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ANALYTIC FOURIER-FEYNMAN TRANSFORMS 

AND CONVOLUTION 


TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG 

ABSTRACT.In this paper we develop an L, Fourier-Feynman theory for a class 
of functionals on Wiener space of the form F ( x )= f (JlJ:a ld x  , . . . , and x )  . 
We then define a convolution product for functionals on Wiener space and show 
that the Fourier-Feynman transform of the convolution product is a product of 
Fourier-Feynman transforms. 

1. INTRODUCTIONAND PRELIMINARIES 

The concept of an L1 analytic Fourier-Feynman transform was introduced 
by Brue in [I]. In [3] Cameron and Storvick introduced an L2 analytic Fourier- 
Feynman transform. In [6] Johnson and Skoug developed an Lp analytic 
Fourier-Feynman transform theory for 1 5 p 5 2 which extended the results 
in [I ,  31 and gave various relationships between the L1 and the L2 theories. 

In this paper we first develop an Lp Fourier-Feynman theory for a class of 
functionals not considered in [I ,  3, 61. We next define a convolution product for 
functionals on Wiener space and then show that the Fourier-Feynman transform 
of the convolution product is a product of Fourier-Feynman transforms. 

In [3, 61 all of the functionals F on Wiener space and all the real-valued 
functions F on Rn were assumed to be Bore1 measurable. But, as was pointed 
out in [7, p. 1701, the concept of scale-invariant measurability in Wiener space 
and Lebesque measurability in Rn is precisely correct for the analytic Fourier- 
Feynman theory! 

Let Co[O, TI denote Wiener space; that is, the space of real-valued contin- 
uous functions x on [0, TI such that x(0) = 0 .  Let A denote the class of 
all Wiener measurable subsets of Co[O, TI , and let m denote Wiener measure. 
(Co[O, TI ,  A,m) is a complete measure space and we denote the Wiener 
integral of a functional F by 

A subset E of Co[O, TI is said to be scale-invariant measurable [4, 71 pro-
vided p E  E A for each p > 0 ,  and a scale-invariant measurable set N is said 
to be scale-invariant null provided m(pN) = 0 for each p > 0 .  A property 
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that holds except on a scale-invariant null set is said to hold scale-invariant al- 
most everywhere (s-a.e.). If two functionals F and G are equal s-a.e., we write 
F m G .  

Let C , C+ , and CT denote respectively the complex numbers, the complex 
numbers with positive real part, and the nonzero complex numbers with non- 
negative real part. Let F be a @-valued scale-invariant measurable functional 
on Co[O, TI such that 

F(A""l/'x)m (dx) J(1) = / 
COW TI 

exists as a finite number for all 1> 0. If there exists a function J*(l)  analytic 
in C+ such that J*(A) = J(1) for all A > 0 ,  then J*(A) is defined to be the 
analytic Wiener integral of F over Co[O , TI with parameter 1 and for 1E C+ 
we write 

anwiLolo,F(x)m (dx) = J*(A). 

Let q # 0 be a real number, and let F be a functional such that 

exists for all 1E C+. If the following limit exists, we call it the analytic 
Feynman integral of F with parameter q and we write 

anf, anwi 
F(x)m (dx) = lim,1 Loi+-iq F ( ~ ) ~CoIO 3 TI 

where 1-, -iq through C+ . 
Notation. (i) For A E @+ and y E Co[O, TI let 

(ii) Given a number p with 1 p 5 +w , p and p' will always be related 
by l / p + l / p l = 1 .  

(iii) Let 1 .  < p 5 2 ,  and let {H,) and H be scale-invariant measurable 
functionals such that for each p > 0 ,  

Then we write 

and we call H the scale invariant limit in the mean of order pr . A simi-
lar definition is understood when n is replaced by the continuously varying 
parameter 1.We are finally ready to state the definition of the L, analytic 
Fourier-Feynman transform [6]and our definition of the convolution product. 
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Definition. Let q # 0 be a real number. For 1 < p 5 2 we define the Lp 
analytic Fourier-Feynman transform T,@)(F)of F by the formula (3, E C+) 

whenever this limit exists. We define the L1 analytic Fourier-Feynman trans- 
form TJ1)(F) of F by the formula 

for s-a.e. y . We note that for 1 5 p 5 2 ,  T$)(F) is defined only s-a.e. 
We also note that if T$)(F1) exists and if Fl = F2,  then T,@)(F2) exists and 
T,@)(F2)m T$)(F1). 
Definition. Let Fl and F2 be functionals on Co[O, TI. For 3, E C," we define 
their convolution product (if it exists) by 

Remark. Our definition of convolution is different than the definition given by 
Yeh in [9]. For one thing, our convolution product is commutative; that is 
to say (Fl* F2)*= (F2* F1)*.Next we briefly describe a class of functionals 
for which we establish the existence of T,@)(F).Let n be a positive integer, 
and let a1 , a2, . . . , an be an orthonormal set of functions in L2[0, TI. For 
1 5 p < oo let dip)be the space of all functionals F on Co[O, TI of the form 

s-a.e. where f : Rn -. R is in Lp(Rn) and the integrals aj(t)  dx(t) are 
Paley-Wiener-Zygmund stochastic integrals. Let dim)be the space of all func- 
tional~ of the form (1.7) with f E Co(Rn), the space of bounded continuous 
functions on Rn that vanish at infinity. It is quite easy to see that if F is 
in &,@I, then F is scale-invariant measurable. If p > 1 the Feynman inte- 
gral above should be interpreted as the scale-invariant limit in the mean of the 
analytic Wiener integral. 

