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The Journal of Nutrition

Biochemical, Molecular, and Genetic Mechanisms

Dietary Plant Sterol Esters Must Be Hydrolyzed
to Reduce Intestinal Cholesterol Absorption in
Hamsters1–3

Trevor J Carden,4,6 Jiliang Hang,5 Patrick H Dussault,5 and Timothy P Carr4*

Departments of 4Nutrition and Health Sciences and 5Chemistry, University of Nebraska, Lincoln, NE

Abstract

Background: Elevated concentrations of LDL cholesterol are associated with the development of atherosclerosis and

therefore are considered an important target for intervention to prevent cardiovascular diseases. The inhibition of cholesterol

absorption in the small intestine is an attractive approach to lowering plasma cholesterol, one that is addressed by drug

therapy as well as dietary supplementation with plant sterols and plant sterol esters (PSEs).

Objective: This study was conducted to test the hypothesis that the cholesterol-lowering effects of PSE require

hydrolysis to free sterols (FSs).

Methods:Male Syrian hamsters were fed atherogenic diets (AIN-93M purified diet containing 0.12% cholesterol and 8%

coconut oil) to which one of the following was added: no PSEs or ethers (control), 5% sterol stearate esters, 5% sterol

palmitate esters (PEs), 5% sterol oleate esters (OEs), 5% sterol stearate ethers (STs; to mimic nonhydrolyzable PSE), or

3% FSs plus 2% sunflower oil. The treatments effectively created a spectrum of PSE hydrolysis across which cholesterol

metabolism could be compared. Metabolic measurements included cholesterol absorption, plasma and liver lipid

concentration, and fecal neutral sterol and bile acid excretion.

Results: The STs and the PEs and SEswere poorly hydrolyzed (1.69–4.12%). In contrast, OEswere 88.3%hydrolyzed. The percent

hydrolysiswasnegatively correlatedwith cholesterol absorption (r=20.85;P<0.0001) andpositively correlatedwith fecal cholesterol

excretion (r = 0.92; P < 0.0001), suggesting that PSE hydrolysis plays a central role in the cholesterol-lowering properties of PSE.

Conclusions:Our data on hamsters suggest that PSE hydrolysis and the presence of FSs is necessary to induce an optimum

cholesterol-lowering effect and that poorly hydrolyzed PSEsmay lower cholesterol through an alternativemechanism than that

of competition with cholesterol for micelle incorporation. J Nutr 2015;145:1402–7.

Keywords: cholesterol absorption, micelles, hamsters, plant sterol esters, phytosterol esters, intestinal hydrolysis

Introduction

Circulating LDL cholesterol is associated with the development of
atherosclerosis and is therefore considered an important therapeutic
target for prevention of cardiovascular diseases. The inhibition of
cholesterol absorption in the small intestine is an attractive approach
to lowering LDL cholesterol, and dietary supplementation with plant
sterols or their FA esters is an effective, nondrugmeans to accomplish
this. A number of mechanisms have been proposed to explain how

plant sterols (or stanols) lower plasma cholesterol levels. Evidence for
intracellular mechanisms is emerging whereby plant sterols alter
expression of enterocyte sterol transporters, thus shifting the balance
between basolateral secretion and apical excretion (1, 2). Historically,
however, the primary focus has been on the physiochemical
interactions of plant sterols with cholesterol and other biomolecules
in the gut lumen. The following mechanisms have been proposed by
which these interactions reduce cholesterol uptake: 1) cocrystalliza-
tion of plant sterols and cholesterol forming insoluble crystals, 2)
interaction of plant sterols with digestive enzymes, and 3) compe-
tition between cholesterol and plant sterols for solubilization into
dietarymixedmicelles (3). The lattermechanism is currently themost
widely accepted; however, direct evidence for its validity is limited.

