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On Algebras of Finite Representation Type 
 
Spencer E. Dickson, University of Nebraska–Lincoln 
 
 
Abstract: Since D. G. Higman proved that bounded representation 
type and finite representation type are equivalent for group 
algebras at prime characteristic, there has been a renewed interest 
in the Brauer-Thrall conjecture that bounded representation type 
implies finite representation type for arbitrary algebras. The main 
purpose of this paper is to present a new approach to this 
conjecture by showing the relevance (when the base field is 
algebraically closed) of questions concerning the structure of 
indecomposable modules of certain special types, namely, the 
stable (every maximal submodule is indecomposable), the costable 
(having the dual property), and the stable-costable (having both 
properties) indecomposable modules. The main tools are the 
Sandwich Lemma (1.2) which is proved using an old observation 
of É. Goursat, an observation of A. Heller, C. W. Curtis, and D. 
Zelinsky concerning quasifrobenius (QF) rings (Proposition 2.1), 
and a general interlacing technique similar to methods used by 
Jans, Tachikawa, and Colby for building up large indecomposable 
modules of finite length which has validity in any abelian category 
(Theorem 3.1). 
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ON ALGEBRAS OF FINITE REPRESENTATION TYPE 


BY 

SPENCER E. DICKSON(I) 

Introduction. Since D. G. Higman proved that bounded representation type 
and finite representation type are equivalent for group algebras at prime characteris- 
tic, there has been a renewed interest in the Brauer-Thrall conjecture that bounded 
representation type implies finite representation type for arbitrary algebras. The 
main purpose of this paper is to present a new approach to this conjecture by 
showing the relevance (when the base field is algebraically closed) of questions 
concerning the structure of indecomposable modules of certain special types, 
namely, the stable (every maximal submodule is indecomposable), the costable 
(having the dual property), and the stable-costable (having both properties) 
indecomposable modules. The main tools are the Sandwich Lemma (1.2) which is 
proved using an old observation of E. Goursat, an observation of A. Heller, 
C. W. Curtis, and D. Zelinsky concerning quasifrobenius (QF) rings (Proposition 
2.1), and a general interlacing technique similar to methods used by Jans, Tachi- 
kawa, and Colby for building up large indecomposable modules of finite length 
which has validity in any abelian category (Theorem 3.1). 

In $1 we give an alternate approach to recent results of C. W. Curtis and J. P. 
Jans [4] which give sufficient conditions regarding the structure of all indecompos- 
ables in order that the algebra will have finite module type. We give sufficient 
conditions on the structure of the stable (resp. costable, stable-costable) inde- 
composables in order that A will have at most finitely many isomorphism classes of 
modules of any finite composition length. We abbreviate this by saying that A 
has w-jnite module type, where w denotes the first infinite ordinal. 

In $2 we prove several properties of indecomposables over quasifrobenius 
algebras. Curtis and Jans in [4] showed that if A is any algebra over an algebraically 
closed field such that each indecomposable module has square-free socle (i.e., it 
contains no submodule of the forms S@ Sfor simple S ) , then A has finite module 
type. This condition also implies that if rp is a nilpotent endomorphism of an 
indecomposable module M, then rp kills the entire socle of M. We say that such a 
module has large kernels, and if a ring A has this property for all its indecompos- 
ables of finite length, we say that A has large kernels. We suspect that the hypothesis 
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of large kernels is much weaker than the hypothesis of square-free socles for Q F  
algebras over an algebraically closed field (indeed, in an earlier version of this 
paper we thought we had proved that any QF  ring had large kernels-we still have 
no counterexample at the time of this ~ r i t i ng ) (~ ) .  Under the hypothesis of large 
kernels, we show that a fairly large class of the indecomposables over a Q F  
algebra A must either have square-free socles, or A has infinitely many non-
isomorphic indecomposables of the same composition length (Theorem 2.5). 

In 93 we prove (Theorem 3.1) that if M is an indecomposable module of finite 
composition length over any ring A and C, C' are isomorphic submodules of M 
satisfying CR nC'R =(0) =C M=C ' M  (where R =End, (M) and M=Rad R) and 
ExtA l(M, C)=O, then A has indecomposable left modules of arbitrarily large 
(finite) composition length. We apply this result to show (Theorem 3.6) that if A 
is a QF  algebra of bounded module type with large kernels over an algebraically 
closed field such that each stable-costable indecomposable module E has either a 
maximal submodule M with Hom, (M, E/M) =0 or has a factor module E/S with 
S simple and Hom, (S, EIS) =0 then A has finite module type. Finally an affirma- 
tive answer is obtained to a question of Curtis and Jans in the case that A is'a 
QF  algebra with large kernels over an algebraically closed field having no indecom- 
posables of length two with isomorphic composition factors (Corollary 3.7). 

