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Resource Allocation for Maximizing Prediction
Accuracy and Genetic Gain of Genomic Selection
in Plant Breeding: A Simulation Experiment
Aaron J. Lorenz1

Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583

ABSTRACT Allocating resources between population size and replication affects both genetic gain
through phenotypic selection and quantitative trait loci detection power and effect estimation accuracy for
marker-assisted selection (MAS). It is well known that because alleles are replicated across individuals in
quantitative trait loci mapping and MAS, more resources should be allocated to increasing population size
compared with phenotypic selection. Genomic selection is a form of MAS using all marker information
simultaneously to predict individual genetic values for complex traits and has widely been found superior to
MAS. No studies have explicitly investigated how resource allocation decisions affect success of genomic
selection. My objective was to study the effect of resource allocation on response to MAS and genomic
selection in a single biparental population of doubled haploid lines by using computer simulation.
Simulation results were compared with previously derived formulas for the calculation of prediction
accuracy under different levels of heritability and population size. Response of prediction accuracy to
resource allocation strategies differed between genomic selection models (ridge regression best linear
unbiased prediction [RR-BLUP], BayesCp) and multiple linear regression using ordinary least-squares esti-
mation (OLS), leading to different optimal resource allocation choices between OLS and RR-BLUP. For OLS,
it was always advantageous to maximize population size at the expense of replication, but a high degree of
flexibility was observed for RR-BLUP. Prediction accuracy of doubled haploid lines included in the training
set was much greater than of those excluded from the training set, so there was little benefit to phenotyping
only a subset of the lines genotyped. Finally, observed prediction accuracies in the simulation compared
well to calculated prediction accuracies, indicating these theoretical formulas are useful for making resource
allocation decisions.
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A critical aspect to the design of plant breeding programs is the
allocation of limited resources between population size and replication.
Larger population sizes allow greater selection intensity and probability
of identifying superior recombinants, whereas increased replication
improves heritability, especially for highly complex traits prone to

measurement error and random environmental deviations. For such
traits, such as grain yield, theory suggests at least some replication
across relevant environments should be conducted, the exact amount
depending on the resource level and heritability of single plot measure-
ments (Wricke and Weber 1986; Moreau et al. 2000). Level of repli-
cation also depends upon stage of the breeding pipeline. It is common
practice to evaluate progenies using less replication during early
testing and save more resources for greater replication of fewer lines
during later testing when parent and cultivar release decisions are to
be made (Bernardo 2010). The bottom line is that selection decisions
made upon phenotypic information solely require extensive replica-
tion across the target population of environments to ensure the ge-
notypic values of the selection candidates have been precisely
estimated.

When the purpose of phenotypic evaluations turn from informing
phenotypic selection to calibrating statistical models for genomic
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selection, the unit of evaluation switches from the whole genotypic
value of a progeny to the additive genetic value of a single allele.
Hence, so-called hidden replication of alleles can be increased by
increasing population size. It is well known that power and precision
of quantitative trait loci (QTL) mapping and marker effect estimation
is greatly influenced by population size and heritability (Yu et al. 2008;
Beavis 1994; Gimelfarb and Lande 1994; Schon et al. 2004). Surpris-
ingly few studies have thoroughly studied the tradeoff in detection
power and effect estimation between increasing population size and
increasing heritability through additional replication. Knapp and
Bridges (1990) analyzed the expected mean squares of a model de-
scribing the sources of variation included in a QTL mapping experi-
ment with replicated progenies and calculated power of QTL detection
for different resource allocation strategies, not considering the cost of
genotyping. They showed that when residual genetic variation exists
within groups of progeny sharing QTL genotypes, power is most effi-
ciently maximized by increasing population size at the expense of rep-
lication. Using real data from a very large QTL mapping experiment,
Schon et al. (2004) found that increasing population size generally
increased QTL detection power more than increasing number of test
environments. For more typical QTL mapping population sizes (i.e.,
1502300), some degree of replication is needed for some QTL detection
power (Schon et al. 2004).

Genomic selection is a marker-based selection method that uses all
available marker information to predict genetic value of breeding
progenies for selection. By using winter nursery and greenhouse
facilities, it is possible to make at least two to three generations of sel-
ection and recombination per year in annual crop species. In temperate
environments, only one relevant phenotypic measurement can be made
per year, meaning that marker effect estimates applied to progeny
selections need to be robust across generations of recombination to
maximize genetic gain per unit time. Many studies on genomic selection
in plants have been performed using deterministic calculations (Heffner
et al. 2010), simulations (Bernardo and Yu 2007; Zhong et al. 2009;
Jannink 2010), and empirical results (Lorenzana and Bernardo 2009;
Heffner et al, 2011; Lorenz et al. 2012), but none have explicitly in-
vestigated the effect of experimental resource allocation choices during
model development on total genetic gain and accuracy of genomic
selection models for predicting genetic value of progenies at least one
generation of recombination removed from the training population.
Some work on resource allocation has been performed on traditional
marker-assisted selection (Moreau et al. 2000). In line with the afore-
mentioned QTL detection power results, these authors showed that
when genotyping and phenotyping costs are approximately equal, max-
imum gain from marker-assisted selection is achieved when more
resources are allocated to larger population sizes rather than replication.
However, some key differences in assumptions could preclude the find-
ings of Moreau et al. (2000) from being generalized to genomic selec-
tion. First, these authors consider a trait being controlled by only 5210
QTL. Genomic selection is aimed at and works best for traits being
controlled by many more QTL [e.g., 100 (Bernardo and Yu 2007)].
Second, Moreau et al. (2000) consider marker effects as fixed effects
and used a statistical threshold for deciding which markers to include in
the marker score. Thus, proportion of genetic variance described by
markers is closely related to power of QTL detection. Genomic selec-
tion, on the other hand, does not apply a statistical threshold for choos-
ing markers, but rather estimates effects of all markers simultaneously
and sums across all markers to obtain the marker score.