Many food products are now available containing plant
sterols or their FA esters. Because esterification significantly
increases sterol solubility, plant sterol esters (PSEs)7 are more
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easily incorporated in food products. However, the effectiveness
of PSEs vs. unesterified plant sterols for reducing uptake of
cholesterol has not been thoroughly investigated; the same is
true for the degree to which inhibition of cholesterol absorption
by PSEs results from hydrolysis to free sterols (FSs). It has been
assumed that the molecular component of PSE that competes
with cholesterol is the FS and that this moiety must be freed
from the FA through hydrolysis of the ester bond in order to be
effective. However, definitive evidence confirming this assump-
tion remains lacking. In addition, an examination of the effect of
sterol hydrophobicity on micelle incorporation suggests that low
sterol polarity hinders micelle solubility (4). Considering the
highly nonpolar nature of esterified sterols, we predict that PSE
would be excluded frommicelle incorporation. In fact, studies in
our laboratory have demonstrated the ability of both unesteri-
fied sitosterol and stigmasterol, but not intact PSE, to displace
cholesterol from micelles (5, 6). This suggests that the FA moiety
prevents PSE from competing with cholesterol for micelle
solubilization. Furthermore, we observed in hamsters that
dietary plant sterol stearates were unable to reduce cholesterol
absorption compared with a control diet, and that the stearate
esters were <5% hydrolyzed (7), thus supporting the notion
that the competitive mechanism necessitates hydrolysis. To
test the hypothesis that dietary PSEs must be hydrolyzed in
order to impart their cholesterol-lowering effect, we prepared
PSEs and a sterol ether possessing a range of susceptibilities
to hydrolysis and investigated their relative hydrolysis in an
animal model.

Methods

Animals and diets. Sixty male Syrian hamsters (BioBreeders) weighing
73–87 g were divided into 6 experimental groups of 10. Our previous

work (8) in hamsters fed 5% PSEs in a high protein demonstrated a 30–

50% change in parameters of interest, including cholesterol absorption
and non-HDL–cholesterol concentration. Power calculations suggested

100% power to detect such changes with a sample size of 10. All

hamsters were housed in polycarbonate cages with sawdust bedding and

were given free access to food for 29 d. They were maintained in a
humidity- and temperature-controlled (25�C) room with a 12-h light-

dark cycle. During the first 4 d, all animals were given a control diet for

acclimation, after which treatment diets were administered for the

duration of the study. The control diet was an AIN-93M purified diet (9)
containing 0.12% (wt:wt) cholesterol and 8% coconut oil. Each

treatment diet consisted of the control diet with replacement of 5%

cornstarch with an equivalent mass of sterol stearate ethers (STs), sterol
stearate esters, sterol palmitate esters (PEs), sterol oleate esters (OEs), or

3% FSs plus 2% high oleic acid sunflower oil to mimic fully hydrolyzed

PSE (Supplemental Table 1). The AIN-93 mineral and vitamin mixes,

casein, dextrinized cornstarch, fibers, and coconut oil were purchased
from Dyets, Inc. Choline bitartrate, L-cystine, and cholesterol were

purchased from Sigma Chemicals. Cornstarch, sucrose, and soybean oil

were purchased from a local grocery store. All procedures were approved

by the Institutional Animal Care and Use Committee of the University of
Nebraska-Lincoln.

Food consumption was recorded twice per week and body weight

was recorded weekly. Feces were collected on day 21 for neutral sterol

and bile acid analysis. On day 29, hamsters were asphyxiated by carbon
dioxide gas and the thoracic cavity was opened to allow for removal of

blood by cardiac puncture using 10-mL syringes. Blood was then placed

into 10-mg EDTA-coated tubes and centrifuged to separate the plasma

and RBCs. Plasma was then placed into cryotubes and frozen at 280�C
until analyzed for lipoprotein concentration. Bile was removed from

gallbladders by aspiration with preweighed 1-mL syringes, diluted with

saline, and transferred to microcentrifuge tubes for immediate freezing in

dry ice. Livers were excised, weighed, and quickly frozen in dry ice and
stored at 280�C until analyzed for lipid concentration.

Sterol ester and ether synthesis. Soybean sterols (Archer Daniels
Midland Co.) were esterified with palmitic, stearic, or oleic acid as

previously described (10). The sterol ST was prepared by alkylation of

the sodium alkoxide. Sodium hydride (60% suspension in oil) was

washed with a small volume of hexane under an atmosphere of nitrogen.
The resulting pyrophoric powder was maintained at all times under an

atmosphere of nitrogen. A solution of sterol in tetrahydrofuran was

cautiously added to a suspension of the washed sodium hydride in

tetrahydrofuran, followed by iodooctadecane. The reaction presented a
mixture of the desired octadecyl (stearate) ethers, octadecene as a

by-product of elimination, and recovered sterol. The octadecyl ether was

purified by multiple recrystallizations from ethyl acetate and analyzed
for purity by proton and carbon NMR (1H and 13C NMR).

