores of 4.66 ± 1.24 and 4.41 ± 1.2, respectively (p < 0.001, N = 200). The 
incisors of the maxillary teeth were also more severely damaged than the mandibular 
(p < 0.001). 

DF in early-erupting teeth was also more severe in maxillary than in mandibular teeth 
(see Table 4). First molars and second molars were more affected than other teeth types (p 
< 0.05). These results are broadly consistent with findings of previous studies on DF (Lat-
ham and Grech, 1967; Manji et al., 1986; Thylstrup and Fejerskov, 1978). 
 

Table 4. Mean TF-scores of each tooth type and group of teeth (early, late, and all teeth) for all DF 
examined individuals (n = 195) in high fluoride groundwater villages. 
 Teeth types  Teeth groups 
 

Inci-
sors* 

Ca-
nines** 

Pre- 
molars* 

First 
mo-
lars** 

Second 
molars* 

 Early 
erupt-
ing 
teeth* 

Late 
erupt-
ing 
teeth** 

All 
teeth* 

Maxillary TF-scores 
[mean ± SD] 

4.6 
± 0.56† 

4.2 
± 0.53 

4.6 
± 0.34† 

5.5 
± 0.46 

5.3 
± 0.33† 

 4.9 
± 0.46† 

4.6 
± 0.37 

4.7 
± 0.37† 

Mandibular TF-scores 
[mean ± S.D] 

3.8 
± 0.47 

4.1 
± 0.48 

4.4 
± 0.4 

5.6 
± 0.5 

5.6 
± 0.51 

 4.3 
± 0.41 

4.5 
± 0.39 

4.4 
± 0.35 

Note: SD—standard deviation, †—significant difference between maxillary and mandibular teeth, (*—p < 0.05 
and **—p > 0.05). 

 
4.6. The effect of milk consumption on severity of dental fluorosis 
To study the associations between dietary calcium intake and DF, the frequency of regular 
cow’s milk consumption per week was evaluated in individuals with and without access 
to milk. Five villages at Berta, Aneno, Tuchigrabona, Wulumbula, and Wegea were se-
lected because of the relatively higher availability of milk. The percentage of individuals 
who have access to milk at these villages was 47% at Berta, 64% at Aneno, 25% at Tu-
chigrabona, 80% at Wulumbula, and 72% at Wegea. In these villages, TF scores (except at 
Wegea, which is not statistically significant) were higher for those who did not consume 
milk (Fig. 5). This analysis suggests that milk consumption, which provides calcium, may 
reduce the effects of fluoride toxicity. 
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Figure 5. Line diagram displaying higher average TF scores on individuals’ who have no 
access to milk (red line) versus those with access to milk (black line) at 5 selected villages. 
Considering all the teeth of individuals in the 5-villages, an estimated 15% average reduc-
tion in the dental fluorosis is observed. Note that: similar ages were considered in the 
comparison. (*—p < 0.05 and **—p > 0.05) are statistical significance of the comparison. 

 
4.7. Multivariate analysis of associations between fluoride level and dental fluorosis 
The association of fluoride levels with TF scores was further explored using multivariate 
regression analysis controlling for other factors including age, gender, ethnicity, and other 
water quality measures, BMI, and milk consumption (Table 5). Estimates were obtained 
for a limited number of samples; however, it was not possible to adjust for a number of 
potential confounding factors to fluoride exposures such as from diet. 
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Table 5. Regression analysis of associations between TF scores and water chemistry, and milk consumption and BMI 
  a: Basic model  b: Basic model  c: Other elements  d: Excluding low 

fluoride commu-
nity 

 e: Milk  f: Milk, excluding 
low fluoride com-
munity 

Outcome  Average TF score  Max TF score  Average TF score  Average TF score  Average TF score  Average TF score 

Variable  Coef. 
St. 
err.  Coef. 

St. 
err.  Coef. 

St. 
err.  Coef. 

St. 
err.  Coef. 

St. 
err.  Coef. 

St. 
err. 

Fluoride  0.097⁎⁎⁎ 0.037  0.11⁎⁎⁎ 0.040  0.14⁎⁎⁎ 0.041  −0.004 0.026  −0.04 0.097  −0.037 0.11 
Fluoride 
   milk              0.36⁎ 0.15  0.32⁎ 0.18 
Calcium        −0.0163⁎⁎ 0.0069     −0.0081 0.0066  0.0008 0.0059 
Age  −0.023 0.02  −0.064⁎⁎⁎ 0.021     −0.014 0.020  −0.12 0.079  −0.049 0.11 
Gender  −0.28⁎ −0.17  0.022 0.18     −0.19 0.16  −0.27⁎ 0.16  −0.21 0.15 
BMI  0.092⁎⁎⁎ 0.030  0.046 0.033     0.089⁎⁎⁎ 0.029  0.099⁎⁎⁎ 0.030  0.093⁎⁎⁎ 0.029 
Milk con- 
   sumption              −3.7⁎⁎ 1.5  −3.2⁎ 1.8 
Frequency 
   of milk 
   consump- 
   tion 
  (daysmilk)              0.45 0.30  0.47⁎ 0.28 
Fluoride 
   daysmilk              −0.048 0.028  −0.048⁎ 0.028 
Constant  2.37⁎⁎⁎ 0.71  5.15⁎⁎⁎ 0.71  4.03⁎⁎⁎ 0.49  3.51⁎⁎⁎ 0.633  4.07⁎⁎⁎ 1.20  3.98⁎⁎⁎ 1.31 
N  199   199   200   194   199   194  
R2  0.131   0.156   0.092   0.070   0.195   0.087  

