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Abstract—Embryonic survival, pipping and hatching success, and sublethal biochemical, endocrine, and histological endpoints
were examined in hatchling chickens (Gallus gallus), mallards (Anas platyrhynchos), and American kestrels (Falco sparverius)
following air cell administration of a pentabrominated diphenyl ether (penta-BDE; DE-71) mixture (0.01–20 �g/g egg) or poly-
chlorinated biphenyl (PCB) congener 126 (3,3�,4,4�,5-pentachlorobiphenyl; 0.002 �g/g egg). The penta-BDE decreased pipping
and hatching success at concentrations of 10 and 20 �g/g egg in kestrels but had no effect on survival endpoints in chickens or
mallards. Sublethal effects in hatchling chickens included ethoxyresorufin-O-dealkylase (EROD) induction and histological changes
in the bursa, but these responses were not observed in other species. Polychlorinated biphenyl congener 126 (positive control)
reduced survival endpoints in chicken and kestrel embryos and caused sublethal effects (EROD induction, reduced bursal mass
and follicle size) in chickens. Mallards were clearly less sensitive than the other species to administered penta-BDE and PCB 126.
In a second experiment, the absorption of penta-BDE (11.1 �g/g egg, air cell administered during early development) into the
contents of chicken and kestrel eggs was determined at various intervals (24 h postinjection, midincubation, and pipping). By
pipping, 29% of the penta-BDE administered dose was present in the egg contents in chickens, and 18% of the administered dose
was present in kestrel egg contents. Based on uptake in kestrels, the lowest-observed-effect level on pipping and hatching success
may be as low as 1.8 �g total penta-BDE/g egg, which approaches concentrations detected in eggs of free-ranging birds. Because
some penta-BDE congeners are still increasing in the environment, the toxic effects observed in the present study are cause for
concern in wildlife.

Keywords—Egg injection Lowest-observed-effect level Polybrominated diphenyl ether Species sensitivity
Polychlorinated biphenyl congener 126

INTRODUCTION

Polybrominated diphenyl ethers (PBDEs) have been com-
monly used as flame retardants in polymers, textiles, elec-
tronics, and other materials. These compounds bioaccumulate
in aquatic and terrestrial organisms and biomagnify in food
chains [1]. Monitoring studies indicate that PBDE concentra-
tions in the environment have increased over the past 25 years.
A retrospective study of archived herring gull (Larus argen-
tatus) eggs from the Great Lakes, North America, demonstrat-
ed that individual congeners (BDEs 47, 99, and 100) found in
the commercial penta-BDE mixture increased by one-and-a-
half orders of magnitude between 1981 to 2000 (doubling time,
2.6–3.1 years) [2], and concentrations of these congeners in
gull eggs have remained elevated [3]. On a wet-weight basis,
concentrations of total PBDEs in avian eggs range up to 1.40
�g/g in herring gulls from the Great Lakes [2]; 0.928 �g/g in
ospreys (Pandion haliaetus) from Chesapeake and Delaware
bays, USA [4,5]; 4.24 �g/g in peregrine falcons (Falco per-
egrinus) from California, USA (K. Hooper, California De-
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partment of Environmental Protection Agency, Berkeley, CA,
USA, personal communication); and 6.60 �g/g in peregrine
falcons from the northeastern United States [6]. Interpretation
of the significance of these concentrations in eggs is not pos-
sible, because adverse effect thresholds have yet to be ade-
quately established in birds.

To our knowledge, only two studies in birds have examined
developmental and reproductive effects of environmentally rel-
evant concentrations of PBDEs [7–10]. In the initial study by
Fernie et al. [7–9], American kestrel (Falco sparverius) eggs
were injected with 18.7 �g of total PBDEs (BDEs 47, 99, 100,
and 153) on day 19 of incubation, and then nestlings were
gavaged daily with the same PBDE mixture at 15.6 ng/g body
weight through day 29 posthatch. Using this combined egg
injection/dietary exposure regimen, some evidence was found
indicating increased growth (i.e., body wt, tarsometatarsus and
feather length) [9] and structural changes in immune organs
(i.e., fewer germinal centers in spleen, reduced apoptosis in
bursa, and increased macrophages in thymus) [7]. As carcass
concentrations of BDEs 47 and 183 increased, some alterations
in immune function (i.e., greater phytohemagglutinin skin re-
sponse and reduced antibody-mediated response) were de-
tected [7]. The PBDE mixture also evoked oxidative stress
(i.e., marginal increases in the ratio of oxidized to reduced
glutathione, oxidized glutathione, and lipid peroxidation) in
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kestrel nestlings. Additionally, in 29-d-old nestlings, plasma
thyroxine (T4), plasma retinol, and hepatic retinol were in-
versely related to carcass concentrations of BDEs 47 and 99
[8]. In a second study by Fernie et al. [10], reproductively
active kestrels were fed concentrations of a commercial penta-
BDE formulation (0.3 �g DE-71/g diet or 1.6 �g DE-71/g
diet), and changes in reproductive behavior were noted (e.g.,
fewer bonding behaviors, less copulation, and less time spent
in the nest box). Studies of PBDE toxicity in laboratory mice
and rats, often using relatively high dosage levels, have dem-
onstrated changes in behavior and memory, impaired immune
function, decreased circulating concentrations of T4, and in-
duction of cytochrome P450–associated monooxygenases [11–
15].

Considering the ubiquitous nature of PBDEs and their in-
creasing concentrations in the environment, more complete
ecotoxicological data are needed regarding these compounds.
General toxicity studies should be conducted with species that
may be at high risk of exposure. Developmental and repro-
ductive effects are of particular concern because of their link-
age to higher-order effects. More subtle responses also merit
consideration as they may serve as early, sublethal warning
signals of potential higher-order effects.

The present investigation examined the effects of penta-
BDE exposure in avian embryos (domestic chicken, Gallus
gallus; mallard, Anas platyrhynchos; and American kestrel)
following air cell administration of a commercial PBDE mix-
ture. Biological effects (e.g., embryonic survival and hatching
success, as well as endpoints reflecting development and
growth, histopathology, cytochrome P450 induction, and glan-
dular T4 content) are described in three well-characterized avi-
an model species from several different feeding guilds (gra-
nivorous, omnivorous, and carnivorous). The null hypothesis
being tested is that PBDE exposure does not affect survival
or biochemical, endocrine, and histological endpoints in de-
veloping avian embryos. These data, in conjunction with find-
ings on absorption of air cell–administered penta-BDE into
chicken and kestrel egg contents (albumen, yolk, and embryo),
will be useful in establishing effect thresholds and may be of
value in ecological risk assessments of these flame retardants.

