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The USDA Soybean Germplasm Collection harbors a large stock of genetic 

diversity with potential to accelerate soybean cultivar development. The extent and nature 

of favorable alleles contained in the collection are not well known nor is the distribution of 

genetic variation and how it relates to phenotypic variation. The genotyping of the entire 

USDA Soybean Germplasm Collection marked the beginning of a systematic exploration 

of genetic diversity for genetic research and breeding. In this research, we conducted the 

first comprehensive analysis of population structure on the collection of ~14,400 soybean 

accessions [Glycine max (L.) Merr. and G. soja Siebold & Zucc.] that were genotyped 

using a 50KSNP chip. Accessions originating from Japan and Korea diverged from the 

Chinese accessions. The ancestry of founders of the American accessions derived mostly 

from two Chinese subpopulations, which reflects the composition of the American 

accessions as a whole. A genome-wide association study on ~12,000 accession conducted 

on seed protein and oil is the largest reported to date in plants and identified strong single 

nucleotide polymorphisms (SNPs) signals on chromosomes 20 and 15. The haplotype 

effects of the chromosome 20 region show a strong negative relationship between oil and 

protein at this locus, indicating negative pleiotropic effects or multiple closely linked loci 

in repulsion phase linkage. Genome-wide association mapping for ten descriptive traits 
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identified a total of 23 known genes and unknown genes controlling the phenotypic 

variants. Because some of those genes had been cloned, we were able to show that the 

narrow SNP signal regions had chromosomal base pair spans that, with few exceptions, 

bracketed the base pair region of the cloned gene coding sequences, despite variation in 

SNP distribution of chip SNP set. We also elucidate the genetic basis of local adaptation 

in soybean by exploring the natural variation available in 3,012 locally adapted landrace 

accessions from across the geographical range of soybean. Our approach using selection 

mapping  and landscape genomic association methods identified important candidate genes 

related to drought and heat stress, and revealed important signatures of directional selection 

that are likely involved on geographic divergence of soybean. 
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CHAPTER 1: INTRODUCTION  

The C3 legume crop soybean (Glycine max [L.] Merr.) is the leading oil seed crop 

produced and consumed in the world today, and accounts for 29% of world production 

(Song et al., 2015). Soybean has a wide range of latitudinal adaptation in both North and 

South hemispheric geographical locations, which reflects its complex domestication origin 

and subsequent breeding history (Carter et al., 2004). The domestication of G. max from 

its wild species progenitor (Glycine soja Sieb. and Zucc.) occurred in China ~5,000 years 

ago (Carter et al., 2004; Hyten et al., 2006). Cultivation of soybean expanded from China 

to Korea and Japan about 2000 years ago (Kihara, 1969). It may have been introduced into 

North America in 1765, and into Central and South America during the first half of the last 

century (Hymowitz, 2004). Because of this ancient origin and the diffusion via the trading 

of soybean seeds, landrace adaptation to local climates and cultural practices occurred 

which resulted in a multitude of localized G. max landraces (Hyten et al., 2006). An 

estimated 45,000 unique Asian landraces have been collected and are maintained in G. max 

germplasm collections around the world (Carter et al., 2004). Despite this seemingly vast 

reservoir of genetic diversity, only 0.02% (N=80) of those landraces account for 99% of 

the collective parentage of North American soybean cultivars released between 1947 and 

1988 (Li et al., 2002; Carter et al, 2014). Seventeen of these 80 landraces account for 86% 

of the collective parentage while the contribution of the remaining landraces is less than 

1% (Gizlice et al., 1994; Li and Nelson, 2001; Ude et al., 2003, Carter et al., 2004). It is 

presumed that these genetic bottlenecks have reduced the genetic diversity of modern 

soybean.  
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Germplasm collections serve as an important source of variation for germplasm 

enhancement that can potentially sustains long-term genetic gain in breeding programs 

(Jarquin et al., 2016). In the USA, there are 30 USDA-ARS GRIN NPGS Plant Collection 

Sites (http://www.ars-grin.gov/npgs/sitelist.html). Each of those 30 sites exists for the 

collection, preservation, and evaluation of accession in major and minor plant and crop 

species that are of national interest. The soybean repository is located at Urbana, IL USA 

(https://npgsweb.ars-grin.gov/gringlobal/site.aspx?id=24), and contains accessions of the 

two annual species – the wild G. soja and the cultivated G. max, and accessions of each of 

19 perennial Glycine species. According to data collected by the International Plant 

Genetic Resources Institute (IPGRI) (2001), more than 170,000 G. max accessions are 

maintained by more than 160 institutions in nearly 70 countries. The USDA Soybean 

Germplasm Collection (hereafter referred to as the Collection)  is one of the most intensely 

used germplasm collections in the world, and the most intensely used in the NPGS (Nelson, 

2011).  Extensive soybean collecting started in the 1920s but systematic preservation did 

occur until the USDA Soybean Collection was established in 1949 (Carter et al., 2004). A 

large part of the accessions (~5,000) were collected as part of the expedition of P.H. Dorsett 

and W.J. Morse in Asia between 1924 and 1932 (Nelson, 2011). To date, the entire 

Collection contained approximately ~22,000 soybean accessions. The collection includes 

more than 1,100 wild soybeans from China, Korea, Japan and Russia, and more than 18,000 

cultivated soybeans from China, Korea, Japan, and 84 other countries (Song et al, 2015). 

Most of the cultivated soybean from China, Korea, and Japan are landraces that are not the 

product of modern plant breeding (Carter et al., 2004).  

 

http://www.ars-grin.gov/npgs/sitelist.html
https://npgsweb.ars-grin.gov/gringlobal/site.aspx?id=24
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Curators of germplasm collections are charged with evaluating existent and newly 

acquired accessions to provide data on traits of interest to breeders and other researchers. 

Over time, a substantial amount of phenotypic data has been collected in nearly all 

germplasm collections. Relative to the annual Glycine accessions, nearly all have been 

phenotypically characterized for ten “primary” descriptor traits by the curator and 

collaborators. The word primary is used as an adjective here because these key traits are 

also used by soybean breeders to characterize new created breeding lines (vis-à-vis existing 

cultivars) when such lines are submitted for agronomic evaluation in the Northern and 

Southern Uniform trials. The ten primary traits are Maturity Group, Stem Termination 

Type, Flower Color, Pubescence Color, Form, and Density, Pod Color, Seed Coat Luster 

and Color, and Hilum Color. At least two and often several phenotypes are listed as 

categories for each trait. Thus, a primary trait description of a (hypothetical) soybean 

accession might be IV D P T N E Br D Y Bl. The ten codes shown here correspond to one 

of multiple coded phenotypic categories possible for each of the ten foregoing traits that 

are successively ordered here. The phenotypic category names and codes for each trait can 

be found at https://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx.  

Aside from the ten descriptor traits, quantitative phenotypic data are also routinely 

collected by the USDA researchers and collaborators on the collection. Traits included in 

phenotypic evaluations are flowering date, maturity date, lodging, height, stem 

termination, shattering, seed quality, seed mottling, seed weight and yield (Bernard et al., 

1998).  Phenotypic evaluations are conducted periodically to characterize newly acquired 

accessions. Accessions originally classified as maturity group 000-I are mostly evaluated 

in Minnesota. Maturity groups I – IV are predominantly evaluated in Urbana while 

https://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx
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accessions belonging to MGs V – IX are evaluated in Stoneville, Mississippi 

(https://npgsweb.ars-grin.gov/gringlobal/method.aspx?id=11002).  

Past soybean inheritance studies involving both qualitative and quantitative traits 

have led to the assignment of gene symbols to the two (or three) alleles at each of the one 

or more loci that were inferred to govern the trait. Palmer et al. (2004) listed 251 soybean 

classical gene loci, and also noted that 72 of these were members of 20 classical linkage 

groups (CLGs). Based on molecular marker genotyping of bi-parental mapping 

populations in which some of those 72 classical genes were segregating (e.g., Shoemaker 

and Specht, 1995), the linkage of those markers with some of those genes has led to the 

assignment of 19 of those 20 CLGs to molecular linkage groups (MLGs) that were labeled 

A1 to O (Cregan et al., 1999). Still, the majority of the classical gene loci have yet to be 

genetically mapped. Moreover, genetically mapped classical gene loci have low resolution 

centi-Morgan (cM) positions, except for a few cloned genes that now have a chromosomal 

base pair (bp) position. Establishing a genetic map position for all (or even a majority of 

the) 251 classical gene loci would be an laborious and expensive endeavor using a bi-

parental mapping population approach, because (1) many such populations would need to 

be created from parents with contrasting classical gene phenotypes, (2) all progeny in each 

population would have to be genotyped with a suitably dense array of molecular markers, 

and (3) each population would have to consist of a very large number of F2 progeny to 

ensure that sufficient numbers of classical gene – marker recombinants would be available 

for the desired mapping resolution. Most soybean geneticists would consider such a project 

impractical.  
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Genome-wide association study (GWAS) offers a powerful strategy for elucidating 

the genetic architecture of qualitative and quantitative traits (Huang et al., 2011; Wang et 

al., 2012; Romay et al., 2015). Compared to traditional linkage mapping, GWA analysis 

provides much greater mapping resolution and evaluates greater allelic diversity 

simultaneously (Myles et al., 2009; Yu and Buckler, 2006; Zhu et al., 2008). Harnessing 

the genetic variation contained in crop germplasm collections for mapping QTL through 

GWA has been found successfully conducted in several crop species, including barley 

(Hordeum vulgare L.) (Munoz-Amatriain et al., 2014), maize (Zea mays L.) (Romay et al., 

2013), rice (Oryza sativa L.) (Huang et al., 2010), and wheat (Triticum aestivum L.) 

(Cavanagh et al., 2013). To date, only a small fraction of the soybean germplasm 

repositories around the world has been explored through GWAS and such studies have 

typically included relatively small (i.e., <1000) numbers of accessions in any given 

population (Hwang et al.,2014; Sonah et al., 2015; Vaughn et al., 2014). 

Next-generation sequencing technologies have enabled sequencing of a large 

number of accessions at relatively low cost providing opportunities to perform large-scale 

GWAS as well as inspect the genomic regions selected in the history of crop improvement. 

Some present examples of wide-scale genotypic characterization of the germplasm 

collections include the genotyping by sequencing of the CIMMYT maize collection 

(Hearne et al., 2015) and the sequencing of 3,000 rice genomes (Li et al., 2014). More 

recently, the entire USDA Soybean Germplasm Collection has been genotyped with 50K 

SNPs (Song et al., 2015) through a collective effort of the USDA Agricultural Research 

Service Soybean Genomics Group (Song et al., 2015). The availability of such information 
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creates a tremendous resource for dissecting genotype-phenotype relationship and 

understanding the distribution of genomic variation in the Collection.  

In this study, we leverage the fantastic genomic resources available in the USDA 

Soybean Germplasm Collection to meet the following objectives: 1) Perform a 

comprehensive population structure analysis on the entire collection, 2) Demonstrate 

mapping resolution of increased genetic diversity for detecting genetic variant, 3) Uncover 

the genetic architecture and important genes underlying economically important traits, 4) 

Determine the frequency and distribution of alleles/haplotypes governing economically 

important traits, and 5) Provide insights on the genetic basis of local adaptation. The results 

reported herein provide a fuller understanding of the distribution of genetic variation 

contained within the collection and how it relates to phenotypic variation for economically 

important traits.  
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2.2 ABSTRACT 

 

 

Population structure analyses and genome-wide-association studies (GWAS) 

conducted on crop germplasm collections provide valuable information on the frequency 

and distribution of alleles governing economically important traits. The value of these 

analyses is substantially enhanced when the accession numbers can be increased from 

1,000 to~ 10,000 or more. In this research we conducted the first comprehensive analysis 

of population structure on the collection of 14,000 soybean accessions (Glycine max and 

G. soja) using a 50K SNP chip. Accessions originating from Japan were relatively 

homogenous and distinct from the Korean accessions. As a whole, both Japanese and 

Korean accessions diverged from the Chinese accessions. The ancestry of founders of the 

American accessions derived mostly from two Chinese subpopulations, which reflects the 

composition of the American accessions as a whole. A 12,000 accession GWAS conducted 

on seed protein and oil is the largest reported to date in plants and identified SNPs with 

strong signals on chromosomes 20 and 15. A chromosome 20 region previously reported 

to be important for protein and oil content was further narrowed and now contains only 

three plausible candidate genes. The haplotype effects show a strong negative relationship 

between oil and protein at this locus, indicating negative pleiotropic effects or multiple 

closely linked loci in repulsion phase linkage. The vast majority of accessions carry the 

haplotype allele conferring lower protein and higher oil. Our results provide a fuller 

understanding of the distribution of genetic variation contained within the USDA soybean 

collection and how it relates to phenotypic variation for economically important traits. 
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2.3 INTRODUCTION 

Soybean (Glycine max L. Merr.) is an important crop worldwide and a major source 

of protein and oil for human food, animal feed, and industrial products (Wilson, 2008). The 

percentages of protein and oil content, while influenced by both genotype and environment, 

typically average ca. 40% and 20%, respectively. Increasing the relative oil content in 

soybean seed is complicated by its high negative correlation to protein content (Brummer 

et al., 1997; Burton, 1987; Clemente and Cahoon, 2009; Cober and Voldeng, 2000; Wilcox, 

1998) caused by either pleiotropic effects or linkage (Chung et al., 2003). Moreover, total 

seed yield is often negatively correlated with seed protein, although the correlation is 

weaker than that between protein and oil (Chung et al., 2003). Dissecting the genetic bases 

underlying seed oil and protein content, and eventually recombining them in desired 

genetic backgrounds continues to be a challenge to soybean breeders.  

Given the importance of oil and protein content, the genes or quantitative trait loci 

(QTL) underlying these traits have undergone intensive investigations (Bolon et al., 2010; 

Chung et al., 2003; Hwang et al., 2014; Vaughn et al., 2014). However, most of what we 

know about the genetic architecture of seed protein and oil content is based on traditional 

QTL linkage analysis of populations derived from crosses of two parents with contrasting 

phenotypes. More than 50 QTL have been reported as controlling seed oil and protein 

content in a number of QTL mapping studies (www.soybase.org). Among these QTL, a 

region mapped to soybean linkage group I (LG-I) has consistently shown the strongest 

association with percent protein composition (Diers et al, 1992; Chung et al, 2003; Nichols 

et al, 2006). The LG-I QTL is of particular interest due to its large additive effect detected 

in many mapping populations (Csanadi et al., 2001; Diers et al., 1992; Sebolt et al., 2000) 

http://www.soybase.org/
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and across multiple environments (Brummer et al., 1997). Nichols et al. (2006) narrowed 

down this region to a 3 cM interval using BC5F5-derived near isogenic lines.  This genetic 

map interval has a corresponding physical distance of 8.4Mbp, from 24.54Mb to 32.92Mb 

on chromosome 20 (Bolon et al., 2010). Hwang et al. (2014) further narrowed down the 

candidate region to a 3 Mb region located between 27.6 Mb to 30.0 Mb on the same 

chromosome. Vaughn et al. (2014), however, mapped this same QTL approximately 1 Mb 

downstream of the region that Hwang et al (2014) identified. The size of the narrowed 

region defined by Hwang et al. (2014) and Vaughn et al. (2104) is still too large for 

targeting candidate genes for cloning.  

Mapping resolution can be greatly enhanced when accession numbers are increased 

from ~1K to~ 10K or more (Korte and Farlow, 2013). Remarkably, the USDA Agricultural 

Research Service Soybean Genomics Group has genotyped the entire USDA Soybean 

Germplasm Collection with the Illumina Infinium SoySNP50K iSelect Beadchip 

(http://www.soybase.org/dlpages/#snp50k). The availability of this information will 

provide soybean researchers with a deeper understanding of the genetic variation contained 

in the germplasm collection, and holds potential to pinpoint important loci controlling traits 

of interest through genome-wide association (GWA) analysis. Compared to traditional 

linkage mapping, GWA analysis provides much greater mapping resolution and evaluates 

greater allelic diversity simultaneously (Myles et al., 2009; Yu and Buckler, 2006; Zhu et 

al., 2008). Harnessing the genetic variation contained in crop germplasm collections for 

mapping QTL through GWA has been found successfully conducted in several crop 

species, including barley (Munoz-Amatriain et al., 2014), maize (Romay et al., 2013),  rice 

(Huang et al., 2010) and wheat (Cavanagh et al., 2013). To date, only a small fraction of 
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the soybean germplasm repositories around the world has been explored through GWAS 

and such studies have typically included relatively small (i.e., < 1000) numbers of 

accessions in any given population (Hwang et al., 2014; Sonah et al., 2015; Vaughn et al., 

2014).  

Here, we report results from the first analysis of population structure on the entire 

collection of 14K unique soybean accessions, which included G. max and G. soja 

accessions. A GWAS for seed protein and oil content on over 12K unique G. max 

accessions was performed, which is the largest GWAS conducted in plants reported to date. 

We determined the distribution of favorable alleles among subpopulations defined by 

world region and maturity group (MG) of the 12K accessions. The results reported herein 

provide a fuller understanding of the distribution of genetic variation contained within the 

collection and how it relates to phenotypic variation for economically important traits.  

 

2.4 MATERIALS AND METHODS 

 

2.4.1 Plant Materials  

The accessions used in this study are from the U.S. Department of Agriculture 

(USDA) Soybean Germplasm Collection. The entire collection consists of nearly 22,000 

accessions, including modern and land race cultivars (G. max); wild relatives of soybean 

(G. soja); and perennial Glycine (www.soybase.org). From the whole set, we selected only 

the annual accessions and dropped accessions determined to be genotypic duplicates (e.g., 

near-isogenic lines, non-USA duplicates). This filtering left 14,430 unique accessions 

(Supplementary Fig. S1) collected from 85 countries (Supplementary Table S1, 

Supplementary Fig. S2a) representing the range of photoperiod/temperature latitudinal 
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adaptation as defined by a maturity group (MG) Roman numeral designation 

(Supplementary Table S2 and Supplementary Fig. S2b). Further information for each 

accession (accession name, accession number, country of origin etc.) can be found in the 

USDA Germplasm Resources Information Network (GRIN) database (www.ars-grin.gov). 

2.4.2 Genotype and Phenotype Data 

  Genotype data consisted of 52,041 SNPs scored on 14,430 germplasm accessions 

using the Illumina Infinium SoySNP50K BeadChip as described by Song et al. (2013). 

SNP genotyping was conducted on the Illumina platform by following the InfiniumH HD 

Assay Ultra Protocol (Illumina, Inc. San Diego, CA). SNPs were scored using the 

GenomeStudio Genotyping Module v1.8.4 (Illumina, Inc. San Diego, CA). The SNP data 

is publicly available at http://www.soybase.org/dlpages/index.php. Markers with MAF < 

0.05 were removed from the genotype dataset, leaving 36,513 SNPs for the population 

structure analysis. 

Existing oil and protein content data made available by the USDA GRIN was used 

for the analysis. The phenotype data were originally obtained from field evaluations 

conducted by USDA-ARS germplasm curation staff and their collaborators.  The field 

evaluations were conducted at various locations at which accessions from one or more MG 

classes had adaptation, and such field trials often spanned several years. Details and 

publication references relative to the methods used to quantify soybean seed protein and 

oil content are provided in GRIN (http://www.ars-grin.gov/cgi-

bin/npgs/html/desc_form.pl?51; scroll down to oil and protein in list of descriptors).  In 

brief, since 1990, accessions with yellow seed coats have been evaluated for protein and 

http://www.soybase.org/dlpages/index.php
http://www.ars-grin.gov/cgi-bin/npgs/html/desc_form.pl?51
http://www.ars-grin.gov/cgi-bin/npgs/html/desc_form.pl?51
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oil concentrations using the near-infrared reflectance (NIR) method on a whole-seed 

sample. For those accessions with entirely pigmented or exceptionally mottled seed coats, 

seed protein was quantified with the Kjeldahl method and seed oil with the Butt extraction 

method. The Kjeldahl and Butt methods were also used in all pre-1990 evaluations. Using 

this existing phenotypic information, a total of 12,116 G. max accessions were identified 

that had seed oil and protein data (Supplementary Fig. S1). The phenotypic data used for 

the GWAS is summarized by accession number in Supplementary Table S3. 

2.4.3 Population Structure 

The model-based clustering algorithm of ADMIXTURE v1.22 was used (Alexander et al., 

2009) to investigate subpopulation structure of the 14,430 soybean accessions. 

ADMIXTURE identifies K genetic clusters, where K is specified by the user, from the 

provided SNP data. For each individual, the ADMIXTURE method estimates the 

probability of membership to each cluster. A preliminary analysis was performed in 

multiple runs by inputting successive values of K from 3 to 20. This tested range of K 

inputs was based on the results of several studies that estimated the number of 

subpopulations (Hwang et al., 2014; Hyten et al., 2007; Sonah et al., 2015). A 10-fold 

cross-validation procedure was performed with 30 different fixed initial seeds for each K 

values. The most likely K value was determined using ADMIXTURE’s cross-validation 

values. The software CLUMPP (Jakobsson and Rosenberg, 2007) was used to obtain the 

optimal alignments of 30 replicates for each K-value. Individual genotype membership 

proportions were averaged across runs according to the permutation with the greatest 

symmetric similarity coefficient. The output from CLUMPP for the optimal K was used to 

make plots using the cluster visualization program in R. To verify the proportion of correct 
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and incorrect classifications, we performed a linear discriminant analysis using the ancestry 

estimates for each accession with K=5.  Principal-component analysis was also conducted 

to summarize the genetic structure and variation present in the collection. The hierarchical 

F statistics were used to estimate proportion of genetic variance explained by world region 

and MG class using ancestry estimates for K=5 and calculated using the hierfstat R package 

(Goudet, 2005). 

2.4.4 Genome-wide Association Analysis 

  Marker-trait associations were tested using the linear mixed model  

 

y= Xβ + Cγ + Zu + e 

 

where y is a vector of phenotypes; β is a vector of fixed marker effects; γ is a vector of 

subpopulation effects; u is a vector of polygenic effects caused by relatedness where

2~ (0, )uMVN u K ; e is a vector of residuals where 
2~ (0, )eMVN e I ; X is a marker matrix; 

C is an incidence matrix containing membership proportions to each of the five 

genetic clusters identified by the ADMIXTURE analysis; and Z is the corresponding 

design matrix for u.  K is the realized relationship matrix estimated internally in the 

Factored Spectrally Transformed Linear Mixed Models (FaST-LMM) using the SNP data 

(Lippert et al., 2011).  

The above model was implemented using the FaST-LMM algorithm (Lippert et al., 

2011). This program is designed to accommodate large datasets with reduced 

computational time (Lippert et al., 2011). FaST-LMM uses either maximum likelihood 

(ML) or restricted maximum likelihood (REML). Maximum likelihood (ML) was used for 
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this study because it has been found to be more reliable (Eu-ahsunthornwattana et al., 

2014). FaST-LMM uses an exact method in which the additive genetic and residual 

variance components are re-estimated for each SNP in a model, including the marker effect, 

rather than being estimated under the null hypothesis.  

Association analyses were conducted both across and within groups of accessions 

classified by either MG or world region class (Supplementary Tables S1 and S2). GWA 

mapping across all groups was conducted using SNP with MAF>0.01, and population 

structure was accounted for using both γ and u. GWA mapping within groups was 

performed using SNP with MAF>0.05; γ was ignored and only u was fitted as a random 

effect as described above.  

The method of Li and Ji (2005) was used to calculate a comparison-wise error rate 

to control the experiment-wise error rate. Briefly, the correlation matrix and eigenvalue 

decomposition among 36,513 SNPs were calculated to determine effective number of 

independent tests (Meff). The test criteria was then adjusted using the Meff with the 

correction (Sidak, 1967) below  

αp = 1 – (1- αe) 
1/Meff , 

where αp is the comparison-wise error rate and αe is the experiment-wise error rate. An αe 

= 0.05 was used in this study.  

Multiple linear regression was used to estimate the proportion of phenotypic 

variance accounted for by significant SNPs after accounting for population structure 

effects. Windows of 500 kb were used to define SNPs tagging a locus. Only the most 

significant SNPs present within a 500 kb window was used to tag that locus.  

2.4.5 Haplotype Analysis 
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Haplotype blocks were constructed using the four gamete method (4gamete) (Wang et al., 

2002) implemented in the software Haploview (Barrett et al., 2005). The 4gamete method 

creates block boundaries where there is evidence of recombination between adjacent 

SNPs based on the presence of all four gametic types. A cutoff of 1% was used, meaning 

that if addition of a SNP to a block resulted in a recombinant allele at a frequency 

exceeding 1%, then that SNP was not included in the block. 

 The frequencies of identified haplotype alleles were estimated in all accessions 

and within each subpopulation. At each haplotype block, a Fisher’s exact test was used to 

test the null hypothesis that the frequency of the haplotype alleles for seed oil and protein 

content was the same across all subpopulations.  

2.5 RESULTS AND DISCUSSION 

2.5.1 The USDA Soybean Germplasm Collection 

Of the 19,652 genotyped accessions in the publicly available SNP data set, 659 near-

isogenic lines of multiple G. max cultivars were removed, but the recurrent and donor 

parents of those NILs were retained.  An additional 4207 G. max and 362 G. soja accessions 

were SNP-genotype duplicates (i.e. 24%) and thus were removed. The high rate of 

redundant and highly similar accessions detected in the USDA Soybean Germplasm 

Collection is not surprising because genetic redundancy is a common problem in 

germplasm collections (Food and Agriculture Organization, 2010; McCouch et al., 2012).  

It is estimated that in world-wide collections, only one-third of the total number of 

accessions conserved ex situ are distinct and duplications occur within and between 

genebanks of the same crop (Food and Agriculture Organization, 2010; McCouch et al., 
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2012). The major cause is the unwitting submission of the same accession with different 

names and designation. Based on phenotype alone, it is not possible to identify redundant 

accessions, yet the maintenance of duplicated materials invokes unnecessary and costly 

efforts. After eliminating all genotypic duplicates (one accession per set of duplicates was 

retained), a final set of 14,430 genotyped accessions (i.e., 13,624 G. max and 806 G. soja 

accessions) was available for population structure analysis (Supplementary Fig. S1). 