Analytic procedures. Previously published methods were used to

measure liver lipid concentration (11), plasma lipoprotein cholesterol
concentration (12), and fecal bile acids and neutral sterols (13). The

extent of PSE hydrolysis was calculated as the ratio of fecal unesterified

plant sterols relative to total (unesterified + esterified) plant sterols.

Cholesterol absorption efficiency was measured by the dual isotope ratio
method using [3H]sitostanol (nonabsorbed reference molecule) and [14C]

cholesterol (14, 15).

Statistical analysis. One-factor ANOVA analysis was used to compare
study endpoints of the treatment groups. Mean values were analyzed for

treatment differences using the Tukey�s multiple comparison procedure,

and mean values were considered significantly different at P < 0.05.
Scheffé correction was used where unequal variance was suspected (e.g.,

fecal sterol excretion), which gave the same results as Tukey�s procedure.
Association between experimental endpoints was analyzed by Pearson�s
product-moment correlation analysis. Statistical procedures were con-
ducted using JMP 8 (SAS Institute, Inc.).

Results

Body weight and food intake. Modest yet statistically signif-
icant differences existed between some treatment groups
throughout the study period (Supplemental Table 2). Because
of random assignment of hamsters to treatments at the beginning
of the study, the mean body weight of the ST group was
significantly and consistently lower than the control at each week
of measurement. However, body weight gain was not signifi-
cantly different among any of the groups throughout the study
(data not shown), indicating no effect of diet on hamster growth.

TABLE 1 Cholesterol absorption and plasma cholesterol concentration in male hamsters fed diets containing various PSEs1

Control diet ST diet Stearate ester diet PE diet OE diet FS diet

Cholesterol absorption, % 64.9 6 2.1a 36.9 6 0.8c 56.3 6 1.8a,b 53.5 6 3.7b 14.9 6 3.8d 12.8 6 1.7d

Non-HDL cholesterol, mmol/L 6.73 6 0.35a 6.15 6 0.32a 6.22 6 0.33a 5.89 6 0.26a 2.81 6 0.18b 2.84 6 0.15b

HDL cholesterol, mmol/L 2.42 6 0.09a 1.68 6 0.09b 2.24 6 0.08a 2.18 6 0.06a 1.67 6 0.13b 1.57 6 0.07b

1 Values are means 6 SEMs (n = 10). Labeled means in a row without a common letter differ, P , 0.05. FS, free sterol; OE, oleate ester; PE, palmitate ester; PSE, plant sterol

ester; ST, stearate ether.
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No significant differences in food intake were observed among
the groups throughout the study. Overall mean food intake
during week 4 for all hamsters combined was 6.6 6 0.2 g/d.

Intestinal cholesterol absorption and plasma cholesterol
concentration. Cholesterol absorption was significantly de-
creased in all groups compared with the control group except for
stearate ester; cholesterol absorption in the OE and FS groups
was significantly lower than in all other groups (Table 1). Non-
HDL–cholesterol concentration was also significantly lower in
the OE and FS groups than in the control, ST, stearate ester, and
PE groups (Table 1). HDL-cholesterol concentration in hamsters
fed ST, OE, and FS was similar and significantly lower than in
the control, stearate ester, and PE groups (Table 1).

Liver weight and lipids. Liver weights (Table 2) for the stearate
ester and ST groups did not differ from control (P > 0.05). PE
group liver weight was significantly lower than that of the control
and ST groups but not different from the stearate ester group. OE
and FS were equivalently and significantly lower than all other
groups (P < 0.0001). All treatments lowered total cholesterol
significantly compared with the control group (Table 2), and ST,
OE, and FS lowered total cholesterol significantly more than
stearate ester or PE. The same trend between groups was seen in
esterified cholesterol levels (Table 2). With the exception of PE,
all treatments significantly lowered free cholesterol compared
with the control. OE and FS lowered free cholesterol significantly
relative to all other groups. Liver TGs (Table 2) of ST, stearate
ester, and PE group were significantly lower than control but did
not differ from the OE or FS group, and the OE and FS groups
were no different than control. Phospholipid concentrations
(Table 2) did not differ between control, ST, stearate ester, PE,
and OE groups. The FS group, however, was significantly greater
than the control, ST, and stearate ester groups, but no different
than the PE or OE group.