⁎⁎⁎ Significant at the 1% level 
⁎⁎ Significant at the 5% level 
⁎ Significant at the 10% level 
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Several alternative specifications suggest that there is a positive association between 
fluoride content in drinking water and TF scores (columns a–c). The models (column a and 
c) suggest that higher fluoride concentration in drinking water is associated with more 
severe DF. An individual’s maximum TF score is somewhat more strongly correlated with 
fluoride levels than his/her average TF scores (column b). However these positive associa-
tions are due only to the differences in TF scores between individuals using the well with 
low fluoride compared to all other high-fluoride wells. Excluding the low-exposure com-
munity, the data show that there is no significant association between average TF score 
and fluoride (column d), which is consistent with the lack of dose-response function found 
in the analyses described previously. 

The models also reveal negative associations between age and TF score, and positive 
associations between the BMI and TF score, but these effects are inconsistent across models 
and require further investigation, with larger samples and additional nutritional data and 
controls. Interestingly, a positive association was found between the BMI and TF score 
(p < 0.05). This phenomenon was observed in both females and males (the estimate value 
0.004 ± 0.019, p < 0.05, and 0.009 ± 0.004, p < 0.05, respectively). This may be partly explained 
by the fact that BMI is highly correlated with age and, consequently, to the prolonged ex-
posure to fluoride from drinking water (see Table 3) as well as increased consumption of 
certain foods which accumulate fluoride. 

To further investigate the correlations between milk consumption and TF scores, multi-
variate analysis controlling for milk consumption was also conducted (Table 5, column e). 
A dummy variable for any milk consumption is strongly negatively associated with aver-
age TF score, reducing it by 3.7 points (p = 0.016). The effect of increasing fluoride con-
sumption can, however, be seen in the positive coefficient for the interaction between the 
dummy for milk consumption and the fluoride concentration (+0.36, p = 0.015). This sug-
gests that the protective effect of milk may decrease as fluoride concentrations increase. 
One may also interpret this interaction as indicating the effect of increasing fluoride con-
centration in groundwater, which by itself is insignificant in this model. The interaction of 
fluoride levels and the frequency of milk consumption is weakly and negatively associated 
with TF score (p = 0.092), suggesting that higher levels of milk consumption may be pro-
tective when exposure to fluoride levels increases. It should be noted that these results are 
generally consistent across outcome measures (average vs. maximum TF scores) and also 
when applied to data from restricted age groups (results not shown), though statistical 
power in the restricted number of samples is limited. Also, as shown, these results do not 
change qualitatively with exclusion of the low fluoride community (column f). 
 
5. Integration 
 
As shown above, this study found widely varying fluoride concentrations across the 
groundwater, lakes, and springs (hot and cold) of the MER region. These variations appear 
to be driven by the complex geology and hydrology of the MER. Since groundwater is the 
principal source of drinking water for the rural communities of the MER region, long-term 
ingestion of high-fluoride groundwater through drinking and cooking has caused wide-
spread DF problems in some locations. The literature shows that fluoride intake depends 
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on the amount of water consumed, which is partly influenced by climatic conditions; it is 
particularly high in semiarid and arid climatic conditions. Taking account of the annual 
average maximum air temperatures in the MER (which exceed 20°C), the optimal and max-
imum allowable concentrations of fluoride in drinking water should be 0.9 mg/L and 1.8 
mg/L, respectively, according to guidelines issued by the USPHS (US Public Health Ser-
vice, 1962). Yet the results in this study indicate that fluoride in MER drinking water is 
significantly higher than both these and the WHO guideline levels, resulting in exposures 
between 4 and 54 mg/person/day (Table 3). 

This study’s examination of DF among populations consuming water from high-fluoride 
groundwater in the MER region revealed 100% prevalence of fluorosis, most of it severe 
(TF scores of 5 and 6). These results are consistent with previous studies in Ethiopia (Wond-
wossen et al., 2004). About 60% of all teeth examined in the present study had TF scores of 
≥ 5, indicating the fracture and loss of enamel and cosmetic defects as well as pain, which 
can have a significant negative impact on quality of life. DF also adversely affects food 
choices and chewing efficiency. Field observations have indicated that a few children re-
move the brown, stained enamel from their front teeth (incisors) by scraping with hard 
glasses, which further negatively affects the strength of the teeth. Mottling of teeth also has 
psychological effects; some children are reluctant to speak and smile. Other studies have 
shown that children with high fluorosis frequency have diminished learning ability (Chen 
et al., 2008; Trivedi et al., 2007; Zhao et al., 1996). 

