

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics

Mathematics, Department of

2015

Understanding short-timescale neuronal firing sequences via bias matrices

Zachary Roth University of Nebraska-Lincoln, zach.roth@unl.edu

Yingxue Wang Janelia Research Campus, HHMI

Eva Pastalkova Janelia Research Campus, HHMI

Vladimir Itskov Pennsylvania State University, vladimir.itskov@psu.edu

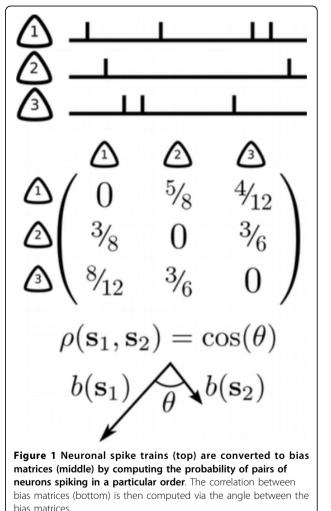
Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

Roth, Zachary; Wang, Yingxue; Pastalkova, Eva; and Itskov, Vladimir, "Understanding short-timescale neuronal firing sequences via bias matrices" (2015). *Faculty Publications, Department of Mathematics*. 86. https://digitalcommons.unl.edu/mathfacpub/86

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

POSTER PRESENTATION

Open Access


Understanding short-timescale neuronal firing sequences via bias matrices

Zachary J Roth^{1*}, Yingxue Wang², Eva Pastalkova², Vladimir Itskov³

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

The brain generates persistent neuronal firing sequences across varying timescales. The short-timescale (~100ms) sequences are believed to be crucial in the formation and transfer of memories. Large-amplitude local field potentials known as sharp-wave ripples (SWRs) occur irregularly in hippocampus when an animal has minimal interaction with its environment, such as during resting, immobility, or slow-wave sleep. SWRs have been long hypothesized to play a critical role in transferring memories from the hippocampus to the neocortex [1]. While sequential firing during SWRs is known to be biased by the previous experiences of the animal, the exact relationship of the short-timescale sequences during SWRs and longer-timescale sequences during spatial and nonspatial behaviors is still poorly understood. One hypothesis is that the sequences during SWRs are "replays" or "preplays" of "master sequences", which are sequences that closely mimic the order of place fields on a linear track [2,3]. Rather than particular hard-coded "master" sequences, an alternative explanation of the observed correlations is that similar sequences arise naturally from the intrinsic biases of firing between pairs of cells. To distinguish these and other possibilities, one needs mathematical tools beyond the center-of-mass sequences and Spearman's rank-correlation coefficient that are currently used.

We introduce a new mathematical tool that captures the intrinsic properties of neuronal firing sequences. The *bias matrix* of a given sequence (Figure 1) contains more detailed information than the center-of-mass average and captures more complex relationships among different neuronal sequences. This tool enabled us to directly investigate the relationships among firing sequences

across different conditions: short-timescale sequences (during SWRs) and long-timescale behavioral sequences (during spatial navigation and wheel running). We also

© 2015 Roth et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: s-zroth1@math.unl.edu

¹Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Full list of author information is available at the end of the article

performed a pharmacological manipulation that resulted in elimination of theta oscillation (as previously reported in [4]) and increased the frequency of SWRs. We have found that the pairwise biases of sequences during SWRs are highly correlated with sequences during most of the conditions. Moreover, while sequences of neuronal activations are uncorrelated across different behaviors, the bias matrices of SWR sequences are highly correlated with those of various behavior sequences. Our findings provide a new tool for understanding the structure of short-timescale neuronal sequences and suggest that intrinsic pairwise biases are likely the underlying mechanism for the "replay/preplay" of longer-timescale sequences observed in the hippocampus [2,3].

Authors' details

¹Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. ²Janelia Research Campus, HHMI, Ashburn, VA 20147, USA. ³Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA.

Published: 18 December 2015

References

- Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB: Selective suppression of hippocampal ripples impairs spatial memory. *Nat Neurosci* 2009, 12(10):1222-1223.
- Diba K, Buzsáki G: Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 2007, 10(10):1241-1242.
- Dragoi G, Tonegawa S: Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 2011, 469(7330):397-401.
- Wang Y, Romani S, Lustig B, Leonardo A, Pastalkova E: Theta sequences are essential for internally generated hippocampal firing fields. Nat Neurosci 2015, 18(2):282-288.

doi:10.1186/1471-2202-16-S1-P108

Cite this article as: Roth *et al.*: **Understanding short-timescale neuronal firing sequences via bias matrices**. *BMC Neuroscience* 2015 **16**(Suppl 1): P108.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit