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Abstract  
microRNAs (miRNAs) are important regulators of gene expres-
sion. After excised from primary miRNA transcript by dicer-like1 
(DCL1, an RNAse III enzyme), miRNAs bind and guide their ef-
fector protein named argonaute 1 (AGO1) to silence the expres-
sion of target RNAs containing their complementary sequences 
in plants. miRNA levels and activities are tightly controlled to 
ensure their functions in various biological processes such as 
development, metabolism and responses to abiotic and biotic 
stresses. Studies have identified many factors that involve in 
miRNA accumulation and activities. Characterization of these 
factors in turn greatly improves our understanding of the pro-
cesses related to miRNAs. Here, we review recent progress of 
mechanisms underlying miRNA expression and functions in 
plants. 

Keywords: microRNA, Plants, Biogenesis, Turn over, Translational 
inhibition, Target Cleavage  

Introduction 

microRNAs (miRNAs) are ~20–25 nucleotide (nt) endoge-
nous small RNA molecules, which repress gene expression 
at post-transcriptional levels [1–4]. miRNAs are released as 
a duplex from their primary transcripts (primiRNAs) that 
contain stem-loop structures by RNase III enzymes [1–
4]. In the miRNA duplex, miRNA (guide strand) associ-
ates with argonaute (AGO) proteins to inhibit gene ex-
pression through cleavage and/or translational inhibition 
of target RNAs, while miRNA* (passenger strand) is often 

degraded [1–4]. Since plant miRNAs were first reported in 
2002 [5–7], hundreds of miRNAs have been identified with 
deep-sequencing and genetic approaches [8]. They reg-
ulate many developmental processes including root ini-
tiation, leaf development, vascular development, flower 
development, phase transition and seed development 
[9–13]. Additionally, miRNAs are involved in diverse re-
sponses to stresses such as drought, salt, cold, oxidative, 
nutrient deficiency and biotic stresses [14–16]. The frame-
work of miRNA biogenesis and function has been estab-
lished in Arabidopsis thaliana (Arabidopsis), a flowering 
plant (Figure 1) [1–4]. In Arabidopsis, dicer-like1 (DCL1; 
an RNAse III enzyme) excises the miRNA/miRNA* duplex 
from pri-miRNAs in nucleus [5, 6]. Then, the small RNA 
methyltransferase hua enhancer1 (HEN1) adds a methyl 
group to the 3′ end of the miRNA/miRNA* duplex to sta-
bilize them [17]. Most miRNAs exit the nucleus and enter 
the cytoplasm with the assistance of hasty (HST) [18], a 
homolog of exportin 5. In Arabidopsis and rice, the major 
effector of miRNAs is AGO1, which has the endonuclease 
activity and is able to suppress gene expression through 
both target cleavage and translational inhibition [19–21]. 
Recent studies show that normal plant growth and phys-
iology require tight control of miRNA levels and activi-
ties. In turn, the mechanisms controlling miRNA biogen-
esis, degradation and activity, have become an intense 
focus of research. This review aims to summarize rapid 
progress made in the regulation of miRNA accumulation 
and activity.  
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Regulation of miRNA biogenesis 

To date, many transcription factors and accessory factors 
involved in miRNA biogenesis have been identified. Stud-
ies on these components reveal that the abundance of 
miRNA is controlled through transcription, stability and 
pri-miRNA processing. 

Transcriptional regulation of genes encoding miRNAs 
(MIR) 

miRNAs are coded by endogenous genes (MIR) and many 
of them are conserved among different plant species [5, 
22, 23]. To date, thousands of MIRs have been identified 
(http://www.mirbase.org/). MIRs are often located at inter-
genic regions and transcribed similarly as protein-coding 
genes [22, 24, 25]. Some MIRs are not independent tran-
scription units. Instead, they are embedded in either in-
tronic or exonic sequences of their host genes [26]. In 
addition, a few miRNAs are produced from transposable 
elements (TEs) in Arabidopsis and rice [27]. 

Most plant MIRs are transcribed by the DNA depen-
dent RNA polymerase II (Pol II) to generate pri-miRNAs 
[24, 28]. Following transcription, a 5′ 7-methylguanosine 
cap and a 3′ polyadenylated tail are added to stabilize 
primiRNAs [24, 29, 30]. In the mutants deficient in cyclin-
dependent kinase F; 1 (CDKF; 1) that regulates phosphor-
ylation of the C-terminal domain of Pol II, primiRNAs lose 

their CAP structure and are reduced in abundance, indi-
cating that the CAP structure stabilizes primiRNAs [31]. 
Protein factors also contribute to pri-miRNA stabiliza-
tion. Dawdle (DDL), a forkhead-associated domain (FHA)-
containing protein, is required for the accumulation of 
pri-miRNAs [32]. However, ddl does not affect the tran-
scription of MIRs. The fact that DDL binds pri-miRNAs 
suggests that it might be a key regulator of pri-miRNA 
stability (Figure 1) [32]. 