It is a pleasure to acknowledge some helpful correspondence and conversations 
with Gerald Janusz, and I am especially grateful to Charles Curtis for several 
valuable suggestions and for making some unpublished research data available 
to me. 

1 .  Stable, costable, and stable-costable indecomposables. Unless otherwise 
specified, A will denote a ring with unit, associative, and usually having minimum 
condition (on left ideals). When A is an algebra, it will be finite-dimensional over 
an algebraically closed base field K. Modules will be unitary left A-modules, unless 
otherwise specified. 

As we will sometimes be concerned with more general rings than algebras, we 
shall use the following terminology instead of referring to representations (see 
[4]). The ring A is said to havefinite module type (for left modules), if there are at 
most finitely many isomorphism classes of indecomposable left modules of finite 
(composition) length. We say A has bounded module type (for left modules), if 
there is a positive integer n such that every indecomposable left module of finite 
length has length at most n. We say A has w-finite module type (for left modules), 
if for any positive integer n, there are at most finitely many indecomposables of 
length n. We do not know if "right" can be interchanged with "left" in any of 
these concepts if A is a general ring, but of course it is true for finite-dimensional 
algebras. 

(2) Added in proof. J. P. Jans has kindly communicated to me an example of a quasifroben- 
ius algebra not having large kernels. It has unbounded module type. 
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Let A have minimum condition. If E is an indecomposable module having the 
property that every maximal submodule is indecomposable, we say that E is stable. 
If E has the property that every factor module by a simple submodule is inde- 
composable, we say E is costable, and say that E is stable-costable if both properties 
hold. Given a nonsplit exact sequence 0 -+ M -+ E -+S -+ 0 with S simple, we 
say that E is a proper simple extension of M. If the arrows are reversed, we say E 
is a proper simple coextension of M. Reasons for our choice of the term "stable" 
will be found in the following result, where M denotes a left module. 

PROPOSITION1.1. (i) If M is not injectiue, then M has a proper simple extension. 
(ii) I f  M isjnitely generated and also indecomposable, then M is stable if and only 
if each proper simple extension is indecomposable. 

Proof. To prove (i), assume to the contrary that ExtA I(S, M )  =0 for all simple 
S. Let F be an arbitrary module. We show that ExtA l(F, M )  = O  by induction on 
the least integer k such that NkF=O, where N is the radical of A. First suppose that 
NF=O. Then F =  z,,, S,, where S,  is simple for each a E I, and the sum is direct. 
But then 

Then application of ExtA l( ,M )  to the sequence 

0 -+ Nk-IF-+ F-t FINk-IF-+ 0 

shows that M is injective. 
For (ii), let M be a finitely generated noninjective indecomposable module and 

suppose that M has a decomposable maximal submodule MI  @ M, with M/Ml 
@ M, z S simple. We obtain exact sequences 

neither of which is split exact. To see this, use a length argument and the inde- 
composability of M to get that M, is maximal in M with respect to MI n M, =0. 
Hence M/M2 is an essential extension of Ml z MI @ M,/M, so that (2) does not 
split. Similarly (1) does not split. Hence it follows that M/M1 @ M/M2 is an essen- 
tial extension of the copy of M1 @ M, contained in the image of M under the 
diagonal monomorphism M -+ M/Ml @ MIM,, so is also an essential extension 
of M. Computation shows that the module (M/Ml @ M/M,)/M has length one 
and is a submodule of S @ S. Hence there is a nonsplit exact sequence 

or, M has a decomposable proper simple extension. 

Conversely let M be as before and let E be a proper simple extension of M (such 




130 S .  E. DICKSON [January 

exist by (i)). Assume that E is decomposable, say E= L ,  @ L,, where Li# 0 
(i= I ,  2). Then L, n M#O (i= 1 ,  2) since E is an essential extension of M. Then 

where S= E/M =L, +M / M  z Li/Lin M (i= 1,2). But then M/(L ,  n M )+( L ,  n M )  
is simple, and therefore L ,  n M @ L, nM is maximal in M but not a direct 
summand since M is inhe~om~osable .  

LEMMA1.2 (SANDWICH Let A be an algebra over an algebraically closed LEMMA). 
field K, and let E and F be indecomposable left A-modules, situated such that 
A ,  @ A, cE, F c  B, @ B,, where 0 # A i  cB, are left A-modules, B,/A, is simple 
(i= 1,2)  and B,/A, zBBA,. Then E and F are isomorphic. 