 Geographic origin and MG were the principal determinants of population structure 

within the soybean germplasm collection. Accessions collected from China (36%), North 

and South Korea (19%), Japan (17%), North and South America (9%), South and Southeast 

Asia (8%), Europe (5%), and Russia (5%) make up the vast majority of the collection 

(Supplementary Fig. S2a). Soybeans are classified into 13 unique MG Roman Numeral 

groups from very early to very late (000, 00, 0, I, II, III, IV, V, VI, VII, VIII, IX and X), 

based on temperature and photoperiod response to latitude.   Maturity Group numbers of 

000, 00, and 0 were combined, as were MG numbers VII, VIII, IX, and X , in order to 

reduce the 13 numbered MGs to just eight more manageable MG “classes” for use in the 

population structure analysis (Supplementary Fig. S2b). Maturity Groups II, III, IV and V 

represent over 50% of the entire collection.  

 

2.5.2 Population Structure 

Using ADMIXTURE (Alexander et al., 2009) and principal component analysis to 

infer population structure, we observed a clear subpopulation (SP) structure within the 

soybean germplasm collection. The total amount of genetic variation explained by the first 

three PCs was 16%. The first three principal components (PC) visually differentiate 
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accessions by species (G. soja vs G. max) and world region (Fig. 1). The estimated cross-

validation (CV) error from ADMIXTURE and correspondent ΔCV values suggested the 

presence of four to eight natural SPs (K=4-8) within the collection (Supplemental Fig. S3). 

A K value of five was ultimately chosen because higher K values resulted in 

subpopulations in which no accessions belonged (based on an 80% membership cutoff). 

Accessions within a subpopulation with membership coefficients of <0.8 were considered 

admixed. The graphs of ancestry estimate for each accession for five subpopulations was 

plotted by world region and MG class (Fig. 2).  

Subpopulation 1 represents the G. soja accessions which can be traced from China, 

Japan, Korea and Russia (Figs. 1, 2a; Supplementary Tables S4, S5). Subpopulation 1 is 

well represented in the MG classes. Notably, a single G. max accession with GRIN ID of 

PI 549045A falls into the G. soja SP. Although this accession has many wild soybean 

characteristics, it has a plant type very atypical of wild soybean, which caused it to be 

classified as G. max.  Subpopulations 2 to 5 represent the G. max accessions (Figs. 2a, 2b; 

Supplementary Table S4), which consisted of a mixture of accessions from different world 

regions and MG classes (Supplementary Tables S5 and S6). Subpopulation 3 is composed 

predominantly of accessions of the late MG class (i.e., V, VI, and VII-X), which are mostly 

from China and SSE Asia, whereas SP5 contains a significant proportion of early MG 

accessions (i.e., 000-0, I and II), mainly originating from China and Far East Russia. 

Subpopulation 4 forms a unique SP comprised primarily of accessions from Japan (61%) 

and Korea (34%). Subpopulation 2 contains only 12 accessions from China and Europe, 

mainly from MG II plus a single accession from MG III. Subpopulation 2 had the highest 

mean ancestry shared to accessions from America (31%) and Europe (30%) 
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(Supplementary Table S7). Nearly two-thirds of the accessions in the soybean germplasm 

collection are admixed (Supplementary Tables S5 and S6). A large portion of admixed 

accessions generally traced to China, Korea, America and Europe. Notably, more than 90% 

of accessions from America and Europe are admixed. The proportion of individuals for 

each world region and MG within each of the five subpopulations was not equal, indicating 

different degrees of allelic diversity across subpopulations. Japanese accessions were more 

homogenous and mostly belonged to SP4. Similarly, the overrepresentation of accessions 

from some MG classes in SP3 and SP5 was due to the sensitivity of soybean to photoperiod 

and temperature, which restricts adaptability to compatible regions of latitude.  

Another interesting result from the population structure analysis is the relationship 

between China, SSE Asia, Japan, and Korea accessions. Accessions from Japan and Korea 

were more closely related to each other than with accessions from China. Accessions from 

Japan form a unique subpopulation (SP4), whereas those from Korea consist of mostly an 

admixture between SP4 and SP5 (Fig. 2a), possibly reflecting the migration of soybean 

from northeast China to Korea. The homogeneous subpopulation structure among the 

Japan accessions could be due to the isolation of Japan by sea from China and Korea and 

the fact that Japan was never conquered by China (Hall, 1988). The earlier MG classes 

appear to contain more SP5 ancestry (Fig. 2b), reflecting the latitude of where North Korea 

is connected to China relative to ancient soybean trade routes. Subpopulation 3 is clearly a 

significant fraction in China and SSE Asia, suggesting a substantial movement of G. max 

accessions into nearby Asian countries.  

Based on population structure results, we then evaluated the genetic relationships 

of the major ancestors of American soybean (Gizlice et al., 1994; Li and Nelson, 2001; 
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Ude et al., 2003)  to accessions within the collection. Two of 34 USA soybean ancestors, 

the well-known ancestors A.K. Harrow and Illini, were found to be completely SNP 

identical. The majority of American accession ancestry belong to SP2 and SP5 (59%), 

whereas only 44% of China accessions ancestry belong to these SPs (Supplementary Table 

S7). As expected, the ancestors of American soybean, which originated from China, mostly 

share ancestry with SP2 and SP5 (49%) (Fig. 3 and Supplementary Table S7) reflecting 

the ancestry of American germplasm as a whole. This analysis is complicated by the fact 

that ancestors of American soybean germplasm contributed at different pedigree levels 

(Fig. 3) (Gizlice et al., 1994; Li and Nelson, 2001; Ude et al., 2003), coupled with the fact 

that the American soybean germplasm resulted from a severe population bottleneck when 

soybeans were introduced to North America (Hyten et al., 2006).  

Hierarchical F statistics, calculated using ancestry estimates for K=5, showed that 

genetic differentiation explained by world region (~10%) was higher than that explained 

by MG (~5%). The results of discriminant analysis supports this finding with the overall 

correct classification being greater for geographic origin (53%) than for MG class (35%) 

based on the GRIN classifications. Although the amount of total variation explained is 

small, these results suggest that population structure in the USDA Germplasm Collection 

is driven more by world region than MG.  

 

2.5.3 Genome-wide Association Study for Protein and Oil 

A GWA study was conducted solely on the G. max accessions to avoid confounding effects 

of strong subpopulation structure that would arise by combining the G. max and the G. soja 

accessions. Genotype data and seed oil and protein content data were available for 12,116 
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G. max accessions (Supplementary Fig. S1). Phenotype data were obtained from the GRIN 

soybean database (Supplementary Table S3). As expected, protein had significant negative 

correlation to oil (r = -0.62; p<0.0001) across world region and MG. The same negative 

relationship was observed for oil versus protein within world region or MG classes. 

A GWAS was performed using all 12,116 G. max accessions (Fig.4) and then for 

subsets of accessions based on world region and MG class (Supplementary Figs. S4a, S4b 

and S5a, S5b). A total of 19 significant associations (-logP >5. 17) were identified for 

protein (Fig. 4 and Table 1). Clusters of highly significant markers were present on 

chromosomes 15 (3.82-3.96Mb) and 20 (29.59-31.97Mb), which collectively explained 

7% of the phenotypic variance for protein. GWAS for oil detected 18 significantly 

associated SNP markers (-logP>5. 17), with the strongest association detected at 3.82Mb 

on chromosome 15 (Fig. 4 and Table 1). Collectively, the three QTL identified for oil 

explained 6% of the phenotypic variance. The major associations detected on 

chromosomes 15 (LG-E) and 20 (LG-I) were highly significant for both protein and oil and 

had map positions close to those identified for the corresponding LGs identified in the very 

first soybean QTL mapping experiment (Diers et al., 1992).  These two QTL have been 

detected repeatedly in linkage mapping studies since then 

(http://www.soybase.org/search/qtllist_by_symbol.php). Allelic effect estimates of SNP 

markers showed negative genic relationship between protein and oil content (Table 1), i.e., 

the SNP allele associated with increased protein content was also always associated with 

decreased oil content and vice versa.  

 A GWAS within the world region identified at least one or both of the strongest 

regions on chromosomes 15 and 20 for protein and oil, except within the America and SSE 

http://www.soybase.org/search/qtllist_by_symbol.php
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Asia accession subsets (Supplementary Figs. S4a, S4b and S5a, S5b). The strongest 

associations for protein (-logP=14.52) and oil (-logP=14.22) among world region classes 

were in Korea (Supplementary Figs. S4a and S4b). Similarly, GWAS results based on 

different MG classes detected the same genomic regions for protein and oil on either 

chromosomes 15 and 20, except in the cases of the MG I class or MG II class for protein 

and for the MG IV class for oil (Supplementary Figs. S5a and S5b). The strongest 

associations for both traits were identified in the late MG classes of V (-logP for oil=13.95) 

and VII-X (-logP for protein=19.83). The chromosomal bp resolution of the identified QTL 

on chromosomes 15 and 20 varied among world region and MG classes. For example, on 

chromosome 20, the resolution of associated SNPs for protein and oil spanned only 8 Mb 

region between 26 – 32 Mb, which corresponds to the narrowed region defined by Bolon 

et al. (2010). The highest resolution was achieved when all 12K accessions were combined 

for GWAS, demonstrating the advantage of exploiting diversity and thus greater historical 

recombination for increased resolution.  

In the recent GWA analysis, Vaughn et al. (2014) used accessions almost 

exclusively from Korea and which were mostly of MG V. The GWA results in this study 

using accessions from Korea and MG V had the associated SNPs for protein identified 

between 29.20 – 31.97 Mb, with the strongest associated SNP similar to the one identified 

by Vaughn et al. (2014) at 31,972,955 bp on chromosome 20. However, the association at 

31,972,955 bp is entirely not detected when the GWA analysis was limited to other world 

region and MG classes. Rather, an association was detected at an even higher level of 

significance for protein using late MG class VII-X at 31.24 Mb (-logP=19.83) on 

chromosome 20, which is consistent to the most significant SNP detected using all 12,116 
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G. max accessions. Similarly, the significant SNP reported by Hwang et al. (2014) between 

29.39–29.98 Mb on chromosome 20 was missed among MGs, but that SNP was identified 

in MG classes I, III and IV if –logP threshold was lowered to 4.0. Although the associations 

were detected when the threshold stringency was reduced, the association threshold of –

logP=4 is still more stringent than the -logP=3 that Hwang et al. (2014) used in GWA 

analysis using 298 G. max  accessions from MGs II, III and IV. The varying results of 

GWAS within subpopulation classes can be due to differing levels of recombination, 

diversity as well as rate of LD decay across the assembled panels. Notably, as mentioned 

above, the highest resolution was achieved when the GWA analysis was conducted using 

all G. max accessions. 

 

2.5.4 Refining the Candidate Region for Protein and Oil  

The levels of significance for protein and oil QTL were quite high in this study and thus 

could be used to delineate a narrower bp region for the identification of candidate genes. 

This was clearly illustrated in the region detected on chromosome 20 for both protein and 

oil content, which co-located with a previously reported QTL responsible for major 

pleiotropic effects on protein and oil content (Bolon et al., 2010; Hwang et al., 2014; 

Nichols et al., 2006). A previous study showed that the QTL resides in an 8.4 Mbp region 

located between 24.5-32.9 Mb on chromosome 20 (Bolon et al., 2010).  Subsequently, that 

region was narrowed further to a 2.4 Mb region located between 27.6-30.0 Mb (Hwang et 

al., 2014). Vaughn et al. (2014), however, mapped this same QTL approximately 1 Mb 

downstream of the region that Hwang et al (2014) identified, with the most significant SNP 

identified at 31,972,955 bp. To further refine this candidate region, a haplotype analysis 
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was performed in this study covering the genomic regions identified by Hwang et al. (2014) 

and Vaughn et al. (2014) that spans a circa 4.5 Mb region. Within the entire collection, LD 

in that 4.5 Mb region decays from r2=0.50 to r2=0.40 within 250 Kb, then decays more 

slowly to r2=0.20 from 500 Kb to 1000 Kb. A haplotype block analysis of this 4.5 Mb 

region identified five haplotype blocks (Fig. 5), with highly significant SNPs located in the 

third, fourth and fifth blocks. The fourth and fifth blocks contain significant SNPs 

associated for both oil and protein while the third block includes the SNP associated with 

protein only (Fig. 5; Table 1). 

The third block contains the region defined by Hwang et al. (2014) which is further 

narrowed down to less than 1 Mb region in this study and spans between 29.06–30.04 Mb. 

This region now encompasses only three (Glyma20g21030, Glyma20g21040 and 

Glyma20g21080) of the original 12 potential candidate genes (Fig.5a) (Bolon et al., 2010). 

Glyma20g21040 has no known function, while Glyma20g21030 is annotated as a putative 

ammonium transporter (AMT1), which catalyzes the transfer of ammonium from one side 

of a membrane to the other (Sohlenkamp et al., 2002). Although the AMT1 annotation 

reflects a partial sequence homology to the Arabidopsis gene, it may be that this gene in 

G. max was recruited for the transport of N from the female plant integument tissue (i.e., 

seed coat) to the developing embryo. Glyma20g21080 is another candidate gene within the 

third block region which is annotated as ATP synthase D chain. An indirect relationship of 

ATP synthase levels on the accumulation of storage proteins, lipid biosynthesis, and 

photosynthesis in the seed have been documented (Borisjuk et al., 2003; Borisjuk et al., 

2005; Rolletschek et al., 2003; Rolletschek et al., 2005). However, the potential role of 
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ATP synthase as a candidate gene on energy status and accumulation of storage product in 

the soybean seed needs further elucidation (Bolon et al., 2010).  

The fourth block spans 550 Kb between 30.38-30.93; LD decays within 250 kb 

with r2=0.24 on average. This region is the focus of another group who has fine-mapped 

the location of high protein QTL allele present in high protein G. soja PI 468916 (Brian 

Diers, Pers. Commun.). Despite the fact that this allele comes from G. soja progenitor, this 

G. soja allele has likely been dispersed throughout the soybean germplasm (Diers et al., 

1992; Sebolt et al., 2000), given the discovery of this allele in high-/low-protein G. max 

accessions (Chung et al., 2003; Fasoula et al., 2004; Wilcox and Cavins, 1995; Wilcox, 

1998). The most plausible candidate gene within the fourth block region is the 

Glyma20g21361 that has been annotated as Conserved Oligomeric Golgi Complex 

(subunit 6), which is involved in the intra- and inter-cellular vesicle-mediated transfer and 

storage of proteins. Glyma20g21540 is another gene within this fourth block region which 

encodes protein of unknown function (i.e., annotated as putative uncharacterized proteins).  

A cluster of eight highly significant SNPs associated for protein and oil was located 

in the fifth block that spans 900 Kb region between 31.15-32.05 Mb (Figure 5; Table 1). 

The most significant SNP (BARC_1.01_Gm_20_31243150_C_T) for protein identified in 

the present study was in complete LD with the strongest SNP 

(BARC_1.01_Gm_20_31972955_G_A) associated for protein detected by Vaughn et al. 

(2014). The LD decay within this region was calculated to be 400 kb on average with 

r2=0.32 and a candidate gene was identified within the target region. Only one of the 

annotated genes (Glyma20g21780) identified by Bolon et al. (2010) was located within the 

900 Kb defined region in the fifth block. The gene Glyma20g21780 located at 31.38 Mb 
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encodes an ethylene receptor and was demonstrated to be involved in signal transduction 

and protein histidine kinase activity (Bolon et al., 2010; www.soybase.org).  

On chromosome 15, a significant region was detected for protein and oil across all 

accessions with a high resolution of less than 150 Kb between 3.82-3.96 Mb. The LD decay 

within this region was estimated at 165 Kb with r2=0.23 on average. This detected QTL 

co-localizes with the three candidate genes (Glyma15g05470, Glyma15g05760 and 

Glyma15g05770), which could be related to seed protein and oil levels. Glyma15G05470 

encodes a RAG1-activating protein which is a soybean ortholog of the Arabidopsis 

Nodulin MtN3 family protein involved in sucrose transmembrane transporter activity. 

Glyma15g05760 encodes for sulfate transporter, where in soybean, sulfate accumulates in 

pods and decreases with the onset of grain enlargement (Sunarpi, 1996; Tabe and Droux, 

2001). Glyma15g05770 has a protease inhibitor activity and is involved in lipid transfer 

for seed storage protein (Wang et al., 2007).  The synthesis of storage products during seed 

development is coordinated with carbohydrate and nitrogen metabolic processes involving 

many transporters, including ammonium and sulfate transporters (Weber et al., 1998).  

Haplotype alleles on chromosome 20 displayed a negative relationship between the 

protein and oil content (Table 2). Given the higher mapping resolution and presence of few 

likely candidate genes in the detected genomic regions, we hypothesize pleiotropic gene 

effects underlie the observed negative correlation between oil and protein at these loci. 

Nevertheless, the possibility of multiple genes in very tight repulsion-phase linkage cannot 

be excluded because the sizes of the haplotype blocks in the chromosome 20 region are 

still greater than 500 Kb. It is interesting to note that the haplotypes with the lowest average 

protein, and conversely the highest average oil (H1, H4 and H7), are the predominant 
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haplotypes, especially among Ancestors, America, Japan, and Korea accessions (Table 2). 

Haplotype H7 in block B5, conferring high protein, is very rare among germplasm 

accessions collection in general, but is relatively less rare among the Korea accessions, 

perhaps due to selection on protein because of cultural and culinary preferences in that 

country. The two haplotype alleles in block B5 have larger difference in protein content 

(3.82%) compared to the haplotype alleles at block B3 (1.27%). Based on a country-

specific GWAS Manhattan plots, it appears this haplotype among the Korea accessions is 

providing the variation leading to the SNP-protein associations we detected on 

chromosome 20 (Supplementary Fig. S4a).  

This study also demonstrates the potential usefulness of extensive phenotypic data 

that has been collected on germplasm collections, but which has not yet been fully utilized 

to mine favorable alleles not present in the narrow germplasm pool currently underpinning 

modern soybean improvement. By maximizing the number of accessions included in the 

GWAS, we were able to exploit a greater number of historical recombinants, leading to 

increased power and resolution. A potential limitation in the analysis conducted here is the 

nature of the phenotype data used for GWAS. The seed protein and oil data obtained from 

GRIN were derived from multiple field evaluations of the USDA Soybean Germplasm 

Collection conducted over the past 50 years at various latitude-specific locations. To assess 

the reliability of the GRIN phenotypic data, we conducted another GWAS for oil and 

protein content that was limited to 9,861 unique G. max accessions for which raw data was 

available from the GRIN database. A linear model accounting for environmental effects 

was applied and adjusted phenotypic values were input into the GWAS model. We detected 

only very small differences between GWAS results using adjusted data (Supplementary 
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Fig. S6) and GWAS results using non-adjusted data (Fig. 4). The only exception was a few 

chromosomal positions in which the SNP associations straddled the statistical significance 

threshold.  

Despite the success of the 12K GWAS in narrowing down the major candidate 

region, it was surprising how few genomic regions were found to be associated with protein 

and oil given the large number of QTL reported for these traits using biparental linkage 

mapping populations (www.soybase.org). Only six regions were identified for both protein 

and oil, collectively explaining only 6-7 percent of the phenotypic variation. Many more 

associations were expected given the size of the panel used for the GWAS. These results 

agree with Vaughn et al. (2014) who used a similar population and phenotypic dataset, 

albeit it smaller and less genetically diverse. Hwang et al. (2014), using a much smaller 

panel size, identified many more associations using a more relaxed significance threshold. 

If we relaxed the threshold to that used by Hwang et al. (2014) the number of associations 

for protein and oil would be increased by four fold, with associations on 14 chromosomes. 

The lack of associations passing the more stringent statistical threshold used in this study 

might be related to the distribution of allelic effects and frequencies in the collection. It is 

entirely possible that the genetic variation for these traits is controlled by a multitude of 

rare or low-frequency alleles, which are difficult to identify in GWAS. The QTL on 

chromosome 20 may be an indication of such a genetic architecture. It can be seen that the 

haplotype alleles at blocks 4 and 5 that increase protein (and lower oil) are of very low 

frequency in the collection (Table 2). It is unlikely this QTL would be detected were it not 

for its relatively large effect. Other possible reasons for the lack of QTL detection include 

confounding of QTL allele frequencies with population structure (Rincent et al., 2014). If 

http://www.soybase.org/
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frequency of alleles affecting protein and oil are confounded with population structure, 

then correcting for population structure using the mixed linear model would reduce 

detection power. Haplotype allele frequencies do differ between world regions at the 

chromosome 20 QTL. Finally, epistasis is always a possible cause. Determining the relative 

contribution of all possible causes to this “missing heritability” problem of soybean oil and 

protein was outside the scope of this research but it certainly deserves further study. 

The wealth of phenotypic diversity available in the soybean germplasm collection 

should be mined to help meet the demands of food production in the face of climate change 

and ever-evolving pathogens. The results reported herein, and others surely to flow from 

this valuable resource, provide a fuller understanding of the distribution of genetic variation 

contained within the collection and its relation to phenotypic variation for economically 

important traits. Further characterization of the phenotypic diversity and its relationship to 

the genomic diversity will ultimately facilitate a more efficient and effective introgression 

of this diversity into elite varieties for continued genetic improvement.  
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2.7 FIGURES 

 

 

Figure 1. Principal component analysis of 14,430 accessions of the soybean germplasm collection. The G. soja accessions are 

demarked with colored circles in the world region panel and a dashed ellipse in the other two panels.   
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Figure 2. Population structure in the soybean germplasm collection inferred by ADMIXTURE. The number of clusters (K) present in the 

entire population of 14,430 accessions was judged to be K=5. Each colored vertical line in the world region (panel a) or MG class (panel 

b) represents an individual accession that was assigned proportionally to the one of the five clusters. 
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Figure 3. Plot of ancestry estimates inferred by ADMIXTURE for 34 USA soybean 

ancestors. Each colored vertical bar represents an ancestral accession that was assigned 

proportionally to the K clusters (K=5) with the proportions represented by the relative 

lengths of the K colors. The bar width reflects the percentage (>2%) contribution of the 

major ancestors according to (Gizlice et al., 1994; Li and Nelson, 2001; Ude et al., 2003).  
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Figure 4. Genome-wide association scans for 12,116 G. max accessions for seed protein and oil content. Manhattan plots show 

the associations for seed protein and oil with SNP markers that are plotted on the x-axis according to their physical position on 

each chromosome. The solid horizontal line denotes the calculated threshold value for declaring significant association. The 

dashed vertical lines indicate a significant association for both seed protein and oil content had a co-localized chromosomal 

position.  
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Figure 5. Haplotype analysis of the chromosome 20 region that harbors a major 

pleiotropic seed protein/oil QTL. The figure shows (a) the 8.4 Mb region (navy blue line 

capped with arrows) defined by Bolon et al. (2010), (b) a recent narrowing of that region 

by Hwang et al. (2014) to 2.4 Mb region (black dashed lines), and (c) a 900 Kb region 

(magenta-dashed lines) identified by Vaughn et al. (2014) that is located to the right of 

the Hwang et al. (2014) region, and (d) a 550 Kb (green dashed lines) between the two 

foregoing regions.  Potential candidate genes in the region are listed at the top of the 

figure (i.e., Glyma names), with the red-font ones being the most plausible candidate 

genes). Using the 4-gamete rule in the present study, five blocks were defined within that 

4.5 Mbp region comprising the three sub-segments. Statistically significant SNPs are 

highlighted in yellow.   
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SNP Chromosome -logP Allelic Effect Estimate (%) -logP Allelic Effect Estimate (%)

BARC_1.01_Gm_20_29594697_A_G 20 5.49 0.22 ns ns

BARC_1.01_Gm_20_29983050_A_G 20 6.16 0.23 ns ns

BARC_1.01_Gm_20_30930931_A_G 20 10.35 0.20 5.51 -0.09

BARC_1.01_Gm_20_31150279_T_C 20 30.94 0.40 14.39 -0.18

BARC_1.01_Gm_20_31243150_C_T 20 32.28 0.40 15.91 -0.18

BARC_1.01_Gm_20_31436069_A_G 20 7.87 0.17 ns ns

BARC_1.01_Gm_20_31580769_A_G 20 24.98 0.36 11.45 -0.16

BARC_1.01_Gm_20_31610452_T_C 20 22.16 0.31 13.99 -0.16

BARC_1.01_Gm_20_31640038_A_G 20 13.94 0.24 11.43 -0.14

BARC_1.01_Gm_20_31687470_A_C 20 19.25 0.30 12.53 -0.16

BARC_1.01_Gm_20_31972955_G_A 20 17.68 0.26 13.22 -0.14

BARC_1.01_Gm_15_3828587_A_G 15 19.23 0.27 26.83 -0.21

BARC_1.01_Gm_15_3833574_A_G 15 ns ns 6.49 0.10

BARC_1.01_Gm_15_3918803_A_C 15 9.57 0.20 13.84 -0.16

BARC_1.01_Gm_15_3919945_G_A 15 10.10 0.21 16.52 -0.17

BARC_1.01_Gm_15_3967324_A_G 15 6.97 0.17 10.87 -0.14

BARC_1.01_Gm_13_24858209_A_G 13 10.95 -0.20 ns ns

BARC_1.01_Gm_06_5591484_T_C 6 5.37 0.13 ns ns

BARC_1.01_Gm_06_5660542_A_G 6 5.84 0.15 ns ns

BARC_1.01_Gm_06_46040638_C_T 6 5.78 0.17 ns ns

BARC_1.01_Gm_05_38495217_A_C 5 ns ns 8.50 -0.17

BARC_1.01_Gm_05_38495666_C_T 5 ns ns 7.50 -0.15

BARC_1.01_Gm_05_38519280_G_A 5 ns ns 6.16 -0.14

BARC_1.01_Gm_05_38543317_T_C 5 ns ns 7.49 -0.15

BARC_1.01_Gm_05_38569452_T_G 5 ns ns 8.95 -0.16

ns - SNP marker is not signicantly associated for a trait using -logP threshold of 5.17.

Seed Protein Content Seed Oil Content 

2.8 TABLES 

 Table 1. Allelic effects estimates of SNP markers significantly associated (-logP > 5.17) for seed protein and oil content QTL. 

The SNP markers are listed by chromosome number.  
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Table 2. Seed oil and protein means and country frequencies for the major haplotypes observed in candidate gene region on 

chromosome 20.  