MATERIALS AND METHODS

Eggs and incubation

All animal procedures were approved by the Institutional
Animal Care and Use Committees of the Patuxent Wildlife
Research Center and the University of Maryland, College Park
(MD, USA). Fertile white leghorn chicken eggs were obtained
from CBT Farms, and mallard eggs were obtained from Whis-
tling Wings. American kestrel eggs were collected fresh from
the colony at the Patuxent Wildlife Research Center (Laurel,
MD, USA). On arrival, all eggs were washed in a 40�C, 1%
Betadine� solution (Purdue), then weighed and labeled with
a number-two graphite pencil. Eggs were then stored in a cool-
er at 13�C for up to 3 d and were allowed to equilibrate to
room temperature before placement into incubators. Eggs were
artificially incubated (Kuhl Incubator Company) in trays that
were adapted to turn horizontally oriented eggs 180� each hour.
Incubators were set at the recommended incubation temper-
ature: 37.6�C for chickens (21-d incubation), and 37.5�C for
mallards and kestrels (27-d incubation). The relative humidity
within the incubator was initially set at approximately 40%
and was adjusted so that mean egg weight loss by the end of
incubation was 14 to 16%. Eggs were incubated horizontally

rather than vertically to mimic natural incubation more closely
and, presumably, increase survival and hatching success of
semidomesticated (mallard) and wild species (kestrel). Eggs
were weighed at 3- to 4-d intervals during the course of in-
cubation to determine weight loss. Eggs were candled at the
time of weighing to confirm viability, and any unfertilized or
dead eggs were removed.

Test solutions and administration

Corn oil (Sigma-Aldrich) was used as the vehicle, because
many studies have demonstrated that low volumes cause little
mortality in avian embryos during early development [16–18].
A penta-BDE mixture (DE-71; LGC Promochem) was chosen
for the present study, because it contains congeners that are
commonly detected in North American bird eggs [2,4,5].

Injection solutions were prepared by dissolving neat penta-
BDE or polychlorinated biphenyl (PCB) congener 126
(3,3�,4,4�,5-pentachlorobiphenyl congener; AccuStandard) in
acetone before mixing with corn oil. Solutions were stirred for
3 h. Each dosing solution, including the corn oil control, con-
tained 1% acetone by volume.

Before injection, the blunt end of each egg was cleaned
with an alcohol swab. A hole was drilled (Dremel) into the
blunt end of the egg. A constant volume (0.5 �l/g egg) of
vehicle, penta-BDE, or PCB 126 was injected into the air cell
with an Eppendorf repeat pipettor [17,18]. The hole was then
sealed with ethylene vinyl acetate adhesive using a hot glue
gun. Injected and uninjected eggs were kept in a vertical po-
sition (blunt end up) for 30 min postinjection outside the in-
cubator to allow the oil to spread over the air cell membrane.
Eggs were then placed in trays in a horizontal position and
returned to the incubator.

Experiment 1: Biological effects of penta-BDE

The penta-BDE doses for chickens and mallards (0.01, 0.1,
1, 10, and 20 �g/g egg) were arranged around environmentally
relevant concentrations detected in herring gull, osprey, and
peregrine falcon eggs. Because of the limited availability of
eggs from the kestrel colony, doses for kestrels ranged from
0.1 to 20 �g/g egg. Nominal concentrations of penta-BDE
dosing solutions were verified analytically by gas chromatog-
raphy/mass spectrometry (GC/MS; Varian 3400 and Varian 4D
ion trap). Corn oil test solutions were diluted in hexane. Con-
gener peak areas were compared to that of an internal standard
(p-terphenyl). Congener response factors were determined us-
ing authentic PBDE standards (AccuStandard). Detection was
in the electron-ionization mode. The GC was equipped with
a DB-5 column (length, 60 m; inner diameter, 0.32 mm; film
thickness, 0.25 �m; J&W Scientific), and the carrier gas was
He. Injections were made in the splitless mode. Identification
was achieved by MS in the full-scan, electron-ionization mode.
Quantification was performed by comparison of the sum of
the areas of the three major ions of each PBDE congener
(BDEs 17, 28, 47, 49, 66, 85, 99, 100, 153, and 154) in DE-
71 versus that of the internal standard. For the 1 �g/g egg
dosage, penta-BDE was analytically verified to be from 134
to 152% of the nominal concentration, and for the 10 �g/g
egg dosage, penta-BDE was analytically verified to be from
96 to 104% of the nominal concentration.

The well-studied and highly toxic PCB congener 126 was
used as a positive control. The PCB 126 dose chosen in the
present study (0.002 �g/g egg) may seem high compared to
that in other studies; however, the toxicity of air cell–admin-
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istered PCB 126 on day 4 of incubation is much lower in
horizontally incubated eggs [18] compared to that in vertically
incubated eggs (complete failure to hatch at 0.0005 �g/g egg)
[19,20]. Concentrations of PCB 126 in the dosing solution
were verified as described above. Analytically verified con-
centrations of PCB 126 were from 45 to 51% of the nominal
concentration.

Chicken eggs were incubated for 4 d, and mallard and kes-
trel eggs were incubated for 5 d (i.e., developmental equivalent
of a 4-d-old chicken embryo), at which point they were candled
to confirm fertility. Any infertile, nonviable, or cracked eggs
were discarded. Eggs were then randomly assigned to unin-
jected control, vehicle control, PCB 126, or penta-BDE groups
(chicken, n � 22–42 eggs/treatment; mallard, n � 26–27 eggs/
treatment; kestrel, n � 18–20 eggs/treatment), and vehicle or
test compounds were administered on this day.

Monitoring survival and sample collection. Embryo via-
bility during incubation was monitored at 3- to 4-d intervals
by candling or with a viability detection instrument (Buddy;
Vetronic). Embryos that died during development or failed to
pip were removed from the eggshell and evaluated for stage
of development and presence of abnormalities. Survival
through 90% of the incubation period, incidence of pipping,
and hatching success were determined.