This paper reports the results of simulations aimed at exploring the
effect of resource allocation choices, in terms of population size and
replication, on (1) prediction accuracy and (2) total genetic gain

of genomic selection models applied to progenies in a genomic
recurrent selection scheme. Results from simulations are also
compared to predictions made using available theoretical formulas.

MATERIALS AND METHODS

Theory
According to basic selection theory, response to selection is equal to
the product of the selection intensity (i), selection accuracy (rA), and
SD of breeding values (sA).

R ¼ irAsA

The selection accuracy is defined as the correlation between true
breeding value and estimated breeding value (EBV). When genome-
wide marker information is used to construct a prediction, the EBV
is referred to as the genomic EBV (GEBV). The accuracy of GEBVs
is the most important criterion for evaluating the potential usefulness
of genomic selection and for comparing different GS models and stra-
tegies. Equations for the calculation of GS accuracy before data
collection have been derived by Goddard (2009) and Daetwyler et al.
(2008). Extensions and alternative formulations have been provided
by Goddard et al. (2011) and Hayes et al. (2009).

Consider that the true breeding value of individual i is ai ¼
P

zijaj

where zij is the allelic state at locus j and zij 2 f2 1; 0; 1g, aj is the true
allelic substitution effect at locus j. Similarly, âi ¼

P
j
zijâj represents the

estimated breeding value, where âjis the estimated substitution effect at
locus j obtained by regressing the phenotypes on the allelic state at locus
j. The goal is to express

rA ¼ covðai; âiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðaiÞ varðâiÞ

p (1)

in terms of population size and trait heritability so that effects of
resource allocation on genomic selection accuracy can be calculated
before data collection.

Using basic principles in quantitative genetics and simple linear
regression and making a couple of conservative assumptions, Daet-
wyler et al. (2008) showed that

raâ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh2
me

nh2
me

þ 1

vuut ; (2)

where n is the number of individuals with phenotypes in the training
population, me is the effective number of factors (or loci) for which
substitution effects need to be estimated, and h2 is the trait herita-
bility. Some discussion on me is provided herein. It is assumed the
individuals used to estimate allele substitution effects and the indi-
viduals whose genetic value is being predicted are different sets of
individuals but are from the same population. Also, this formula is
derived by considering that the effect of each locus is estimated by
regressing phenotypes on genotypes one locus at a time. The error
variance is reduced by fitting all loci simultaneously. Daetwyler et al.
(2008) proposed an approximate adjustment of 0:5r4aâ (me / n), so that

raâ �
1
2

0
BB@

nh2
me

nh2
me

þ 1

1
CCA

2

me

n
(3)

Goddard and co-workers (Goddard 2009; Hayes et al. 2009; God-
dard et al. 2011) derived the same formula but took a slightly
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different approach based on the genomic relationship between indi-
viduals in the training population and selection candidates, which is
used in place of a pedigree-based additive relationship matrix in the
standard animal model.

Effective number of loci
Effective number of loci is defined and used to derive genomic
prediction accuracy formulas. This quantity represents how many
essentially independent effects need to be estimated. It is a function of
the rate of linkage disequilibrium decay in a population, and is equi-
valent to the number of freely segregating loci of equal effect giving rise
to the observed population range and genetic variance (Lynch and
Walsh 1998). The effective number of loci cannot be greater than
the number of independently segregating chromosomal segments. In
complex, randomly mating populations, the number of independently
segregating chromosomal segments is a function of genome length and
effective population size (Hayes et al. 2009). Within families, this
quantity is related to the degree of relationship between family mem-
bers, genome size, and chromosome number. In double haploid pop-
ulations derived from an F1, the number of independently segregating
chromosomal segments can be calculated as the haploid number of
chromosome plus the expected number of cross-over events (Lynch
andWalsh 1998). The expected number of cross-over events is equal to
the genome length in Morgans.

Equation 3 was used to calculate expected prediction accuracy
under various combinations of n and r. The population modeled was
a population of DH lines from a biparental cross of inbred parents.
The genome of maize consists of 10 chromosomes with a total genetic
distance of 1796 cMs (Genetic 2008 composite map; www.maizegdb.
org), resulting in 28 effective loci.

Simulations
A breeding program applying genomic predictions to recurrent
selection within a maize biparental population was simulated. This is
essentially a marker-assisted recurrent selection strategy (Bernardo
2008), but molecular marker scores comprise summation of all marker
effects rather than just those determined to be significant in a QTL
analysis. The genetic distance of each chromosome was set according to
the Genetic 2008 composite map found on the Maize Genetics and
Genomics Database (www.maizegdb.org). The total genetic distance
of the Genetic 2008 map is 1796 cM. Five-hundred single-nucleotide
polymorphisms (SNPs) were simulated per chromosome. One-hundred
random SNPs across the genome were designated as QTL. QTL addi-
tive effects were calculated according to a geometric series as in Ber-
nardo and Yu (2007). All genetic variance was simulated as additive
genetic variance. Two hundred evenly distributed SNPs were designated
as markers. A preliminary analysis found increases in rA with additional
markers plateaued around 200 markers (data not shown).

A population of DH lines derived from the F1 between two
parental lines polymorphic at all loci was simulated. Negative and
positive values of QTL alleles were randomly assigned to parents. The
genetic value of each DH line was calculated by summing effects of all
QTL alleles carried by an individual. Measurements of single plots were
simulated by adding a random environmental deviation to the genetic
value. Environmental deviations were normally distributed with variance
s2
e ¼ s2

a=h
2
plot 2s2

a, where s
2
a represents the additive genetic variance

and h2plot represents the heritability of single plot values. For marker
effect estimation, the mean of r plot values per DH line was calculated.

Where experimental design parameters were constrained by
a budget, the tradeoff between replication number and population

size was made according to a budget expressed in units of field plots
(B), B ¼ nðC þ rFÞ, where C is the cost (in plots) of genotyping a DH
line, n is the number of DH lines, r is the number of replications, and
F is the proportion of DH lines placed in field trials. Levels of
F considered were 1, 0.75, and 0.50.