 

 

Block No. Position (Mb) Haplotype No. Haplotype All China Korea Japan America SSE Asia Europe Russia US Ancestors  Oil Protein

B3 29.06 - 30.04 H1 TGTTCTGAATCCGAG 0.830 0.780 0.906 0.896 0.854 0.526 0.941 0.817 0.852 18.00 43.78

B3 29.06 - 30.04 H2 CGCCTCAGGCTTTGT 0.097 0.161 0.005 0.010 0.088 0.382 0.016 0.097 0.118 17.05 45.05

B3 29.06 - 30.04 H3 TACCCCGGGTCCGAG 0.006 0.008 0.000 0.004 0.001 0.000 0.019 0.027 0.000 15.83 44.32

B4 30.38 - 30. 93 H4 CCA 0.594 0.457 0.794 0.714 0.694 0.367 0.548 0.667 0.650 18.01 43.79

B4 30.38 - 30. 93 H5 TTA 0.343 0.484 0.141 0.225 0.268 0.500 0.403 0.263 0.294 17.72 44.04

B4 30.38 - 30. 93 H6 CCG 0.027 0.020 0.042 0.024 0.011 0.075 0.020 0.021 0.000 15.20 47.45

B5 31.15 - 32.05 H7 TCAATAATGT 0.923 0.938 0.890 0.913 0.966 0.856 0.963 0.930 0.970 17.92 43.87

B5 31.15 - 32.05 H8 CTAGCGCTAT 0.013 0.000 0.045 0.020 0.005 0.003 0.000 0.000 0.030 14.92 47.69

12116 4744 2365 2117 816 610 735 513 34 17.8 44.0

Haplotype Frequency Mean (%)

Total Glycine max  Accessions
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2.9 APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S1. The stepwise filtering of G. max and G. soja accessions held 

in the USDA Germplasm Collection for analysis of population structure and genome-

wide association mapping. 
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Supplementary Figure S2. Percentage distribution of the 14,430 soybean accessions 

used in the population structure analysis according to world region (panel a) and maturity 

group class (panel b). 

 

 



47 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3. Exploration of the optimal number of genetic subpopulations 

(K) using Δ cross-validation error values in the soybean germplasm collection. A solid 

line denotes the choice of K=5 which represents the most likely number of 

subpopulations within the soybean germplasm collection.   
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Supplementary Figure S4. Genome-wide association study for protein (panel a) and oil (panel b) within 

each world region class.  Manhattan plot for association within each subpopulation (left) and quantile-

quantile plots of -log10 (P value) (right) are vertically arranged in each panel.  Markers are plotted on the x-

axis according to their physical position on each chromosome. The solid horizontal line indicates the 

calculated threshold value for declaring a significant association. The dashed vertical lines indicate the 

same significant associations detected in two or more MGs that co-localized with the significant SNP 

detected for either protein or oil using 12, 116 G. max accessions.  
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Supplementary Figure S4. Genome-wide association study for protein (panel a) and oil (panel b) within 

each world region class.  Manhattan plot for association within each subpopulation (left) and quantile-

quantile plots of -log10 (P value) (right) are vertically arranged in each panel.  Markers are plotted on the x-

axis according to their physical position on each chromosome. The solid horizontal line indicates the 

calculated threshold value for declaring a significant association. The dashed vertical lines indicate the 

same significant associations detected in two or more MGs that co-localized with the significant SNP 

detected for either protein or oil using 12, 116 G. max accessions.  
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Supplementary Figure S5. Genome-wide association study for protein (panel a) and oil (panel b) within 

each MG class.  Manhattan plot for association within each subpopulation (left) and quantile-quantile plots 

of -log10 (P value) (right).  Markers are plotted on the x-axis according to their physical position on each 

chromosome. The solid horizontal line indicates the calculated threshold value for declaring significant 

association.  The dashed vertical lines indicate the same significant associations detected in two or more 

MGs that co-localized with the significant SNP detected for either protein or oil using 12, 116 G. max 

accessions.  
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Supplementary Figure S5. Genome-wide association study for protein (panel a) and oil (panel 

b) within each MG class.  Manhattan plot for association within each subpopulation (left) and 

quantile-quantile plots of -log10 (P value) (right).  Markers are plotted on the x-axis according to 

their physical position on each chromosome. The solid horizontal line indicates the calculated 

threshold value for declaring significant association.  The dashed vertical lines indicate the same 

significant associations detected in two or more MGs that co-localized with the significant SNP 

detected for either protein or oil using 12, 116 G. max accessions.  
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Supplementary Figure S6. Genome-wide association scans for G. max accessions using 

adjusted phenotype data for seed oil and protein content. Manhattan plots show the 

associations for seed protein and oil with SNP markers that are plotted on the x-axis 

according to their physical position on each chromosome. The solid horizontal line 

denotes the calculated threshold value for declaring significant association. The dashed 

vertical lines indicate that the significant association positions on chromosome 15 and 20 

for protein were the same as for those oil. 
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4.1.2 SUPPLEMENTARY TABLES  

Supplementary Table S1. Distribution of 14,430 soybean accessions among seven arbitrarily chosen world regions (column 

names) by collation of accessions originating from 13 different specific world sub-regions (row names).  

 

 

World Region:

World Sub-Region China Korea Japan America SSE Asia Europe Russia Others Total

China 5216 0 0 0 0 0 0 0 5216

Korea 0 2665 0 0 0 0 0 0 2665

Japan 0 0 2426 0 0 0 0 0 2426

North America 0 0 0 1115 0 0 0 0 1115

South America 0 0 0 229 0 0 0 0 229

South Asia 0 0 0 0 280 0 0 0 280

Southeast Asia 0 0 0 0 819 0 0 0 819

Europe 0 0 0 0 0 749 0 0 749

Russia 0 0 0 0 0 0 682 0 682

Africa 0 0 0 0 0 0 0 148 148

Central Asia 0 0 0 0 0 0 0 18 18

Western Asia 0 0 0 0 0 0 0 10 10

Australasia 0 0 0 0 0 0 0 9 9

Others 0 0 0 0 0 0 0 64 64

Total 5216 2665 2426 1344 1099 749 682 249 14430
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Maturity Group Class:

Maturity Group 000 - 0 I II III IV V VI VII - X Unassigned Total

000 118 0 0 0 0 0 0 0 0 118

00 405 0 0 0 0 0 0 0 0 405

0 845 0 0 0 0 0 0 0 0 845

I 0 1271 0 0 0 0 0 0 0 1271

II 0 0 1457 0 0 0 0 0 0 1457

III 0 0 0 1430 0 0 0 0 0 1430

IV 0 0 0 0 3066 0 0 0 0 3066

V 0 0 0 0 0 2080 0 0 0 2080

VI 0 0 0 0 0 0 1381 0 0 1381

VII 0 0 0 0 0 0 0 857 0 857

VIII 0 0 0 0 0 0 0 820 0 820

IX 0 0 0 0 0 0 0 603 0 603

X 0 0 0 0 0 0 0 77 0 77

Unassigned 0 0 0 0 0 0 0 0 20 20

Total 1368 1271 1457 1430 3066 2080 1381 2357 20 14430

Supplementary Table S2. Distribution of 14,430 soybean accessions among eight maturity group MG classes. Of the 13 

individual MGs (i.e. row numbers), the earliest maturing three (000, 00, 0), and the latest maturing three (VIII, IX, X) were 

combined (because of low accession numbers) to create just eight MG classes.  
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No. Accession ID Oil (%) Protein (%)

1 FC001547 20.0 42.8

2 FC002109 18.6 41.9

3 FC003548 19.2 40.0

4 FC003609 20.0 43.2

5 FC003654-1 19.1 42.5

6 FC003659 17.3 45.9

7 FC003981 18.2 42.3

8 FC004002N 20.9 41.9

9 FC004007B 19.4 44.1

10 FC019976-1 18.9 43.2

11 FC019976-2 18.3 43.2

12 FC019979-1 19.1 43.0

13 FC019979-2 17.8 43.1

14 FC019979-3 19.8 41.3

15 FC019979-4 18.5 43.3

16 FC019979-5 19.9 41.6

17 FC019979-6 20.4 42.0

18 FC019979-7 17.4 43.0

19 FC029219 19.5 43.8

20 FC030265 18.6 43.9

21 FC030282 16.1 43.3

22 FC030683 17.7 45.8

23 FC030684 18.3 47.3

24 FC030689 17.3 42.5

25 FC030691 17.0 47.3

26 FC030692 17.7 45.6

27 FC030694 19.5 43.0

28 FC030967 16.4 44.8

29 FC031122 17.2 44.6

30 FC031416 14.6 43.1

Supplementary Table S3. Accession identification numbers and seed oil and protein 

content phenotypes for 12,116 G max accessions used for GWAS. Because of file size 

issue, this dataset was partially displayed in this section but the full dataset was made 

available at The Plant Genome website: 

https://dl.sciencesocieties.org/publications/tpg/tocs/8/3, navigate to Supplementary Table 

3.  
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Subpopulation Number:

Species 1 2 3 4 5

Glycine soja 663 0 0 0 0

Glycine max 1 
a

12 1583 2797 334
 a  Genotypically, a G. soja , but phenotypically classfied as a G. max  accession (PI549045A).

Supplementary Table S4. Number of accessions within each subpopulation assigned to 

a given species based on membership coefficient criterion of >0.8. Accessions with a 

membership coefficient <0.8 were considered admixed.  
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Subpopulation Number:

World Region 1 2 3 4 5 Admixed

China 130 11 928 39 185 3923

Korea 277 0 0 952 0 1436

Japan 140 0 12 1701 4 569

America 0 0 43 54 16 1231

SSE Asia 0 0 560 11 1 527

Europe 0 1 0 27 39 682

Russia 117 0 0 2 86 477

Others 0 0 40 11 3 195

Supplementary Table S5. Number of accessions within each subpopulation assigned to 

each world region class based on membership coefficient criterion of >0.8. Accessions 

with a membership coefficient <0.8 were assigned to the admixed group.  
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Subpopulation Number:

Maturity Group Class 1 2 3 4 5 Admixed

000 - 0 63 0 1 70 159 1075

I 34 0 1 78 100 1058

II 64 11 19 142 53 1168

III 38 1 26 320 16 1029

IV 55 0 163 853 5 1990

V 249 0 237 568 0 1026

VI 95 0 195 459 0 632

VII - X 58 0 940 307 0 1052

Unassigned 8 0 1 0 1 10

Supplementary Table S6. Number of accessions within each subpopulation assigned to 

each MG class based on membership coefficient criterion of >0.8. Accessions with a 

membership coefficient <0.8 were assigned to the admixed group.  
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Subpopulation Number

World Region 1 2 3 4 5

China 0.07 0.22 0.36 0.13 0.22

Korea 0.11 0.03 0.04 0.67 0.16

Japan 0.10 0.03 0.03 0.79 0.05

America 0.02 0.31 0.17 0.22 0.28

SSE Asia 0.05 0.05 0.72 0.13 0.04

Europe 0.07 0.30 0.07 0.23 0.33

Russia 0.22 0.20 0.04 0.09 0.45

Others 0.03 0.19 0.32 0.27 0.20

Ancestor 0.02 0.25 0.14 0.36 0.24

Supplementary Table S7. Mean ancestry estimates of accessions within each world 

region relative to the subpopulation assignment.  Estimates also provided for the 34 

accessions that comprise a group known as USA soybean ancestors (Gizlice et al., 1994; 

Li and Nelson, 2001; Ude et al., 2003).  
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CHAPTER 3: GENOME-WIDE ASSOCIATION MAPPING OF 

QUALITATIVELY INHERITED TRAITS IN A LARGE GERMPLASM 

COLLECTION  

This chapter has been accepted for publication: Bandillo N, Lorenz A, Graef G, Jarquin 

D, Hyten D, Nelson R, Specht J (2016). Genome-wide association mapping of 

qualitatively inherited traits in a germplasm collection. Plant Genome. 

 

3.1. ABBREVIATIONS: CLG, classical linkage group; cM, centi-Morgan; GRIN, 

Germplasm Resource Information Network; GBS, genotyping by sequencing; GWA, 

genome-wide association; GWA, HPS, hydrophobic protein from soybean; genome-wide 

association; LD, linkage disequilibrium; LG, linkage group; MG, maturity group; MLG, 

molecular linkage group; MAF, minor allele frequency; MLM, mixed linear model; NIL, 

near-isogenic line; SNP, single nucleotide polymorphism.  

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

 
 

3.2. ABSTRACT 

Genome-wide association (GWA) has been used as a tool for dissecting the genetic 

architecture of quantitatively inherited traits. We demonstrate here that GWA can also be 

highly useful for detecting the genomic locations of major genes governing categorically 

defined phenotype variants that exist for qualitatively inherited traits in a germplasm 

collection. GWA mapping was applied to categorical phenotypic data available for ten 

descriptive traits in a collection of ~13,000 Glycine max (L.) Merr. accessions that had 

been genotyped with a 50K SNP chip. A GWA on a panel of accessions of this 

magnitude offered substantial statistical power and mapping resolution, and we found 

that GWA mapping resulted in the identification of strong SNP signals for 23 known 

genes as well as several heretofore unknown genes controlling the phenotypic variants in 

those traits. Because some of those genes had been cloned, we were able to show that the 

narrow SNP signal regions we detected for the phenotypic variants had chromosomal bp 

spans that, with few exceptions, bracketed the bp region of the cloned gene coding 

sequences, despite variation in SNP number/distribution of chip SNP set. Our GWA 

results identified very narrow regions that likely contained the trait-governing candidate 

genes, and we provide insights on how to deal with digenic traits for which linkage or 

epistasis can influence the outcome. In essence, GWA mapping aimed at qualitatively 

inherited traits can provide a convenient path for rapidly generating high-resolution 

positioning of many yet to be mapped genes on the soybean genomic sequence map.  
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3.3. INTRODUCTION  

In the USA, there are 30 USDA-ARS National Plant Germplasm System (NPGS) 

sites (http://www.ars-grin.gov/npgs/sitelist.html), which were established for the 

collection, preservation, and distribution of plant species accessions of national interest. 

A substantial amount of phenotypic data has been collected in many of these germplasm 

collections. The soybean repository is located at Urbana, IL USA (https://npgsweb.ars-

grin.gov/gringlobal/site.aspx?id=24), and it contains accessions of two annual species – 

the wild G. soja and the cultivated G. max, plus accessions of 19 perennial Glycine 

species.  

Nearly all of the annual Glycine accessions have been characterized by the 

Collection curation staff for many descriptive traits. Of particular interest to soybean 

breeders and geneticists are descriptor traits: maturity group; stem termination; flower 

color; pubescence color, form, and density; pod color; seed coat luster and color; and 

hilum color. At least two and often several phenotype variants are listed as categories for 

each trait. The phenotypic category names and codes for each descriptor trait can be 

found at https://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx (select soybean, then 

click on any given descriptor name). 

Phenotypic variants in most of the above soybean descriptor traits are known to 

be qualitatively inherited in a monogenic or a digenic (sometimes, in a trigenic or 

tetragenic) manner. Because inter-genic epistasis plays a role in some cases, the number 

of phenotypic variants can be fewer than the number expected in its absence. Past 

soybean inheritance studies involving qualitatively inherited traits have led to the 

http://www.ars-grin.gov/npgs/sitelist.html
https://npgsweb.ars-grin.gov/gringlobal/site.aspx?id=24
https://npgsweb.ars-grin.gov/gringlobal/site.aspx?id=24
https://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx
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assignment of gene symbols to the alleles at each of the loci that were inferred to govern 

the trait. Palmer et al. (2004) listed 251 soybean genes, and also noted that 72 of these 

were members of 21 classical (i.e., non-molecular) linkage groups (CLGs). Based on 

molecular marker genotyping of bi-parental mapping populations in which some of those 

72 genes were segregating (e.g., Shoemaker and Specht, 1995), 19 of those 21 CLGs (68 

of the 72 genes) were assigned to molecular linkage groups (MLGs) that were labeled A1 

to O (Cregan et al., 1999). The number of s assigned to MLGs has now increased from 68 

to 77 (SoyBase; www.soybase.org, Grant et al., 2010). Obviously, the majority of known 

soybean genes have yet to be mapped. Moreover, even the genetically mapped genes 

have low resolution centi-Morgan (cM) map positions, except for a few cloned genes that 

now have a specified chromosomal base pair (bp) position on the Williams 82 reference 

genome.  

Establishing a chromosomal bp map position for all soybean genes using 

molecular marker genotyped bi-parental mapping populations would be a laborious and 

expensive effort. However, two recent publications suggested to us that gene-mapping 

could be accomplished via an alternative approach. Sonah et al. (2014) used genotyping-

by-sequencing (GBS) to generate 47,702 SNPs they used to genotype 304 soybean lines 

spanning maturity groups (MGs) 000 to II. After performing a population structure 

analysis, they conducted a genome-wide-association (GWA) analysis on just 139 MG 0 

lines they had characterized for five agronomic and seed traits in six field environments. 

Their primary goal was to discover SNPs associated with those five quantitative traits, 

but they stated that “to validate our GWAS approach”, they also applied GWA to the 

flower, pubescence, and hilum color phenotypes that they had also recorded for those 139 

http://www.soybase.org/
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lines. These authors also stated that they detected “a towering distribution of many 

(significant) SNPs” in the chromosomal regions corresponding to four classical genes 

known to control those three traits. Subsequently, Wen et al. (2015), using 342 land races 

and 1062 cultivars released during 2007-2012, used the 50K soybean chip to apply GWA 

to 1402 lines differing in flower color (two phenotypes), pubescence color (two 

phenotypes), and seed coat color (six phenotypes). In this set of MG I, II, and III 

genotypes, they detected strong SNP associations for those three traits in the same 

chromosomal regions as those reported by Sonah et al. (2014).  

These two reports indicated that GWA could be used for quickly “mapping” many 

of the simply inherited classical genes that are known to qualitatively govern traits, and 

for which extensive phenotypic data exists in many germplasm collections. More 

importantly, the application of GWA to classical traits can result in immediate high-

resolution, chromosomal bp map positions for the controlling genes, which would be 

useful to researchers interested in cloning any given classical gene of scientific or 

commercial interest.  

To more thoroughly test this thesis, we conducted a GWA analysis using 

phenotypic category data for ten soybean descriptive traits listed in GRIN for ca. 13K G. 

max accessions genotyped with a 50K SNP chip (Song et al., 2013). A GWA on a panel 

of accessions of this magnitude can offer substantially greater statistical power and 

mapping resolution compared to the smaller panels used by Sonah et al. (2014) and Wen 

et al. (2015). Our primary objective was to assess the use of GWA as a tool for 

chromosomal bp positional mapping of (known and unknown) genes controlling major 

phenotypic variants associated with each of the ten soybean descriptive traits. Of interest 
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were three questions: What is the degree of SNP-signal resolution obtainable when a 50K 

SNP chip is used in a GWA to identify a chromosomal bp position of a gene locus 

controlling a given pair categorical phenotypic variants vis-à-vis a cloned gene bp 

sequence? Can GWA be used for digenic qualitative gene mapping if there are only three 

instead of four phenotypes because of epistasis? To what degree can a reduction in 

accession numbers be tolerated in GWA and yet still provide a GWA signal for a known 

gene locus. The results generated in this study will likely be of interest to researchers 

interested in high-resolution GWA mapping of genes governing qualitatively inherited 

traits in their specific crop species of interest.  
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3.4. MATERIALS AND METHODS 

3.4.1. Plant Materials  

The accessions used in this study are maintained in the U.S. Department of 

Agriculture (USDA) Soybean Germplasm Collection, and were described previously 

(Bandillo et al., 2015; Song et al., 2015). As of 31 May 2016, this collection contained 

22,199 accessions of 21 species in the genus Glycine (https://npgsweb.ars-

grin.gov/gringlobal/site.aspx?id=24), which included 1,181 wild annual G. soja 

accessions, 19,931 domesticated annual G. max accessions, and 1,007 accessions of the 

19 perennial species.  

3.4.2. Extraction of Genotype and Phenotype Data 

Song et al. (2015) used an Illumina Infinium SoySNP50K iSelect Beadchip to 

genotype 19,648 accessions of the two annual species. Based on a pair-wise genetic 

similarity analysis of 18,840 G. max accessions genotyped with 42,509 SNPs, they 

discovered that 1682 accessions were 100%, and another 4206 were at least 99.9%, 

identical to at least one other accession. Relative to the 1168 G. soja accessions, the 

equivalent numbers were 95 and 362. In the G. max collection, there also are 600 near-

isogenic line (NIL) accessions (not including the recurrent parents). Bandillo et al. (2015) 

removed the SNP-identical duplicates and also the NILs to conduct a population structure 

analysis of the two annual Glycine species, and then removed the G. soja accessions for a 

subsequent GWA analysis that targeted just two quantitatively inherited traits – soybean 

seed protein and oil. The step-wise filtering process conducted by Bandillo et al. (2015) 

resulted in 13,624 G. max accessions, and is the same accession set used in the present 

https://npgsweb.ars-grin.gov/gringlobal/site.aspx?id=24
https://npgsweb.ars-grin.gov/gringlobal/site.aspx?id=24
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study for the GWA mapping of ten descriptive traits. Any SNP with minor allele 

frequency (MAF) < 0.01 was removed from the genotype dataset for the GWA mapping. 

The SNP genotype data set is publicly available at 

http://www.soybase.org/dlpages/index.php.  

The phenotypic data used in this study were obtained from the USDA Soybean 

Germplasm Collection general evaluation trials in which data were collected for 

morphological, agronomic, and seed quality traits. The trials were grown where the 

accessions were adapted, and in most cases, there was one replication in each of two 

successive years. For a comprehensive listing of all of the phenotypic categories and their 

codes relative to the ten descriptor traits, see the GRIN web-site: https://npgsweb.ars-

grin.gov/gringlobal/descriptors.aspx, enter SOYBEAN, then click on these (abbreviated) 

descriptor names: MatGroup, StemTerm, FlwrColor, PubColor, PubForm, PubDensity, 

PodColor, SCoatLuster, SCoatColor, HilumColor. The genotyped accessions and their 

ten-trait phenotypes were filtered (see Fig. 1) to create a final data file of accessions and 

their phenotype categories by trait (see Table S1). Due to missing phenotype scores for 

some traits in some accessions, the total number filtered accessions varied by trait.  

3.4.3. Genome-Wide Association Analysis 

An intensive comparison of various GWA methods conducted by Wang et al. 

(2012) demonstrated that the mixed linear model (MLM) is the most promising for 

analyzing either binary/categorical or continuous traits in crops exhibiting population 

structure. MLM has been utilized in GWA mapping of continuous and binary or 

categorical traits in model plant species (Atwell et al., 2010), and in crop species such as 

http://www.soybase.org/dlpages/index.php
https://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx
https://npgsweb.ars-grin.gov/gringlobal/descriptors.aspx
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rice (Huang et al., 2010), corn (Romay et al., 2013) and barley (Wang et al., 2012). In 

this study, MLM was used for GWA mapping of either binary or categorical traits to 

handle the confounding effects caused by strong population structure present in the 

soybean germplasm collection. For each phenotype, marker-trait associations were tested 

using the Q+K model y= Xβ + Cγ + Zu + e, where y is a vector of phenotypes; β is a 

vector of fixed marker effects; γ is a vector of subpopulation effects; u is a vector of 

polygenic effects caused by relatedness , i.e., 
2~ (0, )uMVN u K ; X is a marker matrix; C 

is an incidence matrix containing membership proportions to each of the five genetic 

clusters identified by the ADMIXTURE analysis (Bandillo et al., 2015; Alexander et al., 

2009); Z is the corresponding design matrix for u; and K is the realized relationship 

matrix estimated internally in the Factored Spectrally Transformed Linear Mixed Models 

(FaST-LMM) using the SNP data (Lippert et al., 2011). The above model was 

implemented using the FaST-LMM algorithm, which is a program designed to 

accommodate large datasets with reduced computational time. Association analyses were 

conducted across groups of accessions classified either by MG class or by world region. 

GWA mapping across all groups was conducted using only MAF>0.01 SNPs, with 

population structure was accounted for using both γ and u. The qqman R package 

(Turner, 2014) was used to visualize Quantile-Quantile (qq) plot, and the genomic 

inflation parameter lambda (Λ), a metric of the degree of inflation of p-values (Devlin 

and Roeder, 1999), was calculated.  

We used an error value of -logP=5.17 for the detection of significant SNP 

associations, which was determined by Bandillo et al. (2015) in 13,624 G. max 

accessions to correspond to an experiment-wise Type I error value of alpha=0.05. Briefly, 
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the correlation matrix and eigenvalue decomposition among 42,509 SNPs were 

calculated to determine the effective number of independent tests (Meff) (Li and Ji, 2005). 

The significance test criteria was then adjusted using the Meff, with the correction (Sidak, 

1967) αp = 1 – (1- αe) 
1/Meff , where αp is the computed comparison-wise error rate, 

whereas αe is the inputted desired experiment-wise error rate (i.e., 0.05). Multiple-linear 

regression was used to estimate the proportion of phenotypic variance accounted for by 

significant SNPs after accounting for population structure effects.  