Like protein-coding genes, MIR promoters contain the 
TATA box and at least 21 cis-regulatory motifs, suggesting 
that MIR expression may subject to transcriptional regula-
tion [24, 33, 34]. Indeed, this is demonstrated by the iden-
tification and characterization of some MIR transcription 
factors (Figure 1). Lack of mediator (a multi-subunit com-
plex), which is a conserved general transcriptional coact-
ivator, reduces the occupancy of Pol II at MIR promoters 
and MIR promoter activities, resulting in decreased levels 
of pri-miRNAs and miRNAs [28]. These results suggest 
that mediator regulates MIR transcription through facili-
tating the recruitment of Pol II to MIR promoters [28]. Two 
homolog proteins, Not2a and Not2b, which contain a con-
served NOT2_3_5 domain, are also involved in regulating 
MIR transcription in Arabidopsis [35]. NOT2 is a core mem-
ber of the evolutionarily conserved carbon catabolite re-
pression4 (CCR4)-NOT complex, which affects mRNA lev-
els at both transcriptional and posttranscriptional levels 
[36]. NOT2b interacts with the Pol II C-terminal domain 
and is required for efficient MIR transcription [35]. NOT2a 

Figure 1. The framework of miRNA biogenesis and function. The transcription of pri-miRNAs is regulated by many transcription fac-
tors. Then, many protein factors are recruited to pri-miRNAs to form the processor complex of miRNAs through protein–protein and 
protein-RNA interactions. CDC5 and NOT2 do not interact with HYL1. Thus, whether CDC5 and NOT2 are in the D-body is unknown. 
After generation in nucleus, miRNA/miRNA* is methylated by HEN1 and exported into cytoplasm. miRNAs are loaded into AGO1 to 
direct target RNA cleavage or translational inhibition. It is not clear where the AGO1-miRNA assembly and miRNA methylation hap-
pens. Evidences suggest that translational inhibition by miRNA may occur at specific site of endoplasmic reticulum  
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and NOT2b also influence the transcript levels of protein-
coding genes, raising the possibility that NOT2 acts as a 
general transcription factor [35]. The cell division cycle 
5 (CDC5) protein is a conserved DNA-binding protein in 
animals and plants [37]. CDC5 associates with both Pol II 
and MIR promoters. Consequently, lack of CDC5 impairs 
MIR promoter activity and the occupancy of Pol II at MIR 
promoters [38]. Thus, CDC5 acts as a positive transcrip-
tion factor of MIRs [38]. However, whether CDC5 is able to 
regulate the transcription of protein-coding genes needs 
further investigation. 

The transcription factors that regulate the transcrip-
tion of individual miRNAs have also been characterized. 
Powerdress (PWR), a SANT-domain-containing protein 
with putative transcription factor and chromatin remod-
eling activities, promotes the recruitment of Pol II to the 
promoters of some MIR172 family members, while it 
shows no obvious effect on other MIRs [39]. Apetala2 
(AP2), a transcription factor involved in seed develop-
ment, stem cell maintenance, and floral organ identity, 
associates with the MIR156 and MIR172 loci. It acts op-
positely in the transcription of MIR156 and MIR172, as 
lack of AP2 represses MIR156, but promotes MIR172 ex-
pression [40]. Further study shows that AP2 recruits two 
transcriptional repressor Leunig (LEG) and Seuss (SU) to 
the MIR172 loci to repress their expression [41]. The tran-
scription factor FUSCA3 binds the MIR156A and MIR156C 
promoters and is required for the accumulation of pri-
miR156a and primiR156c, suggesting that FUSCA3 is a 
positive transcription factor of MIR156A and MIR156C 
[42]. MIR expression can also be regulated by various 
stresses via specific transcription factors [43–46]. For 
example, copper deficiency induces the expression of 
MIR398B and MIR398C via the transcription factor squa-
mosa promoter binding protein-like7 [47], while the ex-
pression of MYB2 (a transcription factor), which binds 
the MIR399F promoter, is induced to activate MIR399F 
transcription under phosphate starvation [48]. In addi-
tion, some MIRs show specific spatio-temporal expres-
sion pattern [43, 49, 50]. MIR165/166 expression is acti-
vated in the root endodermis by the transcription factor 
scarecrow, which is critical for the determination of the 
root xylem cell types [51]. 

Regulation of DCL1 activity 

After transcription, pri-miRNAs are processed to precursor 
miRNAs (pre-miRNAs), which contain a stem-loop struc-
ture with 2-nt 3′ overhangs at the end of stem, and then to 
miRNA/miRNA* with 2-nt 3′ overhang and a 5′ phosphate 
at each strand by dicer-liker1 (DCL1, an RNAse III enzyme) 
in nucleus [52, 53]. Besides DCL1, its homolog DCL4 has 
also been shown to generate miRNAs from some pri-miR-
NAs [54]. In rice, the production of some 24-nt miRNAs 

requires the coordinative action of DCL1 and DCL3 [55]. 
This result suggests the potential divergence of miRNA 
biogenesis in different plant species. 