Day-old hatchlings were examined for evidence of edema
and teratogenicity (e.g., eye, foot, and bill deformities). Each
hatchling was weighed and then killed via decapitation. Im-
mediately, the liver (minus the gallbladder) and the yolk sac
were removed and weighed. A small piece of the liver was
fixed in formalin for histopathogical examination, and the re-
maining tissue was placed in a cryovial, snap-frozen, and
stored at �80�C for assay of hepatic microsomal P450–as-
sociated monooxygenase activity. Sex was determined by ex-
amination of the gonads. The weight of paired thyroid glands
in chickens and mallards and of the left thyroid in kestrels was
measured, after which they were frozen for subsequent hor-
mone analysis. The weights of the bursa of Fabricius, spleen,
and thymus also were determined.

Skeletal preparations and histopathology. After euthanasia
and sample collection, the remaining carcass was labeled and
stored in 70% ethanol. Carcasses were cleared, feathers re-
moved, and skeletons stained using the method described by
Karnofsky [21]. Crown-rump, humerus, radius-ulna, femur,
tibiotarsus, and metatarsus lengths were measured to the near-
est millimeter.

Formalin-fixed livers, bursae of Fabricius, and other tissues
were embedded in paraffin, sectioned at 5 �m, and stained
with hematoxlyin and eosin (American HistoLabs). Liver and
bursa (two step sections) were examined by light microscopy
for 10 or more individuals for control and dosage groups (ex-
cept groups with poor hatching success). Hepatocyte density
(number of hepatocytes per 10 �m of length at three locations),
incidence of enlarged hepatocytes (narrowing of sinusoids),
vacuolation, and other lesions were noted.

Because of qualitative changes in the bursae of chicken
hatchlings (but not those of mallards or kestrels), morpho-
metric measurements (two sections/hatchling) were conducted
on the number of follicles and their size. The number of fol-
licles per section was determined by averaging those observed
at two locations for each bursa. Images of follicles were dig-
itized using IPLab for Windows (Scanalytics), and average
size was determined by measuring 10 follicles per bursa.

Cytochrome P450. Liver samples were thawed and ho-

mogenized (1:4 w/v) in ice-cold, 1.15% KCl in 0.01 M sodium/
potassium phosphate buffer at pH 7.4. The homogenate was
centrifuged at 9,000 g for 20 min at 4�C; the supernatant was
then centrifuged at 100,000 g for 1 h. The microsomal pellet
was resuspended in 0.05 M sodium/potassium phosphate buff-
er at pH 7.6 containing 0.001 M disodium ethylenediamine-
tetra-acetate at 3 to 5 mg protein/ml.

Ethoxyresorufin-O-dealkylase (EROD) was assayed in trip-
licate on a fluorescence 96-microwell plate scanner (Fluro-
roscan II; ICN Flow Laboratories) [22]. The assay used 1.25
�M ethoxyresorufin (Sigma-Aldrich Chemical) substrate,
0.125 mM nicotinamide adenine dinucleotide phosphate (Sig-
ma-Aldrich Chemical), and microsomal protein and was
brought to a constant volume with 66 mM Tris buffer. Assays
were run in a total volume of 260 �l at 37�C. Microsomal
protein (5–30 �g/well) was optimized for each species to ob-
tain linear reaction rates. Reference mallard microsomes were
included with each plate. The change in fluorescence units
over time was converted to the rate of product formation with
the use of a seven-point standard curve (0.01–0.4 �M). Protein
was determined using the BCA Protein Assay kit (Pierce
Chemical Company). Ethoxyresorufin-O-dealkylase activity
was calculated as pmol product formed/min/mg microsomal
protein. The coefficient of variation for hatchling samples (n
� 253) run in triplicate averaged 15%. Each species’ assay
was run over a period of 8 d, and the average interassay co-
efficient of variation for mallard reference microsomes (n �
12 assays) averaged 9.56%.

Thyroid hormone. Glandular hormone content was mea-
sured using the method described by McNabb and Cheng [23].
Briefly, thyroid tissue was digested in capped microcentrifuge
tubes containing 25 mg of Pronase (Sigma-Aldrich Chemical)
in 350 �l of distilled water at 37�C for 24 h. One milliliter of
ethanol was added to the digested sample, which was then
vortexed. This mixture was held at �20�C for 24 h, and then
tubes were centrifuged at 13,500 g for 5 min. The supernatant
was removed and stored at �20�C for T4 analysis. Thyroxine
concentrations in the extract were determined in duplicate by
radioimmunoassay using a Coat-A-Count Canine Total T4 as-
say kit (Diagnostic Products). After sample (25 �l) incubation,
the bound and free fractions were separated, and bound ra-
dioactivity remaining in each tube was counted for 1 min using
a Wallac 1470 Wizard gamma counter (PerkinElmer). Average
counts for duplicate tubes were log-transformed, and then total
T4 was estimated from a six-point (0–15 ng/ml) standard curve.
Thyroxine assays were validated for each species before run-
ning samples by testing various dilutions of extract samples
against the standard curve for parallelism and by spiking sam-
ple extracts with known concentration of T4 standard (3 �g/
dL) prepared in ethanol. Mean T4 spike recoveries from chick-
en, mallard, and kestrel extracts ranged from 81 to 99%. Assay
precision (coefficient of variation for duplicate determinations)
was 9.93% (n � 284). Values are expressed as ng total T4/mg
thyroid tissue.