Fecal sterols. Fecal bile acids (Table 3) were significantly
lowered relative to control only in hamsters fed OE and FS. The

OE group had significantly lower fecal bile acids than did the ST,
stearate ester, and PE groups, but not more than the FS group.
Fecal neutral sterol content (Table 3) was significantly higher in
the ST group than in the control group and in the stearate ester
and PE groups than in the control and ST groups. The OE and FS
fecal neutral sterol excretion was significantly greater than all
other groups. Fecal plant sterol excretion was significantly
elevated in all treatments relative to the control group. The
percent of PSE hydrolysis was similar between ST and stearate
ester, and PE was hydrolyzed significantly more than ST but not
more than stearate ester. OE was hydrolyzed more than ST,
stearate ester, and PE. FS hydrolysis was greater than all other
groups.

Correlations. Percent hydrolysis was correlated negatively with
percent cholesterol absorption (r = 20.85, P < 0.0001) and
plasma non-HDL cholesterol (r = 20.91, P < 0.0001) and
positively with fecal cholesterol excretion (r = 0.92, P < 0.0001;
Figure 1A–C). Fecal cholesterol excretion was also significantly
correlated with non-HDL cholesterol (r = 20.84, P < 0.0001;
Figure 1D).

Discussion

The purpose of this study was to determine the relation between
(or the degree to which) the susceptibility of PSEs to hydrolysis
in the intestinal lumen and their ability to lower cholesterol.
Studies conducted as early as the 1950s (16, 17) and later (18,
19) suggested that in order for dietary plant sterols to inhibit
cholesterol absorption, they must be in an unesterified (free)
state. However, few studies stating this hypothesis endeavored to
quantify the degree to which dietary PSEs were hydrolyzed.
Fewer still have studied hydrolysis in the hamster, a model
with many similarities to human metabolism, which make it
a uniquely important tool for such mechanistic work. These
similarities include a low endogenous cholesterol synthesis rate,
expression of cholesterol ester transfer protein, and uptake of
up to ;80% of LDL cholesterol via the LDL receptor pathway.

TABLE 2 Liver weight and liver lipid concentrations in male hamsters fed diets containing various PSEs1

Control diet ST diet Stearate ester diet PE diet OE diet FS diet

Total cholesterol, μmol/g 37.5 6 2.21a 11.1 6 0.60c 24.8 6 2.11b 28.4 6 2.02b 6.46 6 0.32c 6.09 6 0.27c

Esterified cholesterol, μmol/g 30.9 6 2.23a 5.37 6 0.55c 18.9 6 2.02b 21.9 6 1.98b 2.14 6 0.34c 1.79 6 0.34c

Free cholesterol, μmol/g 6.61 6 0.14a 5.69 6 0.13b 5.91 6 0.10b 6.50 6 0.11a 4.32 6 0.04c 4.30 6 0.10c

TG, μmol/g 1.91 6 0.10a 1.51 6 0.10b 1.61 6 0.10b 1.67 6 0.10b 2.33 6 0.19a,b 1.98 6 0.07a,b

Phospholipid, μmol/g 17.0 6 0.28b 16.9 6 0.19b 17.1 6 0.18b 17.8 6 0.28a,b 17.9 6 0.16a,b 18.3 6 0.41a

Liver weight, g 5.61 6 0.10a 5.61 6 0.13a 5.38 6 0.15a,b 4.94 6 0.10b 3.90 6 0.12c 3.62 6 0.18c

1 Values are means 6 SEMs (n = 10). Labeled means in a row without a common letter differ, P , 0.05. FS, free sterol; OE, oleate ester; PE, palmitate ester; PSE, plant sterol

ester; ST, stearate ether.

TABLE 3 Fecal neutral sterol and bile acid excretion in male hamsters fed diets containing various PSEs1

Control diet ST diet Stearate ester diet PE diet OE diet FS diet

Bile acids, μmol � d21 � 100 g BW21 0.58 6 0.04a,b 0.57 6 0.04a,b 0.75 6 0.05a 0.71 6 0.04a 0.37 6 0.04c 0.43 6 0.05b,c

Neutral sterol, μmol � d21 � 100 g BW21 2.84 6 0.00d 11.9 6 0.30b 6.72 6 0.47c 6.72 6 0.46c 21.1 6 0.79a 21.7 6 0.71a

Total plant sterol, μmol � d21 � 100 g BW21 1.31 6 0.10a 345 6 11b 358 6 16b 362 6 16b 359 6 16b 387 6 16b