Proof. If H is a submodule of a direct sum B, @ B,, then as E. Goursat observed 
in 1889 [7] (see [14,p. 1711) there is an isomorphism 

where n, and .rr2 are the projections and 8 is defined as 0(b,+H n B,) =b, +H n B, 
where b, is any member of B, with (b,, b,) E H. On the other hand, the submodule 
H is completely determined by the data consisting of submodules H l c  Hi of Bi. 
(i= 1 ,  2) and an isomorphism 8: H,/Hi -+ H,/Hi where H is retrieved by* the 
formula 

H = Kbl, bz) / bl E H I ,  bz +H; = B(bl +Hi)) ,  

where of course it holds that Hi =H n B,, Hi =n,(H) (i= I, 2). Now let E and F 
be indecomposable modules situated as above. Clearly A , c  E n Bi and by inde- 
composability of E we must have .rri(E)=Bi and hence E n B, =A,. Similarly 
F n Bi= A, and n,(F)= B, (i= 1 ,  2). Thus E (resp. F )  is determined completely by 
an isomorphism 8, (resp. 8,) mapping B,/A, onto B,/A,. But applying Schur's 
lemma we obtain S f 0  E K such that 0,=t0,. Then it is easily checked that the 
automorphism f - l l , ,  @ I B 2  maps E onto F, 

The above lemma is in a sense dual to, and was inspired by Lemma C of [4], 
but we have removed the hypothesis of square-free socle which was required there. 

We are now ready to prove the main result of this section. 

THEOREM1.3. Let A be an algebra over an algebraically closedjeld K suclz that 
every proper simple extension E of aJinitely generated stable indecomposable module 
M has no repeated simple factor modules (i.e., EINE contains at nzost one copy of 
any given simple module). Then A has w-jnite module type. 

Proof. We prove by induction that for any positive integer 11, there are only 
finitely many isomorphism classes of modules of length n. For n= 1 this is clear 
since there are at most finitely many nonisomorphic simple modules. Assuming 
the statement for lengths less than n, let E be an indecomposable module of length 
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n.  If E has a decomposable maximal submodule MI  @ M,, then the diagonal 
monomorphism E -+ E/Ml @ E/M2 yields the inclusions 

Then the Sandwich Lemma (1.2) shows that there is at most one choice for E 
up to isomorphism, given the modules MI, M,, E/Ml, and E/M,, all of which have 
smaller length. By induction, there are only finitely many choices for E. Now assume 
that E is stable. If E is injective, there are only finitely many choices for E, for then 
E would be the injective envelope of a simple module which is determined up to 
isomorphism by its (simple) socle. So assume that E is not injective, and let M be 
any maximal submodule of E. Suppose E/M= S, say, where S is simple, and let 
E '  be another proper extension of M by S. Then E and E '  are each essential ex- 
tensions of M and hence have isomorphic copies in E(M), the injective envelope 
of M, and are of course isomorphic if these copies coincide in E(M). Denote the 
copies also by E and E' ,  respectively, and assume that they are distinct submodules 
of E(M). Let E n = E + E ' .  Note that E n  E 1 = M ,  so that Rad E 1 ' s M .  Now E"  
is a simple extension of E (hence indecomposable by Proposition 1.1, (ii)) and by 
hypothesis, E1'/Rad E "  has no repeated simple factors. However, 

S@ S z E"/M z (E1'/Rad E ")/(M/Rad E") 

so that the completely reducible module E1'/Rad E "  contains a copy of S @ S. 
This contradiction shows that E z  E', so that E is uniquely determined by choice 
of M and S,  which have smaller lengths. 

COROLLARY A be algebra satisfying the hypotheses of the above 1.4. Let an 
theorem. I f  in addition, A has bounded module type, then A has finite module type. 

COROLLARY1.5 (CURTIS-JANS). Suppose A is an algebra over an algebraically 
closed jield K such that every indecomposable finitely generated left A-module has 
squareyree socle. Then A hasjinite module type. 

Proof. By K-duality it is equivalent to prove finite module type from the 
hypothesis that MINM is square-free for each finitely generated indecomposable 
module M [4, p. 1301. The result then follows from the fact that such algebras 
already have bounded module type [4, dual of Lemma A]. 

Taking K-duals, Theorem 1.3 becomes 

COROLLARY K such1.6. Let A be an algebra over an algebraically closed jield 
that for each jinitely generated costable indecomposable module M, the module E 
appearing in any nonsplit exact sequence 0 -+ S +E -+ M -+ 0 with S simple has 
square-free socle. Then A has w-jinite module type. 