Two uses of the DH population to investigate model accuracy were
deployed: cross-validation and selection-recombination simula-
tion. Cross-validation involved splitting the DH population into
a model training set and validation set. The size of the model
training set (n) was variable. Five-hundred DH lines comprised the
validation set. Phenotypes in the training set were used for marker
effect estimation. GEBVs of the validation set were calculated by
summing estimated marker allele effects for each DH line. Predic-
tion accuracy was calculated as the correlation between validation-
set GEBVs and true genetic values.

Simulation of selection and recombination involved phenotyping
a DH population of size N, training a genomic selection model on that
phenotypic data, and performing at least three generations of selection
and recombination. Although phenotypic data are available on Cycle
0 (C0) DH lines, genomic predictions were used for selection because
preliminary analyses showed selection on markers alone was more
effective in C0 compared with either phenotypic selection or selection
on an index combining phenotypes and genomic predictions (data not
shown). In the first cycle, 10 DH lines were selected and randomly
crossed to form 5 random F1s. The F1s were randomly mated to
create 200 C1 S0 plants. The genomic selection model trained using
C0 DHs was applied to the 200 C1 progenies to select 20 C1 S0 plants
with the highest GEBVs. Selected plants were recombined to form C2.
This procedure was repeated to create C3. Total genetic gain was
calculated as the difference between C0 and C3 average genetic value.

Because different levels of n inherent in this study cause differences
in selection intensity and thus genetic variation in subsequent cycles, it
is impossible to examine the influence of n and r on model accuracy in
subsequent cycles. To circumvent this issue and isolate the effect of
varying resource allocation on model prediction accuracy in subsequent
cycles, another set of simulations was performed without the aspect of
selection. The DH lines of C0 were randomly mated with replacement
to create 1000 F1s, which were randomly mated to create 1000 C1 S0
plants. This procedure was continued to create C2 and C3 and ensured
that allele frequencies were stable and that genetic variation present in
the C0 population was held constant, allowing a comparison of different
resource allocation options in producing a genomic selection model
with predictive accuracy of populations more than one generation re-
moved from the training population.

All simulations were performed using the statistical software
package R. Genetic recombination was performed using functions
obtained from the R package hypred. All routines were repeated
at least 200 times, starting with simulation of population and genetic
architecture. Genetic gain evaluations were performed with RR-BLUP
only, which is computationally less intensive, and therefore routines
for this part of the study were run 500 times. Prediction accuracies and
genetic gains were averaged across iterations and standard errors of
the means were calculated. An R script containing functions used in
the simulation and a user script executing the functions are provided
as Supporting Information, File S1 and File S2.

Models
Because all the data in the simulations are balanced, and all individuals
belong to the same biparental family, the basic model relating marker
scores to phenotypes can be represented as yi ¼ mþP

mzijujdj þ ei,
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where yi represents the entry mean of the ith DH line, m is the pop-
ulation mean, zij is the allelic state of marker j for individual i coded as
{A1A1, A2A2} = {21, 1}, uj is the estimated effect of marker j, dj is an
indicator variable for the inclusion of marker j, and ei is a residual.

Three models were used: ridge regression best linear unbiased
prediction (RR-BLUP), BayesCp (Habier et al. 2011), and a multiple
regression model in which marker effects were estimated with ordinary
least squares (OLS). In RR-BLUP, dj = 1 and uj � Nð0;s2

uÞ, where s2
u

is estimated by maximum likelihood. This means that all marker effects
are sampled from the same distribution and thus are shrunken toward
0 to the same degree. The R package rrBLUP developed by Endelman
(2011) was used to implement the model. This implementation esti-
mates s2

u through the spectral decomposition algorithm of Kang et al.
(2008). BayesCp is a modification of BayesB. Under BayesCp, dj =
0 with probability p, dj = 1 with probability 1 – p and uj � Nð0;s2

uÞ.
Parameter p itself is estimated from the data. The prior distribution of
p is uniform between 0 and 1. The method estimates s2

u jointly over all
nonzero markers (Kizilkaya et al 2010). The previous distribution for
s2
u follows a scaled inverse x2 distribution with 4 df (nu) and scale

parameter S2u ¼ ½ðnu 2 2Þ~s2
u�=nu, where ~s2

u represents the variance of
additive effects of a random sampled locus.

~s2
u ¼ s�P

2

ð200· ð12pÞ�s2
m
; (4)

where s�P
2
represents the variance of DH line means, 200 is equal to

the number of markers, and �s2
m represents the marker score variance

averaged across loci.
Three thousand Markov chain iterations were run, with 1000

discarded as burn-in. This was judged to be sufficient because previous

results showed stable estimates and because all parameters of interest
in the simulation were estimated by running all simulations at least 200
times. The OLS model was selected using a forward-backward model
selection algorithm. All markers were first fit individually. The marker
with the lowest p-value was added to the model, and each remaining
marker was individually fitted again. The next marker with the lowest
p-value was then added to the model and this process was repeated.
After each round of forward selection, backward elimination was per-
formed by eliminating any markers upon model refit with significance
levels that dropped below the statistical threshold. The p-value for both
forward selection and backward elimination was set to 0.20. This
algorithm was iterated until convergence.

RESULTS

Effect of replication and population size
on prediction accuracy
Genomic selection accuracies were calculated for various levels of n
and r for plot heritabilities of 0.20 (Figure 1A) and 0.60 (Figure 1B).
Accuracy increased with training population size and replication
number as expected (Figure 1). The rate of accuracy increase in re-
sponse to greater n varied between the different models. RR-BLUP
faired quite well even when n was less than 75. BayesCp, on the other
hand, performed quite poorly until n was greater than 75, and accu-
racy slowly increased beyond n = 100 at about the same rate as it
increased for RR-BLUP. As n increased greater than 125, accuracy
slowly increased, and the curves presented in Figure 1 show diminish-
ing returns between n = 125 and n = 300. For the OLS model, on the
other hand, accuracies remain low until n = 125, then continued to
rapidly increase through n = 300.