Esterified plant sterol, μmol � d21 � 100 g BW21 0.0 6 0.0c 339 6 11a 346 6 16a 348 6 15a 42.5 6 4.2b 0.0 6 0.0c

Free plant sterol, μmol � d21 � 100 g BW21 1.31 6 0.10c 5.81 6 0.12c 11.2 6 0.82c 14.9 6 0.83c 317 6 13b 387 6 16a

PSE hydrolysis, % 1.69 6 0.03d 3.13 6 0.19c,d 4.12 6 0.15c 88.3 6 0.81b 100 6 0.0a

1 Values are means 6 SEMs (n = 10). Labeled means in a row without a common letter differ, P , 0.05. BW, body weight; FS, free sterol; OE, oleate ester; PE, palmitate ester;

PSE, plant sterol ester; ST, stearate ether.
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Research in our laboratory suggested that hydrolysis and hypo-
cholesterolemic effects are linked; plant sterol stearates undergo
minimal hydrolysis (0.88–4.69) in hamsters and produce no
hypocholesterolemic effects (7). Therefore, the current study
tested the hypothesis that hydrolysis of PSEs is required to elicit a
cholesterol-lowering effect.

In this study, we synthesized 1 sterol ether and 4 sterol ester
molecules that would be hydrolyzed to varying degrees when
ingested. These relative levels of hydrolysis aligned very
well with the predictions based on in vitro work previously
conducted in this laboratory (10). In the current study, however,
the range of hydrolysis was much less evenly distributed across
the entire spectrum, with ST, stearate ester, and PE clustered
at the lower end of the spectrum (;2–4% hydrolyzed), and
OE and FS clustered at the upper end (88–100% hydrolyzed).
Without coverage of the middle of the spectrum, we were left
to speculate about the cholesterol-lowering efficiency of PSE
that are only partially hydrolyzed. Consequently, the mini-
mally effective degree of hydrolysis for maximally inhibiting
cholesterol absorption could not be determined in this study.
Such a dose could possibly be determined in subsequent studies
using a mixture of PSEs designed to create precise degrees of
hydrolysis.

Despite the clustering of data points at each end of the
hydrolytic spectrum, changes in cholesterol metabolism among
treatment groups support our hypothesis that hydrolysis is vital
to the cholesterol-lowering action of PSEs. With the exception of
ST, percent cholesterol absorption and degree of hydrolysis were
inversely associated. Percent hydrolysis was also positively
associated with fecal cholesterol excretion. These data are in
agreement with early studies exploring the effects of plant
sterols esterified to FAs of similar and dissimilar structure to
our treatments. Experiments in a rat model showed that free
sitosterol and sitosteryl oleate were nearly identical in their abilities
to lower liver cholesterol compared with control (17). Sitosteryl
palmitate, on the other hand, was significantly less capable of
lowering liver cholesterol, agreeing with our conclusions that
palmitate andOEs undergo differential hydrolysis, which accounts
for the divergent cholesterol-lowering capabilities.

In support of our findings regarding the correlation between
sterol ester hydrolysis and cholesterol-lowering effects, oleate
and SEs of plant sterols fed to rats resulted in equivalently
lowered liver cholesterol and increased fecal cholesterol excre-
tion compared with a control group, with no change observed in
the SE group (20). OEs were then found to be 99.5% hydrolyzed
whereas SEs were only 19.2% hydrolyzed. Furthermore, in
2-wk-old chicks, a diet containing 1% cholesteryl caprate, an
ester of a ten-carbon SFA, resulted in lower plasma and liver
cholesterol compared with a diet containing 1% free cholesterol
only (16). Also, a diet containing 1% free cholesterol and 1.38%
soy sterol caprate resulted in elevated plasma and liver choles-
terol compared with a diet containing 1% free cholesterol and
1.38% free soy sterols. These data align with ours in demon-
strating that sterol esters of SFAs are incompletely hydrolyzed
and thus impede the absorption or intestinal activity of their
sterol moieties. Conversely, in a rat study (18), decanoate
(caprate) and OEs of the same plant sterols possessed equivalent
cholesterol-lowering abilities, contrasting other work performed
in similar and different animal models (16, 20).