We can now use the K-duality for algebras to further restrict the test class of 
indecomposables and strengthen these results. The next result is a sample applica- 
tion of this procedure. Recall an indecomposable module E is stable-costable, if 
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E is both stable and costable. Then if E is nonprojective as well as noninjective, the 
properties expressed in Proposition 1.1 hold for E as well as their duals. 

THEOREM1.7. Let A be an algebra over an algebraically closed.field K such that 
every Jinitely generated stable-costable indecomposable module E has at least one 
of the following properties: 

(i) Every proper simple extension F of E has F/NF square-free. 
(ii) Every proper simple coextension has square-free socle. 

Then A has w-jinite module type. 

Proof. The proof proceeds just as the proof of Theorem 1.3, except that now 
we may assume for the induction step that we have a stable-costable module E of 
length n, using the dual of the Sandwich Lemma (or alternatively, applying the 
Sandwich Lemma for right modules to the right module E*=Hom, (E, K)). 
Then application of either of (i) or (ii) completes the proof. 

In the following theorem, e denotes a primitive idempotent for A and B a right 
A-submodule of eA. 

THEOREM1.8. Let A be an algebra over an algebraically closedfield K such that 
(i) each right module eA/B has square-fuee socle, 

(ii) each stable indecomposable left A-module has simple socle. 

Then A has w-jinite module type. 


Proof. As in the proof of Theorem 1.3 we need only show that there are at most 
finitely many nonisomorphic stable indecomposables. Since a stable indecomposable 
module M has simple socle S, it is contained in the injective module E(S). We show 
that the submodule lattice of E(S) is finite. Assume on the contrary, that it is 
infinite. Then the K-dual E(S)* is of the form eA for some primitive idempotent 
e and the lattice of right submodules of eA is also infinite, and of course is a modular 
lattice, so is nondistributive, and contains a projective root (cf. [lo, p. 4191, see 
also [I]) of right submodules Bi ( 0 5  i 5 4 )  of eA. But then by properties of the 

projective root (i.e., minimality of the B, over those below them in the diagram), 
B,/Bo and B,/Bo are isomorphic independent simple submodules of eA/Bo,contrary 
to the hypothesis (i). This completes the proof. 

In [l l] ,  Janusz has constructed all the indecomposable modules for the group 
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algebra of the finite group LF(2, p) over an algebraically closed field of characteris- 
tic p. Every indecomposable module has square-free socle and it is not too hard to 
check that the stable indecomposables over this algebra satisfy our hypothesis 
(ii). This group algebra has cyclic Sylow p-subgroups and has finite module type 
by Higman's theorem [9]. The above hypotheses are also satisfied by our matrix 
algebra example (nonquasifrobenius) below. In [12], Janusz shows that they are 
true for any group algebra of finite representation type. 

PROBLEMA. Let A be a finite-dimensional algebra of bounded module type over 
an algebraically closed field K. Assume also that A is quasifrobenius. Is it true that 
every stable indecomposable module has simple socle? 

PROBLEMB. Describe the structure of the stable (costable, stable-costable) inde- 
composable modules for a group algebra. 

PROBLEMC. Characterize those algebras (over an arbitrary field) having the 
property that every stable indecomposable module has simple socle. 

REMARKS.1. Tachikawa's results [16] show that every finitely generated inde- 
composable left module for the algebra A consisting of all matrices of the form 

is quasiprimitive, i.e., is of the form AeIL where e is a primitive idempotent and L 
is a left submodule of Ae. Hence by Corollary 1.4 if K is algebraically closed (or 
by direct computation of the endomorphism ring action of Ae, =A(e,, +e,,) if 
K is not algebraically closed) there are only finitely many indecomposables. The 
principal indecomposable Ae, has nonsquare-free socle Ke,, @ Ke,, where e,, is 
the ijth matrix unit (1 5 i, j 5  3). 

2. C. W. Curtis and H. Bass (unpublished) have considered the question of 
whether the existence of a quasiprimitive module with nonsquare-free socle im- 
plies unbounded module type in general rings with minimum condition. The above 
example answers this question in the negative. See however, Theorem 3.1 to follow. 

3. G. J. Janusz has informed me that his recent work [12] solves Problem A in 
the affirmative for group algebras. He has also solved Problem B in this setting. 
An indecomposable is stable (resp. costable, stable-costable) if and only if it has 
simple socie (resp, is quasiprimitive, is uniserial). 

2. Quasifrobenius algebras with large kernels. The first result of this section was 
proved for finitely generated modules by C. W. Curtis and D. Zelinsky (un- 
published) in a slightly different form. With their kind permission we include it 
here. Part of it appears in Heller's paper [8]. 