Plant pri-miRNA hairpins are heterogeneous in length 
and structure with variable positioning of the miRNA/ 
miRNA* duplex. The structures of pri-miRNAs play essen-
tial roles in regulating DCL1 activity [53, 56–60]. An im-
perfectly paired lower stem of ~15 bp below the miRNA/
miRNA* duplex is crucial for the initial loop-distal cleav-
age of pri-miRNAs whereas the loop is crucial for efficient 
processing [53, 57, 58]. The loop of some primiRNAs such 
as pri-miR159a and pri-miR319a can be cleaved first and 
then miRNAs will be released from the stem with addi-
tional cuts. This maybe caused by their unusual long upper 
stem structures [59, 60]. A recent study shows that some 
pri-miRNAs can be bidirectionally processed by DCL1 due 
to their structure heterogeneity caused by multibranched 
terminal loops [56]. Although the base-to-loop process-
ing results in the efficient production of miRNAs, the loop-
to-base cleavage suppresses the generation of miRNAs 
from pri-miRNAs with multibranched terminal loops [56]. 
All these results suggest that the secondary structures of 
pri-miRNAs are crucial for miRNA maturation. 

The efficient and precise pri-miRNA processing also 
needs assistance from many protein factors (Figure 1). The 
zinc finger protein serrate (SE), the dsRNA-binding protein 
hyponastic leaves1 (HYL1) and the G-patch domain pro-
tein tough (TGH) interact with DCL1 and are required for 
miRNA accumulation [61–70]. In vitro biochemical assay 
shows that HYL1 and SE can enhance the accuracy and ef-
ficiency of pri-miRNA processing [71]. Consistent with this 
result, miscleaved products of pri-miRNAs are detected in 
hyl1 and mutations in the helicase and RNase III domains 
of DCL1, which are responsible for cleavage site selection 
and catalytic activity of DCL1, respectively, rescue the de-
fects by hyl1 [72]. HYL1 is a double-stranded (ds) RNA-
binding protein. Its N-terminal contains two RNA-bind-
ing domains, while its C-terminal harbors six repeats of 28 
amino acids (aa) [73–75]. The two RNA-binding domains 
are sufficient for HYL1 function in miRNA biogenesis [74, 
75]. Crystal structure analyses reveal that HYL1 probably 
binds the miRNA/miRNA* duplex region as a dimer to 
enable accurate pri-miRNA processing [74]. SE binds sin-
gle-stranded RNAs (ssRNAs) through its N-terminal Do-
main [76–78]. The zinc finger domain of SE interacts with 
DCL1 and is required for the optimal DCL1 activity [77]. 
Crystal structure analyses show that the SE core forms a 
“walking man-like” structure, in which the N-terminal al-
pha helices, the C-terminal noncanonical zinc finger do-
main and the novel middle domain resemble the leading 
leg, the lagging leg and the body, respectively [76]. This 
scaffold-like structure together with its RNA-binding ca-
pability suggests that SE may position a miRNA precur-
sor toward the DCL1 catalytic site within the miRNA pro-
cessing machinery [76]. 
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The TGH is also an ssRNA-binding protein [67, 79]. 
TGH associates with both pre-miRNAs and pri-miRNAs in 
vivo [67], suggesting that it may bind the loop or bulge 
region of pre-miRNAs. Besides DCL1, TGH interacts with 
HYL1 and SE, demonstrating that it may be a compo-
nent of the DCL1 complex [67]. Loss-of-function muta-
tions in TGH reduce the DCL1 activity as well as the asso-
ciation of pri-miRNAs with the HYL1 complex, revealing 
that TGH can promote the cleavage efficiency and/or the 
recruitment of pri-miRNAs to DCL1 [67]. Another pro-
tein factor that improves the DCL1 activity is CDC5 [38]. 
CDC5 may modulate pri-miRNA processing through its 
interaction with DCL1, since it interacts with the heli-
case and dsRNA-binding domains of DCL1, which reg-
ulate the DCL1 activity [38]. Consistent with this notion, 
upon interaction with other proteins, the human dicer 
can change its conformation to obtain optimized activ-
ity [80]. CDC5 is a core component of the evolutionarily 
conserved MOS4-associated complex (MAC), which is re-
quired for proper plant development and immunity to 
bacterial infection. Besides CDC5, MAC contains MOS4, 
PRL1, MAC3 and MAC4 [37]. Whether other components 
of MAC act in the miRNA pathway needs further inves-
tigation [37]. It shall be noted that all these accessory 
factors described above may have other functions. For 
instance, SE has been shown to regulate alternative splic-
ing [81]. Since all these proteins are either RNA or DNA-
binding proteins, the identification of their substrates will 
help understand the crosstalk between miRNA pathway 
and other biological processes. 

The effects of the accessory factors of DCL1 on individ-
ual miRNAs are variable [82]. Perhaps these protein fac-
tors may have specific spatial–temporal expression pat-
tern, and, therefore, have more impacts on some miRNAs 
than others. For instance, CDC5 is highly expressed in the 
proliferating cells and may have greater influences on the 
miRNAs expressed in these cells [83]. Alternatively, they 
may need some protein partners for their optimal func-
tion. SICKLE (SIC), which is a proline-rich protein required 
for plant development and adaptation to abiotic stresses, 
co-localizes with HYL1 and is required for the accumula-
tion of a subset of miRNAs [84], suggesting that it may 
act as a partner of HYL1 to regulate the processing of 
some pri-miRNAs [84]. Receptor for activated C kinase 1 
(RACK1), which is a conserved protein and functions as a 
bridge or inhibitor of protein–protein interactions in all 
higher eukaryotes, is able to directly interact with SE [85]. 
Lack of RACK1 reduces the accumulation of miRNAs and 
the processing precision of some pri-miRNAs, suggest-
ing that RACK1 maybe partnered with SE to regulate the 
DCL1 activity [85]. 