3.4.4. Determining Global Distribution of Allelic Variation 

Accessions were grouped into subpopulations defined by world region, which is a 

major determinant of population structure within the soybean germplasm collection as 

reported by Bandillo et al. (2015). World region subpopulations consisted of eight major 

manageable countries of origin: China (36%), North and South Korea (19%), Japan 

(17%), North and South America (9%), South and Southeast Asia (8%), Europe (5%), 

Russia (5%), and Others (Bandillo et al, 2015). Based on the results of GWA mapping, 

the closest SNP that tagged a classical gene locus was used to estimate the frequency of 

the two alleles at that locus. Allele frequencies were estimated within each subpopulation 

using the CrossTable function in the gmodels package, implemented in R software 

version 3.2.1 (R Core Team, 2014). At each SNP locus, a Fisher’s exact test was used to 

test the null hypothesis that frequency of the allele conferring a trait of interest was the 

same across world regions. The allele frequency output from CrossTable was then used to 

make plots using the pie function in R. 
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3.4.5. Candidate Gene Annotations 

Gene annotations were extracted using the G. max cv. Williams 82 gene models 

(assembly v1.01, JGI Glyma1.0 and Glyma1.1 annotation) downloaded from Phytozome 

(http://phytozome.jgi.doe.gov/pz/portal.html). The genomic locations were obtained from 

the GFF file of G. max assembly v1.01, JGI Glyma1.0 and Glyma1.1 annotation, and 

were displayed using a chromosome visualization tool (Cannon and Cannon, 2011). A 

250kb sliding window-approach (125 Kb upstream and 125 Kb downstream from the 

most significant SNP position) was used to search for functional genes - implemented in 

BEDTools (Quinlan and Hall, 2010). Candidate genes included (a) soybean genes of 

known function related to the trait, and/or (b) genes with function-known orthologs in 

Arabidopsis. Annotation data is presented only for non-cloned classical genes and new 

loci for which a GWA signal was detected in this study (Table S2).  
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3.5. RESULTS AND DISCUSSION 

From a population of ~21K soybean accessions originating from 84 different 

countries, we extracted a large association panel for mapping genes governing the 

phenotypes of the ten qualitative descriptive traits. Population size (N in Fig. 1) for the 

initial GWA conducted on each trait, for which there were multiple phenotypic categories 

(Fig. 2), ranged from 13,617 to 10,618 accessions (Supplementary Figs. S1-S10). Using 

the mixed linear model (MLM) that corrects for the effects of population structure and 

genetic relatedness, GWA mapping identified a total of 739 significant SNPs (-logP > 5. 

17) in 57 genomic regions among all ten traits (Table 1). Overall, the GWA Manhattan 

plots documented significant SNP signals that corresponded to 23 known classical genes 

– ten of which have been cloned (Supplementary Figs. S1-S10; Fig. 3). Also detected 

were several strong SNP signals that may correspond to heretofore unknown qualitative 

genes. The large population size (ca. 13K accessions), coupled with the substantial 

genetic diversity in the soybean germplasm collection, resulted in our GWA analyses 

providing high mapping resolution relative to pinpointing the chromosomal bp position 

of the genes controlling the phenotypic variation associated with these qualitatively 

inherited traits. In addition, the magnitudes of the –logP scores for the SNPs identifying 

qualitatively inherited genes obtained in this study were substantially higher than any 

previous GWA or QTL mapping study conducted to date in soybean (www.soybase.org). 

To leverage the fine bp map resolution obtainable from GWA, we assembled a list of 

Wm82.a1 version of annotated candidate genes (Supplementary Table S2) located within 

250-bp regions centered on each GWA-detected SNP peak signal (but not for cloned 

gene SNP signals) to assess the plausibility of potential candidate genes for the known 

http://www.soybase.org/
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(but not yet cloned) genes, and for the few SNP signals that did not correspond to a 

known gene locus. We document here that the chromosomal bp positions of the 

significant SNP signal regions overlapped the coding sequence bp positions of the ten 

cloned loci of: E1/e1, E2/e2, E3/e3, Dt1/dt1, Dt2/dt2, W1/w1, T/t, Hps, I/i, and R/r (see 

bold-faced bp positions in Table 1), except for the cloned E4/e4 or the fine-mapped L1/l1 

loci, despite the non-uniform distribution of the chip set of SNPs in many localized 

regions of soybean genome. Our GWA map findings for each of the ten traits are 

successively presented in the next ten sections.  

3.5.1. Maturity Group  

Known Genes: Each accession in the USDA Soybean Germplasm Collection is 

assigned to one of 13 MG categories (000 to X) that best reflects its adaptation to 

latitudinal zones. Nine genes are known to control soybean flowering and maturity: E1/e1 

and E2/e2 (Bernard, 1971), E3/e3 (Buzzell, 1971), E4/e4 (Buzzell and Voldeng, 1980), 

E5/e5 (McBlain and Bernard, 1987), E6/e6 (Bonato and Vello, 1999), E7/e7 (Cober and 

Voldeng, 2001), E8/e8 (Cober et al., 2010), and E9/e9 (Kong et al., 2014; Zhao et al., 

2016). The dominant E allele always conditions late maturity, except for E6 and E9, 

which condition early maturity. Soybean leaves, starting with the unifoliolate leaflet pair 

on young seedlings, perceive the environmental signals of dusk and dawn and track the 

duration of the night length (Wilkerson et al., 1989). The E/e gene loci are presumed to 

govern the number of hours of cumulative night length needed to trigger floral induction, 

when existent vegetative meristems are converted to inflorescent meristems, which in 

turn, produce flowers (Weller and Ortega, 2015). Depending on temperature during this 

floral evocation stage, flowers appear about 20 to 35 days after floral induction 
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(Wilkerson et al., 1989; Bastidas et al., 2008). At least two genes, termed the J/j loci in 

the older literature, but recently shown by Cober (2010) to be specifically the genes J/j 

and E6/e6, govern the duration of the “juvenility phase”, when leaves are not yet 

competent to perceive the dusk-to-dawn night length, thereby delaying the onset of 

transmission of the floral stimulus to the vegetative meristems to initiate floral induction 

(Benlloch et al., 2015). Recently, Zhao et al. (2016) noted that the recessive gene e9 also 

delayed flowering and they considered it to be a long juvenility gene. Accessions 

homozygous for the recessive alleles at the E6/e6 and J/j loci (i.e., e6e6jj) have a “long 

juvenile” period that delays floral induction under short days, making these accessions 

higher yielding in equatorial latitude soybean production areas (Carpentieri-Pipolo et al., 

2000; Cober, 2010; Destro et al., 2001; Harada et al., 2015). Five of the E/e loci have 

been cloned (E1 by Xia et al., 2012; E2 by Watanabe et al., 2011; E3 by Watanabe et al., 

2009; E4 by Liu et al., 2008; E9 by Kong et al., 2015), and have respective bp positions 

on Chrs 6, 10, 19, 20, and 16. Genetic mapping studies have shown that E7 is linked to 

E1 by ca. 6 cM (Cober and Voldeng, 2001), and that E8 resides between two flanking 

SSR markers on Chr 4 (Cober et al., 2010; Cheng et al., 2011). The map positions of the 

E5 maturity gene, and the E6 and J juvenility genes are still unknown. Komatsu et al. 

(2007) detected a Chr 2 QTL for which the early flowering allele was dominant, and 

because that allele originated from the late-maturing parent, they speculated that this 

QTL might be a J/j locus or the E6/e6 locus, but offered no confirmation.  

GWA Map Signals: A GWA analysis of all 13,617 accessions spanning 13 MG 

groups (Fig. 2) generated a Manhattan plot that exhibited five highly significant signals, a 

moderately significant signal, and two other signals of borderline significance (Fig. S1a). 
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Notably, three of five major genomic regions had SNP bp ranges that spanned the Chr 6, 

10, and 19 bp positions of the cloned E1/e1, E2/e2, and E3/e3 loci (Table 1; for a 

magnified single Chr view of each of these three signals, see Figs. 3a, 3b, 3c, in which 

the green bars denote the bp position of the cloned gene). Because the E7/e7 locus is 

closely linked to the E1/e1 locus, its GWA signal may be commingled with the latter’s 

signal (Fig. 3a). The other two of the five major signals did not correspond to any cloned 

or mapped E/e genes. However, two highly significant maturity QTLs have been reported 

that have map positions near these two SNP signals. The Chr 12 QTL detected by Li et 

al. (2008) and listed in SoyBase as Pod Maturity QTL 26-2, had a large 6-day additive 

effect on maturity. The Chr 11 QTL detected by Gai et al. (2007) and listed in SoyBase 

as Pod Maturity QTL 17-2, had a large 7-day additive effect. Lu et al. (2015) recently 

noted that the two QTL LOD scores peaked at positions near SSR locus Satt442 

(Gm12:6361515-6361774), and near SSR locus Satt519 (Gm11:13984414-13984651), 

which were close to our Chr 12 and 11 GWA SNP positions (Table 1). Because of their 

large additive effects on maturity, Lu et al. (2015) considered these two QTLs to be 

important for breeder-manipulated adaptation in China, and stated that they had cloned 

candidate genes for these maturity QTLs, but were awaiting test results before publishing. 

The moderately significant single SNP at Gm18:59902680 was nearly identical to the 

Gm18:59603446) SNP signal detected by Wen et al. (2015), which those authors 

associated with the SoyBase Pod Maturity QTL 29-8.  

Soybean adaptation to latitudes extending away from the equator generally 

requires that dominant E alleles conditioning late maturity at the E/e loci be replaced with 

recessive e alleles conditioning early maturity (Tsubokura et al., 2012, 2013; Zhai et al., 



75 
 

 
 

2014; Zhao et al., 2016). This led us to conduct a GWA targeting just the 8,315 high-

latitude adapted accessions of MGs 000 to IV (Fig. S1b), and a GWA targeting the 5,302 

low-latitude adapted accessions of MGs V to IX (Fig. S1c). The SNP signals for the 

E1/e1, E2/e2, and E3/e3 loci and those on Chr 11 and 12 that had been detected in the 

GWA of all MGs (Fig. S1a) were again detected in the high-latitude MG set (Fig. S1b), 

though at diminished –logP values, except for the E2/e2 signal, whose –logP value signal 

was strengthened 2-fold. The original three borderline significant SNPs disappeared. In 

contrast, in the low-latitude MG set (Fig. S1c), maturity class variation attributable to the 

E1/e1 and E3/e3 loci was not detected, and the E2/e2 signal and Chr 11 signal were not 

appreciably changed. This result led us to infer that very few, if any accessions in the MG 

V to X classes were homozygous recessive at the E1/e1 and E3/e3 loci. If so, this would 

imply that the attainment of a finer degree of latitudinal photoperiod adaptation within the 

five southern USA MGs arises solely from the E2/e2 locus and from the two (yet-to-be 

cloned and named) E/e loci that underlie Chr 11 and 12 QTLs. Bernard (1971) reported 

that the dominant alleles of E1 and E2 delayed maturity/flowering by a respective 18/23 

and 14/7 days. Using additional near-isogenic lines and more replications, McBlain et al. 

(1987) reported that the dominant alleles E1, E2, and E3 delayed maturity/flowering by a 

respective 11/16, 11/7, and 6/6 days. Because the E2/e2 locus has a smaller allelic effect 

on flowering date than on maturity date, it offers a distinct advantage over the other two 

loci when breeders seeking latitudinal photoperiod adaptation want to delay/advance the 

date of R7 (physiological maturity) without an equal (i.e., E3/e3) or larger (i.e., E1/e1) 

delay/advance in the date of soybean stage R1 (first flower). This may explain why 

maturity variation at the E2/e2 locus has a stronger signal than the other two loci, not 
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only within the MG 000 to IV classes (Fig. S1b), but also within the MG V to X classes 

(Fig. S1c).  

The cloned maturity gene locus E4/e4 on Chr 20 was not detected in the 13,617-

accession GWA of all MGs (Fig. S1a), nor was it detected in the 8,537-accession GWA 

of MG 000 to IV (Fig. S1b). This may not be surprising, because this locus may not come 

into play except in those soybean crop production areas that have rapidly developed in 

ever-higher latitudes, where breeders have been replacing the dominant E4 allele (late 

flowering/maturity) with the recessive e4 allele (early flowering/maturity) to create 

cultivars with a suitable photoperiod adaptation (Zhai et al., 2014; Zhao et al., 2016). So, 

we generated a GWA for just 1,199 accessions of MG 00 and 0 (Fig. S1d), and it 

displayed two significant Chr20 SNP signals, neither of which overlapped the E4/e4 

coding sequence. The more significant SNP max region was located ca. 2.3 Mbp 

upstream of that coding sequence (Table1; Fig. 3d). With only 1,199 accessions (Fig. 

S1d), this GWA may not have had sufficient statistical power for optimally resolving the 

E4 gene position. Yet, a near-doubling of accession numbers, achieved by adding 1,237 

MG I and 000 accession set to the 1,199 MG 00-0 set, resulted in the disappearance of 

the Chr 20 GWA signal (data not shown). The reason may be due to the observation that 

E3 is epistatic to e4 (Saindon et al., 1989a; 1989b).  

A long juvenile period, produced in genotypes homozygous for recessive genes of 

e6 and j (Cober, 2010), and in genotypes homozygous for the recessive gene e9 located 

on Chr 16 (Zhao et al., 2016), provides a means for delaying the onset of flowering of 

genotypes adapted to non-equatorial environments so that these genotypes will then have 

greater yield potential when grown in near-equatorial short-day latitudes of soybean 
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production. To determine if we could detect any of these three loci, we conducted a 

GWA for just the 2,277 accessions of the late MGs VII - X (Fig. S1e); however, we 

detected only a Chr 12 signal, which (as noted above) likely corresponds to the SoyBase 

QTL 17-2 detected on Chr 12 by Li et al. (2008). However, that QTL was detected in an 

RIL population, so no information is available as to whether the early maturity allele for 

this QTL is dominant, as it would have to be if either our Chr 12 SNP signal or their QTL 

were to be considered as corresponding to either the E6/e6 or a J/j locus.  

3.5.2. Stem Termination Type  

Known Genes: Based on the timing and abruptness of the termination of apical 

stem growth, soybean accessions have been classified into three phenotype categories 

known as determinate (D) – stem abruptly terminating, indeterminate (N) – stem tapering 

gradually toward tip, and semi-indeterminate (S) – intermediate between N and D 

(http://www.ars-grin.gov/npgs/). In D plants, apical stem growth abruptly ceases upon the 

occurrence of floral induction, which causes all existent meristems to transition from a 

vegetative state to a reproductive state, leading to formation of inflorescence meristems 

that eventually produce flowers (Benlloch et al., 2015; Weller and Ortega, 2015). The D 

plant stem apice thus becomes terminal flower that produces a pod-bearing raceme (Liu 

et al., 2010; Tian et al., 2010). However, in N plants, the primary apical meristem at the 

stem tip and those at the branch tips are not receptive to the floral induction signal, which 

allows stems and branches to continue to elongate before tapering off at the onset of 

seed-filling (stage R5), when developing seeds become the strongest sink for 

photosynthetic carbon (Bastidas, et al., 2008; Tian et al., 2010). Flowering in N plants is 

thus limited to lateral meristems. In S plants, the receptiveness of their apical meristems 

http://www.ars-grin.gov/npgs/
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to the floral stimulus is partial and gradual, leading to a less abrupt termination of main 

stem growth vs. D (Ping et al., 2014).  

GWA Map Signals: Genome-wide association mapping, using all 12,034 

accessions that had been classified as having a stem growth habit phenotype of D, S, or N 

(Fig. 2), resulted in the detection of two major SNP signals on Chr 19 and 18, whose 

positions corresponded to the cloned genes Dt1/dt1 (Liu et al., 2010; Tian et al., 2010) 

and Dt2/dt2 (Ping et al., 2014) (Fig. S2a; Table 1; Figs. 3e, 3f). A low-level significant 

GWA signal detected on Chr 19 was close to the E3/e3 maturity locus – the latter is 

located ca. 2.5 Mbp downstream from the Dt1/dt1 locus (ca. ~25 cM in Fig. 1 of 

Watanabe et al., 2009). This Chr 19 GWA signal (see right side of Fig. 3e) could have 

arisen because genetic linkage between the Chr 19 locus and the Dt1/dt1 locus, but 

possibly also because of epistasis between those two loci. Bernard (1972) reported that 

(1) the Dt1/dt1 gene locus was responsible for the soybean growth habit extremes of 

determinate (dt1dt1 genotypes) and indeterminate (Dt1Dt1 genotypes), (2) the dominant 

allele at the Dt2/dt2 locus converted an indeterminate stem growth habit (Dt1Dt1dt2dt2) 

into an semi-determinate stem growth habit (Dt1Dt1Dt2Dt2), and (3) the recessive dt1 

gene suppressed the expression of the semi-determinate phenotype in a dt1dt1Dt2Dt2 

genotype, leading to a 9S:3N:4D F2 segregation ratio (i.e., recessive epistasis). To 

mitigate the impact of the epistatic effect of dt1dt1 on Dt2 expression, and to determine 

how closely the S and N phenotypic classifications (which are based on the presence of a 

terminal raceme and the degree of stem tapering) correspond to the actual genotype, we 

restricted our next GWA to the 6,149 accessions scored by the germ-plasm collection 

staff as having either an S or an N phenotype. This GWA focus on just the S and N 
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phenotypes was partly successful in strengthening the signal for the Dt2/dt2 locus (Fig. 

S2b), but compared to the initial GWA (Fig. S2a), the Chr 19 signal (near the E/e3 locus) 

disappeared and a new signal appeared on Chr 6, but again the Dt1/dt1 signal did not 

disappear, indicating that a phenotypic-based definition of indeterminate and semi-

determinate (as defined above) does not always correspond to the genotypic-based 

definitions of Dt1Dt1dt2dt2 (indeterminate) and Dt1Dt1Dt2Dt2 (semi-determinate). We 

next used the most significant SNP nearest the Dt1 gene as a “tag” to perform 

discriminant analysis with manual checking, which revealed that 27% (261/951) of the S 

phenotypes, and 7% (356/5198) of N phenotypes, might actually be dt1dt1 genotypes. In 

a new GWA conducted with these 261 S and 365 N accessions omitted (Fig. S2c), the 

Chr 18 Dt2 signal was strengthened (Table 1; Fig. 3f), as was the Chr 6 signal, suggesting 

that the latter may be a “genetic background factor” that influences phenotypic distinction 

between N and S. Though the Chr 19 Dt1 signal was further weakened, it was not purged, 

confirming that the GRIN-listed phenotypes for stem growth habit cannot be assumed to 

have the corresponding two-locus Dt genotypes reported by Bernard (1972), because the 

genetic background of the accession has a major influence on the stem termination 

phenotype. 

3.5.3. Flower Color 

Known Genes: Palmer et al. (2004) listed the six genes known to govern flower 

color. Yang et al. (2010) later listed the chromosomal positions and cloned candidate 

genes for five of these six loci, i.e., W1/w1 (Chr 13), W2/w2 (Chr 14), W3/w3 (Chr 14), 

W4/w4 (Chr 12), and Wp/wp (Chr 2). Yang et al. (2010) noted that W2/w2 and W3/w3 

were closely linked at the top of Chr 14, and Buzzell et al. (1977) noted that Wm/wm is 
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tightly linked (2.2 cM) to W1/w1 on Chr 13. Nine phenotypic flower color categories are 

known, but very few accessions exist for colors other than the common purple and white. 

Moreover, recessive epistasis plays a significant role in that only in a W1W1 genotype 

background is expression of any of the seven variant flower colors governed by the other 

five loci possible. The w1w1 genotypes always have white flowers.  

GWA Map Signals: Relative to flower color in 12,431 accessions that we used 

for an initial GWA, five of the nine known phenotypic categories were present (Fig. 2), 

i.e., blue (W1W1w2w2), dark purple (W1W1W3W3W4W4), light purple 

(W1W1W3W3w4w4), purple (W1W1w3w3W4W4), near-white (W1W1w3w3w4w4), and 

white (w1w1) - see Yan et al. (2014) for phenotype-genotype details. However, just four 

significant regions were detected in this GWA (Fig. S3a), and all four were on Chr 13 

and were not far from each other (Table 1; for a magnified view of the most significant 

SNP signal and green bar denoting the position of the cloned W1/w1 locus, see Fig. 3g). 

When we next limited the GWA mapping to the 12,329 accessions that were just P 

(8,209) or W (4,120), the same four Chr 13 signals were again detected (Fig. S3b), 

though a new significant SNP signal appeared on Chr 19 at 36603029 bp (Table 1). That 

location is not consistent with the known chromosomal locations of all other flower color 

loci, though it is very close to the Chr 19 location of the L1/l1 gene locus, whose 

dominant allele gives rise to a black vs. brown or tan pod color phenotype (pod color is 

discussed later). If that Chr 19 flower color signal is not a false positive, then because of 

our GWA is focused only on the P vs. W phenotype categories, this Chr 19 signal could 

only have been detected if the underlying gene had an epistatic impact on the P vs. W 

phenotypic calls. In any event, the most significant SNP regions identified in the GWA 
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analyses overlapped the cloned gene (Table 1). The other nearby significant SNP regions 

in Chr 13 resided about 1-2 Mb upstream of W1 (Fig. 3g), and might simply arise from 

the extensive LD in this region. With fewer accessions, Sonah et al. (2014) detected 14 

significant SNPs in a single region spanning 2.5 and 4.8 Mb (though their SNP max was 

8.1 kb downstream of W1/w1), whereas Wen et al. (2015) reported five separate 

significant SNP signals ranging from 2833623 to 4559799 bp; the latter one was their 

SNP max, and it was the same SNP max detected in our study (Table 1).  

3.5.4. Pubescence Color 

Known Genes: Pubescence in soybean consists of the trichomes on stem, leaf, 

and pod surfaces. Its color is determined by the B-ring mono- vs. di-hydroyxlation pattern 

of the flavonoids deposited in those trichomes (Zabala and Vodkin, 2003). Bernard 

(1975a) reported that pubescence color was controlled by two loci, T/t and Td/Td, which 

interacted in a recessive epistatic manner to produce a F2 segregation ratio of 9 tawny 

(T): 3 light tawny (Lt): 4 gray (G). The germplasm curation staff used a near-gray (Ng) 

pubescence color phenotype to characterize accessions with a pubescence color that was 

indistinguishable from G, but which also had a hilum color that was not consistent with a 

presumptive tt genotype. The curation staff also noted that some accessions with a TTtdtd 

genotype also have an Ng phenotype. Only the T/t locus has been cloned (Toda et al., 

2002; Zabala and Vodkin,y 2003). A Chr 3 genetic map position for the Td/td locus was 

reported in patent application (see Table 4 in Behm et al., 2011).  

GWA Map Signals: Our initial GWA mapping of 12,360 accessions that 

included all T / Lt / Ng / G phenotypes (i.e., 6,166 / 425 / 85 / 5,684 accessions - see Fig. 
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2) resulted in the identification of several SNP-significant regions located on Chrs 3, 6, 

12, 14, and 20 (Fig. S4a; Table 1). Of the 26 significant SNP signals located on Chr 6 

from 17258654 to 19815389 bp (with a max SNP at 17567713 bp), one was at 18252495 

bp, thus co-localizing with the position of the cloned T/t gene locus (Fig. 3h). For the 

same reasons noted in the stem termination and flower color sections, we attempted to 

mitigate epistasis and the low frequency of Lt and Ng phenotypes by conducting a GWA 

without the G pubescence color accessions (Fig. S4b). We expected the T/t locus signal to 

disappear, and the Td/td locus signal to be amplified, because the GWA would then be 

focused solely on pubescence color phenotypic variants inferably arising from just a TT 

TdTd vs. TT tdtd genotypic comparison. In that regard, we were nearly successful, given 

that the Chr 3 signal (which we infer to be the Td/td locus) was amplified 200-fold (Table 

1; Fig. 3i), whereas the T/t locus signal was nearly extinguished, though not completely 

so. Our inference that the Chr 3 signal corresponds to the Td/td locus is also supported by 

the findings of Wen et al. (2015), who in their GWA of 1,402 lines for pubescence color, 

detected not only the T/t locus signal at 18118558 bp, but also a significant Chr 3 signal 

at 47244893 bp (see their Fig. 6A); however, they did not offer any commentary about 

that signal. Sonah et al. (2014) did not detect a Chr 3 signal in their GWA with 139 

accessions, but did detect a large region comprised 68 significant SNPs (i.e., 17313874 to 

21182692 bp) associated with the cloned T locus, though their two closest SNPs 

consisted of one 18.7 kb away, and another 100 kb more distant. In our all-accession 

GWA (Fig. S4a), we assumed that the borderline significant genomic regions on Chrs 12, 

14, and 20 were false positives, given that and signals disappeared in the second GWA 

analysis (Fig. S4b) and those Chrs are not known to classical genes impacting pubescence 
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color.  

3.5.5. Pubescence Form 

Known Genes: Soybean accessions differ in the degree to which trichomes are 

angled upward from the leaf surface, varying from nearly vertical (i.e., erect) to nearly 

horizontal (i.e. appressed). Depending on the insect species and location (USA vs. Japan 

or Korea), either the erect or the appressed pubescence form can serve as an herbivory 

deterrent (Bernard, 1975c; Komatsu et al., 2007; Oki et al., 2012). Pubescence is erect in 

99% of the USA-released cultivars in MGs IV and earlier, but is erect in only 52% of 

USA-released cultivars in MGs V and later. Bernard (1975c) reported that soybean 

trichome morphology was governed by two genes, Pa1/pa1 and Pa2/pa2, which 

interacted to produce five phenotypes he called erect (E), near-erect, semi-appressed (Sa), 

near-appressed, and appressed (A). However, the near-erect and near-appressed classes 

were not easily distinguishable from the Sa class (nor are these two phenotype categories 

listed in GRIN). Considering only the E, Sa, and A phenotype classes, Bernard (1975b) 

surmised that a digenic model with an unusual epistasis pattern could account for his 

observation of a F2 phenotypic segregation ratio of 4 E : 11 Sa : 1 A; the homozygous 

genotypes were inferred to be (Pa1Pa1Pa2Pa2 + Pa1Pa1pa2pa2) : pa1pa1Pa2Pa2 : 

pa1pa1pa2pa2. Lee et al. (1999) postulated that these two genes were duplicates of an 

ancestral locus, and thus arose from the most recent soybean duplication event, bit 

because the duplicates were not of equal phenotypic strength to generate a duplicate 

dominant epistatic F2 ratio of 15 E: 1 A, they postulated that the weaker locus (Pa2/pa2) 

was undergoing evolutionary neo-functionalization. They reported that the Pa1pa1 locus 

mapped to Chr 11 and the Pa2/pa2 locus mapped to Chr 13, but noted that the E / Sa / A 
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phenotypes were difficult to accurately classify, and stated that this may have influenced 

their genetic mapping results.  