PROPOSITION2.1 (HELLER, CURTIS, ZELINSKY). Let A be a QF ring. Consider 
exact sequences of the form 

(*I O-+L-+P-+M+-0 
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where P is simultaneously a projective cover of M with kernel L and an injective 
envelope of L with quotient M. Then the following statements hold: 

(i) Each nonprojective indecomposable module appears as M in a sequence (*) 
with indecomposable L. 

(ii) Each noninjective indecomposable module appears as L in a sequence (*) with 
indecomposable M. 

Proof. The statements (i) and (ii) are dual to each other and in view of the 
perfect duality over QF  rings [5] it suffices to prove (i). Let M be a nonprojective 
indecomposable module and P(M) a projective cover [14, p. 931 of M with kernel 
L. This leads to a commutative diagram 

where the monomorphism f exists by injectivity of P(M) and j is the injection of L 
into E(L). The map g is filled in by the exactness of the rows and the commutativity 
of the left-hand square. Hence P(M) =E(L) @ B, say, and M =P(L)/L= (E(L)/L) 
@ B, and as M is indecomposable and not projective, M =  E(L)/L.-Now if L =  
L, @ L,, L, # 0 ( i=1, 2), the exact sequence 

yields a decomposition of M unless L, or L, is injective. If L, were injective, say, 
then L would be a proper direct summand of P(M), which would contradict the 
fact that L,, being contained in the small (or superfluous) submodule L of P(M), 
is itself small in P(M). We can conclude only that L is indecomposable. 

COROLLARY2.2. Let M be any indecomposable module over a QF ring. Then 
E(M)/M and the kernel of the projective cover of M are indecomposable. 

The following result appears to indicate that for finite module type in general 
QF rings with large kernels, it may not be necessary that each indecomposable 
module have square-free socle, but we have no explicit example to show this. 

THEOREM that if2.3. Let A be a QF ring with large kernels having the property 
M is an indecomposable jnitely generated left A-module, then the socle of M is 
cyclic as a right module over the endomorphism ring R= End, (M). Then A has 
w$nite module type. 

Proof. Let n be as in the proof of Theorem 1.3. For the induction step take E 
stable indecomposable. If M is a maximal submodule of E, then M, =E(M)/M 
is indecomposable by Corollary 2.2 and E/M is a simple submodule. Now if E '  
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is indecomposable containing M with E1/MzE/M,  there is by hypothesis a sub- 
module E"/M of Mo equipped with endomorphisms (hence automorphisms by 
the hypothesis of large kernels) g,, g,' of Mo with g,(E1'/M)= EIM, g,'(EU/M) =E1/M. 
But then g, and g,' can be lifted to endomorphisms 0, 0' of E(M), since E(M) is 
projective, satisfying O(Ef')= E, Of(E")= E'.  To see that these last two equalities 
hold, note that the Fitting decomposition for E(M) with respect to O is E(M) 
= 0 Qn(E(M))@ u Ker On, and since g, is an automorphism of E(M)/M we 
have Ker Qn& M, and hence the decomposition M =  U Ker On @ M n 
[nQn(E(M))]. Since M is indecomposable, either U Ker Qn =0 or M n 
[nQn(E(M))] =0, hence 0 On(E(M))=O since M is essential in E(M). In the 
latter case, O would be nilpotent, an impossibility since g, is an automorphism. By 
commutativity of the lifting diagram we have at least Q,(E") +M =  E and since Q, 

preserves the length of E", E/Q,(E1')zM/M n Q(E1')=O so that MsQ(E1') and 
the desired equality Q,(E1')= E holds. Similarly Q'(E1') =E '  holds. Hence E z  E '  
and E is determined, once M and E/M are known, and these are modules of smaller 
length. 

The next result will show, however, that cyclicity of the socle, and hence cyclicity 
of the homogeneous components of the socle of M over the endomorphism ring 
R of M actually implies square-free socle in case the base field is algebraically 
closed. 

PROPOSITION2.4. Let A be an algebra over an algebraically closed jield and let 
M be an indecomposable module of jinite length having large kernels. Then any 
endomorphism of M has scalar action on the socle of M. 

Proof. Since the base field is algebraically closed, any endomorphism of M 
can be written as scalar plus nilpotent, and our hypothesis guarantees that the 
kernel of any nilpotent endomorphism contains the socle. 