Figure 1 Prediction accuracy (rA) as a func-
tion of replication number and population
size for each of three statistical models. (A)
Heritability of single plot measurements set
to 0.20. (B) Heritability of single plot mea-
surements set to 0.60.
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Interestingly, a substantial boost in accuracy from r = 1 to r = 2
was observed across levels of n for h2plot ¼ 0:20. It was expected that
the advantage in model accuracy achieved by increasing r = 1 to r = 2
would diminish as n increased, but the boost in accuracy was remark-
ably consistent. For example, increasing r = 1 to r = 2 increased rA by
0.09 for n = 100:model = RR-BLUP: h2plot ¼ 0:20, by 0.09 for n = 200,
and by 0.08 for n = 300. To test the extent to which increasing
r improved rA despite large population sizes, the simulation was taken
out to very large, impractical population sizes for model = RR-BLUP:
h2plot ¼ 0:20 and model = OLS: h2plot ¼ 0:20 (Figure S1). When RR-
BLUP is used, there are diminishing returns in rA by increasing r = 1
to r = 2 as n is increased, but only after n exceeds 300. Even then, rA
for r = 1 approaches that of r = 2 only very slowly, and a difference of
0.05 is still observed at n = 700.

One thing that is apparent in these results is that RR-BLUP achieves
much greater accuracies at all levels of n, but the difference is much
greater at relatively small values of n. When n = 100, RR-BLUP is more
than 34% more accurate than the OLS model, but when n . 500, RR-
BLUP is only 15% more accurate than the OLS model. This property of
RR-BLUP indicates that resource allocation decisions will differ be-
tween traditional marker-assisted selection and genomic selection.

Effect of tradeoff between population size
and replication
In reality, breeding programs have budgets to contend with. Budgets
of 250 and 500 field plots per single DH population were considered. I
assumed different genotyping costs (C), expressed in field plot
equivalents of 0, 0.50, and 1. A situation in which genotyping is free
(i.e., C = 0) could be where a population was genotyped for another
reason not related to the breeding program, or a futuristic scenario
where genotyping technologies have advanced to the point of in situ
genotyping assays, for example. BayesCp was no longer considered
for subsequent analyses because it performed so similarly to RR-
BLUP, and it was decided to focus the results on one model.

When B = 500, prediction accuracy measured by cross validation
was always maximized at r =1 and the greatest value of n for OLS
(Figure 2). This was the case for both h2plot ¼ 0:20 and h2plot ¼ 0:60 for
all levels of C. Large differences in accuracy were observed between
r =1 and r =4. Prediction accuracy of RR-BLUP, on the other hand,
responded very little to allocating resources between n and r. For
example, when C = 0, so that there is a direct tradeoff between level
of replication and population size, n = 500:r = 1 resource allocation
strategy produced a model only 4% more accurate than a n = 125:r = 4
resource allocation strategy, whereas the increase in accuracy was 67%
for OLS. This essentially means that slightly greater accuracy with RR-
BLUP can be achieved by replicating alleles across individuals, but the
advantage isn’t nearly as great as it is for OLS. Following this, when-
ever C . 0 so that genotyping costs reduce n disproportionately as
r increases, the advantage of maximizing n quickly disappears. The
RR-BLUP accuracies for all resource allocation strategies are remark-
ably similar, indicating greater flexibility in experimental design
to maximize genomic selection accuracies. As can be seen in Figure
1A, rate of increase in genomic selection accuracy with increasing n
tapers off above n =100, and increasing replication from r =1 to r =2
boosts accuracy by 0.09. The combination of these factors leads to
almost an even tradeoff in accuracy between n and r.

The situation is only slightly different for B = 250 (Figure S2).
When C = 0 and n can be as large as 250 so that r =1, a big boost
in accuracy is observed for OLS. Whenever n is less than this for other
resource allocation strategies, OLS performs quite poorly. As when

Figure 2 Prediction accuracy (rA) for two statistical models as affected
by tradeoffs between replication (r) and population size (n) for various
levels of relative genotyping costs (C) expressed in field plot equiva-
lents. Total budget is set to 500 field plot equivalents.
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B = 500, RR-BLUP is much less sensitive to tradeoffs between n and r
compared to OLS. Differences in accuracy are greater, however, for
B = 250. This is likely due to the fact that values of r greater than two
force n to be smaller than 100, which substantially reduces accuracy
(Figure 1A).

Comparison between theoretical prediction accuracies
and observed
Theoretical prediction accuracies follow a very similar trajectory as
that observed in the simulation (Figure 3) and are only slightly higher
than the accuracy observed in the simulation, being on average 0.026
higher for r = 1 and 0.013 greater for r = 2. A key use of the theoretical
accuracy calculations would be for resource allocations decisions. The
n and r choices according to values of C = {0, 0.5, 1} and B = {250,
500} discussed above were used in the formula derived by Daetwyler
et al. (2008). The resource allocation strategy (i.e., n vs. r) predicted to
give the greatest accuracy was compared with that observed in the
simulation. The predicted optimal resource allocation strategy largely

agreed with those observed in the simulations (Table 1). Only in three
of the 12 instances was there a disagreement, and this often occurred
when the difference between different levels of n:r was vanishingly
small (Table 1). These results suggest that the formula derived by
Daetwyler et al. (2008) can be used to guide genomic selection strat-
egies in plant breeding, thereby avoiding time consuming efforts in
data mining and computer simulations.

Effect of varying n and r on multiple cycles of selection
Resource allocation strategies were applied to generating phenotypic
data for model training. One goal of this study was to determine how
different strategies, constrained by budgets, affected prediction accuracy
not only in Cycle 0 but also the prediction of progenies in cycles 1 to 3.
To isolate prediction accuracy from the confounding effect of shifting
genetic variances caused by different selection intensities and changes in
allele frequency, a model was trained in Cycle 0 followed by
randomly mating the population for three generations. Models
trained in Cycle 0 were applied to progenies in Cycles 123. No
change in rank across cycles of recombination was observed for the
different resource allocation strategies (Figure 4). For example,
when C = 0, a n:r ratio of 500:1 was optimal across all cycles; when
C = 1, a n:r ratio of 125:3 was optimal across all cycles. The exact
same finding of no crossover in rank across cycles was observed for
all other scenarios (Figure S3).