GWA Map Signals: The E / Sa /A accessions in the accession set had 

frequencies of 7,744 / 1,474 / 2,886 (Fig. 2). In our initial GWA mapping of 12,104 

accessions that were E / Sa / A, two high resolution SNP signals were detected that we 

inferred to correspond to the Pa1/pa1 and Pa2/pa2 loci on Chrs 12 and 13, respectively 

(Fig. S5a). To mitigate the impact of the epistasis, and to better amplify the Pa2/pa2 

signal, just the 4,360 accessions possessing the phenotypes of Sa (inferred to be 

pa1pa1Pa2Pa2) and A (inferred to be pa1pa1pa2pa2) were included in the next GWA 

(Fig. S5b). Though the Pa1/pa1 signal did not diminish much (probably because of the 

difficulty encountered by the curation staff in distinguishing among the three 

phenotypes), the Pa2/pa2 signal was amplified 4-fold. The mapping resolution for 

Pa2/pa2 locus was remarkable, in that GWA SMP signal pinpointed a region of less than 

50 kb (i.e., between Gm13:30665757..30708708), whereas the Pa1 locus mapped to a 

location between Gm12:37036017..37786243 bp that spanned 750kb (Table 1; for a 

magnified view of the two signals, see Figs. 3j, 3k). These two loci have not been cloned, 

so the SNP signals detected here could be useful starting points for researchers interested 

in doing so. The discrepancy between the Chr 11 map position that Lee et al. (1999) 

reported for the Pa1/pa1 locus and the Chr 12 map position for that locus that we report 

here, may be due to the fact that these two chromosomes are highly homoeologous at the 

respective map positions (Lee et al. 2001). It is possible that the RFLP markers used by 

Lee et al. (1999) may not have been homoeologous-specific, leading them to position 

Pa1/pa1 on Chr 11, instead of Chr 12, where we mapped it with SNP markers.  
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3.2.6. Pubescence Density 

Known Genes: The presence of trichromes on soybean stem, leaf, and pod 

surfaces can serve as mechanical barrier to many herbivorous insects (e.g., cutworms; 

Oki et al., 2012), including insects that vector major yield-reducing viruses (e.g., bean 

leaf beetles, Lam and Pedigo, 2001). Denser pubescence can delay the timing of insect-

mediated pathogen infection (Gunasinghe et al., 1988; Ren et al., 2000; Pfeiffer et al., 

2003). Pubescence density is a key insect deterrent trait relative to Japan breeding 

programs (Komatsu et al., 2007). Palmer et al. (2004) listed five genes that govern 

pubescence density, P1/p1 (glabrous/normal), P2/p2 (normal/puberlent), Pd1/pd1 and 

Pd2/pd2 (dense/normal for both), and the tri-allelic locus Ps/Pss/ps (sparse/semi-

sparse/normal). Bernard and Singh (1969) provided photographs of the range from sparse 

to dense phenotypes. Genetic map data have revealed that these five loci are respectively 

located on Chrs 9, 10, 1, 11, and 12 (Palmer et al., 2004; Shoemaker and Specht, 1995; 

Cregan et al., 1999; Devine, 2003; Song et al., 2004; Komatsu et al., 2007).  

GWA Map Signals: GWA mapping of 12,397 accessions that exhibited six 

phenotypic categories (i.e., dense / glabrous / normal / slightly dense / sparse / semi-

sparse – see Fig. 2) resulted in the identification of several SNP signals (Fig. S6a; Table 

1; Figs. 3l, 3m), two of which corresponded with the (SoyBase) linkage map positions of 

Ps/Pss/ps and Pd1/pd1 loci that translate into Gm12:34877806 bp and Gm01:55523014 

bp), respectively. This finding was consistent with the detection of two significant 

pubescence density QTLs of 1-2 (SoyBase: Gm12:35314290..37138680) and 1-1 

(SoyBase: Gm01:52767178..55838478) reported by Komatsu et al. (2007) in a Japanese 

mapping population derived from a mating of a densely pubescent, insect-resistant 
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cultivar with a sparsely pubescent, insect-susceptible cultivar. A strongly significant 

GWA signal was also detected at the top of Chr 14, along with a borderline significant 

signal on Chr 7 (Table 1), but neither one can be the Pd2/pd2 locus, which is known to 

map to Chr 11 (Devine, 2003; Seversike et al., 2008). Limiting the GWA analysis to just 

the 12,301 accessions possessing the three phenotypes of Sp / Ssp / N did not appreciably 

change the GWA results (Fig. S6b) – the Pd1/ pd1 and Ps/Pss/ps signals and the Chr 14 

signal remained, though the borderline significant Chr 7 signal did disappear. Further 

research will be needed to determine if the highly significant Chr 14 signal corresponds 

to a heretofore undiscovered genetic locus governing pubescence density. To sharpen the 

GWA focus on the P1/p1 locus detected in the first GWA, we conducted a GWA using 

only glabrous and normal accessions (N = 7,660), and identified two separate, but closely 

located, significant regions of eleven and eight SNPs corresponding to the P1/p1 locus, 

one with a SNP max of Gm09:4424863), and the other with a SNP max in the other 

region (Gm09:46139114) (Fig. 6c; Table 1); for a magnified view of those two adjacent 

positions, see Fig. 3n). Because of a very low frequency (just 35) of glabrous accessions 

(Fig. 2), this GWA exhibited substantial noise (i.e., many signals in the genome), but the 

Chr 9 P1/p1 locus signals still stood out from that noise in terms of strong –logP values 

(Fig. S6c). Hunt et al. (2011) conducted transcriptional profiling of the two NILs Clark-

p1p1 and Clark-P1P1 but mainly focused on Glyma04g35130 (BURP), which was 

overexpressed in Clark-p1p1. They offered no commentary about Glyma09g38410 

(calreticulin-3 precursor), which was also listed in their Table 1, as being overexpressed 

in Clark-P1P1. It has Chr 9 bp position (i.e., 43780130 - 43785822) that falls within our 

Chr 9 SNP signal region (43686430 – 4485534), thus making Glyma09g38410 a 
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plausible candidate gene for P1/p1 (Table S2). Our GWA mapping results will be useful 

to those wishing to clone the Ps/Pss/ps, Pd1/pd1, P1/p1 loci, and the unknown gene locus 

corresponding to the strong Chr 14 SNP signal, particularly given that SoyBase lists no 

pubescence density QTLs on that Chr 14.  

3.5.7. Pod Color 

Known Genes: Pod walls of mature soybean plants exhibit a characteristic color 

that is frequently used in variety description and identification (Bernard, 1967). There are 

three distinguishable classes of pod color, i.e., black (Bl), brown (Br), and tan (Tn). The 

color of immature pods is green (i.e., chlorophyll), but shortly after the R7 stage of 

physiological maturity, the chlorophyll disappears to reveal the mature dry pod wall 

color. Soybean pod color is controlled by two genes, symbolized as L1/l1 and L2/l2 

(Woodworth and Veatch 1929; Bernard, 1967; Kiang, 1990). The two loci interact in a 

dominant epistatic manner to produce a F2 phenotypic segregation ratio of 12 Bl : 3 Br : 

1 Tn. The corresponding homozygous genotypes are (L1L1 L2L2 + L1L1 l2l2) : l1l1 

L2L2 : 1l1 l2l2. The L1/l1 locus is loosely linked to the Dt1/dt1 locus on Chr 19, and the 

L2/l2 locus has been located at the top of Chr 3 (Song et al., 2004). To date, the L1 gene 

has been fine-mapped to a 184.43 kb region on Chr 19 that spans 13 potential candidate 

genes, but the most likely one has not cloned per se (He et al., 2015).  

GWA Map Signals: A GWA using the 12,365 accessions that exhibited five pod 

color phenotypic variants (Bl / Dbr / Br / Lbr / Tn) (Fig. 2) produced two highly 

significant SNP signals on Chr 19 and 3, plus a significant SNP signal on Chr 1 (Fig. 

S7a; Table 1; Figs. 3o, 3p). The Chr 3 SNP signal corresponding to the L2/l2 locus 



88 
 

 
 

(Br/Tn) spanned a 1,091-kb region (i.e., Gm03:246658 to 1338018 bp). The Chr 19 SNP 

signal corresponding to the L1/l1 locus (Bl / Br + Tn) spanned a 618-kb region (i.e., 

Gm19:37503524 to 38121212 bp). Interestingly, the Chr 1 SNP signal had a bp position 

nearly identical with the SNP signal detected for a gene locus governing green vs. yellow 

seed coat color (discussed later). To determine if we could improve the resolution of each 

of the two main signals, we conducted a GWA with the 12,064 accessions exhibiting just 

the Bl / Br / Tn pod colors, which have a respective frequency counts of 604 / 8,258 / 

3,202 (Fig. 2). This GWA improved the strength of the L2/l2 signal, and the Chr 1 signal 

disappeared, but surprisingly, so did the L1/l1 signal (Fig. S7b), suggesting that the Dbr 

and Lbr phenotypes, which were included in the prior GWA, but were omitted in this 

GW, were variants more associated with L1/l1 locus (and/or the Chr 1 signal) than with 

the L2/l2 locus for Br/Tn color. Our final GWA targeted only the 8,862 accessions that 

had Bl / Br pod colors (i.e., the respective genotypes of L1L1 -- -- / l1l1 L2L2) (Fig. S7c), 

and it resulted in the detection of only the L1/l1 signal at a high significance level Table 

1; Fig. 3o). He et al. (2015) inferred that, of the 13 gene candidates located in their fine-

mapped Chr 19 L2/l2 region, Glyma19g27460 was the most likely candidate; however, 

that candidate gene has a bp position located ca. 2.75 Mbp downstream from our region 

of 48 significant SNPs (i.e.,Gm19:36397778 to 38521183). The reason for this 

substantive localization difference between our study and their study is not clear.  

3.5.8. Seed Coat Luster 

 Known Genes: Woodworth (1932) reported that the presence (+) / absence (-) of 

bloom on the soybean seed coat (the only two phenotypic categories he observed) was 

controlled in a triplicate recessive epistatic manner in which a dominant allele at each of 
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three loci had to be present for a bloom+ phenotype. He symbolized these three genes as 

B1/b1, B2/b2, and B3/b3, and observed a 27 bloom+ : 37 bloom- F2 ratio in one mating 

that supported his hypothesis that inbred cv Sooty was a B1B1B2B2B3B3 homozygote), 

but in another mating, he reported just a monogenic 3:1 F2 ratio. Tang and Tai (1962) 

could not confirm this, and observed only a digenic 9 bloom+ : 7 bloom- F2 ratio. 

Lorenzen et al. (1989) used pedigree analysis to show that a RFLP marker on Chr 15 

(LG-E) was completely associated (by co-descent) with a dull luster phenotype governed 

by a what they called “B gene locus” (without designating a numerical locus number). 

Chen and Shoemaker (1998) reported that they had mapped the B1/b1 gene to Chr 13 

(LG-F). Gijzen et al. (1999; 2003b; 2006) documented that the amount of endocarp 

adhering to the seed surface was the primary determinant of seed coat luster. A bloom+ 

phenotype is produced by dense or contiguous covering of honeycomb-like endocarp 

tissue, whereas a dull phenotype has a fragmented or patchy covering of endocarp, but a 

shiny phenotype lacks any endocarp deposit. A hydrophobic protein (HPS) is synthesized 

in the endocarp of the inner ovary (pod) wall, and though HPS is abundant on the surface 

of dull seed coats, it is present in only trace amounts on shiny seed coats. Gijzen et al. 

(1999) noted that this relationship was not absolute, and observed that the cv Sooty had a 

bloom+ phenotype (i.e., due to a heavy coating of endocarp tissue), but only has a trace 

amount of surface HPS, in contrast with cv Williams 82, which had a shiny phenotype 

(i.e., due to an absence of endocarp tissue), though it too had only a trace amount of 

surface HPS. However, when the B1 gene was backcross-introgressed from cv Sooty 

(bloom+, HPS-) into the Clark-ii NIL (dull, HPS+), it resulted in a Clark-iiB1B1 NIL 

(bloom+, HPS+), revealing that the latter NIL received from its Sooty parent a heavy 
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coating of endocarp (i.e., bloom), and from its Clark-ii NIL parent an abundance of 

surface HPS. Yet, when Gijzen et al. (2003b) mated soybean line OX281 (dull, HPS+) 

with Mukden (shiny, HPS-), only the two parental phenotypic combinations observed in 

the 82 F2 plants (and in a respective 3:1 ratio). Thus, the phased dominant/recessive 

phenotypes of dull/shiny and HPS+/HPS- seemed to be controlled by either one 

pleiotropic locus, or else by two tightly linked loci, that the authors mapped to a single 

“B/b” gene location on Chr 15 (LG-E). Gijzen et al. (2006) cloned the core Hps locus and 

showed that it consisted of a tandem array of reiterated units, with each 8.6 kb unit 

containing a single HPS open reading frame. The HPS protein is a critical allergen 

(Gijzen et al., 2003a) (http://www.allergen.org/viewallergen.php?aid=342) that causes 

asthma in persons allergic to soybean dust generated during fall field harvest and at 

seaport seed loading facilities.  

GWA Map Signals: In GRIN, six phenotypic categories for this trait are listed: 

dense bloom / bloom / light bloom / dull / intermediate / shiny; however, most accessions 

belong to the D, I, or S categories (Fig. 2). We conducted an initial GWA using 12,278 

accessions exhibiting five of those six categories (Fig. S8a), and detected two separate 

significant signals on Chr 15 suggesting that B/b and Hps/hps are two tightly linked loci 

(not one locus), and a strong signal at the top of Chr 9 that we symbolized as a non-

numbered B?/b? locus to distinguish it from the mapped B1/b1 locus that corresponds to 

the weaker signal on Chr 13. The intermediate (I) seed coat luster phenotype accounts for 

than half (i.e., 7,280) of the total accession set (Fig. 2), but the I accessions tend not to be 

consistent in luster phenotype when grown in different environments, in contrast to the 

accessions characterized as having a shiny or dull luster phenotypes that tend to be more 

http://www.allergen.org/viewallergen.php?aid=342
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reliably consistent calls across environments. For that reason, we conducted another 

GWA omitting the I accessions, thereby using just the 4,998 accessions that were 

classified as B / Lb / D / S phenotypes (Fig. S8b), and it resulted in a 2-fold reduction in 

the Chr 15 and Chr 9 signals (likely because of the loss of statistical power when going 

from about 12K to 5K accessions). Interestingly, the Chr 13 (B1/b1) signal disappeared, 

whereas a new signal appeared on Chr 8 corresponding to gene locus I/i. The reason for 

the disappearance of the former is not clear, given the Chen and Shoemaker (1998) 

mapped B1/b1 based on segregation of D vs. S. The appearance of the I/i signal may be 

related to the fact that the seed luster phenotype call can be influenced by whether the 

seed coats are fully pigmented (as in case of ii genotypes) or are yellow (as in II 

genotypes). A borderline significant signal also appeared on Chr 11. We conducted a 

final GWA using just the 4,868 accessions that exhibited just the D vs. S phenotypes (Fig. 

S8c). The Chr 15 (B/b) and Chr 9 (B?/b?) signals were re-strengthened by this targeting 

(Table 1). Note that the Hps gene has a signal just upstream from the B/b gene (Fig. 3q), 

which suggests two linked loci, rather than one pleiotropic locus (as noted above). 

However, the detection of two independent GWA SNP signals (i.e., Chr 15 and Chr 9) is 

not consistent with a postulated monogenic model of inheritance for the dominant D vs. 

the recessive S. But, the alternative digenic model is also not plausible, unless digenic 

epistasis results in the reduction of phenotype categories from an expected digenic four to 

just an observed epistatic number of two.  

3.5.9. Seed Coat Color / Hilum Color  

Known Genes: Considerable variation exists in soybean seed coat color and 

hilum color. The predominant seed coat color is yellow (Fig. 2). The colors of green and 
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black are less frequent, but are more common than the other colors. The inheritance of 

seed coat and hilum color was examined in detail by Bhatt and Torrie (1968) and later 

clearly summarized by Palmer et al. (2004). Given that all (but three of the) G. soja 

accessions exhibit black seed coats, whereas the majority of G. max accessions have 

yellow seed coats, the preference of yellow over pigmented seed coats was clearly 

domestication-related. Both seed coat and hilum color are governed by four independent 

major loci that interact in an epistatic manner. The four loci include: (1) the 4-allele 

inhibitor locus (I/ik,ii/i) whose alleles produce differing degrees of pigmentation intensity 

and pigmentation spread (i.e., the I allele attenuates the black and Imperfect black seed 

coat and hilum colors to a grey color, and converts the brown and buff colors to a yellow 

color (Bhatt and Torrie, 1968), (2) the pubescence color T/t locus that pleiotropically 

governs a +/- di-hydroxylation of the B-ring of the flavonoid pigments in the seed coat 

and hilum, (3) the 3-allele R/rm/r locus that governs the production of proanthocyanin 

pigments in the seed coat and hilum (Zabala and Vodkin, 2014), and (4) the flower color 

W1/w1 locus that pleiotropically governs the production of +/- tri-hydroxylation of the B-

ring pro-anthocyanin pigments in seed coat and hilum in RRttW1W1 genotypes. All four 

loci have been cloned. The yet to be cloned O/o locus controls the phenotypic change 

from brown (OO) to red brown (oo) in the seed coat and hilum. There are three seed coat 

saddle pattern loci (i.e., Kn/kn where n = 1, 2, or 3), but K/k saddle pattern accessions are 

too rare for a useful GWA analysis.  

GWA Map Signals: Only six seed coat color, and only six hilum color, variants 

had a phenotypic frequency >0.01 (Fig. 2). One GWA was focused on just the seed coat 

color variants (Fig. S9a; N = 12,174), and another GWA was focused on just the hilum 
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color variants (Fig. S10a; N = 10, 292), with both producing expected signals 

corresponding to the respective T/t and I/ik/ii/i loci on Chr 6 (18766611 bp) and Chr 8 

(8396392 bp). Green seed coat color arises when the chlorophyll present therein does not 

degrade at seed maturity as it does in yellow seed coats (Woodworth, 1921). The Gn and 

Y phenotypes are controlled by the single gene G/g, which has been mapped to Chr 1 

(Cregan et al. 1999). To improve the resolution of the seed coat color Chr 1 signal (Fig. 

S9a), we conducted GWA restricted to just the 10,134 accessions exhibiting Y and Gn 

seed coats (Fig. S9b). As expected, the T/t and I/i signals disappeared, and there was a 3-

fold amplification of the –logP value of the Chr 1 signal. That signal corresponded to the 

G/g locus, and spanned a very small 25-kb region near the SNP max located at 

Gm01:52253980 bp (Table 1; Fig. 3r). Relative to the cloned I/i locus (Todd and Vodkin, 

1996; Tuteja et el., 2009), the seed coat color GWA (Fig. S9a; Table 1) produced a signal 

that was weaker than the high resolution stronger signal generated in hilum color GWA 

(Fig. S10; Table 1; Fig. 3s), primarily because of the number of yellow accessions were 

far greater than the number of non-yellow phenotypes. For hilum color, Sonah et al. 

(2014) reported ten SNPs associated with the I/i locus on Chr 8, with SNP max at 

84803396 bp, which was not far from our SNP max at 8396392 bp. Note that a signal for 

the R/r locus was not detected in the initial GWA of either trait, so we conducted a GWA 

using only the 4,158 accessions with Bl / Br hilum color phenotypes (Fig. 2) whose 

respective inferred genotypes are RR /rr. A highly significant signal was detected on Chr 

9 (Fig. S10b; Table 1; Fig. 3t), and the SNP region (i.e., Gm09:41660046..43669720) 

brackets the cloned R/r locus bp position. A moderately significant signal detected on Chr 

12 may represent an unknown gene locus that somehow impacts the Bl vs. Br 
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classification. Finally, to locate the gene locus O/o, a final GWA was performed on just 

the 3,037 accessions with Br / Rbr phenotypes (Fig. S10c). The I/i and O/o loci are 

known to be linked (about 18 cM) on Chr 8 (Palmer et al., 2004), and indeed the GWA 

signal for O/o was identified at a comparable bp positon (i.e., 312 kb; 

Gm08:4800584..5113384) just upstream from I/i (Table 1; Fig. 3u).  

3.6. Phenotypic variance and distribution of the mapped genes 

For each trait, the largest effect SNP signal explained the largest fraction of the total 

phenotypic variance, ranging from 11 to 59% (Fig. 4a), with the highest percentages 

observed for flower color (59%), pubescence color (52%) and hilum color (33%)). For 

hilum and seed coat color, the cumulative effects of five genes (e.g., G, I, O, R and T) 

explained up to 79% and 77% of total phenotypic variance, respectively. Overall, the 

cumulative contributions of all significant SNP signals to phenotypic variance explained 

about 48% on average, though it varied from 11% to 83% depending on the trait, which is 

comparable to SNP associations identified in Arabidopsis thaliana (Atwell et al., 2010), 

rice (Huang et al., 2011), and corn (Romay et al., 2014). In our study, the identified SNPs 

conferring new loci explained additional variation that ranged 4 – 15 %. For MG, the E 

genes (e.g., E1, E2, E3, and E4) explained 16% of phenotypic variance, whereas the non-

E genes controlled an additional 7% of phenotypic variance. Population structure also 

explained some portion of total phenotypic variance, which ranged from 4 – 50 %, with 

the highest proportion observed for MG (50%), likely because population structure is 

closely related to the latitudinal photoperiod sensitivity of soybean (Bandillo et al., 2015). 

It is possible, of course, that some portion of phenotypic variance may have arose from 
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imperfect LD, imperfect phenotyping, digenic epistasis, and/or (undetected) small-effect 

modifier loci.  

The global distributions of narrowed loci revealed an essential pattern of allelic 

variation by gene locus that likely reflected a geographical-based differential in the 

history of soybean breeding (Fig. S11). Several traits were found to be correlated with 

world region than MG, indicating that G. max subpopulations are structured more by 

geography than by MG class (see Fig. 4b). The overall distribution pattern of allelic 

frequency at the various gene loci illustrate how accessions originating from China and 

North America (i.e., USA and Canada) diverged from accessions originating from Japan 

and Korea. Between Japan and Korea, however, allelic frequency spectrum across were 

almost the same except for loci associated with maturity (E3/e3), flower color (W1/w1), 

pubescence (Pa1/pa1, Pa2/pa2, and Ps/ps) and hilum color (O/o, R/r). Similarly, China 

and North America differ in allele frequency spectrum of loci associated with breeding 

and genetic improvement such as maturity (E1/e1, E2/e2, and E3/e3), stem growth habit 

(Dt1 and Dt2) and pubescence (Pa1/pa1, Pa2/pa2, Ps/ps and Pa1/pa1) and seed 

coat/hilum color (I/i and O/o). 

Breeding objectives also are factors contributing to the observed substantial allelic 

variation. For example, the degree of trichome density and its orientation on the 

epidermal surfaces of soybean plants has been used in breeding aimed at deterring insect 

feeding or impairing the viability of insect larva (Hulburt et al., 2004; Kanno, 1996; 

Lambert et al., 1992). Based on global distributions of Ps/ps, accessions in Japan and 

Korea are predominantly Ps, while America and China had predominantly ps (frequency 

> 0.85). This is not surprising given the fact that Japan has used sparse pubescence in 
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their breeding programs as a key insect control strategy (Komatsu et al., 2007; Oki et al., 

2012), while in America erect and normal pubescence are needed to deter feeding by the 

potato leaf hopper (Broersma, et al., 1972), which migrates in early summer northward 

from the Gulf Coast states where it over-winters each year 

(http://extension.cropsciences.illinois.edu/fieldcrops/alfalfa/potato_leafhopper/). 

Substantial allelic variation at some loci also might reflect cultural preferences and 

farming practices.  

3.7. SUMMARY 

 Genome-wide association analysis is nominally treated as a tool to be used mainly 

for dissecting the genetic architecture of quantitatively inherited traits. However, as 

documented here, GWA can also serve as a highly useful tool for detecting major 

qualitative genes governing categorically defined phenotype variants that exist for given 

traits in a germplasm collection. Indeed, we used GWA to identify the chromosomal bp 

positions of 23 classical genes governing the phenotypic variants listed for ten key 

soybean descriptor traits. Because some classical genes had been cloned, we were able to 

show that the SNP signal regions we detected for their phenotypic variants had 

chromosomal bp positions that, but one exception, bracketed the cloned gene bp 

positions. Of particular interest was our detection of strong SNP signals that possibly tag 

heretofore unknown genes controlling some of these classical soybean descriptive traits.  

This demonstration that GWA mapping aimed at qualitatively inherited traits can be 

used to quickly generate high-resolution positions for the controlling genes on a genome 

sequence map is likely to be of interest to researchers in other crop species that have 

http://extension.cropsciences.illinois.edu/fieldcrops/alfalfa/potato_leafhopper/
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germplasm collections for which extensive data also exists for qualitatively inherited 

traits. We are now applying the GWA qualitative gene mapping protocol to all other 

qualitatively inherited soybean descriptor traits, and the results, when complete, will be 

documented in a forthcoming publication.  

 3.8. SUPPLEMENTAL MATERIAL 

Table S1 contains a list of the 13,624 G. max accessions and corresponding 

phenotypic codes for each of ten descriptor traits; Table S2 contains a list of (Glyma) 

candidate genes in a 250 Kb window centered on each detected significant GWA SNP 

signal (excluding those for cloned genes); the Supplemental Figure contains Figures S1 to 

S11.  
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3.11. FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The stepwise filtering of G. max accessions held in the USDA Germplasm 

Collection that was conducted prior to the genome-wide association mapping of ten 

descriptor traits.  
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Fig. 2 Frequency distribution of the soybean accessions for the various phenotypic variants available in each of the ten descriptive traits 

that were used in the initial genome-wide analysis conducted on each trait (i.e., N value in Fig. 1 for the G. max accession). 

 

1
0
7
 



108 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 SNP association signal –log10(P) values corresponding with trait-controlling classical genes are plotted 

against the physical position (bp) on the specific chromosomes in these panels: a-d Maturity Group, e–f 

Stem Term Type, g Flower Color, h–i Pubescence Color, j–k Pubescence Form, l–n Pubescence Density, 

o–p Pod Color, q Seed Coat Luster, r Seed Coat Color, and s–u Hilum Color. An asterisk identifies the 

cloned classical gene loci. Green bars depict the (Table 1) bp positions of the Glyma gene-coding 

sequences (with a red bar depicting the Glyma gene that is inferred to be the L1/l1 locus). The solid 

horizontal line denotes the calculated  threshold value (-log10 P > 5.17) for declaring a significant 

association. The dashed vertical line denotes the bp position of the SNP that had the maximum –log10P 

value for the given classical locus.  
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Fig. 3.3 (Continued).  
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Fig. 4 (a) Contributions of significant SNPs and population structure (defined by 

ADMIXTURE K=5) to phenotypic variance of each of the ten descriptive traits. The 

proportion of phenotypic variance accounted for by significant SNPs was partitioned into 

largest effect SNPs (tagging known/candidate genes) and small effect SNPs and 

calculated after accounting for population structure effects, (b) Contribution of world 

region and maturity group, which are the major determinant of population of structure 

within the collection, to trait phenotypic varia
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Table 1. Summary of SNP-association signals that exceeded an experiment-wise significance criterion of -logP > 5.17 in a genome-wide association analysis 

(GWA) using the Q+K model performed on 13,624 G. max accessions for each of the below-listed ten soybean descriptor traits. The significant SNP-associations 

detected in this study are ordered by trait, then by chromosome, and thence within each chromosome according to the base-pair regions of the significant SNPs. 