REMARKS.1. This shows that the left A-socle is contained in the right R-socle 
of M when M has large kernels. We do not know if the opposite inclusion holds 
for QF rings, but this should not be a difficult question. However, in general, 
neither inclusion holds-see the example in Remark 1 at the end of $1. The right 
e,Ae,-socle of the indecomposable module Ae, (ex =ell +e,,) of the matrix algebra 
there is Ke,, @ Ke,,. Note that in the setting of Proposition 2.4, cyclicity of the 
homogeneous components of the socle of M over R is equivalent to their irre- 
ducibility over R in view of that result. In the matrix algebra example, it is interest- 
ing to note that the intersection of the left A- and right e,Ae,-socles is irreducible 
on either side. 

2. Note that the hypothesis of square-free socle implies large kernels-if M is 
indecomposable of finite length and R =End, (M), M=Rad R, then for S a 
simple submodule of M we have S=SR 3SM and since Sf SM, SM=O as a 
left submodule of S, assuming square-free socle. We doubt if the converse is true, 
but the results to follow give some information in this direction. 
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THEOREM2.5. Let A be a QF algebra with large kernels otler an algebraically 
closedfield K, and let M be an indecomposable direct summand of ajinitely generated 
module L such that L is carried into itself by every automorphism of its injective 
envelope E(L). Then either E(M)/M has square-fuee socle, or A has infinitely many 
nonisomorphic modules of the same composition length. 

Proof. First assume that L is itself indecomposable, so M=L. If M is injective, 
there is no problem, but otherwise B=E(M) /Mis indecomposable by Corollary 2.2. 
Also by Proposition 2.4 the automorphisms of B have scalar action on the left 
A-socle of B. Let S be a simple left A-module and suppose that E,/M and E,/M 
are copies of S in B, say Ax= E,/M and Ay=E,/M, such that there is an iso- 
morphism p,: El -t E,. Now p, can be extended to an automorphism 0 of E(M)  
and since M is held invariant, Q, induces an automorphism of B taking Ax into 
Ay, but since the action is scalar we must have Ax= Ay. Hence we must conclude 
that E1=E, as submodples of E ( M )  containing M. This shows that if the socle 
of B is not square-free, there are such simple submodules Ax# Ay, and the re- 
sulting infinite collection of simple submodules of B of the form A(x+ By) (0 6K )  
gives rise to infinitely many nonisomorphic simple extensions of M,  all having the 
same composition length. 

Now let L be an arbitrary finitely generated module which is held invariant by 
automorphisms of its injective envelope. Let E/L be an indecomposable direct 
summand of E(L)/L, and assume that its socle is not square-free, say S ,  @ S,  
cEIL, with S ,  z S,, S,=Ei/L (i= l ,2) .  Now if El z E, by p,: El +E,, then p, 

has an extension @, to all of E(L) since E(L) is injective, which induces an endo- 
morphism 0 of E(L)/L. Thus cD can be considered as a matrix (vij) of homo- 
morphisms between the various indecomposable summands in a finite decomposition 
of E(L)/Lin which E/Lappears, and we may assume that p,,, comes from End, (EIL). 
Since @(S,)=S, the same holds for p,,,, but as E/L is indecomposable, p,,, has 
scalar action of the socle of E/L, and we have S ,  =S,, a contradiction. Hence El 
and E, are nonisomorphic and the argument in the previous case shows that there 
are infinitely many nonisomorphic modules of the same length. 

Now if L =L,  @. . . @ L, is any decomposition of L into indecomposable 
modules, we have E(L)/L=E(L,)/L,@. . .@ E(L,)/L, with all the summands 
indecomposable by Corollary 2.2. To complete the proof, choose M to be any 
indecomposable direct si1.mmand of L and use the Krull-Schmidt theorem to 
conclude that E(M)/M has square-free socle if A has finite module type. 

COROLLARY2.6. Let A be a QF algebra with Iarge kernels over an algebraically 
closedjield having w-jinite module type. Then any indecomposable injective module 
has ajinite lattice of submodules, and contains only one copy of each submodule. 

Proof. We first show that each submodule of E(S)  is carried into itself by all 
automorphisms of E(S),where S is simple. This is clearly true for the unique sub- 
module S of length one. Let M be a submodule of smallest length which is not. 
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Let cp be an automorphism with cp(M)# M. By induction, a maximal submodule 
M1 is held invariant by any automorphism of E(S) so that cp(M)+ M/Ml is of the 
form S' @ S' for some simple S' .  Since the module M1 has E(S) for its injective 
envelope, Theorem 2.5 applies to yield a contradiction. Our conclusion is equivalent 
to the second statement of the corollary since any isomorphism between submodules 
of E(S) extends to an automorphism of E(S). Now assume that the submodule 
lattice of E(S) is infinite. Since it is modular, there is a projective root consisting 
of submodules Bi (0 5 iS4)  (as in the proof of Theorem 1.8) with Bl/Bo and B,/Bo 
isomorphic independent simple submodules. Then by the first part and another 
application of Theorem 2.5 we are through. 