Genetic gain is a function of selection intensity and genetic
variance in addition to selection accuracy. The relative genetic gain of
two methods for performing the first cycle of selection was evaluated:
selecting C0 progenies on the basis of phenotypic value alone vs.
selection based on marker scores. The latter holds potential to be
advantageous because of extensive replication at the allelic level, and
therefore prediction accuracy will benefit from larger populations,
whereas phenotypic selection does not. Bernardo and Yu (2007),
however, reported that simulated selection based on phenotypic value
alone in the first cycle was at least as successful as an index value
combining phenotypic values and marker scores. In the simulations
performed for this study, selection on marker scores alone in cycle
0 led to greater genetic gain than selection on phenotypic values or
GEBV-phenotype indices (results not shown), and therefore all selec-
tions made in cycle 0 were based on marker scores alone.

Figure 3 Comparison between calculated prediction accuracy
(dashed lines) and observed prediation accuracy (solid lines) in
simulations.

n Table 1 Population size and number of replication numbers achieving the greatest prediction accuracy according to theoretical
calculations and simulations for different resource allocation situations

B – C – h2plot

Optimal Resource Allocation Strategy (n:r)

Theoretical (Obs rAa) Observed (Obs rA) Agreement

250 – 0 – 0.20 250:1 250:1 Yes
250 – 0.5 – 0.20 100:2 100:2 Yes
250 – 1 – 0.20 83:2 83:2 Yes
250 – 0 – 0.60 250:1 250:1 Yes
250 – 0.5 – 0.60 167:1 167:1 Yes
250 – 1 – 0.60 125:1 (0.773) 83:2 (0.777) No
500 – 0 – 0.20 500:1 500:1 Yes
500 – 0.5 – 0.20 200:2 200:2 Yes
500 – 1 – 0.20 167:2 (0.704) 125:3 (0.710) No
500 – 0 – 0.60 500:1 500:1 Yes
500 – 0.5 – 0.60 333:1 333:1 Yes
500 – 1 – 0.60 250:1 (0.844) 167:2 (0.848) No

Predictions in the simulations were made with the RR-BLUP model. The column titled “Agreement” indicates if the theoretical calculations agreed with what was
observed in the simulation. B, total budget in field plot equivalents; C, genotyping cost in field plot equivalents; h2plot , heritability of single plot measurements; RR-
BLUP, ridge regression best linear unbiased prediction.
a
Prediction accuracies observed in the simulation are displayed in parenthesis for the instances in which the theoretical and observed optimal resource allocation
strategies do not agree.
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Three options were considered for phenotyping: (1) phenotype
100% of DH lines, (2) phenotype only 75% of DH lines, (3) phenotype
only 50% of DH lines. The latter two options were chosen to save
resources for phenotyping, thereby allocating more resources to
genotyping larger populations. Total population sizes and number of
DH lines phenotyped at four levels of replication are displayed in
Table 2, Table 3, Table 4, and Table 5. Surprisingly, phenotyping
only a fraction of the DH population provided no benefit (Tables
225). This was largely because only a limited increase in selection

intensity was achieved, as well as the fact that lines phenotyped and
included in the training dataset were predicted with higher accuracy
than lines not phenotyped.

With respect to comparing genetic gain across resource allocation
strategies, results similar to those for prediction accuracy were found.
That is, a degree of flexibility exists with equivalent genetic gains being
observed over a number of different strategies. For example, when B =
250 and C = 0.50, no difference was observed between n = 167:r = 1
and n = 100:r = 2 (Table 2). The same was observed for B = 500 and

Figure 4 Prediction accuracy (rA) for each relative
genotyping cost and resource allocation strategy
across generations of random mating (Cycle). Pop-
ulation sizes corresponding to each level of r can be
observed in Figure 2. Total budget was set to 500
field plot equivalents. (A) Heritability of single plot
measurements set to 0.20. (B) Heritability of single
plot measurements set to 0.60. Average standard
error of prediction accuracies was 0.005 and ranged
from 0.002 to 0.007.

n Table 2 Response and prediction accuracy of several resource allocation and phenotyping strategies for a budget of 250 total plot
units, relative genotyping cost of 0.50, and plot heritability of 0.20 (i.e., B = 250, C = 0.50, h2plot=0.20)

%Pheno.a r n nPhb i
Prediction Accuracy of

Phenotyped DHsc
Prediction Accuracy of
Nonphenotyped DHsd

Cycle 1
Mean

Cycle 2
Mean

Cycle 3
Mean

Standard Error of
Cycle 3 Mean

50 1 250 125 2.15 0.66 0.58 1.28 1.66 1.90 0.021
50 2 167 84 1.99 0.70 0.59 1.22 1.63 1.92 0.020
50 3 125 62 1.86 0.74 0.59 1.20 1.64 1.92 0.019
50 4 100 50 1.75 0.76 0.58 1.13 1.56 1.89 0.020
75 1 200 150 2.06 0.67 0.60 1.32 1.73 2.02 0.020
75 2 125 94 1.86 0.72 0.61 1.26 1.70 2.00 0.018
75 3 91 68 1.71 0.75 0.61 1.21 1.67 1.96 0.019
75 4 71 53 1.59 0.77 0.58 1.13 1.60 1.90 0.020
100 1 167 167 1.99 0.68 0.62 1.33 1.76 2.03� 0.019
100 2 100 100 1.75 0.72 0.63 1.26 1.71 2.02 0.019
100 3 71 71 1.59 0.75 0.62 1.17 1.65 1.97 0.019
100 4 56 56 1.46 0.77 0.61 1.12 1.59 1.90 0.019