Data in each table row originates from the underscored supplemental figure (i.e., GWA analysis Manhattan plot).  

    Significant SNP - Trait Associations‡  Cloned Gene Information§  

Descriptor 

Trait 

Supp. 

Fig. No.† 

Ch

r 
LG 

SNP

s 
First Last Max -logP 

Gene 

Locus¶ 

Glyma 

Name 

Other 

name 
Start End Size 

References for the cloned 

genes, or for-non cloned 

genes 

    - no- - - - - - - - - - - - bp - - - - - - - - - - -     
- - - - - - - - - - bp - - - - - - - - - 

- 
 

Maturity 

group 

S1a, S1b 6 C2 16 1872451

9 

2142604

7 

2127352

5 

23.97 E1/e1 ¶ Glyma06

g23026 

RPR 2000697

3 

2000781

0 

838 Xia et al. (2012) 

 
S1a, S1b 8 A2 1 3642671 3642671 3642671 5.19 

       

 
S1a, S1b, 
S1c 

10 O 20 4447658

4 

4529444

1 

4474331
5 

49.73 E2/e2 ¶ Glyma10
g36600 

GmGI
a 

4471672

0 

4473826

8 

2154
9 

Watanabe et al. (2011) 

 
S1a, S1b, 

S1c 

11 B1 4 1072100

6 

1157207

7 

1126931

0 

18.83 
      

SoyBase Pod Maturity QTL 

17-2  
( Lu et al., 2015)  

S1a, S1b, 

S1c, S1e 

12 H 6 5491240 5786241 5491240 14.56 
      

SoyBase Pod Maturity QTL 

26-2  

(Lu et al., 2015)  
S1a, S1b 13 F 1 3661613

5 

3661613

5 

3661613

5 

5.69 
       

 
S1b 18 G 1 5990268

0 

5990268

0 

5990268

0 

7.02 
      

SoyBase Pod Maturity 

QTL29-8 

(Wen et al. 2015)  
S1a, S1b, 

S1c 

19 L 7 4727048

6 

4803747

9 

4751013

0 

21.54 E3/e3 ¶ Glyma19

g41210 

GmPh

yA3 
4751124

6 

4751995

7 

8712 Watanabe et al. (2009) 

 
S1d 20 I 2 3145294 3150963 3150963 5.36 

       

 
S1d 20 I 1 2855028

7 

2855028

7 

2855028

7 

5.85 
       

 
S1d 20 I 5 3443440

2 

3446235

9 

3443745

9 

6.39 E4/e4 ¶ Glyma20

g22160 

GmPh

yA2 

3208758

0 

3209326

6 

5687 Liu et al. (2008) 

Stem term 

type 

S2b, S2c 6 C2 1 3894819

0 

3894819

0 

3894819

0 

6.80 
       

 
S2a, S2b 18 G 4 5990268

0 

6038078

2 

5990268

0 

17.27 Dt2/dt2 

¶ 

Glyma18

g50910 

Loc10

07889
56 

5991884

1 

5992702

7 

8187 Ping et al. (2014) 

 
S2a 19 L 1 4308082

9 
4308082

9 
4308082

9 
5.26 

       

 
S2a, S2b, 

S2c 

19 L 55 4432946

4 

4552537

4 

4500082

7 

238.79 Dt1/dt1 

¶ 

Glyma19

g37890 

PEPB; 

TFL1 
4497974

3 

4498138

5 

1643 Liu et al. (2010); Tian et al. 

(2010) 

 

1
1
1
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S2a 19 L 2 4706944

3 

4707649

7 

4706944

3 

6.22 E3/e3 ¶ Glyma19

g41210 

GmPh

yA3 

4751124

6 

4751995

7 

8712 Watanabe et al. (2009) 

Flower 

color 

S3a, S3b 13 F 2 1629730 1756025 1756025 8.05 
       

 
S3a, S3b 13 F 20 2493212 3044754 2833623 24.25 

       

 
S3a, S3b 13 F 23 3175654 3825644 3657853 152.79 

       

 
S3a, S3b 13 F 29 4173955 5480962 4559799 169.79 W1/w1 ¶ Glyma13

g04210 

W1 4552711 4557371 4661 Zabala and Vodkin (2007); 

Sonah et al. (2014); Wen et al. 
(2015)  

S3b 19 L 1 3660302

9 

3660302

9 

3660302

9 

14.81 L1/l1 Glyma19

g27460 

 
3475089

1 

3475219

0 

1300 Bernard (1967); He et al. 

(2015)¶ 

Pubescenc

e color 

S4a, S4b 3 N 65 4633284

5 

4770265

4 

4730791

6 

95.83 Td/td 
     

Bernard (1975a); Behm et al. 

(2013); Wen et al. (2015)  
S4a, S4b 6 C2 26 1725865

4 

1981538

9 

1756771
3 

298.24 T/t ¶ Glyma06
g21920 

T 1853461

9 

1854146

4 

6846 Zabala & Vodkin (2002); 
Sonah et al. (2014); Wen et al. 

(2015)  
S4a 6 C2 1 2576200

3 
2576200

3 
2576200

3 
7.45 

       

 
S4a 6 C2 2 3010666

7 

3016381

6 

3016381

6 

7.08 
       

 
S4b 6 C2 1 3894819

0 

3894819

0 

3894819

0 

5.23 
       

 
S4a 12 H 1 1853721

2 
1853721

2 
1853721

2 
8.24 

       

 
S4a 12 H 1 2131783

0 

2131783

0 

2131783

0 

9.06 
       

 
S4a, S4b 14 B2 1 4696841

0 

4696841

0 

4696841

0 

5.40 
       

 
S4a 20 I 1 1308192

9 
1308192

9 
1308192

9 
8.45 

       

Pubescenc

e form 

S5a, S5b 12 H 16 3703601

7 

3778624

3 

3735612

0 

251.32 Pa1/pa1 
     

Bernard (1975b); Lee et al. 

(1999)  
S5a, S5b 13 F 11 3018164

2 

3070870

8 

3070870

8 

26.87 Pa2/pa2 
     

Bernard (1975b); Lee et al. 

(1999) 

Pubescenc

e density 

S6a, S6b, 
S1c 

1 D1a 4 5549328
1 

5552301
4 

5552301
4 

8.14 Pd1/pd1 
     

Bernard and Singh (1969); 
PDens. QTL 1-1 ( Komatsu et 

al., 2007)  
S6a 7 M 1 1715320

1 
1715320

1 
1715320

1 
5.31 

       

 
S6a, S6b, 

S1c 

12 H 53 3447729

7 

3552560

3 

3487780

6 

224.28 Ps/Pss/ps 
     

Bernard (1975d); Pub. Density 

QTL 1-2 (Komatsu et al., 

2007)  
S6a, S6b 14 B2 1 4934894 4934894 4934894 69.92 

       

 
S6c 9 K 11 4368643

0 

4485534

0 

4434862

3 

21.41 P1/p1  
    

Bernard and Singh (1969);  

Zabala and Vodkin (2014)  
S6c 9 K 8 4534482

7 

4669473

1 

4613911

4 

18.93 
       

Pod color S7a 1 D1a 2 5225398
0 

5226395
2 

5225398
0 

6.38 
       

 

1
1
2
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S7a, S7b 3 N 27 246658 1338018 537774 238.55 L2/l2 

     
Bernard (1967) 

 
S7a, S7c 19 L 48 3639777

8 

3852118

3 

3764985

4 

127.49 L1/l1 Glyma19

g27460 

 3475089

1 

3475219

0 

1300 Bernard (1967); He et al. 

(2015) 

Seed coat 

luster 

S8b 8 A2 1 6897932 6897932 6897932 6.25 
       

 
S8b 8 A2 7 8272057 8656325 8462762 12.78 I/ik/ii/i ¶ Inverted 

Repeats 

# 

CHS1-

3-4 # 
8462596 8469679 7084 Todd and Vodkin (1996);  

Tuteja et al. (2009#) 

 
S8a, S8b, 

S8c 

9 K 1 1456482 1456482 1456482 39.11 B?/b? 
     

Woodworth (1932); proposed 

the locus symbols (present 
study)   

S8b 11 B1 1 1592043

3 

1592043

3 

1592043

3 

6.80 
       

 
S8a 13 F 1 3408934

0 

3409506

0 

3409506

0 

10.51 B1/b1 
     

Woodworth (1932); Tang and 

Tai (1962); Chen & Shoe 
(1998)  

S8a, S8b, 

S8c 

15 E 17 7861342 8941824 8893988 9.26 Hps †† Glyma15

g11970 

Hps†† 8868741 8875714 6974 Gijzen et al. (1999, 2003, 

2006††)  
S8a, S8b, 

S8c 

15 E 62 9516289 1047570

8 

1041635

2 

110.19 B/b 
     

Lorenzen et al. (1995);  

Gijzen et al. (2003) 

Seed coat 

color 

S9a, S9b 1 D1a 30 5225398
0 

5249362
7 

5225398
0 

274.08 G/g 
     

Woodworth (1921) 

 
S9a 6 C2 5 1803375

9 

1881073

3 

1876661

1 

11.12 T/t ¶ Glyma06

g21920 

T 1853461

9 

1854146

4 

6846 Zabala and Vodkin (2002) 

 
S9a 8 A2 7 4802080 5113384 5003648 8.64 O/o 

      

 
S9a 8 A2 16 8013021 9120830 8462762 37.47 I/ik/ii/i ¶ Inverted 

Repeats 

# 

CHS1-
3-4 # 

8462596 8469679 7084 Todd and Vodkin (1996);  
Tuteja et al. (2009#) 

 
S9a 9 K 1 4297450

3 
4297450

3 
4297450

3 
5.80 R/rm/r ¶ Glyma09

g36983 
R2R3 
MYB 

4256264
9 

4256466
0 

2012 Gillman et al. (2011);  
Zabala and Vodkin (2014§) 

Hilum 

color 

S10a 6 C2 17 1756771

3 

1954068

6 

1876661

1 

73.52 T/t ¶ Glyma06

g21920 

T 1853461

9 

1854146

4 

6846 Zabala and Vodkin (2002) 

 
S10c 8 A2 11 4800584 5113384 4802080 35.00 O/o 

      

 
S10a, 
S10b, 

S10c 

8 A2 20 7103134 8836971 8396392 119.55 I/ik/ii/i ¶ Inverted 
Repeats 

# 

CHS1-
3-4 # 

8462596 8469679 7084 Todd and Vodkin (1996);  
Tuteja et al. (2009#) 

 
S10a, 
S10c 

8 A2 3 9271761 9274750 9274750 7.16 
       

 
S10b 9 K 55 4166004

6 

4366972

0 

4297450

3 

80.58 R/rm/r ¶ Glyma09

g36983 

R2R3 

MYB 
4256264

9 

4256466

0 

2012 Gillman et al. (2011);  

Zabala and Vodkin (2014)  
S10b 12 H 1 487052 487052 487052 7.57 

       

 

† Listed in this column are the supplemental figure numbers and panel labels (i.e., a, b, c, etc.) displaying the GWA Manhattan plots generated for each trait. Underscoring denotes the 

supplemental figure (and the panel therein) of the GWA data presented in the adjacent table row.  

 

1
1
3
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‡ Listed in these table columns are the detected number of significant SNPs within a contiguous region, the bp positions of first and last SNP spanning that region, and the bp position 

of the SNP in that region that exhibited maximum -logP value and if underscored, corresponding table row data were used for the magnified single-chromosome GWA Manhattan plot 

presented in the Fig. 3 panels. 

§ Listed in these table columns is information for genes that have been cloned to date, and includes the cloned gene Glyma name, plus any other name, the start and stop bp positions of 

the coding sequence, and the gene bp length. If the cloned gene start-stop bp positions were bracketed by the first-last bp positions of GWA SNPs, the bp regions of the former and 

latter were bold-faced. 

¶ Just these classical loci have been cloned to date. The L1/l1 locus was not footnoted in this table because it was fine-mapped by He et al. (2015) to a Chr 19 region of 13 potential 

candidate genes. Of those 13, Glyma gene listed in this table for L1/l1 was inferred by He et al. (2015) as the causal gene, but that inference has not yet been experimentally verified.  

# The dominant alleles at the I/ik/ii/i locus consist of two inverted repeats of the three contiguously arranged chalcone synthetase genes of CHS1, CHS2, and CH3, so a single Glyma 

number is not available for this locus. For specific details, see the Tuteja et al. (2009) reference. 

†† The Hps gene consists of a tandem array of a reiterated 8.6 kb coding units - each unit is a single open reading frame for the HPS protein. A null Hps allele has not been identified, 

but the copy number variants constitute multiple alleles (i.e., many copies in dull seed coat genotypes, fewer copies in shiny seed coat genotypes). For specific details, see the Gijzen et 

al. (2006) reference.  

 

1
1
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3.12. APPENDIX  

 

The below texts applies to the figure captions for S1 – S10. 

Markers are plotted on the x-axis according to their chromosomal physical position. The 

solid horizontal line indicates the calculated threshold value for declaring a significant 

association. Each peak significant SNP association is denoted by dashed vertical line. 

Qualitative genes (i.e., dominant/recessive alleles, asterisked if cloned) known to control 

the descriptor trait are depicted at genomic regions showing strong association signals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

116 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S1. Genome-wide association mapping for Descriptor 1 – 

Maturity Group. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) 

(right) is shown for (a) all 13 MG categories (i.e., 000 - X), (b) only the northern seven 

MG categories (000 - IV), and (c) only the southern MG categories (V - X). 
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Supplementary Figure S1 (Continued). Genome-wide association mapping for 

Descriptor 1 - Maturity Group. A Manhattan plot (left) and quantile-quantile plot of -

log10 (P value) (right) is shown for (d) early MG categories (000, 00, 0) and (e) late MG 

categories (VII – X).  
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Supplementary Figure S2. Genome-wide association mapping for Descriptor 2 - Stem 

Termination Type. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) 

(right) is shown for (a) all phenotype categories of semi-determinate (S) / indeterminate 

(N) / determinate (D), (b) only the two categories of S / N, and (c) with the two 

categories of S / N corrected for classification error.  
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Supplementary Figure S3. Genome-wide association mapping for Descriptor 3 - Flower 

Color. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) (right) is 

shown for (a) all phenotypic categories of purple (P) / white (W) / others, and (b) only 

the two categories of P / W.  
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Supplementary Figure S4. Genome-wide association study for Descriptor 4 - 

Pubescence Color. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) 

(right) is shown for (a) all phenotypic categories of tawny (T) / light tawny (Lt) / near 

grey (Ng) / grey (G), and (b) only the categories of T / Lt / Ng.  

 

 

 

 

 

 



 

121 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S5. Genome-wide association study for Descriptor 5 - 

Pubescence Form. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) 

(right) is shown for (a) all phenotypic categories of erect (E) / semi-appressed (S) / 

appressed (A) and (b) only the categories of Sa / A.  
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Supplementary Figure S6. Genome-wide association mapping for Descriptor 6 - 

Pubescence Density. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) 

(right) is shown for (a) all phenotypic categories of dense (Dn) / glabrous (G) / normal 

(N) / semi-dense (Sdn) / sparse (Sp) / semi-sparse (Ssp) , (b) only the categories of Sp / 

Ssp / N, and (c) only the categories of N / G.  
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Supplementary Figure S7. Genome-wide association mapping for Descriptor 7 - Pod 

Color. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) (right) is 

shown for (a) all phenotypic categories of black (Bl) / brown (Br) / dark brown (Dbr) / 

light brown (LBr) / tan (Tn), (b) only the categories of Bl / Br / (Tn), and (c) only the 

categories of Bl / Br 
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Supplementary Figure S8. Genome-wide association mapping for Descriptor 8 - Seed 

Coat Luster. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) (right) 

is shown for (a) all phenotypic categories of bloom (B) / dull (D) / intermediate (I) / 

shiny (S) / light bloom (Lb), (b) only the categories of B / D / S / Lb, and (c) only the 

categories of D / S.  
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Supplementary Figure S9. Genome-wide association mapping for Descriptor 9 - Seed 

Coat Color. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) (right) is 

shown for (a) all phenotypic categories of green (Gn) / yellow (Y) / black (Bl) / brown 

(Br) / light green (Lgn) / red brown (Rbr), and (b) only the categories of Y / G.  
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Supplementary Figure S10. Genome-wide association mapping for Descriptor 10 - 

Hilum Color. A Manhattan plot (left) and quantile-quantile plot of -log10 (P value) (right) 

is shown for (a) all phenotypic categories of gray (G) / yellow (Y) / black (Bl) / brown 

(Br) / imperfect black (Ib) / brown (Br) / buff (Bf), (b) only the categories of Bl / Br, and 

(c) only the categories of Br / Rbr.  
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Figure S11. (2-page layout) Global distributions of allelic variation across 13,624 G. max 

accessions, with each subpopulation defined as a specific world region. The first two columns list 

the locus allelic types and corresponding phenotypes. The remaining columns display pie charts 

showing the allele frequencies of 20 known gene genes in G. max accessions overall, and with 

respect to eight defined world regions. The pie chart frequencies of two main allelic types of each 

gene locus are generically colored blue (Allele 1) and light green (Allele 2) in pie chart and 

correspond on the left to the specific allele symbols of the 20 loci.  
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Figure S11. (Continued).  
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CHAPTER 4: DISSECTING THE GENETIC BASIS OF LOCAL ADAPTATION 

IN SOYBEAN 

 

 

4. 1 ABBREVIATIONS: GRIN, Germplasm Resource Information Network; EAA, 

Environmental Association Analysis; GWAS, genome-wide association study; LD, 

linkage disequilibrium; LG, linkage group; MG, maturity group; MAF, minor allele 

frequency; PC, principal component; PCA, principal component analysis; QTL, 

quantitative trait loci; SNP, single nucleotide polymorphism; SP, subpopulation; SPA, 

Spatial Ancestry Analysis; USDA, United State Department of Agriculture.  
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4.2 ABSTRACT 

Local adaptation is critical for crop species in the face of environmental change but 

its underlying genetic causes is not clearly elucidated.  In this study, we provide first 

insights on the genetic basis of local adaptation in soybean (Glycine max). We exploit 

natural variation in a large soybean landrace population (N=3,012) within G. max 

maintained in the U.S. Department of Agriculture Soybean Germplasm Collection. We 

leverage environmental data available for 3,012 landrace accessions to perform 

environmental association analysis (EAA). Population genomic analysis clearly tracks 

subpopulation ancestry based on geographic origin. Partitioning of genomic variation 

revealed that latitude and temperature accounted for most of the explainable genomic 

variation. Using EAA, we identified numerous small-effect loci contributing to local 

adaptation. Favorable adaptive alleles are distributed more frequently in the landrace 

population than in the elite population. We also found a few loci at which allelic effects 

are determined by geographic origin which may contain important candidate genes for long 

juvenility in soybean. Selection mapping identified the within-country signatures of 

selective sweeps which co-localized to loci showing steep gradients in allele frequency that 

are important for wide-range geographical adaptation. Our approach using a combination 

of EAA and selection mapping identified important candidate genes related to drought and 

heat stress, and revealed important signatures of directional selection that are likely 

involved on geographic divergence of soybean. The geographic extent of environmental 

and climatic associated SNPs provides the first insight on the genetic architecture of local 

adaptation and how climate change shapes pattern of genetic variation in G. max.  
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4.3 INTRODUCTION 

Global climate is changing with respect to temperature (Yamori et al., 2014), 

precipitation (Mourtzinis et al., 2015) and soil (Brevik, 2013). Changing environmental 

conditions force organisms to migrate, adapt, or be phenotypically plastic to avoid 

extinction (Rellstab et al., 2015). Unlike animals, plants are sessile organisms that cannot 

escape adverse climatic conditions. One solution to surviving a challenging environment 

is local adaptation. In this study, we adopt the concept of ‘local adaptation’ defined as the 

response to differential selective pressures among populations in a given habitat, which 

acts on genetically controlled fitness differences among individuals (Williams, 1966; 

Kawecki and Ebert, 2004; Savolainen et al., 2013). Local adaptation plays an important 

role in shaping available genetic variation of a population (Kawecki and Ebert, 2004). 

Directional selection occurs when a local condition favors the best fitted allele, which we 

refer here as ‘adaptive allele’, and the frequency of adaptive allele shifts in one direction, 

this can be interpreted as local adaptation (Kawecki and Ebert, 2004; Abebe et al., 2015). 

Identification of adaptive alleles is potentially useful for dissecting the genetic basis of crop 

adaptation (Bragg et al., 2015; Lasky et al., 2015; Russell et al., 2016).  

Landscape genomics is a framework that aims to identify environmental factors 

(e.g., precipitation, temperature, vegetation indices) that shape adaptive genetic variation 

and genetic variants that drive local adaptation (Rellstab et al., 2015; Bragg et al., 2015). 

Some earliest examples of local adaptation come from observed concordances between 

phenotypic traits and environmental variation such as Turesson (1922), who considered 

genotype as the relevant unit living in different habitats across the distribution of a species. 

Later, Huxley (1938) coined the term ‘ecocline’ to describe the cases where phenotypic 
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variation is correlated with ecological factors. In recent years, a new approach called 

environmental association analysis (EAA) has emerged as a core part of landscape 

genomics (Rellstab et al., 2015). One of the earliest examples of EAA was conducted by 

Mitton et al. (1977) where they found significant variation and association of gene 

frequencies over geographic distance in Pinus ponderosa.   

To date, there is a growing body of researches demonstrating the feasibility of 

landscape genomics for detecting loci related to adaptation. Early work in Arabidopsis 

thaliana has shown that fitness-associated loci exhibited both geographic and climatic 

signatures of local adaptation (Forunier-Level et al., 2011; Hancock et al., 2011). In maize, 

Westengen et al. (2012) detected adaptive loci using EAA that respond to precipitation and 

maximum temperature of a given habitat. Recent studies on some of the world’s most 

important crops such as rice (Meyer et al., 2016), sorghum (Lasky et al., 2015), barley 

(Russell et al., 2016) and Glycine soja (soybean’s wild progenitor) (Anderson et al., 2016) 

provided insights on the genetic architecture and putative genes underlying local 

adaptation. Landscape genomics frameworks were also found promising in predicting 

adaptive traits and detecting genetic differences in relative fitness of accessions (Hancock 

et al., 2011; Lasky et al., 2016).  

Statistical methods for EAA have been developed and recently reviewed (Rellstab 

et al., 2015; Bragg et al., 2015). In a population that is highly structured, a linear mixed 

model is preferred for controlling neutral genetic background while simultaneously 

identifying genetic variants strongly associated with environmental variables (Horton et 

al., 2012; Yoder et al., 2014; Anderson et al., 2016). For example, Yoder et al. (2014) tested 

for associations of nearly two million SNPs to three climatic factors using a structured-



 

133 
 

 
 

population in barrel clover (Medicago truncatula) and identified more than 20 genes 

associated with abiotic factors and pathogens.  In practice, EAA is often used in concert 

with other population genomic tools such as outlier analysis (e.g. Fischer et al. 2013). 

Outlier tests use genomic information to identify signatures of adaptive genetic variation. 

FST analysis has been a popular choice to perform outlier tests (Weir and Cockerham, 1984; 

Excoffier et al., 2009). However, the major drawback of many outlier-based assessments, 

such as FST, is that individual genotypes have to be partitioned into discrete populations 

(Excoffier et al., 2009). Different groupings of the individuals into populations may yield 

different results, and, thus important signals of selection may be missed (Yang et al., 2012). 

FST is also not sensitive to whether allele frequency variation is spatially organized into a 

steep allele frequency gradient. Alternatively, Spatial Ancestry Analysis (SPA) can be used 

to identify loci showing extreme frequency gradients, which does not require grouping 

individuals into populations. In SPA, a continuous function of allele frequency projected 

onto geographic space, and loci showing steep gradients in allele frequency are inferred to 

have been subject to selection (Yang et al., 2012).   

Understanding the genetic basis of local adaptation is relevant and timely, 

particularly to the world’s most important crops, due to the impact of climate change 

(Mourtzinis et al., 2015). The C3 legume crop soybean (Glycine max) provides an excellent 

system to investigate the genetic basis of local adaptation. Soybean has a wide range of 

latitudinal and climatic adaptation in Asia, North and South America (Carter et al., 2004; 

Anderson et al., 2016). Second, a multitude of localized G. max landraces were developed 

as a result of domestication of G. max from its wild species progenitor [Glycine soja (Sieb. 

and Zucc.)] in China ~5,000 years ago (Carter et al., 2004; Hyten et al., 2006). An estimated 
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45,000 of these unique Asian landraces have been collected and are maintained in G. max 

germplasm collections around the world (Carter et al., 2004; Hyten et al., 2006). The 

diversity found in G. max landraces is the result of a demographic expansion throughout 

geographically diverse Asia (Carter et al., 2004), which expanded from China to Korea and 

Japan about 2000 years ago (Kihara, 1969). The geographically diverse landrace accessions 

possess adaptive traits that can be utilized for crop improvement and thus are suitable for 

studying local adaptation (Hyten et al., 2006; Song et al., 2015).  