Experiment 2: Absorption of air cell–administered
penta-BDE

As part of a larger PBDE uptake and metabolism study in
eggs of several avian species, corn oil vehicle or penta-BDE
(analytically determined to be 11.1 �g/g egg) was administered
into the air cell of chicken (n � 9) and kestrel (n � 10) eggs
at a volume of 0.5 �l/g egg on day 4 and day 5, respectively,
of incubation. Eggs were randomly sampled 24 h postinjection,
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Table 1. Effects of polychlorinated biphenyl (PCB) congener 126 and pentabrominated diphenyl ether mixture (penta-BDE; DE-71) on chicken
(Gallus gallus), mallard (Anas platyrhynchos), and American kestrel (Falco sparverius) embryos through hatchinga

Combined
control

Dose (�g/g egg)

PCB 126

0.002

Penta-BDE

0.01 0.1 1 10 20

Chicken
Survival to day 18 65/71 (91.5%) 17/30 (56.7%)* 25/30 (83.3%) 32/38 (84.2%) 19/22 (86.4%) 24/30 (80.0%) 26/30 (86.7%)
Pipped 61/71 (85.9%) 8/30 (26.7%)* 23/30 (76.7%) 28/38 (73.7%) 16/22 (72.7%) 23/30 (76.7%) 22/30 (73.3%)
Hatched 59/71 (83.1%) 6/30 (20.0%)* 22/30 (73.3%) 28/38 (73.7%) 16/22 (72.7%) 20/30 (66.7%) 22/30 (73.3%)
Edema/failed

to hatch 2/12 9/24 2/8 1/10 1/6 1/10 3/8

Mallard
Survival to day 24 49/54 (90.7%) 24/28 (85.7%) 22/27 (81.5%) 27/27 (100%) 23/27 (85.2%) 25/27 (92.6%) 21/27 (77.8%)
Pipped 36/54 (66.7%) 17/28 (60.7%) 13/27 (48.1%) 15/27 (55.6%) 20/27 (74.1%) 15/27 (55.6%) 13/27 (48.1%)
Hatched 35/54 (64.8%) 17/28 (60.7%) 12/27 (44.4%) 15/27 (55.6%) 19/27 (70.4%) 14/27 (51.9%) 13/27 (48.1%)
Edema/failed

to hatch 9/19 6/9 10/15 9/12 3/8 12/13 8/14

Kestrel
Survival to day 24 37/40 (92.5%) 13/20 (65.0%)* 18/18 (100%) 18/20 (90.0%) 16/20 (80.0%) 16/20 (80.0%)
Pipped 34/40 (85.0%) 9/20 (45.0%)* 16/18 (88.9%) 13/20 (65.0%) 11/20 (55.0%)* 11/20 (55.0%)*
Hatched 32/40 (80.0%) 9/20 (45.0%)* 14/18 (77.8%) 12/20 (60.0%) 9/20 (45.0%)* 9/20 (45.0%)*
Edema/failed

to hatch 2/8 1/11 4/4 5/8 7/11 6/11

a Values are presented as the response/n (%). An asterisk indicates a significant difference ( p � 0.05) from the combined control for a given
species.

midway through incubation, and at pipping. Eggs were re-
moved from the incubator and weighed, and the apex end of
the egg was gently cut away so that the contents could be
poured into a chemically clean jar. Care was taken not to allow
the inner shell membrane to be included with the sample. The
embryo was sacrificed, and samples were frozen at �20�C
until analysis for total PBDE content.

Egg contents were analyzed, following the methods de-
scribed by Hale et al. [24] and Rattner et al. [4], at the Virginia
Institute of Marine Science in Gloucester Point (VA, USA).
Briefly, eggs were lyophilized, and subsamples were spiked
with surrogate standard PCB 204 (Ultra Scientific). Blanks
were run along with samples to evaluate possible laboratory
contamination. Egg samples were subjected to enhanced sol-
vent extraction (Dionex ASE 200) with methylene chloride.
Large-molecular-weight compounds were separated from the
PBDEs in the extracts on an Envirosep size-exclusion chro-
matography column (length, 350 mm; diameter, 21.2 mm;
guard column, 60 m 	 21.1 mm; Phenomenex). The PBDE-
containing fraction was then purified on a 2,000-mg, silica gel,
solid-phase extraction glass column (Enviroprep; Burdick and
Jackson). The PBDEs in the purified extracts were separated
by GC/MS as previously described. Data were corrected based
on the recovery of surrogate standard PCB 204 in each sample.
Mean recovery of surrogate PCB 204 from the eggs was
72.9%. The limit of quantification was 100 pg/g wet weight.

Data analyses

Data were analyzed using SAS� (SAS Institute). For each
species, survival through 90% of incubation, pipping, and
hatching success were compared using contingency analysis
with Bonferroni correction. Uninjected and vehicle-injected
controls were initially compared, and if no statistically sig-
nificant differences ( p 
 0.05) were found, these groups were
combined as a single control.

Continuously distributed variables (experiment 1: body and

organ weight, organ to body weight ratio, bone length, his-
tological measurements, EROD activity, and glandular T4 con-
centration; experiment 2: PBDE concentration in eggs) were
examined for homogeneity of variance and tested for normality
with the Shapiro–Wilk (W) statistic. Uninjected and vehicle-
injected controls were compared using a Student’s t test, and
if no differences were found, these groups were combined as
a single control group. Differences among measurement end-
points were determined using one-way analysis of variance
and Tukey’s honestly significant difference method of multiple
comparison.

RESULTS

Experiment 1: Survival, pipping, and hatching success

Embryonic survival through 90% of incubation as well as
pipping and hatching success of uninjected and vehicle-in-
jected controls were within an acceptable range (chicken: 90–
93, 79–91, and 79–86%, respectively; mallard: 86–96, 68 and
68, 63–68%, respectively; kestrel: 90–95, 75–95, and 75–85%,
respectively). These endpoints did not differ between unin-
jected and vehicle-injected groups ( p � 0.08–1) and, thus,
were combined into a single control group. Administration of
PCB 126 (positive control) elicited mortality resulting in re-
duced survival, pipping, and hatching success in chickens and
kestrels (Table 1). Mallards were less sensitive, because 0.002
�g PCB 126/g egg did not affect these endpoints. At doses
up to 20 �g/g egg, penta-BDE did not affect embryonic sur-
vival, pipping, or hatching success in chickens or mallards. In
kestrels, doses of penta-BDE up to 20 �g/g egg had no effect
on survival through 90% of incubation; however, dose-depen-
dent decreases in pipping and hatching success were apparent
at 1, 10, and 20 �g/g egg, with significant differences ( p �
0.05) occurring at 10 and 20 �g/g egg.
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Fig. 1. Low-magnification photomicrographs of bursa of Fabricius demonstrating smaller follicle size of chicken (Gallus gallus) hatchlings that
had been treated with polychlorinated biphenyl 126 and pentabrominated diphenyl ether mixture (DE-71) in ovo.