FIGURE 1 Pearson correlations between percent of PSE hydrolysis

and cholesterol absorption (A), fecal cholesterol excretion (B), and

plasma non-HDL cholesterol (C) and between fecal cholesterol excretion

and plasma non-HDL cholesterol (D) in male hamsters fed diets containing

various PSEs (n = 60). PSE, plant sterol ester.
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Previous work from our laboratory demonstrated that plant
sterol stearates containing different plant sterol moieties failed
to lower cholesterol when consumed at 2.5% of the diet in a
hamster model of hypercholesterolemia (7). This was hypoth-
esized to be the result of poor stearate ester hydrolysis. It was
further hypothesized that nonhydrolyzed PSE may, at high
doses, impart a modest cholesterol-lowering effect by forming
an ‘‘oil phase’’ in the intestinal lumen that solubilizes cholesterol
and prevents its micelle incorporation, thus lowering cholesterol
absorption. Considering in this study that stearate esters were
poorly hydrolyzed, yet still managed to lower liver esterified
cholesterol and increase fecal neutral sterol excretion, the
possibility exists that stearate esters at 5% of the diet succeeded
in creating an oil phase capable of partitioning cholesterol away
from micelles but 2.5% was insufficient. In opposition to this
theory are our data regarding cholesterol absorption in which
stearate esters, regardless of changes in liver cholesterol and
fecal neutral sterol excretion, were unable to lower cholesterol
absorption in relation to the control group. Furthermore, we
were unable to observe a difference in cholesterol partitioning
between oil and aqueous phases (data not shown).

A unique strength of our study design, in addition to the
ability to compare treatment groups across the extent of PSE
hydrolysis, was the ability to compare cholesterol metabolism
between PSE varying in the nature of the esterified FA. In the case
of stearate ester and PE, no differences were observed other than
a slight lowering of liver free cholesterol in PE compared with
stearate ester and a slightly lower liver weight in PE than in the
control, which was not observed in stearate ester. Given that
stearate ester and PE were hydrolyzed to the same extent, with
only the few differential metabolic effects noted previously, it is
likely that the FA moiety of the PSE does not play a primary role
in the molecule�s metabolism. This supports the hypothesis that
the primary mechanism of PSE takes place through micellar
cholesterol displacement and is dependent on hydrolysis above
any other physical property of the PSE.

The comparison of stearate ester and ST groups was also
informative in that there was no evidence of a difference in
percent hydrolysis between the 2, but their metabolic effects
regarding cholesterol metabolism varied greatly. Notably, al-
though stearate ester did not alter cholesterol absorption
compared with the control, ST lowered it by 43%. Also, ST
lowered liver esterified cholesterol by 83%, whereas stearate
ester only lowered it by 39%. The ST treatment group was
included to represent a PSE that was fully intact with no
hydrolysis. Given our hypothesis that hydrolysis of the PSE
molecule is required for cholesterol lowering, the ST group
represents an unexpected anomaly. Because hydrolysis of stea-
rate ester and STwas similar with differential metabolic effects,
it may be assumed that any differences in metabolism are caused
by a structural difference between the 2 molecules. In this case,
the only structural difference is that of a carbonyl group present
on the first carbon of the stearic acid molecule in stearate ester
that is not present on the ST molecule. As mentioned previously,
poorly hydrolyzed PSE such as stearate ester and PE may work
through an oil-phase mechanism. It is possible that the STworks
through this mechanism as well and may act as a more potent
oil-phase generator as a result of its unique chemistry. Remod-
eling of luminal nonpolar lipids, whereby TGs are hydrolyzed to
FFAs, monoglycerides, and diglycerides, is necessary for efficient
cholesterol absorption (21, 22). The ST molecule may interfere
with remodeling lipases and prevent hydrolysis of lipids,
resulting in a suboptimal luminal environment for cholesterol
absorption.

Biliary bile acid composition has been shown to be diet labile.
As a method of quantifying the biologic importance of compo-
sitional changes in bile acid mixtures, the relative hydrophobic-
ity of each bile acid in a sample of bile, as calculated by its
migration on an HPLC column in a reverse-phase system, may
be used to arrive at a hydrophobicity index (23, 24). Work in our
laboratory has shown PSEs (25) and free stearic acid (26) to be
capable of inducing bile acid composition changes significant
enough to alter the hydrophobicity index. Although the current
study used the same 3% sterol equivalent of plant sterols as did
Carr et al. (25), the changes in bile acid metabolism were not
great enough to alter the hydrophobicity index (data not
shown). This may be because of the use of a greater number of
bile acids in the current analysis that may have balanced out any
changes seen in the other bile acids analyzed previously. Also,
differences existed between the methods used in the 2 studies.
Direct UV detection of bile acids with a different HPLC system
was used in the current study compared with fluorometric
detection of NAD as an enzymatic by-product used previously.
In addition, there seemed to be a high degree of variability
within treatments of the current study that made detecting
statistical differences between treatments difficult.