COROLLARY2.7. Let A be as in Theorem 2.5 and suppose that each jinitely 
generated indecomposable module M has the property described there. Suppose also 
that A has w-jinite module type. Then A has jinite module type. 

Proof. Any indecomposable has the form E(M)/M by Corollary 2.2 and appli- 
cation of Theorem 2.5 shows that any finitely generated indecomposable has 
square-free socle, so we are through by the theorem of Curtis and Jans (Corollary 
1.5). 

3. Relations between bounded and finite module type. In this section we combine 
the results of the preceding sections to gain some additional information on the 
general question of when bounded module type implies finite module type. The 
first result is a generalization of a standard procedure for constructing large inde- 
composables by interlacing methods. (see [3], [17], [2]) and in its present form is 
really a result on abelian categories, by the full imbedding theorem [6, p. 1011. 

THEOREM3.1. Let A be a ring with unit. Let M be an indecomposable left A- 
module having finite composition length. Let R =End, (M) and suppose that C and 
C' are isomorphic left A-submodules of M with CR n CIR=O= C M =  C ' M  
and such that ExtA1 (M, C) =0. Then A has indecomposable left modules of arbitrary 
large (jinite) composition length. 

Proof. First assume that C is cyclic. Let E,: M +Mi be an isomorphism 
(1 5 i 5 n) and let p : C +C' be an isomorphism of left A-modules. Choose x 6C 
a generator and let y =  p(x) E C'. Then we have Ax+xR nAy +yR=O. Let 
M n = M l  @. I .@ Mn. Let L be the left A-submodule of M n  generated by the 
elements 

where we have identified Mi with its copy in M n  (1 5 i<=n). Let M'")= Mn/L. We 
shall prove that M'") is indecomposable as a left A-module. Its length may be 
chosen as large as desired, for the length of L is at most n- 1 times the length of 
Ax and the length of M n  is at least 2n times the length of Ax. In order to show that 
M'") is indecomposable, it suffices to show that any endomorphism is either 
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nilpotent or invertible, since M'") has finite length. Let g, be an endomorphism of 
Mcn'.We want to lift g, to an endomorphism 0 of M n  which makes the following 
diagram commutative. 

@ 
M n -----t M " 

where the vertical maps 7 are the natural epimorphism. It  suffices to lift g,~.But 
the exact sequence 

O+L+Mn+M(n)+O 
yields the exact sequence 

Hom, ( M n ,  M n )  + Hom, ( M n ,  M(")) +ExtAl (Mn,  L).  

Now L is a direct sum of n- 1 copies of Ax, and since Ext commutes with finite 
direct sums in each variable, our hypothesis guarantees that the right-hand term 
is zero, and this insures that the lifting Q, is.possible. Now 0 can be considered as 
an n x n matrix @ = xi,j where eiI is the ijth matrix unit and aijE R = EndA( M ) ,~~~a~~ 
where the right action is for m E M, 

Since 0must hold L invariant, we have for 1 5 s Pn- 1 

( ~ ~ s - x ~ s tI ) @  = 2 ( ~ ~ s , j - ~ a s + l , j )  
I 

which must also be of the form 

where as, E A ( 1  5j5 n-1). This yields the equations 

Since each element of R is either nilpotent or invertible, it is readily determined 
from these equations that the elements off the diagonal of the matrix (aij)are all 
nilpotent, and those on the diagonal are either all invertible or all nilpotent to- 
gether. This shows that (aiI)is either nilpotent or invertible and the same holds for 
g, by the commutativity of the diagram. 

In the general case, L is taken to be the direct sum of the n- 1 copies of C of 
the form 

Ls = {p(x)&,-xes + I x E C) ( 1  5 s 5 n- 1) 

and the above equations still apply with y=p(x) as x varies through C. 



19691 ON ALGEBRAS OF FINITE REPRESENTATION TYPE 139 

REMARK.The hypothesis Ext ( M ,  C)=O can be replaced by the hypothesis that 
M n  -t Mn/L--t 0 exact implies that HomA (Mn ,  M n )  -t Hom, (Mn ,  Mn/L)  --t 0 
is exact, which is weaker. Also note that only those endomorphisms of M n  which 
take L into L need be lifted. 

THEOREM COLBY). Let A be a ring with minimum con- 3.2 ( J A N S ,  TACHIKAWA, 
dition on left ideals having an injinite two-sided ideal lattice. Then A has unbounded 
module type. 