Here, we elucidate the genetic basis of local adaptation in soybean by exploring the 

natural variation available in 3,012 locally adapted landrace accessions from across the 

geographical range of G. max species. We leverage environmental data (geography, 

temperature, precipitation, and soil) for 3,012 landrace accessions to perform EAA. We 

then searched for within-country signatures of selective sweeps and compared to loci 

showing steep gradients in allele frequency that are important for range-wide geographical 

adaptation.  Our approach using a combination of EAA and selection mapping identified 

important candidate genes related to drought and heat stress, and revealed important 

signatures of directional selection that are likely involved in geographic divergence of 

soybean. The geographic extent of environmental and climatic associated SNPs provides 

the first insight on the genetic architecture of local adaptation and how climate change 

shapes pattern of genetic variation in G. max species.  
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4.4 MATERIALS AND METHODS 

Landrace Collection for Environmental Association and Spatial Ancestry 

Analysis. The set of landrace accessions used in this study are from the USDA Soybean 

Germplasm Collection. Only lines with latitude and longitude coordinates were included. 

These were a subset of the 5,396 accessions previously labeled as landraces (Song et al., 

2015), or G. max lines added to the USDA collection prior 1945 sourced from China, 

Japan, North Korea, or South Korea. This threshold was meant to eliminate elite lines 

developed through modern breeding practices. We then omitted those accessions 

determined to be genotypic duplicates and accessions that were potential geographic 

outliers. Filtering left a total of 3,012 landrace accessions that were collected within the 

geographic range of 22-50°N and 113-143°E. Landrace accessions were distributed in 

China (N=625), Japan (N=587), South Korea (N=1,737) and North Korea (N=63). 

Elite and Landrace Collections for Selection Mapping. Plant materials for 

selection mapping were comprised of landrace and elite populations recently described 

(Song et al., 2015). As our objective was to identify genomic regions that were selected 

locally, we partitioned elite and landrace collections based on country of origin. China had 

the highest proportion of landrace accessions (N=2,727), followed by South Korea (1,776), 

and Japan (N=893) (Song et al., 2015). As no landrace accessions originate from North 

America, we chose the known ancestors of North American soybean (Gizlice et al., 1994; 

Li and Nelson, 2001; Ude et al., 2003; Hyten et al., 2006) for selection mapping. A total of 

65 G. max landrace accessions were extracted for North America, all introduced from Asia 

(Song et al., 2015).  The breeding programs of Japan, China and North America have 

produced a large number of modern cultivars (Carter et al., 1993; Carter et al., 2004). In 
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this study, the modern cultivar population was comprised of 565 North American cultivars, 

364 cultivars from China, 615 cultivars from Japan and 25 cultivars from Korea. We 

omitted the Korean population for selection mapping analysis because of the small 

population size for Korean elite lines which may confound the selection mapping results.  

Genotype Data 

Genotype data from the SoySNP50K platform were downloaded from SoyBase 

(Grant et al. 2010) for all available G. max landrace and elite accessions (Song et al., 2015). 

Ambiguous and heterozygous SNP calls were treated as missing data due to the low 

outcrossing rate in G. max (Carter et al., 2004). The physical map positions of the 

SoySNP50K SNPs (Song et al., 2013) were mapped into the second genome assembly 

‘Glyma.Wm82.a2’ (Anderson et al., 2016). Any SNP with minor allele frequency (MAF) 

< 0.01 was removed from the genotype dataset for subsequent analyses. The SNP genotype 

data set is publicly available at http://www.soybase.org/dlpages/index.php.  

Environmental Data 

Climate Data. The latitude and longitude coordinates of 3,012 G. max accessions 

were used to query the WorldClim database (see http://www.worldclim.org/) for 112 

environmental variables, including bioclimatic variables based on yearly, quarterly, and 

monthly temperature and precipitation data as well as altitude data at a resolution of 30 arc-

seconds (approximately 1 km grids) (Hijmans et al., 2005). The bioclimatic variables 

represent annual trends, seasonality and extreme or limiting environmental factors that are 

often used in ecological niche modeling (Hijmans et al., 2005). The unit used for 

downloaded temperature data are in °C * 10. This means that a value of 231 represents 

(Anderson
http://www.soybase.org/dlpages/index.php
http://www.worldclim.org/
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23.1 °C. Temperature data was converted into °C by dividing the temperature value by 10. 

The unit used for the precipitation data is millimeter (mm).  

 Soil Data. The sampling locations of 3,012 landrace accessions were also used to 

query the ISRIC database (World Soil Information database, Hengl et al., 2014) for seven 

biophysical variables (pH x 10 in H2O, percent sand, percent silt, percent clay, bulk density 

in kg/m3, cation exchange capacity in cmolc/kg, and organic carbon content (fine earth 

fraction) in permilles) at a resolution of 30 arc-seconds (see http://www.isric.org/). 

Available data for seven biophysical variables were taken at six soil depths: 2.5 cm, 10 cm, 

22.5 cm, 45 cm, 80 cm, and 150 cm (Hengl et al., 2014). Because of high correlation and 

less variability in soil variables across depths, we grouped the six measurements per 

variable into one class by taking the average value across soil depths.  

Principle component analysis on the bioclimatic and biophysical variables (first 

scaled to a mean of 0 and standard deviation of 1) was conducted using the prcomp function 

in R (R Development Core Team 2015). Pearson correlation coefficients between 

bioclimatic and biophysical variables were calculated in R. Boxplots for each scaled 

bioclimatic and biophysical variable were created based on G. max localities to examine 

the distribution for each variable (Supplementary Fig. 1). 

 

 

Population Structure and Linkage Disequilibrium 

Principal component analysis using SNPs present in all landrace accessions was 

conducted using the prcomp function in R (version 3.1.0). The Bayesian clustering program 
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fastSTRUCTURE was used to calculate varying levels of K (2-10) and the command 

chooseK.py was used to identify the model complexity that maximized the marginal 

likelihood (K=2-6). The population structure was visualized using barplot based-function 

in R. Genome-wide and intra-chromosomal linkage disequilibrium (LD) was estimated 

using pairwise r2 between SNPs, which was calculated using PLINK version 1.07 (Purcell 

et al., 2007).   

We calculated the proportion of genome-wide SNP variation among landrace 

accessions that could be explained by environmental variables (temperature, precipitation 

and soil) and geographic data (latitude, longitude). We used variance partitioning of 

redundancy analysis (RDA) implemented in the R package vegan (Oksanen et al., 2010). 

The RDA is an eigenanalysis ordination to assess the explanatory power of multivariate 

predictors (environmental and geographical variables) for multivariate responses (e.g., 

SNP data) (van den Wollenberg et al., Lasky et al., 2002; Peres-Neto et al., 2006). The 

variance components explained by environmental variables were partitioned by fitting 

different models. The first model considered all environmental and geographic variables 

as explanatory variables and the SNP data as response variables. Because geographic 

effects are correlated with the SNP data, we fit a partial model in which the SNP data were 

conditioned on the effects of geographic coordinates. For both models, significance testing 

was conducted using Monte Carlo permutations test with 500 runs and α=0.01.  

 

Detection of Selection Footprints 

FST outlier analyses and Spatial Ancestry Analysis (SPA) were used to identify loci 

that had been differentially selected.  To identify loci that had been selected locally, FST 
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analyses was conducted between elite and landrace populations within each country (FST 

within). Theta (Ɵ), the variance-based FST estimate of Weir and Cockerham (1984), was 

estimated using the R hierfstat package (Goudet, 2005). For visualization, FST was 

averaged in sliding windows, with a window size of 5 and a step of 3 SNPs (Anderson et 

al., 2016). SNPs with FST values above the 99.9th percentile were identified as outliers. A 

Mantel test was conducted to explore isolation by distance utilizing great circle distance 

between geographic locations and pairwise genetic distance using the vegan package in R 

(Oksanen et al., 2007).   

SPA was used to detect loci showing steep gradients in allele frequency (Yang et 

al., 2012). The SPA incorporates geographic and genetic gradients in identifying local 

clines (Yang et al., 2012). This type of analysis is particularly compelling for species with 

a continuous distribution and relationship among individuals driven by isolation-by-

distance (Yang et al., 2012). The outputs of the SPA model are individual mapping 

coordinates and coefficients for allele frequency slope functions. Based on the steepness 

of allele frequency slope, the selection scores from SPA were generated as follows (Yang 

et al., 2012) 

𝑆𝑃𝐴𝑗=√∑ (𝑓𝑗(𝑥𝑖) −  
∑ 𝑓𝑗 (𝑥𝑖)𝑖

𝑁
)

2

𝑖  

where 𝑓𝑗(𝑥𝑖) = 1/1(+𝑒𝑥𝑝 (−𝑎𝑗
𝑇 −  𝑥𝑖 − 𝑏𝑗  )) for the allele frequency for individual i at 

locus j. SNPs with SPA scores above the 99.9th percentile were identified as outliers.  

 

Environmental Association Analysis 
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To perform environmental association analysis, four mixed linear models were 

fitted: K, Q+K, P+K, and L+K. The generic Q+K model was fitted using the equation  

y = Xβ + Cγ + Zu + e, 

where y is a vector of environmental variable; β is a vector of fixed marker effects; γ is a 

vector of subpopulation effects; u is a vector of polygenic effects caused by relatedness , 

i.e., 
2~ (0, )uMVN u K ; e is a vector of residuals, i.e.,

2~ (0, )eMVN e I ; X is a marker matrix; 

C is an incidence matrix containing membership proportions to each of the three genetic 

clusters identified by the fastSTRUCTURE analysis; Z is the corresponding design matrix 

for u; and K is the realized relationship matrix estimated internally in the Factored 

Spectrally Transformed Linear Mixed Models (FaST-LMM) using the SNP data (Lippert 

et al., 2011). The K model was the same with the Q+K model except that the term Cγ was 

removed in the model. In the P+K, the incidence matrix C of the Q+K model was replaced 

with a matrix that contained the first three PCs identified from PCA.  In the L+K model, 

the incidence matrix C of the Q+K model was replaced with a matrix that contained the 

latitude information where each accession was collected from. All models were 

implemented using the FaST-LMM algorithm (Lippert et al., 2011).  

A comparison wise error rate of P < 0.0000143 was used to control the experiment-

wise error rate based on the methods of Li and Ji (2005). Briefly, the correlation matrix 

and eigenvalue decomposition of SNPs with MAF > 0.01 were calculated to determine 

effective number of independent tests (Meff) (Li and Ji, 2005). The test criteria was then 

adjusted using the Meff=3,578 tests with the correction (Sidak, 1967) αp = 1 – (1- αe) 

1/Meff , where αp is the comparison-wise error rate and αe is the experiment-wise error rate. 

An αe = 0.05 was used in this study. Multiple linear regression was used to estimate the 
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proportion of phenotypic variance accounted for by significant SNPs after accounting for 

population structure effects.  

Haplotype Analysis 

Haplotype analysis was conducted to further investigate the variation in and around 

putatively selected regions. A haplotype analysis was performed within a range of 

significant SNPs identified by environmental association and selection mapping. 

Haplotype blocks were constructed using the four gamete method (4gamete) (Wang et al., 

2002) implemented in the software Haploview (Barrett et al., 2005). The 4gamete method 

creates block boundaries where there is evidence of recombination between adjacent SNPs 

based on the presence of all four gametic types. A cutoff of 1% was used, meaning that if 

addition of a SNP to a block resulted in a recombinant allele at a frequency exceeding 1%, 

then that SNP was not included in the block.  

Candidate Gene Annotations and Enrichment Analysis 

SNPs identified as outliers through the environmental association mapping, SPA, 

or FST approaches were examined for functional annotation using SoyBase 

(www.soybase.org) (Grant et al., 2010). A sliding window-approach (e.g., 50kb) was used 

to search for functional genes implemented in bedtools (Quinlan and Hall, 2010). The 

prediction of candidate genes was based on (a) genes of known function in soybean related 

to the trait under study, and (b) genes with function-known sequence homologs in 

Arabidopsis related to the trait. For each significant SNP, we collected additional 

information on genic context, nearby annotated genes, and the inferred Arabidopsis 

ortholog (TAIR10 best hit provided by Soybase). We performed enrichment analysis to 

determine if euchromatin, 3′ UTR, 5′ UTR, coding sequence (CDS), and intronic regions 
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were over or under represented among outliers. Significance of enrichment was assessed 

by creating a 99% confidence interval around the proportion of SNPs that were found in 

each category as calculated by bootstrap sampling the number of SNPs in each category 

1000 times. 
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4.5 RESULTS  

4.5.1 Genetic Structure of the Soybean Landrace Population 

We observed a clear subpopulation (SP) structure in the 3,012 landrace accessions 

with a clustering pattern based on geographic origin (Fig. 1). Based on model complexity 

and component analysis as computed by fastSTRUCTURE (Raj et al., 2014), the optimal 

number of SPs was predicted to be K=2 up to K=6. At K=3, accessions grouped clearly by 

geographic origin (Fig. 1a); SP1 (green cluster) represents the accessions mostly collected 

from Korea, SP2 (red cluster) composed predominantly of accessions collected from 

China, and SP3 (blue cluster) primarily of accessions from Japan. Using principal 

component (PC) analysis of SNP data, the top two PCs, which mainly accounted for 

geographic origin differences, explained ~13 % of total genetic variation (Fig. 1b). About 

71% of the landraces were assigned to groups consistent with a priori population 

definitions based on > 80% ancestry cut-off (Fig. 1a).  

We also found a substantial number of admixed accessions (ancestry < 80%) 

highlighting the complex history of landrace population when soybean was domesticated 

from G. soja (Hyten et al., 2006). Twenty-nine percent of the landrace accessions had 

shared ancestry between mainland (China) and island populations (Japan and Korea). The 

biggest admixed portion was identified in China (56%) while accession in Korea (25%) 

and Japan (14%) had homogenous subpopulations with fewer admixed individuals. The 

geographic distribution of accessions with above 80% ancestry for each of three SPs was 

plotted (Fig. 1c). The clustering corresponds primarily to migration barriers and fits well 
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with previous studies of population structure of soybean landrace population (Li et al., 

2012; Song et al., 2015).  

4.5.2 Population Differentiation and Linkage Disequilibrium 

On the basis of SNP data, the global genetic differentiation among country 

(FST=0.14) was modest, the same as rice (FST =0.14, Huang et al., 2014) and slightly higher 

than human (FST =0.12, The International HapMap Consortium, 2005). The pairwise 

genome-wide FST between countries ranged from 0.10 to 0.16, with accessions from Japan 

and China (FST=0.16) being more-differentiated than accessions from Japan and South 

Korea (FST=0.10). A Mantel test showed that isolation by latitudinal distance drives genetic 

differentiation in landrace population (r = 0.579, p < 0.0001). These results suggests that 

geographic isolation has impact on shaping genetic differentiation in landrace accessions.  

Within this landrace collection, the genome-wide LD in the euchromatic region 

decays from r2 = 0.48 to r2 = 0.15 within 300 Kb, then decays more slowly to r2 = 0.10 

from 500 to 1500 Kb (Supplementary Fig. 2). The genome-wide LD in the 

heterochromatic region drops from r2 = 0.58 to r2 = 0.27 within 500 Kb, reaching half of 

its initial value at around ∼400 Kb, then decays more slowly and extends up 2,000 Kb with 

r2 = 0.18 (Supplementary Fig. 2). The intra-chromosomal LD was more extensive in the 

heterochromatic than in the euchromatic regions (Supplementary Fig. 3).  

 4.5.3 Environmental Variability 

Climatic and environmental variables we examined can be classified broadly into 

four categories: geographic-related (latitude, longitude, and altitude), temperature-related 
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(monthly and seasonal), precipitation-related (monthly and seasonal) and soil-related 

(Supplementary Fig. 1). Variation was observed in 3,012 accessions for 112 climatic and 

environmental variables (Supplementary Fig. 1). Pearson correlation analysis 

demonstrated that phenotypes within each category are often correlated (Supplementary 

Fig. 4). Across the geographic range, China (mean annual temperature=48.6) is colder and 

drier than Japan (mean annual temperature=115.9) and Korea (mean annual 

temperature=118.9) (Supplementary Fig. 5). The soils data indicate that Japan soils have 

lower bulk density, higher soil organic carbon, higher sand content, and more variable pH 

than the soils in China and Korea (Supplementary Fig. 5). Soil in China has higher bulk 

density, higher cation exchange capacity and higher average pH (Supplementary Fig. 5) 

than Japan and Korea.  

Korea has the highest amount of precipitation and warmest temperature during the 

months of July and August (Fig. 2), while China has consistently low precipitation and 

temperature except for the month of June (Fig. 2a, 2b). Japan has the highest precipitation 

from January to March and then from September to December (Fig. 2a). Overall, higher 

precipitation occurs during the hottest days of July and August, which is consistent to the 

peak of the Summer Season in those countries (Fig. 2). The growing season for soybean in 

those countries varies. In Japan and Korea, planting season starts as early as March and 

harvesting extends as late as October to November. In China, most soybeans are planted 

from late April to late June and then harvested by September through early October.  

A PCA of environmental variables that included 67 bioclimatic and 42 biophysical 

variables recapitulates the geography (Supplementary Fig. 6). The first four principle 

components explained ~ 86% of the total variation (Supplementary Fig. 6). The first PC 
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was associated with temperature and latitude, the second PC with monthly and extreme 

precipitation, the third PC soil/precipitation, and the fourth PC with soil. The correlation 

of PCs to specific environmental variables (i.e., PC1 was correlated with temperature) was 

almost similar to the analysis reported in G. soja (Anderson et al., 2016). Plotting the PC 

values grouped the landrace accessions by geography, suggesting that the observed 

variability among landraces is due to geographic isolation. 

4.5.4 Partitioning of Genomic Variation Explained By Environmental Variables 

A partial redundancy analysis (van den Wollenberg et al., Lasky et al., 2002; Peres-

Neto et al., 2006) was used to partition the amount of genomic variation explained by 

environmental variables. This analysis was performed to condition the effects of 

geographic effects and separate the genomic variance explained by environmental 

variables. Partitioning the effects of environmental variables indicated that temperature 

(5.2%) explained a higher portion of genomic variation than soil (3.4%) and precipitation 

(3.3%) (Fig. 3). Geographic variables explained 6.9% of total genomic variation (Fig. 3). 

All environmental variables (temperature, precipitation and soil) cumulatively explained 

7.3% of the total genomic variance after accounting for the geographic effects. Taken 

together, the combined environmental and geographic effects explained 14.3% of the total 

genomic variation. The results indicated the importance of geography and temperature in 

shaping the existing genetic variation in a soybean landrace population.  

4.5.5 Environmental Association Analysis 

Four mixed linear models (K, PCA + K, Q + K and Latitude + K) were fitted to 

correct for confounding effects of subpopulation structure and relatedness among landrace 
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accessions. Among these four methods, the L+K model had a reduced number of associated 

SNPs (322) mainly due to high correlation of latitude with temperature variables (Fig. 3). 

Fitting the L+K model resulted in an overcorrection (causing Type 2 error) and a 

corresponding reduction in SNP significance (Supplementary Fig. 7). The Q+K and P+K 

models had minimal inflation of p-values with lowest Λ while the K model resulted in a 

slight under-correction (Supplementary Fig. 7).  

Using GWA mapping results from the Q+K model, a total of 73 distinct genomic 

regions were identified for 112 environmental variables (Fig. 4a, Supplementary Table 

9). The highest number of associated regions were identified for precipitation (27) followed 

by temperature (20), geography (19) and soil (17) (Fig. 4a and 4b). The number of 

associated loci was higher for monthly-specific variables than seasonal and annual-based 

temperature and precipitation (Fig. 4c). About 41% of the associated loci were identified 

in the genic region,(Supplementary Fig. 8). We found that associated loci are significantly 

enriched in the genic region (p<0.01). About 70% of associated loci were identified in 

euchromatic regions that occur in chromosome ends while the remaining 30% occur near 

or in heterochromatic regions (Supplementary Fig. 9a and 9b). In the soybean genome, 

about 78% of the predicted genes occur in chromosome ends (Schmutz et al., 2010).  

There was a substantial overlap in associated loci within and between trait(s) 

category. The SNP sharing among associated loci ranged from 0 to 87.1% between two 

traits (Fig. 4b) and among variables measured on monthly vs annual-basis (Fig. 4c). The 

non-shared SNPs between traits were highest for precipitation (32.6%), followed by soil 

(22.7%), temperature (19.7%) and geography (12.9%) (Fig. 4b). The results suggest that 
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pleiotropy is common among adaptive alleles. However, some of these results may be due 

to correlations among variables, rather than pleiotropy per se (Supplementary Fig. 4).  

4.5.6 FST-Based Selection Mapping within Each Country 

Genome-wide FST between elite and landrace populations was highest for China 

(FST=0.09), followed by America (FST=0.05) and Japan (FST=0.01). A total of 24 genomic 

regions were selected (China =11; Japan=8; North America=5) (Fig. 5; Supplementary 

Fig. 9a and 9b). The regions on chromosomes 4, 16 and 19 had the longest range of 

selective sweep features, indicating that these chromosomes might be the one most affected 

during soybean adaptation and improvement. Of 24 selected regions, only two overlapped 

between countries. The first region on chromosome 4 at 4384695 Bp were preferentially 

selected in China and North America but was not selected in Japan (Fig. 5). The 

chromosome 4 region showed the divergence between China (FST = 0.62) and America 

(FST= 0.49) to Japan (FST=0.01) is a QTL hotspot associated for many traits such as 

resistance to soybean cyst nematode race 2 (Vhuong et al., 2011), seed size (Orf et al., 

1999), pods per nod (Zhang et al., 2004) and seed protein concentration (Specht et al., 

2001). The second overlapped region was identified on chromosome 8 between 8451046-

8602715 Bp that co-localized with the I locus, which controls the distribution of 

anthocyanin and proanthocyanidin pigments (Todd and Vodkin 1996; Tuteja et al. 2009). 

The I locus region was selected in China and Japan but it was not identified in America 

(Fig. 5).  Overall, a substantial number of selected regions between countries were 

distinctive, indicating that different genes are being selected within each country 

(Supplementary Fig. 10).  



 

149 
 

 
 

4.5.7 Spatial Ancestry Analysis Identified Loci under Selection  

Six strongly selected regions were identified by SPA (Fig. 6). Like FST analysis, 

SPA also identified two selected regions that had a long range of clustered of SNPs; one 

region on chromosome 16 and another region on chromosome 19 that co-localized with 

Pdh1 and Dt1 loci, respectively. These are well-known genes associated with soybean 

genetic improvement (Song et al., 2015; Hyten et al., 2006) and widely noted as a target of 

strong selection in soybean (Song et al., 2015; Wen et al., 2015). We then looked on the 

common selection signals identified between countries and SPA. Out of the six selected 

regions, only the pdh1 locus on chromosome 16 overlapped with the FST analysis and it 

was solely identified in America (Supplementary Fig. 10).  

4.5.8 Overlapping Signals between Environmental Association and Selection 

Mapping 

We examined the genome for any overlap between the QTLs identified by 

environmental association and the strongly selected regions identified by FST and SPA 

(Supplementary Figs. 9a and 9b). Five associated regions were found to be within the 

range of selected regions, two of which were near the known genes. Haplotype analyses on 

selected regions revealed that SNPs indicates a fairly low gene diversity within the range 

of selected region. Selected region on chromosomes 16 (29517407 – 31181902 Bp) and 19 

(44533069-45292930 Bp) co-localized with pdh1 (Fig. 7a, 7b) and Dt1 (stem termination 

gene) (Fig. 8a, 8b).  Allelic effects of SNPs near pdh1 and Dt1 suggests a genic relationship 

between them. Accessions carrying T (pdh1) and G (Dt1) alleles predominates under high 

precipitation and high temperature while accessions carrying the alternative alleles 
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predominates under low precipitation and low temperature (Fig. 7c; Fig. 8c). The T (pdh1) 

and G (Dt1) alleles were nearly fixed in SP1 and SP3 but it was rare in SP2 (Fig. 7g; Fig. 

8g).  

A signal of selection on chromosome 15 at 9964637 Bp was in complete LD with 

region between 9840775-10142301 Bp associated with Soil Silt Content. The most 

significant SNP (for EAA?) at this region is located at 10142301 Bp which is 3.63 Kb away 

from Glyma.15G127700 that encodes for Root hair defective 3 GTP-binding protein 

(RHD3) (Fig. 9a, 9b). Several studies have shown RHD3 to affect root epidermis 

development and is required for appropriate root and root hair cells enlargement in 

Arabidopsis (Zhong et al., 2003; Yuen et al., 2005). Allelic effect estimates indicate that 

accessions carrying the T allele tend to thrive in soil with higher silt content (Fig. 9c). The 

T allele is frequent in SP2 (q=0.72) (Fig. 9d, 9e) while it was rare in SP1 (q=0) and SP3 

(q=0) (Fig. 9d, 9e).  

On chromosome nine, a selected region was identified between 1054596–1261468 

Bp that spanned 206 Kb. Haplotype analysis collapsed the 206 Kb region into four 

haplotype blocks. Blocks two and three contained highly significant SNPs that spanned 

only 40Kb (Supplementary Fig. 11). Only four candidate genes were narrowed within the 

40Kb-region, two (Glyma.09G014700 and Glyma.09G014800) of which are functionally 

related to environmental stresses based on Arabidopsis annotations. Glyma.09G014700 is 

annotated as a Ca2+-dependent lipid-binding (CaLB domain) family protein which operates 

when intracellular Ca2+ rises due to environmental stresses. CaLB binds Ca2+ to undergo a 

conformational change to activate stress-responsive genes. Silva et al. (2011) identified a 

novel transcriptional regulator, a Ca2+-dependent lipid-binding protein (AtCLB) containing 
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a C2 domain that binds specifically to the promoter of the Arabidopsis thaliana synthase 

gene, whose expression is induced by gravity and light. The loss of the AtCLB gene 

function confers an enhanced drought and salt tolerance and a modified gravitropic 

response in T-DNA insertion knockout mutant lines (Silva et al., 2011). On the other hand, 

Glyma.09G014800 is annotated as an oxidoreductase, 2OG-Fe (II) oxygenase family 

protein. In Arabidopsis, the mutant downy mildew resistant 6 encodes a putative 2OG-Fe 

(II) oxygenase that is defense-associated but required for susceptibility to downy mildew 

(Damme et al., 2008). In soybean, 2OG-Fe (II) oxygenase was identified as an important 

candidate for early iron deficiency chlorosis signaling in soybean roots and leaves (Lauter 

et al., 2014).  