Experiment 1: Edema, deformities, organ weights, and
bone lengths

Head and neck edema were observed in many embryos that
failed to hatch (Table 1). Subcutaneous edema in the rump
area was observed in one control kestrel and one mallard that
received 1 �g penta-BDE/g egg. In chickens, edema frequently
was observed in PCB 126–treated eggs that failed to hatch,
but this was not the case with penta-BDE–treated embryos.
Overall, the incidence of edema in embryos that failed to hatch
was greater in mallards ( p � 0.0048) than in chickens or
kestrels. One unhatched control mallard embryo exhibited ex-
encephaly, and three hatchlings had splayed legs (a chicken
that received 20 �g penta-BDE/g egg, a control mallard, and
a kestrel that received 0.1 �g penta-BDE/g egg). Many of the
kestrel embryos that died were developmentally stunted and
physically small relative to their incubation age, but this ten-
dency was not observed in chicken or mallard embryos.

Crown-rump length, body weight (without yolk sac), and
liver to body weight ratio did not differ between uninjected
and vehicle-injected groups for chickens, mallards, and kes-
trels ( p 
 0.15). Liver to body weight ratio, however, differed
between the mallard uninjected and vehicle-injected control
groups ( p � 0.001). With minor exceptions, no differences
were found in crown-rump length, body weight, liver to body
weight ratio, thyroid to body weight ratio, and bone lengths
in hatchling chickens, mallards, or kestrels that had been treat-
ed with PCB 126 or penta-BDE. Compared to controls, femur

length appeared to be shorter in PCB 126–treated birds, but
this was only significant ( p � 0.0086, Student’s t test) for the
right femur in kestrels (mean � standard error, 9.49 � 0.11
vs 8.74 � 0.31 mm).

The bursa to body weight ratio of the six surviving chicken
hatchlings treated with PCB 126 in ovo was markedly smaller
(52%; p � 0.002) compared to controls, but weights of other
immune organs were unaffected. No differences were found
in the organ to body weight ratios of spleen, bursa, or right
thymus in penta-BDE–exposed chickens, mallards, or kestrel
hatchlings.

Experiment 1: Histopathology

Hepatic lipidosis, associated with yolk assimilation, was
observed in all species. No lesions were seen in liver sections
of chicken hatchlings that had been treated in ovo with PCB
126 or penta-BDE. Because of some qualitative observations
suggesting changes in hepatocyte cellularity in chickens (but
not mallards or kestrels), the number of hepatocytes per 10
�m of length was determined, but this number did not differ
among treatments ( p 
 0.3). Liver samples from a small num-
ber of kestrel and mallard hatchlings exhibited focal necrosis
in control, PCB, and penta-BDE treatment groups. The inci-
dence of lesions in treated groups, however, was not different
from controls ( p 
 0.3).

Bursal follicle size was smaller ( p � 0.02) in PCB 126–
exposed chickens compared to controls. Bursal follicle size of
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Fig. 2. Hepatic ethoxyresorufin-O-dealkylase activity (EROD; pmol
product/min/mg microsomal protein) of chicken (Gallus gallus), mal-
lard (Anas platyrhynchos), and American kestrel (Falco sparverius)
control (CON) hatchlings or hatchlings that had been treated with
0.002 �g polychlorinated biphenyl (PCB) 126/g egg and pentabrom-
inated diphenyl ether mixture (0.01–20 �g DE-71/g egg) in ovo. For
chickens, groups with different capital letters are significantly differ-
ent (p � 0.05).

chicken hatchlings in all penta-BDE treatment groups, includ-
ing the lowest doses (0.01 and 0.1 �g/g), seemed consistently
smaller than in controls (Fig. 1). Based on this observation
and preliminary statistical findings, additional chicken bursa
samples at all dose levels were processed. Bursal follicle size
of chicken hatchlings was consistently smaller in all penta-
BDE treatment groups compared to controls (24–42%; p �
0.057–0.001). Mallard and kestrel bursa and follicle size did
not differ among PCB 126, 20 �g penta-BDE/g, and the com-
bined control groups ( p 
 0.3).

Experiment 1: Hepatic microsomal EROD activity

For mallard and kestrel hatchlings, hepatic EROD activity
of uninjected and vehicle-injected controls did not differ within
species (kestrel: p � 0.60; mallard: p � 0.64). The EROD
activity in chickens, however, was significantly different be-
tween uninjected and vehicle-injected controls ( p � 0.0379);
therefore, only the vehicle-injected group was used for com-
parisons with PCB and penta-BDE treatment groups. In chick-
en hatchlings, log-transformed EROD activity was induced
more than 35-fold in PCB 126-exposed embryos, fivefold at
1 �g penta-BDE/g, 21-fold at 10 �g penta-BDE/g, and 22-
fold at 20 �g penta-BDE/g ( p � 0.0001) (Fig. 2). Activity of
EROD was not induced by PCB 126 or penta-BDEs in kestrels
and mallards.

Experiment 1: Glandular T4 content

Because of heterogeneity of variance, thyroid T4 content
data (ng/mg thyroid and ng/thyroid) were log-transformed be-
fore comparisons among treatments. Thyroxine content did not
differ among PCB 126 and penta-BDE treatments in hatchling
chickens ( p 
 0.2) or mallards ( p 
 0.7). Both total glandular
T4 content and T4 concentration per milligram of thyroid were
lower ( p � 0.001) in kestrel hatchlings exposed to PCB 126
but were unaffected by penta-BDE (Table 2).

Experiment 2: Penta-BDE absorption into chicken and
kestrel eggs

The administered dose of penta-BDE (analytically verified
to be 11.1 �g/g egg) was gradually absorbed through the air
cell membrane during the exposure period in chickens (Table
3), as indicated by an increase in total PBDE concentration in
contents of eggs ( p � 0.048) over the course of incubation.
Of the dose administered in chicken eggs, 0.64% was absorbed
after 24 h, 7.71% after 6 d, and 29.6% by the time of pipping
(i.e., 17 d after administration). On a lipid-weight basis, PBDE
absorbed into chicken eggs was 0.855 � 0.459, 10.0 � 0.78,
and 47.0 � 6.12 �g/g lipid on day 5, 10, and 21 of incubation,
respectively.