It is generally assumed that drinking water is the predominant source of total daily flu-
oride intake, but exposure also depends on the relative amounts of fluoride in food sources. 
Symptoms of fluorosis have been reported in places where fluoride concentrations are be-
low the WHO upper limit for drinking water sources (Brouwer et al., 1988). Our study also 
shows mild forms of fluorosis (TF scores mostly ≤ 2) in villages utilizing groundwater with 
relatively low fluoride levels (1.1 mg/L). This suggests that fluoride intake may also come 
from food sources. In this region, the diet is mostly composed of cereals such as maize, teff, 
and wheat; consumption of dairy products (such as cow’s milk) and meat is limited. This 
limited, cereal-based diet includes little dietary calcium and vitamin D, which may partly 
limit the negative impacts of high fluoride consumption. Indeed, BMI values among study 
subjects indicated that some were at risk of malnutrition, which is plausibly indicative of 
a low-protein and vitamin-deficient diet that potentially aggravates the fluorosis problem. 
Similarly, Rugg-Gunn et al. (1997) reported a high prevalence of dental fluorosis in chil-
dren suffering from malnutrition. 

The high fluoride levels found in the drinking water are also associated with high salin-
ity (TDS), as well as high levels of silicon (Si), uranium (U), arsenic (As), vanadium (V), 
molybdenum (Mo), and boron (B). These other contaminants may aggravate fluoride tox-
icity, and potentially increase the risk of kidney failure, as documented in studies in India 
(Dissanayake et al., 2010; Reddy, 1985). Other studies (Lantz et al., 1987; Xiong et al., 2007) 
have also shown that fluoride intoxication can be damaging to kidneys, as high fluoride 
intake by itself leads to changes in kidney structure, function, and metabolism, which in-
hibit efficient removal of fluoride in the urine and further aggravate the fluoride problem. 
Findings on combined effects of arsenic and fluoride are contradictory, and most are based 
on animal models (Chouhan and Flora, 2010; Yao and Wang, 1988). While no direct deposit 
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of arsenic has been found in dentine of rats, some researchers hypothesize that the toxicity 
of fluoride may be increased because of arsenic’s role in damaging normal kidney function 
(Chouhan and Flora, 2010; Kavr, 1986). 
 
6. Conclusions 
 
This study integrated geochemical data of groundwater resources with a detailed investi-
gation of fluorosis patterns in rural communities of the MER Valley, Ethiopia. The results 
show that the distribution of fluoride (7.8–18 mg/L) in the local groundwater is associated 
with high levels of fluorosis. The ingestion of fluoride from drinking water by the local 
population is far above the WHO drinking guideline (1.5 mg/L) and the NOAEL value 
(0.06 mg/kg bw/day). The effect of this consumption is manifest in the very high observed 
prevalence of advanced dental fluorosis (DF), as shown by our clinical examination of the 
teeth of 200 individuals (using the TFI) consuming water from high fluoride wells. The 
prevalence of dental fluorosis (TF score of ≥ 1) on both the maxillary and mandibular teeth 
of those who consume groundwater from the high-fluoride wells in our survey was 100%. 
Most of the teeth examined, 51.7%, had TF scores of 5 and 6, followed by 29.7% with TF 
scores of 3 and 4, 10.2% with TF scores of 1 and 2, 7.6% with a TF score of 7, and 0.8% with 
TF scores of 8 and 9. Of all examined teeth, 60% had a TF score of ≥ 5 (loss of outermost 
enamel), which is indicative of severe DF; 40% of them could be characterized as mild to 
moderate DF (various levels of chalky white appearance without loss of enamel). 

In our sample, no direct correlation was found between the TFI scores and the actual 
fluoride concentrations in our groundwater samples (which ranged from 7.8 to 18 mg/L). 
At these fluoride concentrations, and without controlling for possible confounding factors 
such as diet, we cannot establish a dose-response relationship. Further work is therefore 
necessary to establish the critical fluoride level at which DF is minimal, and to evaluate the 
mechanisms that control DF occurrence in the rural communities of the MER. Some indi-
cations of the effect of diet on DF were shown in this study, as subjects who consume cow’s 
milk appeared to have reduced severity of DF. The lack of significant DF variations along 
a fluoride range of 7.8 to 18 mg/L in drinking water implies that mitigation attempts based 
only on water treatment may not be sufficient, given the partial removal of fluoride in 
water treatment. Future mitigation attempts should also consider changes in the diet and 
nutrition, and possibly increased accessibility to milk, particularly for children. 
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