Proof. As in the proof of Theorem 1.8 find a projective root consisting of two- 
sided ideals Bi (0 5 i s  4 )  with now Bl/Bo and B,/Bo isomorphic independent sub- 
(A ,A)-bimodules. Then for some primitive idempotent e, choose nonzero elements 
x E Ble/Boe, y 6B,e/Boe such that A x z Ay as simple left A-modules. Then M= 
Ae/Boe is indecomposable, and Boe is invariant under the action of the endo- 
morphisms of M ,  which are all induced by right multiplications by elements of 
eAe. It  follows that (Bee)" is invariant under the endomorphisms of (Ae)".Thus 
following the proof of Theorem 3.1, any endomorphism of Men)= Mn/L  can be 
lifted first to one of (Ae)" by projectivity of (Ae)",and then dropped to one of M n  
so that the required diagram commutes. 

For our purposes we need the following version of Theorem 3.1. 

COROLLARY3.3. Let A be a QF algebra over an algebraically closed field K and 
assume that A has bounded module type. Then if M is any indecomposable jinitely 
generated left A-module with large kernels, the S-part of the socle of M is square-fuee, 
provided ExtA' ( M ,  S )  =0. 

Proof. By Proposition 2.4, the automorphisms of M have scalar action on the 
socle, so if R =End, ( M )  then for x in the socle, Ax + xR  =Ax+ Kx =Ax, and 
similarly for Ay. This completes the proof. 

THEOREM3.4. Let A be a QF algebra with large kernels over an algebraically 
closedfield. Suppose that A has bounded module type and that each stable indecompos- 
able jinitely generated module E has a maximal submodule M such that 
Hom, ( M ,  E / M )  =0. Then A has finite module type. 

Proof. We utilize the proof of Theorem 1.3 to reduce to the stable case so we 
may assume that E is a stable indecomposable of finite length. Let M be a maximal 
submodule guaranteed by our hypothesis and let S=E/M.  If we show that the 
S-part of the socle of E(M)/M is square-free we will be through as in the proof 
of Theorem 1.3 for there will be room for only one extension of M by S in E(M),  
and M and S are of smaller length. But the exact sequence 

yields the exact sequence 

Hom, ( M ,  S )  -+ Ext, ' (E (M) /M,  S )  +ExtA ' (E (M) ,  S )  
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where the first term is zero by hypothesis and the last term is zero since E(M) is 
projective. An application of Corollary 3.3 concludes the proof. 

THEOREM3.5. Let A be a QF algebra with large kernels over an algebraically 
closedjield. Suppose that A has bounded module type and that eachjinitely generated 
costable indecomposable module E has a factor module EIS with Hom, (S, E/S) =0, 
where S is simple. Then A has finite module type. 

Proof. This result follows from Theorem 3.4 by K-duality, where K is the base 
field. 

Finally, combining these duality results we may restrict ourselves still further, 
as in Theorem 1.7 to stable-costable modules, and we have the following result. 

THEOREM3.6. Let A be a QF algebra with large kernels over an algebraically 
closed jield having bounded module type and assume that each jinitely generated 
stable-costable indecomposable module E satisjies at least one of the following dual 
conditions : 

(i) E has a maximal submodule M with Hom, (M, EIM) =0, 
(ii) E has a factor module E/S where S is simple and Hom, (S, EIS) =0. Then A 

hasjinite module type. 

As an application, we make a contribution to an open question mentioned in the 
paper of Curtis and Jans [4] which asks whether the hypothesis that for any inde- 
composable M, either the socle s(M) or the top, MINM is square-free implies 
finite module type. Kent R. Fuller has pointed out to me that the condition (ii) 
of the following result holds for indecomposable generalized uniserial rings which 
are not already uniserial, by a result of Kupisch [13]. This condition also holds 
for the group algebra over LF(2, p) in [I I]. 

COROLLARY3.7. Let A be a QF algebra with large kernels over an algebraically 
closedjield having the properties that 

(i) for each jinitely generated indecomposable module M, either s(M) or MINM 
is square-free, 

(ii) any indecomposable module of length two has distinct composition factors. 
Then A has jinite module type. 

Proof. First, A has bounded module type since any indecomposable module is 
either contained in the minimal completely faithful injective module (see [4, 
Lemma A]) or is cyclic. Let E be a stable-costable indecomposable module which is 
finitely generated. If EINE is square-free then condition (i) of Theorem 3.6 is 
satisfied, and if s(E) is square-free then (ii) is satisfied. Hence A has finite module 

type. 
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