Regulation of DCL1 and HYL1 localization 

HYL1, TGH, SE and DCL1 are localized in the specific sub-
nuclear loci named Dicer-body (D-body) (Figure 1). The D-
bodies may be the site for pri-miRNA processing or stor-
age since they associate with pri-miRNAs [67–70]. CDC5 
and NOT2 also localize in the specific subnuclear loci con-
taining DCL1 [35, 38]. Whether CDC5 and NOT2 are com-
ponents of D-bodies is not known since they do not asso-
ciate with HYL1 [35, 38]. Studies have revealed the correct 
localization of D-body may be critical for miRNA biogen-
esis. Two proteins, NOT2 and modifier of SNC2 (MOS2), 
have been shown to be required for the formation of the 
correct D-body pattern in Arabidopsis [35, 86]. MOS2 is an 
RNA-binding protein and interacts with primiRNAs in vivo. 
MOS2 does not interact with DCL1, HYL1, or SE [86]. In 
mos2, the levels of miRNAs are reduced, the localization of 
HYL1 in D-bodies is impaired and the recruitment of pri-
miRNA to HYL1 is compromised, suggesting that MOS2 
may facilitate the D-body formation and the recruitment 
of pri-miRNAs to the D-bodies [86]. Besides the associa-
tion with Pol II, NOT2s directly interact with DCL1, which is 
conserved between rice and Arabidopsis [35]. Impairment 
of NOT2s results in increased numbers of DCL1-containing 
loci without altering the localization of HYL1, suggesting 
that it may have a role in D-body assembly [35]. 

Regulation of the levels of DCL1 and HYL1 

The transcription of DCL1, HYL1 and SE are regulated to 
control miRNA processing. Several transcription factors 
have been shown to regulate their proper expression. Sta-
bilized1 (STA1), an Arabidopsis pre-mRNA processing fac-
tor, is shown to promote the expression of DCL1 [87]. His-
tone acetyltransferase GCN5 shows a general repressive 
effect on miRNA production via inhibiting the transcrip-
tion of HYL1 and SE [88]. In addition, the transcript levels 
of DCL1 can be post-transcriptionally regulated. miR162, a 
product of DCL1, is able to direct the cleavage of the DCL1 
mRNA [89], whereas processing of pri-miR838, which re-
sides in the DCL1 transcripts, results in a pre-mRNA that 
fails to produce the DCL1 protein [54, 89]. Additionally, 
the short interspersed elements (SINEs) transcribed from 
transposable elements mimic the structure of pri-miRNAs 
and are shown to sequester HYL1 from pri-miRNA pro-
cessing [90]. 

Regulation of DCL1 activity by protein phosphorylation 
and dephosphorylation 

In addition to protein factors and pri-miRNA structures, 
the phosphorylation of HYL1 and DCL1 also affects 
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pri-miRNA processing. The forkhead-associated domain 
(FHA) of DDL is a conserved protein motif that interacts 
with phosphothreonine-containing proteins in prokary-
otes and eukaryotes [32]. DDL interacts with the predicted 
phosphothreonine-containing helicase and RNAse III do-
mains of DCL1 [91]. Mutations in the phosphothreonine- 
binding cleft of DDL abolish the DDL-DCL1 interaction, 
suggesting that DDL may use a canonical phosphothre-
onine recognition mechanism to interact with DCL1 [91]. 
Indeed, DCL1 is phosphorylated in vivo [92]. The fact that 
lack of DDL impairs miRNA maturation indicates that the 
interaction of DDL with phosphorylated DCL1 may play 
important roles in pri-miRNA processing [32]. C-termi-
nal domain phosphatase-like 1 (CPL1) is a protein phos-
phatase and can dephosphorylate a serine motif in the C-
terminal heptad repeat domain (CTD) of RNA polymerase 
II [93]. CPL1 has been shown to maintain the hypophos-
phorylated state of HYL1, which is phosphorylated and 
requires dephosphorylation for its optimal activity [93]. 
In the absence of CPL1, the dephosphorylation of HYL1 
is impaired, leading to inaccurate and less efficient pri-
miRNA processing [93]. Furthermore, SE physically inter-
acts with CPL1. Lack of SE disrupts the CPL1-HYL1 interac-
tion and dephosphorylation of HYL1, suggesting that SE 
functions as a scaffold to mediate CPL1 interaction with 
HYL1 [93]. 