In kestrels, a significant ( p � 0.008) increase in PBDE
uptake was found between injection and midway through in-
cubation (1.64% was absorbed after 24 h and 18.4% after 8
d). Uptake rate seemingly was not sustained through the last
half of incubation (18.6% at pipping, day 26 of incubation),
although the sample size was small (n � 4) and the uptake
variable (13.3–24.8%). On a lipid-weight basis, PBDE ab-
sorbed into kestrel eggs was 3.10 � 1.64, 37.2 � 6.91 and
54.4 � 10.6 �g/g lipid on day 6, 13, and 26 of incubation,
respectively.

DISCUSSION

In ovo administration of penta-BDE in chickens reduced
the number and size of bursal follicles at administered doses

as low as 0.01 �g/g egg and induced hepatic EROD activity
starting at doses of 1 �g/g egg. No effects of penta-BDE on
embryonic survival or pipping and hatching success were ob-
served in chickens. Pipping and hatching success in kestrels,
however, appeared to be lower (not statistically significant, p
� 0.12) at an administered dose of 1 �g/g egg, and adverse
reproductive effects were statistically significant at 10 and 20
�g/g egg. The reproductive effects of penta-BDE observed in
kestrels, but not in chickens, are in contrast to the extreme
sensitivity of the chicken embryo to coplanar PCBs (present
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Table 2. Glandular thyroxine (T4) content in chicken (Gallus gallus), mallard (Anas platyrhynchos), and American kestrel (Falco sparverius)
exposed to polychlorinated biphenyl (PCB) congener 126 and pentabrominated diphenyl ether mixture (penta-BDE; DE-71) in ovoa

Combined
control

Dose (�g/g egg)

PCB 126

0.002

Penta-BDE

0.01 0.1 1 10 20

Chicken
n 30 6 13 14 12 14 12
Paired thyroid wt (mg) 6.39 � 0.22 7.83 � 0.79 5.82 � 0.37 5.88 � 0.38 6.00 � 0.32 5.81 � 0.34 6.66 � 0.26
T4 (ng/mg thyroid) 440 � 29.7 484 � 52.8 645 � 64.2 459 � 69.5 491 � 84.4 448 � 46.4 538 � 75.8
T4 (ng/paired thyroids) 2,758 � 171 3,619 � 212 3,493 � 186 2,551 � 317 2,649 � 374 2,540 � 250 2,515 � 391

Mallard
n 23 12 11 11 12 12 11
Paired thyroid wt (mg) 6.45 � 0.29 6.39 � 0.27 7.77 � 0.42 7.58 � 0.40 7.16 � 0.34 6.51 � 0.33 6.99 � 0.55
T4 (ng/mg thyroid) 317 � 28.0 313 � 68.0 212 � 19.9 283 � 29.4 232 � 25.3 284 � 24.8 298 � 28.7
T4 (ng/paired thyroids) 2,023 � 200 1,933 � 359 1,701 � 240 2,133 � 233 1,628 � 225 1,898 � 240 2,060 � 159

Kestrel
n 30 9 13 9 8 9
Left thyroid wt (mg) 1.19 � 0.09 1.39 � 0.21 — 1.30 � 0.12 1.04 � 0.14 1.32 � 0.15 1.28 � 0.19
T4 (ng/mg thyroid) 464 � 64.4 144 � 48.2* — 333 � 70.4 378 � 54.8 371 � 64.9 405 � 80.3
T4 (ng/left thyroid) 438 � 29.3 159 � 23.8* — 350 � 35.3 351 � 48.9 443 � 53.8 403 � 29.1

a Untransformed values are presented as the mean � standard error and n. An asterisk indicates a significant difference (p � 0.001) difference
from the corresponding control.

Table 3. Uptake of air cell–administered pentabrominated diphenyl ether mixture (penta-BDE; DE-71) during incubation in chicken and kestrel
eggsa

Sampling day

24 h Postinjection Midincubation Pipped

Chicken
Vehicle injected (�g total penta-BDE/g egg wet wt) ND ND 0.00042 � 0.0002
Penta-BDE injected (�g total penta-BDE/g egg wet wt)b 0.084 � 0.0459A 1.03 � 0.111B 4.93 � 0.994C
Uptake of analytically verified penta-BDE dose (%)c 0.64 � 0.356 7.71 � 0.857 29.6 � 4.56

Kestrel
Vehicle injected (�g total penta-BDE/g egg wet wt) 0.00043 � 0.000216 ND to 0.00232 0.00038 � 0.000198
Penta-BDE injected (�g total penta-BDE/g egg wet wt)b 0.208 � 0.1129A 2.43 � 0.452B 2.80 � 0.498B
Uptake of analytically verified penta-BDE dose (%)c 1.64 � 0.871 18.4 � 3.32 18.8 � 3.04

a The penta-BDE was administered at an analytically verified dose of 11.1 �g/g egg. Values are presented as the mean � standard error (chickens,
n � 3 per sampling day; kestrels, n � 3–4 in penta-BDE–treated eggs/sampling day and n � 2–3 in vehicle-treated eggs/sampling day). ND
� below detection limit.

b Groups with different uppercase letters are significantly different (p � 0.05).
c Total quantity of penta-BDE in egg contents/total quantity of penta-BDE administered to whole egg.

study) and [19,25,26]. Although PBDEs and PCBs have some
structural similarities, their toxicity (histology of the bursa,
cytochrome P450 induction, and lethality) appears to be mark-
edly different in chickens and kestrels.

Survival, pipping, and hatching success

Administration of PCB 126 (positive control) impaired em-
bryonic survival, pipping, and hatching success in chickens
and kestrels. Clearly, PCB 126 was most toxic in chickens;
only 20% of injected eggs hatched. Mallard embryos appeared
to be far more tolerant of PCB 126 than chickens, as previously
noted for this congener and other coplanar PCBs [25,27,28].
Decreased embryonic survival and hatching success has been
reported in chickens receiving air cell–administered PCB 126
at doses as low as 0.00025 �g/g egg (i.e., 250 pg/g) [19,20],
and the estimated median lethal dose of this congener may be
as high as 0.0031 �g/g egg (i.e., 3,100 pg/g) when injected
on day 7 of incubation [26]. The dose used in the present study
(0.002 �g/g egg) is high compared to previously reported tox-

icity thresholds for chickens [19,20,29]. Air cell administration
of PCB 126 [18] and, presumably, other compounds (e.g.,
methylmercury) [17], however, is considerably less embryo-
toxic in eggs incubated horizontally compared to those incu-
bated vertically [19,20,29]. In vertically incubated eggs, the
embryo is situated directly under the air cell, and because of
its proximity to the injection site, the embryo may be more
directly exposed to administered PCB 126 [18].