Predictions were made with RR-BLUP. Resource allocation strategy with highest cycle 3 mean is indicated by asterisk (�) in Cycle 3 mean column. All resource
allocation strategies producing genetic gain not significantly different from the greatest genetic gain observed are underlined. Units are in C0 genetic SDs. RR-BLUP,
ridge regression best linear unbiased prediction; GEBVs, genomic estimated breeding value.
a
Percentage of DH population phenotyped. DH lines not phenotyped were genotyped and genomic selection model was applied to calculate their GEBVs.

b
Number of DH lines phenotyped (i.e., %Pheno · n rounded to nearest whole integer).

c
Prediction accuracy of DH lines that were phenotyped and included in the model training dataset.

d
Prediction accuracy of DH lines that were not phenotyped.
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both levels of C. When B = 250 and C = 1, however, the greatest
genetic gain was observed for n = 62 and r = 3. The small population
size here was offset by the increase in accuracy through additional
replication. In summary, if genotyping is relatively inexpensive (i.e.,
half the cost of phenotyping a single experimental unit), one or two
replications can be used without any difference in genetic gain. Allo-
cating more resources to additional replication is not advisable. If
genotyping costs at least as much as phenotyping one experimental
unit, replication is beneficial, especially when budgets are small. If
the budget is large, several different strategies can be used without
sacrificing total genetic gain. It appears increases in selection intensity
through larger population sizes are offset by increases in prediction
accuracy through more precise phenotyping.

DISCUSSION
Genomic selection can be incorporated into a breeding program in
several different ways including, but not limited to, predicting and
selecting within biparental populations (Bernardo and Yu 2007;
Heffner et al. 2011), across multiple related biparental populations
(Albrecht et al. 2011) and among a panel of inbred lines or accessions
(Riedelsheimer et al. 2012). When genomic selection is applied to any
of these populations, GEBVs can be used to select progenies geno-
typed but not phenotyped, or GEBVs can augment or replace pheno-
types if they are more predictive of true breeding values. The latter
may be advantageous if large populations and a high degree of allelic
replication provide highly accurate allelic effect estimates (Gimelfarb
and Lande 1994). In either case, a key question is whether resources

n Table 3 Response and prediction accuracy of several resource allocation and phenotyping strategies for a budget of 250 total plot
units, relative genotyping cost of 1, and plot heritability of 0.20 (i.e., B = 250, C = 1, h2plot= 0.20)

%Pheno.a r n nPhb i
Prediction Accuracy of

Phenotyped DHsc
Prediction Accuracy of
Nonphenotyped DHsd

Cycle 1
Mean

Cycle 2
Mean

Cycle 3
Mean

Standard Error of
Cycle 3 Mean

50 1 167 84 1.99 0.61 0.51 1.05 1.44 1.64 0.021
50 2 125 62 1.86 0.68 0.54 1.11 1.52 1.76 0.021
50 3 100 50 1.75 0.73 0.56 1.09 1.53 1.78 0.020
50 4 83 42 1.67 0.75 0.55 1.08 1.51 1.78 0.020
75 1 143 107 1.92 0.62 0.54 1.11 1.52 1.73 0.020
75 2 100 75 1.75 0.70 0.58 1.16 1.60 1.86 0.019
75 3 77 58 1.63 0.73 0.57 1.10 1.55 1.81 0.019
75 4 62 46 1.52 0.76 0.57 1.06 1.53 1.80 0.019
100 1 125 125 1.86 0.64 0.56 1.16 1.59 1.81 0.020
100 2 83 83 1.67 0.71 0.60 1.15 1.61 1.90 0.019
100 3 62 62 1.52 0.75 0.60 1.14 1.62 1.94� 0.018
100 4 50 50 1.40 0.77 0.59 1.04 1.52 1.84 0.019

Predictions were made with RR-BLUP. Resource allocation strategy with highest cycle 3 mean is indicated by asterisk (�) in Cycle 3 mean column. All resource
allocation strategies producing genetic gain not significantly different from the greatest genetic gain observed are underlined. Units are in C0 genetic SDs. RR-BLUP,
ridge regression best linear unbiased prediction; GEBVs, genomic estimated breeding value.
a
Percentage of DH population phenotyped. DH lines not phenotyped were genotyped and genomic selection model was applied to calculate their GEBVs.

b
Number of DH lines phenotyped (i.e., %Pheno · n rounded to nearest whole integer).

c
Prediction accuracy of DH lines that were phenotyped and included in the model training dataset.

d
Prediction accuracy of DH lines that were not phenotyped.

n Table 4 Response and prediction accuracy of several resource allocation and phenotyping strategies for a budget of 500 total plot
units, relative genotyping cost of 0.50, and plot heritability of 0.20 (i.e., B = 500, C = 0.50, h2plot=0.20)

%Pheno.a r n nPhb i
Prediction Accuracy
of Phenotyped DHsc

Prediction Accuracy
of Nonphenotyped DHsd

Cycle 1
Mean

Cycle 2
Mean

Cycle 3
Mean

Standard Error
of Cycle 3 Mean

50 1 500 250 2.42 0.72 0.68 1.61 1.99 2.33 0.019
50 2 333 166 2.27 0.77 0.70 1.62 2.03 2.39 0.018
50 3 250 125 2.15 0.80 0.71 1.58 2.01 2.39 0.018
50 4 200 100 2.06 0.81 0.70 1.51 1.94 2.32 0.020
75 1 400 300 2.34 0.74 0.71 1.63 2.04 2.39 0.018
75 2 250 188 2.15 0.78 0.73 1.57 2.01 2.39 0.017
75 3 182 136 2.02 0.80 0.72 1.52 1.97 2.36 0.018
75 4 143 107 1.92 0.82 0.72 1.50 1.96 2.36 0.018
100 1 333 333 2.27 0.76 0.72 1.65 2.08 2.45� 0.019
100 2 200 200 2.06 0.79 0.73 1.59 2.04 2.44 0.017
100 3 143 143 1.92 0.81 0.73 1.50 1.98 2.38 0.017
100 4 111 111 1.80 0.82 0.72 1.45 1.92 2.33 0.017

Predictions were made with RR-BLUP. Resource allocation strategy with highest cycle 3 mean is indicated by asterisk (�) in Cycle 3 mean column. All resource
allocation strategies producing genetic gain not significantly different from the greatest genetic gain observed are underlined. Units are in C0 genetic SDs. RR-BLUP,
ridge regression best linear unbiased prediction; GEBVs, genomic estimated breeding value.
a
Percentage of DH population phenotyped. DH lines not phenotyped were genotyped and genomic selection model was applied to calculate their GEBVs.

b
Number of DH lines phenotyped (i.e., %Pheno · n rounded to nearest whole integer).

c
Prediction accuracy of DH lines that were phenotyped and included in the model training dataset.

d
Prediction accuracy of DH lines that were not phenotyped.
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should be used to maximize population size or if some resources
should be allocated to replication in order to increase heritability.