In summary, our findings indicate that hydrolysis of PSEs is
necessary to induce an optimum cholesterol-lowering effect,
suggesting that the FS molecule is active in lowering cholesterol
and that competition with cholesterol for micellar incorporation
is the primary mechanism through which plant sterols act.
Additionally, poorly hydrolyzed PSEs may contribute a second-
ary cholesterol-lowering effect by producing an oil phase either
by self-aggregation or by reducing the efficiency of other lipases.
Finally, altering bile acid metabolism enough to affect the
thermodynamic properties of micelle formation may not be an
important mechanism by which PSEs affect cholesterol lowering.
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ONLINE SUPPORTING MATERIAL 

 

Supplemental Table 1. Diet composition 

 

 

Control  

diet 

Stearate 

ether  

diet 

Palmitate 

ester  

diet 

Stearate 

ester  

diet 

Oleate 

ester  

diet 

Free 

sterol  

diet 
 g/kg 

Cornstarch 404.5 354.5 354.5 354.5 354.5 354.5 

Dextrinized cornstarch 155.0 155.0 155.0 155.0 155.0 155.0 

Casein 140.0 140.0 140.0 140.0 140.0 140.0 

Sucrose 100.0 100.0 100.0 100.0 100.0 100.0 

Coconut oil 80.0 80.0 80.0 80.0 80.0 80.0 

Soybean oil 20.0 20.0 20.0 20.0 20.0 20.0 

Sterol stearate ether --- 50.0 --- --- --- --- 

Sterol palmitate ester --- --- 50.0 --- --- --- 

Sterol stearate ester --- --- --- 50.0 --- --- 

Sterol oleate ester --- --- --- --- 50.0 --- 

Free plant sterol --- --- --- --- --- 30.0 

High oleic sunflower oil --- --- --- --- --- 20.0 

Cellulose 40.0 40.0 40.0 40.0 40.0 40.0 

Guar gum 10.0 10.0 10.0 10.0 10.0 10.0 

Cholesterol 1.2 1.2 1.2 1.2 1.2 1.2 

AIN-93 mineral mix  35.0 35.0 35.0 35.0 35.0 35.0 

AIN-93 vitamin mix  10.0 10.0 10.0 10.0 10.0 10.0 

L-Cystine 1.8 1.8 1.8 1.8 1.8 1.8 

Choline bitartrate 2.5 2.5 2.5 2.5 2.5 2.5 
       

Carbohydrate 693.8 643.8 643.8 643.8 643.8 643.8 

Protein 140.0 140.0 140.0 140.0 140.0 140.0 

Fat 100.0 100.0 100.0 100.0 100.0 100.0 



ONLINE SUPPORTING MATERIAL 

 

Supplemental Table 2. Hamster body weight 

 

 

Control  

diet 

Stearate ether  

diet 

Stearate ester  

diet 

Palmitate ester  

diet 

Oleate ester  

diet 

Free sterol  

diet 

 g 

Week 0 83.6 ± 0.8a 79.6 ± 0.6b 82.3 ± 1.2ab 79.3 ± 0.8b 81.2 ± 1.0ab 81.3 ± 0.8ab 

Week 1 89.6 ± 0.9a 84.2 ± 0.7b 87.7 ± 1.1ab 85.5 ± 1.0ab 87.7 ± 0.9ab 83.7 ± 1.8b 

Week 2 95.1 ± 1.2a 89.1 ± 1.0b 94.7 ± 1.2a 91.2 ± 1.3ab 94.9 ± 1.0a 90.2 ± 1.5ab 

Week 3 99.9 ± 1.3a 93.7 ± 0.9b 99.1 ± 1.0a 95.2 ± 1.3ab 97.7 ± 1.3ab 93.4 ± 1.4b 

Week 4 103.8 ± 1.5a 97.1 ± 0.9bc 102.2 ± 1.0ab 98.8 ± 1.4abc 101.5 ± 1.5abc 96.7 ± 1.1c 

 

Values are means ± SEM (n = 10). Means within a row having different superscripts are significantly different (P < 0.05). 
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