Pipping and hatching success were only affected in kestrels,
with decreases in these endpoints seemingly starting at a dose
of 1 �g/g egg and becoming definitive at 10 and 20 �g/g egg.
The metabolism of lipid-soluble xenobiotic compounds de-
pends, in part, on the action of phase I enzymes, and the
activity of some of these (e.g., cytochrome P450–associated
monooxygenases) are lower in fish-eating birds and raptors
than in other groups of birds and mammals [30]. The reduced
ability of kestrels to metabolize persistent organic pollutants,
such as PBDEs, may contribute to sustained exposure and,
thus, greater toxicity. In addition, kestrels are semialtricial,
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and the structural and metabolic capabilities of the liver and
kidneys are relatively less developed during incubation and at
hatch compared with those of precocial species (chicken and
mallard).

In a study by Fernie et al. [9], hatching success after an air
cell–administered dose of 1.5 �g PBDE/g to kestrel eggs on
day 19 of incubation did not differ from that of vehicle-injected
controls. Their treatment regimen, however, only permitted an
8-d exposure period before pipping, unlike our 22-d exposure
period. In addition, hatching success of their control group
was quite low compared to the present study (i.e., 53.6% vs
80.0%). The 1.5 �g PBDE/g dose approaches environmentally
relevant wet-weight concentrations in eggs of fish-eating birds,
including herring gulls (1.4 �g/g) [2] and ospreys (0.928
�g/g) [4,5]. Wet-weight concentrations of PBDEs in eggs of
peregrine falcons, a terrestrial predatory species, have been
reported to average 0.23 �g/g in northern Sweden [31]. A
recent study involving analysis of 114 unhatched peregrine
falcon eggs from the northeastern United States revealed an
average of 0.59 �g PBDE/g wet weight, with 8.8% of the
samples exceeding 1 �g/g and values ranging up to 6.6 �g/g
[6]. These values in eggs from the once-endangered peregrine
falcon are within the range of the lowest-observed-effect levels
(LOELs) for pipping and hatching success in kestrels. These
concentrations are of concern, because PBDE values in bird
eggs have increased for 20 years [2], although values appear
to have leveled off, possibly because of a decrease in pro-
duction of penta-BDE and octa-BDE formulations [3].

Edema, deformities, hatchling organ weights, and bone
lengths

As previously noted [19,20,29,32], air cell administration
of PCB 126 resulted in stunted growth and edema in many
chicken and kestrel embryos that failed to hatch. Greater con-
centrations of PCB 126, however, were required to evoke these
responses, presumably because of the horizontal position of
incubating eggs [18]. In the present study, neither body weight
nor liver to body weight ratio was affected by PCB 126 in
day-old hatchlings. This is similar to observations in chickens
that received air cell–administered PCBs, but it is in contrast
to findings in kestrels (decreased body and liver wt) [19]. Some
evidence of reduced growth (i.e., shorter femur length) was
observed in kestrel hatchlings following administration of PCB
126, which is similar to the findings of Hoffman et al. [19].
Notably, yolk sac administration of higher doses of PCB 126
(0.032 �g/g egg) have been reported to result in lower body
weight of hatchlings and to increase the ratios of brain, heart,
and liver to body weight (but not absolute weights of these
organs) [33].

Stunted growth and edema were observed in most penta-
BDE–treated kestrel embryos that failed to hatch. Most of the
mallard embryos that failed to hatch, including both controls
and penta-BDE groups, exhibited edema (but not stunted
growth). This is attributed to technical difficulties in the ar-
tificial incubation of mallard eggs, perhaps associated with
retention of the waxy eggshell cuticle and apparent retention
of fluid (i.e., difficulties in attaining 14–16% moisture loss
throughout incubation). Body weight, crown-rump length, liv-
er to body weight ratio, and bone lengths were not affected
in any of the species in the present study. In the study by
Fernie et al. [9], growth and tarsometatarsus bone length were
marginally greater in PBDE-treated nestling and fledgling kes-
trels. Larger liver weights have been reported in mice, rats,

and mink exposed to PBDEs [34,35]. These effects, however,
occurred in animals that were exposed repeatedly to much
higher doses of PBDEs.

Liver EROD activity and histopathology

Toxic effects of dioxins and dioxin-like compounds are
principally mediated through binding to a cytosolic aryl hy-
drocarbon receptor (AhR), and this ligand-activated factor in-
creases or decreases transcription of mRNAs and translation
of proteins. Induction of cytochrome P450 1A (CYP1A),
which is mediated by AhR, is a well-characterized response
to dioxin-like compounds. The induction of CYP1A-associated
monooxygenases, specifically EROD activity, has been used
extensively as an exposure biomarker of dioxin-like com-
pounds (e.g., coplanar PCB congeners) in birds [19,25,36,37].
In agreement with other studies, our findings (Fig. 2) illustrate
that EROD activity is induced by PCB 126 in chickens. In
contrast, doses at least 50-fold greater are required to induce
EROD in mallards and kestrels [19,26]. This greater sensitivity
in the chicken is apparently caused by the presence of two
amino acids (isoleucine-325 and serine-381) in the ligand-
binding domain of the AhR in chickens, for which substitutions
exist in some avian species (less sensitive species, alanine-
381; insensitive species, valine-325 and alanine-381) [38,39].

Polybrominated diphenyl ethers are structurally similar to
polyhalogenated aromatic hydrocarbons that bind to AhR and
induce EROD activity, although PBDE mixtures and individual
congeners are less potent (10�2 to 10�5) than dioxin [14]. There
have been conflicting reports about the ability of PBDEs to
induce EROD activity in mammals and mammalian hepatocyte
cultures [14,35,40–42]. Induction in some studies may have
been caused by dioxin and dibenzofuran impurities in the tech-
nical mixture. Martin et al. [35] analyzed DE-71, the technical
mixture used in the present study, and those authors did not
detect dioxins or dibenzofurans (detection limit, �30 pg/g).
The failure to detect dioxins or dibenzofurans would suggest
that the observed EROD induction in chickens during the pres-
ent study may not have been caused by impurities. Despite
reproductive effects in kestrels, EROD activity was not in-
duced. Based on this observation, the toxic effects of PBDEs
in kestrels may not be principally mediated through the AhR.