This simulation study on a single biparental population of DH
lines showed that when the objective is to predict nonphenotyped
progenies, plot-based heritability is low, and cost of genotyping is at
least 50% that of phenotyping an experimental unit, RR-BLUP
prediction accuracy slightly benefits from replication. When genotyp-
ing is free or h2plot is high, allocating resources to a larger population
maximizes prediction accuracy. The differences between resource al-
location strategies, however, were quite small across scenarios. This
stands in contrast to what has been previously reported for QTL de-
tection power (Knapp and Bridges 1990; Schon et al. 2004), as well as
what was found for a conventional marker-assisted selection approach
tested in the present study. When marker-based selection was carried
out by using OLS estimation and a model selection algorithm, pre-
diction accuracy was clearly and consistently maximized when all
resources were allocated to maximizing n and minimizing r. Figure
1 shows that accuracy of OLS and RR-BLUP responded to replication
approximately equally. A large difference between the two models,
especially when h2plot= 0.20, is that OLS accuracy didn’t respond until
n exceeded 125, whereas RR-BLUP accuracy increased between n = 25
and n = 125, and actually began to level off just above n = 125.
Accuracy of OLS continued to steadily increase until n was greater
than 300. Because n was always less than or equal to 250 when r =2,
boosting n by decreasing r provided a substantial benefit in accuracy
to OLS, whereas RR-BLUP benefited less at these larger population
sizes.

It is well known that OLS estimates of marker effects and model
selection algorithms suffer from inability to explain sufficient
proportions of genetic variance for complex traits. This is primarily
caused by lack of statistical power to detect small-effect QTL
comprising genetic variation of complex, agronomically important
traits. Power is especially low when population size is relatively small.
In fact, Utz et al. (2000) found that power was insufficient for detect-
ing grain yield QTL even at population sizes of 300. Compounding the
problem of insufficient power is upward bias of QTL effect estimation,
which is inversely related to power (Beavis 1994; Melchinger et al.
1998). As population size decreases, both QTL detection power

diminishes and estimation bias increases, resulting in marker-assisted
selection model of dramatically reduced prediction accuracy. An RR-
BLUP genomic selection model, on the other hand, does not suffer
from lack of statistical power because all marker effects are estimated
and used for prediction. Population size does affect marker effect
estimation accuracy and thus genomic prediction accuracy (Lorenz
et al. 2012; Lorenzana and Bernardo 2009; Heffner et al. 2011), but
apparently not as much as power and estimation accuracy of OLS
MAS models.

A lack of rank changes among resource allocation strategies across
generations of random mating was unexpected. It was expected that
a resource allocation strategy better able to separate markers in terms
of their effects and thus give greater weight to markers more closely
linked to QTL would perform better on progenies several generations
of random mating removed from the training population. It was
hypothesized that maximizing population size, thus creating more
recombination events for increased resolution, would always produce
a model with superior prediction accuracies on progenies several
generations removed from the training population. This was
observed by Zhong et al. (2009), where more resources allocated
to replication improved prediction when the training and validation
populations were only one generation removed, but allocating more
resources to larger population size resulted in greater prediction
accuracy when training and validation populations were separated
by four generations of random mating. These authors used a differ-
ent population structure (several related biparental populations de-
rived from actual barley genotypes) and did not account for
genotyping cost. Another example of rank changes across genera-
tions of random mating is included in Habier et al. (2007), where
different genomic selection models performed similarly when train-
ing and validation populations were removed by one or less gener-
ations, but BayesB performed markedly better as the number of
generations between training and validation populations increased.
This was because BayesB put more weight on markers more closely
linked to QTL. Despite these theoretical expectations, I observed no
change in rank across generations, indicating that a particular re-
source allocation strategy will be superior across at least three gen-
erations. One explanation is the high level of linkage disequilibrium

n Table 5 Response and prediction accuracy of several resource allocation and phenotyping strategies for a budget of 500 total plot
units, relative genotyping cost of 1, and plot heritability of 0.20 (i.e., B = 500, C = 1, h2plot=0.20)

%Pheno.a r n nPhb i
Prediction Accuracy
of Phenotyped DHsc

Prediction Accuracy
of Nonphenotyped DHsd

Cycle 1
Mean

Cycle 2
Mean

Cycle 3
Mean

Standard Error
of Cycle 3 Mean

50 1 333 166 2.27 0.68 0.61 1.42 1.80 2.09 0.021
50 2 250 125 2.15 0.75 0.66 1.46 1.88 2.21 0.019
50 3 200 100 2.06 0.78 0.68 1.44 1.88 2.21 0.019
50 4 167 84 1.99 0.80 0.68 1.44 1.87 2.25 0.018
75 1 286 214 2.21 0.71 0.66 1.48 1.89 2.20 0.021
75 2 200 150 2.06 0.76 0.69 1.49 1.93 2.29 0.019
75 3 154 116 1.95 0.79 0.70 1.46 1.91 2.28 0.017
75 4 125 94 1.86 0.81 0.69 1.41 1.87 2.26 0.017
100 1 250 250 2.15 0.73 0.68 1.53 1.96 2.29 0.018
100 2 167 167 1.99 0.77 0.71 1.49 1.95 2.31� 0.018
100 3 125 125 1.86 0.80 0.71 1.42 1.90 2.28 0.018
100 4 100 100 1.75 0.81 0.71 1.40 1.88 2.28 0.018