The effect of splicing on pri-miRNA processing 

Like protein-coding genes, pri-miRNAs often contain in-
trons [5, 22, 23]. Splicing or alternative splicing of introns 
may have crucial roles in regulating miRNA maturation 
since they can alter the stem-loop structures of primiR-
NAs [4, 94, 95]. An example is MIR400, which resides in 
At1g32583, a host protein-coding gene. The heat stress-
induced alternative splicing keeps the stem-loop of pri-
miR400 in the host gene, which prevents pri-miR400 from 
processing and reduces miR400 accumulation [96]. A pos-
sible explanation for this observation is that pri-miR400 
residing in the host mRNA may adapt an inhibitory struc-
ture to the access of DCL1 [96]. In addition, the process-
ing of pri-miR162a and pri-miR842-miR846 is reduced in 
Arabidopsis when alternative splicing changes their stem-
loop structures [97, 98]. In contrast, the excision of intron 
from the stem-loop is required for the production of nat-
ural antisense miRNAs in rice [97]. 

In addition to altering pri-miRNA structure, splicing it-
self or the recruitment of splicing machinery may enhance 
pri-miRNA processing. For instance, the processing effi-
ciency of pri-mi163 and pri-miR161 can be improved by 
the splicing of the 3′ introns following their stem-loops 
[99, 100]. Furthermore, some proteins involved in mRNA 
splicing have been shown to play essential roles in miRNA 
maturation. The cap-binding protein 20 (CBP20) and 80 

are the components of the cap-binding complex, which 
binds the cap structure of mRNAs and ensure the correct 
splicing of the first intron [101]. cbp80 or cbp20 reduces 
the abundance of miRNAs and increases the accumula-
tion of both unspliced and spliced pri-miRNAs, demon-
strating that CBP80 and CBP20 function in pri-miRNA pro-
cessing independent of their role in splicing [102–104]. SE 
interacts with CBP20, indicating that CBP20/80 may be a 
part of the processing complex [35, 105]. Whether CBP80/ 
CBP20 affects the accuracy of pri-miRNA processing is 
unknown. Besides CBP80/20, CDC5, another component 
involved in miRNA biogenesis, has also been shown to 
promote splicing of some mRNAs. It is not clear if CDC5 
affects pri-miRNA splicing. 

MiRNA stability and degradation 

Two recent modeling analyses suggest that mutual deg-
radation of miRNAs and targets may sharp their expres-
sion boundary [106, 107]. Although the predications are 
not be experimentally verified, they underline the impor-
tance of miRNA degradation. In fact, studies have revealed 
multiple mechanisms governing miRNA stability and deg-
radation in plants. 

Methylation and uridylation of miRNAs 

To ensure proper levels of miRNA, plants evolve multiple 
mechanisms to regulate miRNA stability and degrada-
tion. Plant miRNAs are stabilized by a 2′-O-methylation 
modification at the 3′ terminal ribose, which is added by 
HUA1 enhancer1 (HEN1), an Mg2+-dependent methyl-
transferase (MTase) [17, 108]. miRNAs in hen1 contain 
1–8 untemplated uredines (uridylation) at 3′ end and/or 
are truncated from 3′ end, demonstrating that methyla-
tion protects miRNAs from uridylation and degradation 
[17, 109–111]. HEN1 functions as a monomer to recog-
nize ~22 nt dsRNAs with the 2 nt overhang at each end 
[108, 112]. Since HEN1 acts on the miRNA/miRNA* du-
plexes, methylation likely occurs before AGO1 loading. 
However, it is unclear whether methylation occurs in cy-
toplasm or nucleus, as HEN1 localizes at both compart-
ments [110]. 

Uridylation is a critical regulatory mechanism destabi-
lizing miRNAs in plants. In Arabidopsis, HEN1 SUPPRES-
SOR1 (HESO1), a terminal uridyl transferase, is responsible 
for the uridylation of the majority of miRNAs [113, 114]. 
heso1 increases overall abundance of miRNAs whereas 
the overexpression of HESO1 reduces miRNA accumula-
tion in hen1, demonstrating that uridylation triggers deg-
radation of miRNAs in higher plants [113]. In addition, 
heso1 increases the abundance of 3′ truncated miRNAs 
in hen1, suggesting that uridylation may trigger miRNA  
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degradation through a mechanism other than 3′-to- 5′ 
truncation [113, 114]. HESO1 interacts with AGO1 and uri-
dylates AGO1-bound miRNAs in vitro [115]. Furthermore, 
uridylation of miRNAs is impaired in hen1 when AGO1 is 
mutated [111, 115]. These results demonstrate that miRNA 
uridylation occurs at the AGO1 complex and the necessity 
for methylation, which prevents miRNAs from AGO1-as-
sociated HESO1 activity and, therefore, ensures the func-
tion of the AGO1-miRNA complex (Figure 2). In the alga 
Chlamydomonas reinhardtii (C. reinhardtii), MUT68, a ter-
minal nucleotidyl transferase, adds U-tails to the 3′ termi-
nus of miRNAs [116]. Impairment of MUT68 results in in-
creased abundance of miRNAs. Furthermore, uridylation 
stimulates in vitro degradation of miRNAs by RRP6, which 
is the peripheral exosome subunit and degrades RNAs 
from 3′-to-5′ [116]. These results demonstrate that uri-
dylation may trigger degradation of miRNAs through dif-
ferent mechanisms in various plant species. 