In this section we show that the L, analytic Fourier-Feynman transform 
T,@)(F)exists for all F in &@I and belongs to & @ I ) .  We start with some 
preliminary lemmas. 

mailto:T,@)(F)
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Lemma 2.1. Let 1 Ip 5 oo, and let F E &n@) be given by (1.7). Then for all 
1E C+,  

where 

Proof. For 1> 0,  using a well-known Wiener integration theorem we obtain 

(TA(F))(y)= / F ( ~ - ' / ~ x+y)m dx)  
COW,TI 

where g is given by (2.2). Now by analytic continuation in 1 ,  (2.1) holds 
throughout C+ . 
Lemma 2.2. Let F E &,('I be given by (1.7), and let g ( l  ; d) be given by (2.2). 
Then 

(i) g(A ; a )  E Co(Pn)for all 1E C," ; 
(ii) g(1; d) converges pointwise to g(-iq; 4 )  as 1+ -iq through C+; 

and 
(iii) as elements of Co(Rn), g ( l  ;d )  converges weakly to g(-iq ;d) as 

1+ -iq through values in C+ . 
1 n/2Proof. We firstnotethat forall ( 1 , d )  e C 7 x R n ,  ( 1 ; )  5 1 1 I l f l l l .  

Then (i) follows from a standard argument and the dominated convergence 
theorem establishes (ii). To establish (iii) let p E M(Rn),the dual of Co(Rn). 
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By the dominated convergence theorem, 

Our first theorem, which is a direct consequence of Lemma 2.2, shows that 
the analytic L1 Fourier-Feynman transform exists for all F in dn('). 

Theorem 2.1. Let F E dn(')be given by (1.7). Then T,( ')(F)exists for all real 
q # 0 and 

where g is given by (2.2). 

Remark. When 1 < p 5 2 and ReiZ = 0 ,  the integral in (2.2) should be 
interpreted in the mean just as in the theory of the Lp Fourier transform [8]. 

Theorem 2.2. Let 1 < p 5 2 ,  and let F E &@) be given by (1.7). Then the Lp 
analytic Fourier-Feynman transform of F ,  T ~ ) ( F )exists for all real q # 0 ,  
belongs to and is given by the formula 

where g is given by (2.2). 

Proof. We first note that for each A E (C[; , g(A;d )  is in Lpt(Rn) [5, Lemma 
1.1,  p. 981. Furthermore by [5,Lemma 1.2, p. 1001 

lim llg(A;*) - g(-iq; = 0.*)1( ,1  

L--rq  

Now to show that T,@)(F)exists and is given by (2.4) it suffices to show that 
for each p > 0 
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But 

JCo[O, TI 1, (i;p l T a l d y .  . ,p j T a n d y )  

which goes to zero as 1- -iq by (2.5). Thus T ~ ' ( F )  exists, belongs to &(P') 

and is given by (2.4). 

The following example generates an interesting set of functionals belonging 
to dn@). 

Example. Let 1 p 5 +m be given, and let a1 ,132, ... be an orthonormal 
set of functions from L2[0, TI . Let I: E Lp(Co[O,TI) ,and for each n define 
f, by 

Then, by the definition of conditional expectation, .&(ti, ... , t n )  is a Bore1 
measurable function, and llf,lip < /IFl i p  ,where 

and 

Thus f, E %,IP) ,and so the analytic Fourier-Feynman transform ~,@)(f,)exists 
for all real q # 0 .  

We finish this section by obtaining an inverse transform theorem for F in 
&@) . 
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Theorem 2.3. Let . Let q # 0 be given. Then (i)1 5 p 5 2 ,  and let F E dn@) 
for each p > 0 ,  

f 

and (ii) TITAF +F s-a.e. as 1-t -iq through C!+ . 

Proof. Proceeding as in the proof of Lemma 2.1, we obtain for all 1E C!+ , 


x exp {-i= ( w j  -iTd y )  2 }  diidw' 
j= 1 

where g(1;w')) is given by (2.2) and 

( 1X v , . . ) k ( 1 ,  2 ;  v') 

But [2,p. 5251 

71 1AI2 
= ( - ) ' I 2  exp {--(u, - v , ) ~ }.Re 1 

Hence 

= (f* $ e ) ( v l ,  vn)3 

where 

and 

Now 

$ ( v l ,  .. . ,v,) dv l  ...dun = 1 and +(vl, . . . ,v,) > 0 ,  
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so using [8, Theorem 1.18, p. 101 it follows that 

= lim [ I f * $ & -  fll$=O 
e-O+ 

since E + O+ as l + -iq through C+ . But now (i) of the theorem follows 
easily since for each fixed p > 0 ,  

Finally, (ii) of the theorem follows since by [8, Theorem 1.25, p. 131 it follows 
that the function k ( l,;Z ;vl , .. . ,v,  = ( f  *$,)(vl ,  . . . ,v,) converges pointwise 
to the function f ( v l  , ... , v,) as l + -iq through C+ , 0 

Note that in the case p = 2 ,  p' = 2 ,  and so for F in &(2) , T;')(F) is in 
dn(2)by Theorem 2.2. Hence we have the following theorem. 