Predictions were made with RR-BLUP. Resource allocation strategy with highest cycle 3 mean is indicated by asterisk in Cycle 3 mean column. All resource allocation
strategies producing genetic gain not significantly different from the greatest genetic gain observed are underlined. Units are in C0 genetic SDs. RR-BLUP, ridge
regression best linear unbiased prediction; GEBVs, genomic estimated breeding value.
a
Percentage of DH population phenotyped. DH lines not phenotyped were genotyped and genomic selection model was applied to calculate their GEBVs.

b
Number of DH lines phenotyped (i.e., %Pheno · n rounded to nearest whole integer).

c
Prediction accuracy of DH lines that were phenotyped and included in the model training dataset.

d
Prediction accuracy of DH lines that were not phenotyped.
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(LD) between markers and QTL and an insufficient number of
generations to break up linkages, although predictions accuracies gen-
erally declined as expected. The number of effective factors was 28, but
the number of simulated QTL was 100, resulting in a situation where
QTL are expected to be in high LD with several markers.

With respect to total genetic gain, simulations under the budgets
and genotyping:phenotyping cost ratios considered in this study again
indicated a degree of flexibility in terms of resource allocation. In three
of the four cases studied (Tables 225), multiple strategies were not
statistically different from one another in terms of genetic gain. In
each of these three cases, maximizing population size and phenotyp-
ing 100% of the DH lines resulted in at least as much genetic gain as
any other strategy. When the budget was relatively small and geno-
typing cost was relatively high, it was beneficial to conduct three
replications to increase heritability. Phenotyping less than 100% of
the DH lines that were genotyped to save resources provided little
benefit. It appears this is because prediction accuracy of lines included
in the training dataset was always substantially higher than those not
included. To my knowledge, in no other studies have authors specif-
ically investigated this in the context of either genomic selection or
marker-assisted selection, so an attempt at an intuitive explanation is
warranted. Prediction accuracy is partly a function of LD between
markers and QTL. Linkage disequilibrium between markers and
QTL not physically linked can be generated by random genetic drift,
or sampling. Because we are dealing with training populations of finite
size, the sampling effect can generate slight LD between unlinked
markers and QTL. This source of LD is useful for purposes of pre-
diction within the same sample of individuals that generated that
spurious LD. However, when marker effects are applied to individuals
outside the original sample of individuals, the same exact spurious
pattern of LD between unlinked markers and QTL no longer exists.
Rather, this source of LD just generates noise, reducing marker effect
estimation accuracy Increasing the heritability of measurements
increases the accuracy derived from this source of LD when predic-
tions are applied within the training population. However, when
predictions are applied outside the original sample, increasing pop-
ulation size has a larger effect because it reduces noise caused by
spurious LD (J-L. Jannink, personal communication).

It is acknowledged that one expense not considered for allocating
resources was cost of developing DH lines, which is certainly a consider-
able cost for breeding programs. One reason this expense was not
considered is because of uncertainty in its relative cost and greatly
varying costs between organizations. Nevertheless, the finding of little
benefit to phenotyping only a subset of the genotyped population would
not change, and actually factoring in cost of DH line development
would only make phenotyping the entire population more beneficial.

An important factor not considered in this study, and all studies
on resource allocation for MAS, is genotype-by-environment interac-
tion. The simulations carried out implicitly assume that the phenotypic
data comprising the training dataset was collected in an environment
perfectly representative of the target environment. In an actual breeding
program, multiple locations and possibly multiple years are needed so
allelic effects are estimated across a set of environments representative
of those in which the cultivar is grown in subsequent seasons. Results
reported herein pertain to the effect of replication within any given
environment. The effect of genotype-by-environment interaction on the
allocation of resources across environments needs further study using
data from actual field trials. For example, is it more efficient to evaluate
100 different progenies in each of five environments for a total
population size of 500, or evaluate 100 common progenies at five
environments? The former strategy allows for much larger population

sizes, but each progeny is only evaluated in one environment. Given
that alleles are shared across progenies, the strategy of spreading
populations across environments may be more effective.

The main finding of this simulation study applicable to plant
breeding programs is the flexibility found in resource allocation in
genomic selection for highly polygenic traits. Unlike with tradi-
tional MAS approaches, where clearly population size should be
maximized, genomic prediction accuracy and total genetic gain are
less affected by allocating more resources to replication for low
heritability traits like grain yield, and in some cases increased
replication results in the maximum genetic gain. It was also shown
that the deterministic calculations for prediction accuracy (Daet-
wyler et al. 2008) are useful for comparing resource allocation
strategies in biparental populations.
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Figure S1   Prediction accuracy (rA) as a function of replication number and population size for each of two statistical 
models. Black = 1 rep, Teal = 2 reps, Red = 3 reps, Dashed blue = 4 reps. 
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Figure S2   Prediction accuracy (rA) for two statistical models as affected by tradeoffs between replication (r) and 
population size (n) for various levels of relative genotyping costs (C) expressed in field plot equivalents. Total budget is 
set to 250 field plot equivalents. 



  A.  J. Lorenz 
 

4 SI 

 
 

Figure S3   Prediction accuracy (rA) for each relative genotyping cost and resource allocation strategy across 
generations of random mating (Cycle). Population sizes corresponding to each level of r can be observed in Figure 2. 
Total budget was set to 250 field plot equivalents. Panel A: Heritability of single plot measurements set to 0.20. Panel 
B: Heritability of single plot measurements set to 0.60. Average standard error of prediction accuracies was 0.006 and 
ranged from 0.003 to 0.008. 
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Files S1-S2 
 

File S1: R script containing functions used in the simulation 

File S2: User script executing the functions 

Files S1-S2 are available for download at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.004911/-/DC1. 
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