Degradation of miRNAs by exoribonucleases in plants 

The degradation of miRNAs is crucial to maintain the bal-
ance of miRNA levels and function. Enzymes responsible 
for miRNA turnover have been identified in Arabidopsis. 
In Arabidopsis, a family of 3′-to-5′ exoribonucleases in-
cluding small RNA degrading nuclease 1, 2 and 3 (SDN1, 

SDN2 and SDN3) are involved in mature miRNA turnover 
[117]. Inactivation of SDN proteins results in increased 
miRNA abundance and impaired plant development 
[117]. An in vitro nuclease activity assay shows that SDN1 
prefers to degrade short single-stranded RNAs, but not 
small RNA duplexes or pre-miRNAs [117]. Additionally, 
SDN1 can degrade 2′-O-methylation miRNAs, but not 3′ 
uridylated miRNAs, raising the possibility that SDN1 and 
HESO1 cooperate to regulate the degradation of 2′-O-
methylation miRNAs in wild-type Arabidopsis (Figure 2) 
[117]. Recently, the expression of a short tandem target 
mimic (STTM), which contains two short sequences mim-
icking miRNA target sites, which are resistant to miRNA-
mediated cleavage, triggers the degradation of targeted 
miRNAs by SDNs [118]. In the green Alga, inactivation 
of exosome components, RRP6, leads to increased accu-
mulation of miRNAs, demonstrating that miRNAs can be 
degraded from 3′-to-5′ by exosome [116]. In Drosophila, 
Nibbler, a 3′-to-5′ exoribonuclease, interacts with AGO1 
to trim AGO1-bound miRNAs from 3′ end [119, 120]. It is 
possible that Nibbler homologs of plants also function in 
miRNA trimming. 

Regulation of miRNA activity 

AGO proteins 

miRNAs mainly function through their effector protein 
AGO, which cleaves target RNA and/or inhibit transla-
tion. AGO contains four major functional domains: the 
N-terminal domain, the PAZ domain, the middle (MID) 
domain and the PIWI domain [121, 122]. Among them, 
the PAZ domain binds to the 3′ end of miRNAs, whereas 
MID domain interacts with the 5′ phosphate of miRNA 
[121, 122]. The PIWI domain adapts a structure similar 
to that of RNAse H and acts as a slicer to cleave target 
at a position opposite to the 10th and 11th nucleotides 
of miRNAs [123]. However, not all AGOs have the endo-
nuclease activity since some key amino acids in the cat-
alytic center are mutated in some AGOs in both plants 
and animals [124, 125]. Arabidopsis encodes 10 AGOs 
[121]. Each of them seems to bind a subset of small 
RNAs and has different functions. This is partially de-
termined by the 5′ nucleotide of small RNAs [126, 127]. 
For instance, AGO1 has a preference on miRNAs with 5′ 
U [126, 127]. In addition, AGOs display specific spatial–
temporal expression patterns, which may also contrib-
ute to their functional divergence [128]. In Arabidop-
sis, AGO1 is the major effector protein for miRNAs [21] 
while AGO7 and AGO10 specifically bind miR390 and 
miR165/166, respectively [127]. 

The levels and activity of AGO1 are regulated to en-
sure its proper function. AGO1 is a target of miR168 [129, 
130]. Thus, AGO1 itself is subject to feedback regulation. 

Figure 2. Model of uridylation-triggered miRNA degradation. 
Under normal condition, miRNAs are methylated by HEN1, which 
protects miRNAs from uridylation at the AGO1 complex. Meth-
ylated miRNAs maybe subject to SDN degradation, resulting in 
30 truncated miRNAs. HESO1 may uridylate unmethylated miR-
NAs and 30 truncated miRNAs to trigger their degradation. Un-
methylated miRNA can also be degraded through unknown 3′-
to-5′ trimming activity  
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Overexpression of an F-box protein FBW2 reduces AGO1 
protein levels but not transcripts [131]. In contrast, fbw2 
increases AGO1 protein levels, demonstrating that FBW2 is 
a negative regulator of AGO1 [131]. AGO1 can also be de-
graded through the autophagy pathway when the AGO1-
miRNA assembly is disrupted [132]. Sequestering miRNAs 
from AGO1 can also regulate their functions. For example, 
AGO10 binds miR165/miR166 in shoot apical meristem 
(SAM) to prevent the formation of the AGO1-miR165/166 
complex, which limits the function of miR165/miR166 and 
ensure the proper development of SAM [133]. 

AGO1 loading 

The loading of miRNA into AGO1 is partially determined 
by structures of miRNA/miRNA* duplex, protein factors 
and 5′ nucleotides [126, 127, 134]. Analyses of an artificial 
miRNA/miRNA* duplex reveal that the strand with a lower 
5′-end thermostability is preferentially loaded into AGO1 
as the miRNA strand in Nicotiana benthamiana, suggest-
ing that like in animals, the thermostability at the 5′ end 
of duplex strands plays important roles in miRNA load-
ing [134]. HYL1 and CPL1 have been shown to facilitate 
the miRNA strand selection as their mutations increase 
the levels of miRNA* relative to Col, which is presumably 
caused by AGO1-binding [93, 134]. Loss-of-function mu-
tations in squint (SQN), a cyclophilin 40 (CYP40) protein, 
reduce miRNA activity without altering their levels, indi-
cating that SQN may be a protein partner of AGO1 [135]. 
In fact, heat shock protein 90 (HSP90) and (CyP40) form a 
complex with AGO1 to assist the miRNA loading in a cell-
free system [136–138]. In addition, upon ATP-hydrolysis 
by HSP90, HSP90-CYP40 and miRNA* are removed from 
the AGO1-miRNA complex, which maybe due to the con-
formation alteration of AGO1 caused by HSP90 chaper-
one activity [136, 137]. Most miRNA*s are degraded upon 
disassociation from AGO1, which does not depend on the 
slicer activity of AGO1 [134, 139]. However, some miRNA*s 
can be loaded into other AGOs, and, therefore, be stabi-
lized and become functional. 