A selected region on chromosome 17 spanning 608 Kb between 3857335–4466291 

Bp was associated with longitude, soil and temperature variables and was identified only 

in North? America (Supplementary Fig. 12). Haplotype analysis collapsed the 608 Kb 

region into nine haplotype blocks (Supplementary Fig. 12b). Haplotype block three had 

the most significant SNP, spanning only 30Kb and contained two plausible candidate genes 

including a calmodulin-binding factor and a heat-shock transcription factor 

(Supplementary Fig. 12c). Pandey et al. (2013) showed that a calmodulin binding 

transcription activator, CAMTA1, regulates drought responses in A. thaliana. This 

calmodulin-binding factor is known to be functionally related to the Ca2+-dependent lipid-

binding (CaLB domain) identified on chr nine (Supplementary Fig. 11). Interestingly, 

Dobney et al. (2009) revealed that the Calmodulin-related Calcium Sensor (CML42) plays 

a role in trichome branching. In adverse environments, trichomes are implicated in local 

adaptation by protecting plants from abiotic stresses including UV damage (Liakopoulos 
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et al., 2006; Yan et al., 2012) and heat load reduction (Espigares and Peco, 1995). Further, 

trichome density is negatively correlated with the rate of transpiration (Benz and Martin, 

2006) and carbon dioxide diffusion (Galmes et al., 2007). Finally, heat-shock proteins 

(HSP) mainly respond to high light intensity and heat stress (Xu et al., 2011; Gurley et al., 

2000; Kotak et al., 2010).  

Another interesting region was identified on chromosome 20 between 45864382–

47884469 Bp because of a high cluster of associated SNPs (17) with precipitation and 

geographic variables. Though the evidence of selection is only modest, this region co-

localized with genes related to drought and cold stress (Supplementary Fig. 13).  A 

haplotype analysis covering the chromosomal interval between 45864382–47884469 Bp 

separated the set of plausible candidate genes, with at least three genes represented per 

haplotype block (Supplementary Fig. 13b). We focused on the most significant haplotype 

block which contained Glyma.20G225400, with an Arabidopsis ortholog that encodes 

Dehydration-Responsive Element Binding Protein2a (DREB2A) (Supplementary Fig. 

13c). The DREB2A is a well-known gene for drought response and cold tolerance (Sakuma 

et al., 2006; Qin et al., 2008; Lata and Prasad, 2011) which encodes a transcription factor 

that controls the expression of water deficit-inducible genes (Qin et al., 2008). The two 

significant SNPs within this largest haplotype block was between 45864382–46882334 Bp 

which were identified for Annual Precipitation and Longitude.  Allelic effects of the closest 

SNP tagging DREB2A indicates that the T allele has a wide a range of annual precipitation. 

The T allele was predominant in SP2 (q=0.47) but had lower frequency in SP1 (q=0.16) 

and SP3 (q=0.19) (Supplementary Fig. 13d, 13e). The DREB2A gene is of interest to get 

a better understanding of drought tolerance in soybean.  
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The T allele was predominant in SP2 (q=0.47) but had lower frequency in SP1 

(q=0.16) and SP3 (q=0.19) (Supplementary Fig. 13d, 13e). The DREB2A gene is of 

interest to get a better understanding of drought tolerance in soybean.  
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4.6 DISCUSSION 

4.6.1 Environmental Association and Selection Mapping Provide Insight on Genetic 

Basis of Local Adaptation 

 

Detecting adaptive genetic variation in response to environmental variation helps 

to better understand the local adaptation that has occurred in soybean (Hoffmann and Willi, 

2008). In this study, we did not identify any large-effect variants underlying local 

adaptation. Instead, we found many small-effect variants that cumulative explained up to 

10% of total phenotypic variation, with the largest effect locus explaining ~5%. This result 

is not surprising given the cumulative effects of all environmental variables included in 

this study only explained 14% of the total genomic variation. This might be the upper limit 

of how much genetic variation can be attributed to local adaptation using the soybean 

landrace population. The genomic variance explained by environmental variables in this 

study (14%) is lower compared to recent studies of local adaptation in sorghum (31%, 

Lasky et al., 2016) and barley (40%, Abebe et al., 2015). A possible reason is that genetic 

diversity in soybean (Hyten et al., 2006) is lower compared to sorghum and barley (Zhu et 

al., 2003; Hamblin et al., 2004). Other possible reasons can be attributed to differences in 

population size, the SNP coverage of the entire genome and the decay rate of linkage 

disequilibrium across the genomes, which are all specific inherent properties of a 

population.  

Exploring the distribution of adaptive alleles based on allele frequency spectrum of 

associated loci, we found that adaptive alleles in this study were mostly frequent in the 

landrace population but less frequent in the elite population. When compared our results to 

previous study (Song et al., 2013) and we found out that virtually the same pattern of allelic 
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distribution was observed on associated loci. About 35% of associated loci have allele 

frequency less than 5% in elite population with 20% being completely absent in the elite 

population. The corresponding alleles, however, have allelic frequency that ranged up to 

49 % in the landrace population. Our result is in agreement with the analysis of Anderson 

et al. (2016) using a population comprised of G. soja accessions. Anderson et al. (2016) 

found that adaptive allele were less frequent in elite population than landrace and G. soja 

populations. These results indicate that genetic variation associated with environmental 

variables is controlled by a multitude of rare or low-frequency alleles in elite population. 

A possible explanation for this result is that elite cultivars contain most of the common 

variation of the Asian landrace collection, most of which are related to genetic 

improvement unrelated to our environmental assessment of local adaptation. This could be 

due to the fact that a substantial portion of alleles (mostly adaptive) were lost due to 

introduction bottlenecks when soybean was introduced to different countries (Hyten et al., 

2006). This agrees with commonly held belief that genetic bottlenecks result in the loss of 

many valuable alleles that may play an important role for local adaptation. More 

importantly, our results highlight the need to increase the frequency of favorable adaptive 

alleles in modern breeding lines.  

Local adaptation is expected to lead to elevated levels of differentiation among 

populations at selected loci (Bragg et al., 2105). This is because an allele that confers an 

advantage under particular environmental conditions is likely to occur at elevated 

frequency in populations where that condition is prevalent (Abebe et al., 2015; Bose and 

Bartholomew, 2013). This scenario holds true in this study where the five strongly selected 

regions tend to follow a directional pattern of selection. We found the best fitted alleles 
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were prevalent under specific environmental condition (mostly extreme conditions) and 

then had fixed or near to fixed allelic frequency due to selection (either conscious or 

unconscious) for a particular subpopulation. One major impact of directional selection is 

that it removes the alternative allele at particular locus and reduces the diversity in the 

nearby SNPs of selected sites (Bragg et al., 2015). This is indeed the case of selected 

regions of SPA and FST where there were unusually long regions with SNPs that are all in 

LD. Across the genome we found that most adaptive loci identified by EAA had low to 

modest FST. This results indicates that a large fraction of the soybean genome had not been 

selected, for local adaptation purposes, by farmers nor by breeders or our methods weren’t 

able to detect this selection. In a modern soybean breeding program, the main objective of 

breeders is to increase the frequency of favorable alleles and purge deleterious mutations 

that affect yield, seed protein and oil content and disease resistance. Selecting genomic 

regions for target traits may not always results to positive selection along with the adaptive 

alleles. Possible reasons are: 1) landraces that possess adaptive allele are always inferior 

agronomically compared to commercial cultivars which hinder the use of landraces as 

parents for breeding, 2) adaptive alleles are possibly not linked to breeder’s target traits, 

and 3) the limited available genetic diversity within a locality hinders the development of 

adaptive cultivars, and 4) isolation by distance may limit gene flow of favorable alleles 

among populations.  

We also found a few loci at which allelic effects are determined by geographic 

variables. About 50% of associated loci, most of which were identified for temperature 

variables, were correlated with geographic variables (e.g., latitudinal variation). This result 

is expected given that soybean is adapted photoperiodic response associated with a 
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latitudinal gradient, and it lacks the genetic flexibility to be farmed successfully at latitudes 

that diverged more than about 2◦ (equivalent to a few hundred kilometers) (Carter et al., 

2004). For example, moving an adapted soybean genotype out of its zone 2◦ north could 

delay its maturity sufficiently to risk frost damage, while moving the same genotype south 

2◦ would reduce plant height to a degree unacceptable for farming. This might be the 

phenomenon of initial local adaptation in soybean that consequently resulted into a clear 

subpopulation structure that what we observed in this study which could have been aided 

further by the self-pollinating nature of soybean (>99%).  

We also identified loci that co-localized with E genes that affects flowering and 

maturity in soybean. Interestingly, we also identified a region that did not co-localize with 

bp positions of reported E gene, which are of interest, for evaluation of long juvenility in 

soybean (Harada et al., 2015). The long juvenility genes are of interest for delaying the 

onset of flowering of genotypes adapted to non-equatorial environments so that these 

genotypes will then have greater yield potential when grown in near-equatorial short-day 

latitudes of soybean production (Cober, 2010). For example, an interesting region on 

chromosome 5 (41415712 Bp) associated with 30 temperature variables, co-localized with 

Glyma.05G238300 that encodes for Rubisco methyltransferase family protein 

(Supplementary Fig. 14). This putative gene encodes protein methylase that is highly 

expressed in leaves during daylight and thought to be involved in the regulation of Rubisco 

during photosynthesis (Raunser et al., 2009).  
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4.6.2 Implications on Developing Climate-Ready Soybean Cultivars 

Soybean is one of the most important crop plants for seed protein and oil content, 

and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne 

microorganisms (Wilson, 2008). The United States produces 38% of the world’s soybean 

and production is concentrated in the upper Midwest region (Specht et al., 2014). Climate 

change has been shown to adversely affect soybean production in the USA (Specht et al., 

2014; Mourtzinis et al., 2015). Particularly, the combined year-to-year changes in 

precipitation and temperature suppressed the U.S. average yield gain by around 30 percent, 

leading to a loss of $11 billion (Mourtzinis et al., 2015). In-season temperature had a greater 

impact on soybean yields than in-season precipitation. Averaging across the United States 

soybean yields fell by around 2.4% for every 1 °C rise in growing season temperature 

(Mourtzinis et al., 2015). In the Midwestern region of the US, higher summer temperature 

has become the norm which has resulted in a remarkable geographic shift in the location 

of soybean production (Specht et al., 2014). During the 33-yr time frame between 1979 

and 2011, soybean production shifted northward to become more concentrated in the north-

central United States (Specht et al., 2014). The most noteworthy aspect of this shift was 

the movement of soybean production into the northern Great Plains states of South and 

North Dakota (Specht et al., 2014). This highlights the needs to develop a climate-ready 

soybean cultivars (i.e., soybean cultivar with greater temperature tolerance). 

The results of this study is one step towards understanding the soybean’s capability 

for local adaptation. Overall, most of the candidates underlying associated loci co-localized 

with abiotic-stress responsive genes (e.g., DREB, ERD, HSP) which may play a central 

role in stress tolerance and can be an important mechanism of soybean for local adaptation. 
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These narrowed candidate genes are essential to get a better understanding of drought and 

heat tolerance in soybean. We also found a candidate that is functionally related to 

photosynthesis (e.g., Rubisco methylase) which is of interest for increasing soybean yield 

in environments with varying temperature. Further, this in turn could assist breeders to 

identify individual landrace accession that have adaptive alleles that could be used as donor 

parent for breeding climate-ready soybean cultivars.  
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4.8 FIGURES 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Population structure in the soybean landrace collection inferred by 

fastSTRUCTURE and principal component analysis. a) The number of clusters (K) 

present in the entire population of 3,012 accessions was judged to be K=3. Each colored 

vertical line in the barplot represents an individual accession that was assigned 

proportionally to the one of the three clusters. b) Principal component (PC) analysis of 

3,012 landrace accessions. The top two PCs accounted for geographic origin differences 

which explained ~13 % of total genetic variation. c) The geographical location in which 

each landrace accession (with subpopulation ancestry > 80%) was collected. The spot 

colors correspond to the fastSTRUCTURE assignment of each accession. The assignment 

of samples into three genetic clusters generally accords with geography. The spots have 

been jittered to show overlapping samples. 
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Figure 2. Monthly series analysis for mean precipitation and minimum and maximum 

temperatures for each of the three subpopulations inferred from fastSTRUCTURE. SP1 

represents accessions collected from Korea; SP2 represents accessions collected from 

China; SP3 represents accessions collected from Japan.  

 

 

 



 

170 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Partitioning of genomic variation due to environmental variation and 

geographic variables using a partial redundancy analysis. Genomic variation was 

partitioned based on four categories of grouped environmental variables (geography, 

temperature, precipitation, soil).  
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Figure 4. Genome-wide association mapping of 112 environmental variables using 3,012 

landrace accessions. a) Summary of genome-wide significant associations identified 

using four linear mixed models. b) Summary of unique and overlapped significant 

associations among four categories (geography, temperature, precipitation, soil) of 

environmental variables. c) Summary of unique and overlapped significant associations 

between monthly and seasonal/annual variables.  
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Figure 5. Differential selection between elite and landrace population within a) America, 

b) China and c) Japan using FST analysis. The FST values are plotted against the base pair 

position on 20 chromosomes of soybean. The dashed horizontal line denotes the 

calculated FST value based based on 99.9th percentile for declaring a selected region. The 

solid horizontal line denotes the calculated FST value based on 99th percentile for 

declaring a selected region. Strong selection signals that co-localized with known genes 

or QTL are indicated by an arrow. 
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Figure 6. Spatial ancestry analysis (SPA) using 3,012 landraces within G. max 

accessions. The SPA selection scores values are plotted against the base pair position on 

20 chromosomes of soybean. Strong selection signals that co-localized with known genes 

or QTL are indicated by an arrow. The dashed horizontal line denotes the calculated SPA 

threshold score based on 99.9th percentile for declaring a selected region. The solid 

horizontal line denotes the calculated SPA threshold score based on 99th percentile for 

declaring a selected region. 
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Figure 7. Environmental association and spatial ancestry analysis (SPA) and FST 

analyses identified a selected region on chromosome 16 of the Glycine max genome. a) 

Environmental association identified the Pdh1 locus for mean precipitation, b) SPA and 
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FST values were plotted based on a sliding-window approach. The gray solid vertical line 

denotes the position of significant associations. Notably, highest SPA and FST values 

overlapped with significant associations between 29517407 - 31181902 Bp that co-

localized with pdh1, a major QTL responsible for the reduction of pod shattering in 

soybean (Fonatsuki et al., 2014). c, d, e) Significant allelic effects of nearest SNP tagging 

pdh1 was more significant for precipitation than temperature, f) Allelic effects indicate 

that G allele is favorable for shattering resistance, g) Geographic location of individuals 

with the “G” allele (gray) or “T” allele (gold) with jitter added to show overlapping 

samples. Only individuals with ancestry >80% based on fastSTRUCTURE results was 

plotted. Allelic frequency distribution in three subpopulations defined by 

fastSRUCTURE. The G allele was directionally selected in SP2 (China) while it was 

selected against in SP1 (Korea) and SP3 (Japan).    
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Figure 8. Environmental association and spatial ancestry analysis (SPA) and FST 

analyses identified a selected region on chromosome 19 of the Glycine max genome. a) 

Environmental association identified the Dt1 locus for mean diurnal range. b) SPA and 
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FST values were plotted based on a sliding-window approach. The gray solid vertical line 

denotes the position of significant associations. Notably, highest SPA and FST values 

overlapped with significant associations between 29517407 - 31181902 Bp that co-

localized with Dt1, a major QTL responsible for the reduction of pod shattering in 

soybean (Fonatsuki et al., 2014). c, d, e, f) Significant allelic effects of nearest SNP 

tagging Dt1 was more significant for precipitation than temperature. g) Geographic 

location of individuals with the “G” allele (gray) or “A” allele (gold) with jitter added to 

show overlapping samples. Only individuals with ancestry >80% based on 

fastSTRUCTURE results was plotted. Allelic frequency distribution in three 

subpopulations defined by fastSRUCTURE. The G allele was directionally selected in 

SP2 (China) while it was selected against in SP1 (Korea) and SP3 (Japan). 
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Figure 9. Genome-wide association results of soil percent silt. a) Genome wide view of 

association results for soil percent silt. A cluster of significant associations was identified on 

chromosome 15 across six soil depths. b) Zoom in on 50 kb region around the significant marker 

BARC_1.01_Gm15_9988583_T_C, the most significant hit for soil percent silt. The Arabidopsis 

ortholog for the nearest gene, Glyma.15g127700, is Root hair defective 3 GTP-binding protein 

(RHD3), a gene that affects root epidermis development and is required for appropriate root and 

root hair cells enlargement in Arabidopsis (Lockwood et al., 1997; Zhong et al., 2003; Yuen et 

al., 2005). c) Density plot of allele frequency distribution for Percent Silt. The “T” allele at this 

locus is associated with high silt environments while the C ‘allele’ is associated with low silt 

environment. d) Geographic location of individuals with the “C” allele (gray) or “T” allele (gold) 

with jitter added to show overlapping samples. Only individuals with ancestry >80% based on 

fastSTRUCTURE results was plotted. The “T” allele is absent in SP1 and SP3 while it is 

directionally selected in SP2, which is predominated by accessions from China. e) Boxplot 

analysis of variation among subpopulations for soil percent silt. 
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4.9 APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Standardized distributions of spatial (green), soil (brown), 

precipitation (blue) and temperature (yellow) variables. 



 

181 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Genome-wide linkage disequilibrium decay in 3,012 landrace 

G. max accessions.  
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Supplementary Figure 3. Intra-chromosomal pattern of linkage disequilibrium decay in 

3,012 landrace G. max accessions.  
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Supplementary Figure 4. Pearson correlation between biophysical and bioclimatic 

variables. Blue indicates a high positive correlation, white indicates a correlation near zero, 

and red indicates a high negative correlation. 
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Supplementary Figure 5. Phenotypic variation among subpopulations for a) selected 

temperature variables, b) selected precipitation variables and c) selected soil variables. 

Boxplot analysis was used to display phenotypic variation among subpopulations defined 

by fastSTRUCTURE.  
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Supplementary Figure 6. Principal component analysis of phenotypic data in 3,012 

landrace G. max accessions. a, b) The first three PCs were used to infer relationship among 

variables. c) The first two PCs were used to infer relationship among 3,012 landrace G. 

max accessions. d) The proportion of variance explained by each PC. 
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Supplementary Figure 7. Manhattan and quantile-quantile (QQ) plots generated from 

environmental association analysis using four linear mixed models: a) K model, b) Q+K 

model c) P+K model and d) L+K model. The QQ plots are displayed to compare the 

distribution of observed p-values to the expected distribution under the null hypothesis of 

no association in four different models. The level of significance and the number of 

associated signals was reduced using the L+K model.  
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Supplementary Figure 8. Enrichment analysis for genomic region. Enrichment analysis 

was performed to determine if euchromatin, 3′ UTR, 5′ UTR, coding sequence (CDS), and 

intronic regions we over or under represented among outliers and significant loci. 
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Supplementary Figure 9. Summary selected regions identified by FST and SPA of and significant 

associations detected by environmental associations. The gray solid vertical line denotes the 

position of significant associations. A sliding window approach (see methods) was used to plot FST 

and SPA values across the 20 chromosomes. A total of five selected regions overlapped with 

significant association which is demarked by a green triangle.  
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Supplementary Figure 9 (Continued).  



 

190 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 10. Summary of strong selection signals identified using Spatial 

Ancestry Analysis (SPA) and FST between elite and landrace population within each 

country. A Venn diagram was constructed to determine the number of overlaps between 

and among countries and SPA. The percentage selection signals was put at the bottom of 

the total detected signals. 
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Supplementary Figure 11. Spatial ancestry analysis (SPA), FST, and significant associations 

identified on chromosome 9 of the Glycine max genome. a) SPA and FST values were plotted 

based on a sliding-window approach. The gray solid vertical line denotes the position of 

significant associations. Notably, highest SPA and FST values overlapped with significant 

associations between 1054596 – 1261468 Bp. b) LD and haplotype analysis using the four 

gamete algorithm of selected region between 1054596 – 1261468 Bp. c) Zoom in on 40 kb region 

around the significant markers. The Arabidopsis ortholog for the nearest genes, 

Glyma.09G014700 and Glyma.09G014800, are annotated as Ca2+-dependent lipid-binding (CaLB 

domain) family protein and oxidoreductase, 2OG-Fe (II) oxygenase family protein, respectively.  
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Supplementary Figure 12. Spatial ancestry analysis (SPA), FST, and significant 

associations identified on chromosome 17 of the Glycine max genome. a) SPA and FST 

values were plotted based on a sliding-window approach. The gray solid vertical line 

denotes the position of significant associations. Notably, highest SPA and FST values 

overlapped with significant associations between 3857335 – 4466291 Bp. b) LD and 

haplotype analysis using the four gamete algorithm of selected region between 3857335 – 

4466291 Bp. c) Zoom in on 30 kb region around the significant markers. The Arabidopsis 

ortholog for the nearest genes are annotated as calmodulin-binding factor and heat-shock 

transcription factors.  
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Supplementary Figure 13. Spatial ancestry analysis (SPA), FST, and significant 

associations identified on chromosome 20 of the Glycine max genome. a) SPA and FST 

values were plotted based on a sliding-window approach. The gray solid vertical line 

denotes the position of significant associations. Notably, highest SPA and FST values 

overlapped with significant associations between 45864382 – 47884469 Bp. b) LD and 

haplotype analysis using the four gamete algorithm within the range of significant SNPs. 

c) Zoom in on narrowed region around the significant markers. The Arabidopsis ortholog 

for the nearest gene, Glyma.20G225400, is annotated as Dehydration-Responsive 

Element Binding Protein2a (DREB2A). d) Density plot of allele frequency distribution 

for mean diurnal range. The “C” allele at this locus is associated with high temperature 

environment while the T ‘allele’ is associated with low temperature environment. e) 

Geographic location of individuals with the “C” allele (gray) or “T” allele (gold) with 

jitter added to show overlapping samples.   
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Supplementary Figure 14. Genome-wide association results for mean diurnal range. a) 

Genome wide view of association results for mean diurnal range. A cluster of significant 

associations was identified on chromosomes 1 9, 15 and 20. b) Zoom in on 50 kb region 

around the most significant marker at 41415712 Bp on chromosome 9. The Arabidopsis 

ortholog for the nearest gene, Glyma.05G238300 that encodes for Rubisco 

methyltransferase family protein. c) Density plot of allele frequency distribution for mean 

diurnal range. The “C” allele at this locus is associated with high temperature 

environment while the T ‘allele’ is associated with low temperature environment. d) 

Geographic location of individuals with the “C” allele (gray) or “T” allele (gold) with 

jitter added to show overlapping samples. Only individuals with ancestry >80% based on 

fastSTRUCTURE results was plotted. e) Allelic frequency distribution in three 

subpopulations defined by fastSRUCTURE and in Song et al (2013) populations.  
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Supplementary Figure 15. Genome-wide association results for soil percent. a) Genome 

wide view of association results for soil percent silt. b) Zoom in on 50 kb region around 

the most significant marker on chromosome 9. The Arabidopsis ortholog for the nearest 

gene, Glyma.09G211000 that encodes for Early-responsive to dehydration stress protein. 

c) Density plot of allele frequency distribution for mean diurnal range. The “A” allele at 

this locus is associated with high low silt environment while the G ‘allele’ is associated 

with high silt environment. d) Geographic location of individuals with the “A” allele 

(gray) or “G” allele (gold) with jitter added to show overlapping samples. Only 

individuals with ancestry >80% based on fastSTRUCTURE results was plotted. e) Allelic 

frequency distribution in three subpopulations defined by fastSRUCTURE and in Song et 

al (2013) populations.  
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CHAPTER 5: CONCLUSIONS 

The wealth of phenotypic diversity available in the USDA Soybean Germplasm 

Collection should be mined to help meet the demands of food production in the face of 

climate change and ever-evolving pathogens. The Collection contains many valuable genes 

that hold potential to improve the cultivated version of soybean. Finding the genes relevant 

for breeding and genetics would be benefited by knowing more about the ancestry and 

diversity of the soybean collection as well as the association between genetic markers and 

economically important traits. Overall, our findings indicated how samples in the 

Collection relate to one another and the importance of country of origin and maturity group 

in determining relatedness. Accessions originating from Japan were relatively homogenous 

and distinct from the Korean accessions. As a whole, both Japanese and Korean accessions 

diverged from the Chinese accessions. The ancestry of founders of the American 

accessions derived mostly from two Chinese subpopulations, which reflects the 

composition of the American accessions as a whole.  

We found several strong associations between genetic markers and phenotypic traits, 

which help narrowing the search for genes controlling these economically important traits. 

A 12,000 accession GWAS conducted on seed protein and oil is the largest reported to date 

in plants and identified SNPs with strong signals on chromosomes 20 and 15. A 

chromosome 20 region previously reported to be important for protein and oil content was 

further narrowed and now contains only three plausible candidate genes. The haplotype 

effects show a strong negative relationship between oil and protein at this locus, indicating 

negative pleiotropic effects or multiple closely linked loci in repulsion phase linkage. The 
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vast majority of accessions carry the haplotype allele conferring lower protein and higher 

oil. 

Genome-wide association mapping was also applied to categorical phenotypic data 

available for ten descriptive traits in a collection of ~13,000 G. max accessions. A total of 

23 known genes were identified as well as several heretofore unknown genes controlling 

the phenotypic variants for ten descriptive traits. Because some of those genes had been 

cloned, we were able to show that the narrow SNP signal regions had chromosomal base 

pair spans that, with few exceptions, bracketed the base pair region of the cloned gene 

coding sequences, despite variation in SNP number/distribution of chip SNP set.  

By leveraging environmental data, we also elucidate the genetic basis of local 

adaptation in soybean by exploring the natural variations available in 3,012 locally adapted 

landrace accessions from across the geographical range of G. max species. Our approach 

of using a combination of EAA and selection mapping identified important candidate genes 

related to drought and heat stress, and revealed important signatures of directional selection 

that are likely involved on geographic divergence of soybean. 

Overall, the results reported herein will assist soybean researchers in their pursuit 

of genes that can be used to further improve soybean for agricultural production. Others 

surely to flow from this valuable resource for providing a fuller understanding of the 

distribution of genetic variation contained within the collection and its relation to 

phenotypic variation for economically important traits. Further characterization of the 

phenotypic diversity and its relationship to the genomic diversity will ultimately facilitate 

a more efficient and effective introgression of this diversity into elite varieties for continued 

genetic improvement. 
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