Theorem 2.4. Let F E di2)be given by (1.7). Then for all real q # 0 ,  

3. CONVOLUTIONS OF CONVOLUTIONSAND TRANSFORMS 

Our first lemma gives an expression for (Fl * F2)1 for l E C+ . 

Lemma 3.1. Let 1 5 p 5 m, and let F, E U1,ps, dn')for j = 1 ,2 be given -
by (1.7). Then for all 1E C+ , 

where 
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(3.2) 

Proof. For 1> 0 ,  using a well-known Wiener integration formula we obtain 

where h is given by (3.2), so (3.1) holds for 1> 0 .  Now by analytic continu-
ation in 1 ,  we see that (3.1) holds for all 1in C+ . 

Our next theorem establishes an interesting relationship involving convolu-
tions and analytic Wiener integrals. 

Theorem 3.1. Let 1 5p 5 co , and let Fj E Ullploo for j = 1 , 2 be given 
by (1.7). Then for all 1E C+ , 

Proof. It will suffice to establish (3.3) for 1> 0 since TA(Fl* F2)n, T A ( F l ) ,  
and Tn(F2) all have analytic extensions throughout C+ . So let 1> 0 be given. 
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Then by (3.1)and (3.2) ,  
,. 

iT + z ]) ( d x )a , d [ i - l ~ ~  m 

x exp {-t g ~ u j+ u j l }  d i i d ~ .  

Next we make the transformation 

and 
r, = 2-lJ2(uj- u j )  

for j = 1 , 2 ,  . . . , n . The Jacobian of this transformation is one and 

Hence for A > 0, using (2.1) and (2 .2) ,we see that 
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T 

x h ( 1  + 2 - 1 a1d z ,  ... , rn +2-'I2 1' an  dl) 

x exp {-?=wj] d d  
j=l  

x (&)"I2 i h (rl +2-112 1' a 1 d z ,  ... , r. 12-1121' andz) 

. @:E1The following hold for all Theorem 3.2. 

(i) If Fl E 4")and F2E &('I, then (Fl* F2)lE &('I . 
(ii) If Fl E &(2) and F2E &(2), then (Fl * F2)lE &(w) . 

(iii) If Fl E dn(')and F2E dJ2 ) ,  then (Fl * F2)lEdJ2). 
(iv) If Fl E &(I) and F2E &('I n K ( ~ ) ,then (Fl * F2)1E &('I n&(2). 

(v) If Fl E&") and F2E &("I, then (Fl* F2)tE &(w) . 

Proof. (i) Assume Fl and F2 belong to and are given by (1.7). It will 
suffice to show that h(1; 0 )  given by (3.2) is in Ll (Rn) for every 1E C!y . But 
this follows from the calculations 
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(ii) In this case for fi , fi in L2(Rn) we first note that h(d; .) is in L,(Rn) 
since for all d E Rn, 

A standard argument now shows that h belongs to Co(Rn) . 
and F2E &(2)(iii) Let Fl E dn(') be given by (1.7). It will suffice to show 

that h(3,; *) given by (3.2) is in L2(Rn) . But this follows from the calculations 

Hence llhll2 I 1 ~ / ~ f i 1 n ' 2 1 1 f i l l l l l f i l 1 2 .
Finally we note that (iv) follows directly from (i) and (iii) while (v) is im- 

mediate. EI 

In our next theorem we show that the Fourier-Feynman transform of the 
convolution product is the product of transforms. 
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Theorem 3.3. (i) Let Fl,F2E &('I . Thenfor all real q # 0 ,  

(ii) Let Fl E dil)and F2E di2). Thenfor all real q # 0 ,  

(iii) Let Fl E dil)and F2E di1)ndi2). Thenfor all real q # 0 ,  

and 

(3.7) (Ti2)(F1* F 2 ) q ) ( ~ )= (T~(~)(F~))(~-~/~z)(T~~)(F~))(~-~/~z). 
Proof. Theorem 3.2 together with Theorem 2.2 assures us that all of the trans-
forms on both sides of (3.4) through (3.7) exist. Equations (3.4) through (3.7) 
now follow from equation (3.3). 

Remark. Throughout this paper, for simplicity we assumed that {al , ... ,a,) 
was an orthonormal set of functions in L2[0, TI . However, all of our results 
hold provided that {a1, . .. , an )  is a linearly independent set of functions 
from L2[0, TI . 
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