miRNA-mediated target cleavage 

Plant miRNAs need high complementarity to recognize 
their substrate [19, 129, 140, 141]. A recent study shows 
that besides complementarity, the context of miRNA bind-
ing site and expression levels may also contribute to the 
target recognition in Arabidopsis [142]. In plants, target 
cleavage is considered as a predominant pathway for 
miRNA-mediated repression of gene expression [1], as 
AGO1 with mutations in the catalytic motif fails to com-
plement ago1 [143]. Target cleavage by AGO proteins gen-
erates a 5′ RNA fragment (5′ fragment) with a 3′ hydroxyl 

group and a 3′ RNA fragment (3′ fragment) with a 5′ phos-
phate [144]. AGO1 slicing can trigger the decay of the 
target mRNAs by exonucleases without the requirement 
for 3′ deadenylation or 5′ decapping. In the mutants of 
XRN4 (A cytoplasmic 5′–3′ exoribonuclease) and FIERY1 
(A putative regulator of XRN4), the levels of 3′ fragments 
are increased, revealing that 3′ fragments are degraded 
by XRN4 in plants [145]. In C. reinhardtii, the 3′ end of 5′ 
fragments is adenylated by the terminal nucleotidyl trans-
ferase MUT68, which triggers exosome-mediated 3′-to-5′ 
degradation of 5′ fragments [146]. In animals and higher 
plants, 5′ fragments are uridylated at 3′ end [146]. In Ara-
bidopsis, HESO1 is a major enzyme uridylating 5′ frag-
ments [115]. Lack of HESO1 increases the abundance of 
5′ fragments, demonstrating that uridylation induces the 
degradation of 5′ fragments [115]. However, the propor-
tion of 3′ truncated 5′ fragments is increased in heso1 
relative to wild-type plants [115]. This result suggests 
that uridylated 5′ fragments may be degraded through a 
mechanism other than 3′-to-5′ trimming. Indeed, lack of 
exosome components RRP6L and CSL4 does not alter the 
abundance of 5′ fragments in Arabidopsis [115]. 5′ frag-
ments are also subjected to 5′-to-3′ degradation, as xrn4 
increases the accumulation of 5′ fragments [115]. How-
ever, it is not clear whether the 5′ trimming of 5′ fragments 
happens before or after uridylation. 

miRNA-mediated target cleavage can be regulated by 
the competing endogenous RNAs. In Arabidopsis, a non-
coding RNA named IPS1 contains a non-cleavable se-
quence with complementarity to miR399. IPS1 can be 
bound by AGO1-399 but cannot be cleaved, and, there-
fore, sequester AGO1-399, resulting in the accumulation 
of target PHO2 mRNA [147]. Bioinformatic analyses have 
identified the presence of endogenous mimic targets of 
miRNAs. It is worth to test if these mimic target transcripts 
can regulate the activity of the corresponding miRNAs. 

miRNA-mediated translational inhibition 

Several studies suggest that translational inhibition is also 
a common mechanism employed by plant miRNAs to re-
press gene expression [148–150]. In plants, a subset of 
miRNAs and a fraction of AGO1 are associated with poly-
ribosomes, agreeing with a role of miRNA in translational 
inhibition [151, 152]. Researches have put insight into the 
mechanisms governing miRNA-mediated translational in-
hibition. A recent study shows that in plants, AGO1-miRNA 
can sterically inhibit the recruitment or movement of ri-
bosomes after binding the 5′ untranslated region (UTR) 
or the open reading frame of target RNAs [153]. This re-
sult indicates that miRNAs can inhibit translation initiation 
or elongation of target RNAs in plants. In plants, a corre-
lation between miRNA-mediated translational inhibition 
and the processing bodies (P-body) has been suggested. 
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P-bodies are distinct cytoplasmic loci consisting of many 
enzymes involved in mRNA degradation [154]. In plants, a 
portion of AGO1 localizes in the P-bodies and the P-body 
components varicose (VCS) and SUO (a GW-repeat con-
taining protein) are required for miRNA-mediated transla-
tional inhibition, suggesting that P-body may be a site for 
the storage of translational-repressed target mRNAs [149, 
155]. In animal P-body, target transcripts of miRNAs can 
be destabilized through deadenylation and decapping, 
which is a slicer-independent mechanism [156, 157]. How-
ever, the causal relationship between translational repres-
sion and decay of target RNAs has not been established in 
plants. Mutations in VCS and decapping1 (DCP1; a P-body 
component required for mRNA decapping) reduce the lev-
els of some target transcripts, indicating the presence of 
slicer-independent degradation of targets [158]. However, 
the upregulation of target transcripts in vcp and dcp1 may 
attribute to the decreased miRNA levels [158]. Consistent 
with this, VCS can regulate protein levels of some targets 
without affecting transcription [149]. 

Some miRNAs appear to repress gene expression 
through both translational inhibition and target cleav-
age. This raises a question of how translation inhibition 
vs. target cleavage is determined. A recent study shows 
that miRNAs display stronger translational inhibition in a 
transient in assay when their binding sites localize at the 5′ 
coding region [159], while another study reveals that miR-
NAs enhance translational repression in male germ cells 
of plants [160]. These results suggest that multiple factors 
help cells to select translational repression or target cleav-
age. In some cell types, the concurrence of translational 
inhibition and cleavage happens. A possible explanation 
is the selective interaction of AGO1 with protein factors. 
Alternatively, AGO1-miRNA-targets may be sorted into 
designated subcellular compartments specific for transla-
tional inhibition or target cleavage (Figure 1). A consider-
able amount of AGO1 is associated with the endoplasmic 
reticulum (ER) [150]. In addition, lack of altered meristem 
program1 (AMP1), an integral ER membrane protein, im-
pairs miRNA-mediated translational repression, but not 
target transcript cleavage, suggesting that ER may be a 
site for translational inhibition to occur [150]. Agreeing 
with this notion, amp1 reduces the exclusion efficiency of 
target mRNAs from membrane-bound polysomes [150]. 

Additional proteins involved in translational inhibition 
by miRNAs include the microtubule-severing enzyme ka-
tanin (KTN), 3-hydroxy-3-methylglutaryl CoA reductase 
(HMG1) and the sterol C-8 isomerase hydra1 (HYD1). 
KTN1 is required for the formation of the proper corti-
cal microtubule array [161]. Disruption of KTN1 blocks 
miRNA-mediated translational inhibition, suggesting a 
role of microtubule in translational repression. This is con-
sistent with the role of microtubules in ER organization 
and P-body dynamics [149]. HMG1 is essential for the bio-
synthesis of isoprenoids, which are substrates of multiple 

metabolic pathways such as membrane sterols and sev-
eral plant hormones, while HYD1 is required for the syn-
thesis of sterols [149, 162]. HMG1 and HYD1 positively af-
fect both transcript and protein levels of target genes. The 
fact that the association of miRNAs with AGO1 is not im-
paired in hmg1 indicates that HGM1 acts downstream of 
miRNA biogenesis and loading [149, 162]. Given the func-
tion of HMG1 and HYD1 in sterol biogenesis, sterol may 
have a role in miRNA activity [149, 162]. As sterol is re-
quired for the correct localization of some integral mem-
brane proteins, it is possible that specific membrane com-
partments involved in miRNA function may be impaired 
in hmg1 and hyd1 [149, 162]. 

miRNA-mediated DNA methylation 

In additional to post-transcriptional repression, miRNA 
can inhibit gene expression at the transcriptional levels 
through directing DNA methylation. In rice, some 24-nt 
miRNAs can be sorted into AGO4, (an effector protein) 
and direct DNA methylation at the MIR and target loci 
in rice [55]. The production of these AGO4-associated 
miRNAs depends on DCL3 [55]. In contrast, AGO1-asso-
icated 24-nt miRNAs requires DCL1 for biogenesis. Based 
on these facts, it is proposed that the sorting of 24-nt 
miRNAs to AGOs is signaled by their biogenesis machin-
ery [55]. It has been shown that AGO4 associates with a 
class of 24-nt small interfering RNAs (siRNAs) to trigger 
cytosine methylation through a process called RNA-di-
rected DNA methylation [3]. It is likely that miRNAs trig-
ger DNA methylation through a mechanism similar to that 
of siRNAs. 

Perspective 

To date, characterizations of various factors such as pro-
tein components and structure of pri-miRNAs and miRNAs 
have greatly improved our understanding of mechanisms 
related to miRNA biogenesis and function. However, chal-
lenges remain in plant miRNA pathway. miRNA expression 
is regulated through a combination of transcription, pro-
cessing and turnover. A great challenge is to understand 
how plants integrate all these regulating mechanisms to 
control the levels of individual miRNAs in response to 
development and various stresses. Although factors in-
volved in miRNA biogenesis have been identified, their 
functional mechanisms are still not clear. Many protein 
factors functioning in the miRNA pathway are involved 
in transcription, splicing, RNA decay and other processes, 
suggesting an interconnection between miRNA pathway 
and other biological processes. Further understanding of 
their relationship will improve our knowledge of regula-
tory networks of various biological processes. Translational 



microRNA b iogenes i s ,  degradat ion and act iv i ty  in  plants   95

inhibition has become a common but poorly understood 
mechanism used by plant miRNAs to repress gene expres-
sion. Elucidation of mechanisms governing miRNA-me-
diated translation inhibition needs to characterize RNA 
structures and additional protein factors involved in the 
process. Another interesting question is how cells select 
translation inhibition or target cleavage as the functional 
model for miRNAs. Finally, a practical challenge is how we 
optimize miRNA-based technology and use knowledge of 
miRNA to improve important agricultural trait.  
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