Despite the induction of EROD activity in chicken hatch-
lings following the administration of PCB 126, no evidence
of liver lesions was found in survivors. The absence of liver
pathology may be caused by a survivor effect. In other words,
by the time of hatching, any embryos that might have had
hepatic lesions had died, whereas the least-affected chicken
embryos hatched. Notably, Rifkind et al. [43] described nar-
rowing of hepatic sinusoids in day-18 chicken embryos 24 h
after administration of PCB 77 at approximately 0.0225 �g/g
egg (22,500 pg/g egg). This congener has half the toxic potency
of PCB 126 in birds [44]. Thus, the dose used in the present
study (0.002 �g PCB 126/g egg) was less than one-fifth the
LOEL observed in the study by Rifkind et al. [43] (�0.01125
�g/g egg). Administration of PCB 126 in kestrel eggs evoked
mortality, but no histopathological lesions were observed.
Hoffman et al. [45] reported multifocal necrosis in liver of
kestrel hatchlings exposed repeatedly to PCB 126 from day 1
to day 10 posthatch, receiving a total administered dose of
approximately 87 �g. In the present study, kestrel eggs were
injected once and received a total of approximately 0.03 �g.
Again, the effect level observed by Hoffman et al. resulted
from administration of a much greater dose. Fox et al. [46]
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observed periportal hepatitis in livers of adult herring gulls
from the Great Lakes. Concentrations of PCBs in liver tissue
averaged 13.4 �g/g. Clearly, the single early exposure regimen
in the present study was well below the threshold eliciting
microscopic effects in liver tissue of surviving embryos that
hatched.

Thyroid gland and hormones

Alterations to the thyroid system can affect metabolism,
growth, and thermoregulation. In the present study, exposure
to PCB 126 resulted in lower glandular T4 content in kestrel
hatchlings but not in the other species tested. As previously
discussed, American kestrels are semialtricial and are less de-
veloped at hatch compared with precocial species. Based on
the number and size of follicles, colloid staining characteris-
tics, and T4 content, the thyroid is less developed in altricial
embryos and hatchlings compared to precocial species [47,48].
The difference in development in kestrels may render the thy-
roid gland more sensitive to in ovo exposure to thyroid-dis-
rupting chemicals, such as PCBs. Notably, pipping herring gull
embryos and chicks (semiprecocial species) from PCB-con-
taminated sites in the Great Lakes have been reported to have
lower glandular T4 content than gulls from reference sites [49].

Compared to circulating concentrations of T4 and triiodo-
thyronine, and to thyroid weight, glandular T4 content has been
reported to be a more sensitive indicator of decreased thyroid
function in studies of PCB and perchlorate toxicity in birds
[49–51]. Toxic effects of PBDEs on thyroid function are in-
completely known. In laboratory studies of mice and rats,
PBDE exposure decreases plasma T4 concentrations
[12,15,52], may alter plasma transport of T4 through compet-
itive binding mechanisms [53], and induces enzymatic deg-
radation of thyroid hormones through induction of hepatic T4-
glucuronidation activity [15,54]. Fernie et al. [8] suggested
that PBDE exposure results in slightly lower plasma T4 con-
centrations in kestrels, although no alterations in thyroid his-
tology were observed. In the present study, the absence of
effects on thyroid weight and glandular T4 content in chicken,
mallard, and kestrel embryos suggests that thyroid function
may not be altered by in ovo exposure to PBDEs at the doses
tested.

Immune organs and histology

In birds, the thymus, bursa of Fabricius, and spleen are all
recognized as integral parts of the immune system. The bursa
is a primary lymphoid organ, which is unique to birds, and is
necessary for normal development of the humoral immune
system. In the present study, bursal weights were significantly
lower in PCB 126–treated chicken hatchlings. This and other
AhR active congeners have been reported previously to induce
atrophy of the bursa in chickens exposed in ovo [20,29,55].
Bursal somatic index decreased with increasing concentrations
of BDE 47 in kestrel hatchlings exposed in ovo and posthatch-
ing [7]. Nonetheless, this change was not seen in penta-BDE–
treated chickens, mallards, and kestrels exposed in ovo. The
number of follicles per bursa and the follicle size, however,
were consistently lower in chickens treated with PCB 126 and
all doses of penta-BDE. Fernie et al. [7] reported reduced
antibody-mediated response in kestrels exposed to PBDEs in
ovo and posthatching. Thus, results from both of these studies
indicate that the bursa may be sensitive to embryonic PBDE
exposure. It also has been demonstrated that immune organ
cellularity may be a more sensitive indicator of PCB-induced

atrophy than organ mass [20,55]. Lavoie et al. [56] suggest
that the immune system may recover from in ovo exposure to
PCBs, and this could be the case for PBDEs. Therefore, more
studies of the immune system with multiple endpoints in birds
chronically exposed to PCBs and PBDEs seem warranted.

Penta-BDE absorption into the egg

Artificial treatment of eggs by air cell or yolk sac injection
is believed to approximate the toxicity of maternally deposited
compounds. Embryotoxic responses (e.g., cytochrome P450,
edema, deformities, and mortality) evoked by egg injection of
PCBs compare favorably to those observed following natural
exposure [57]. At equal concentrations, however, air cell–in-
jected methylmercury seems to be more toxic than naturally
incorporated methylmercury [58]. Air cell–injected com-
pounds must cross the air cell membrane into the albumen,
blood vessels, and yolk to reach the embryo. It is unknown if
air cell–administered or yolk-injected compounds mimic the
distribution of naturally deposited contaminants in eggs, but
these techniques frequently are employed to circumvent the
difficulties and expense of studying such effects in feeding
trials. With these caveats in mind, actual concentrations ab-
sorbed into egg contents were determined and can be related
to embryotoxic effects.

De Roode and van den Brink [59] injected PCBs into the
yolk of chicken eggs before incubation and measured an ex-
ponential increase in uptake by the embryo, with 18% of the
administered dose absorbed into the embryo by day 19. Maer-
voet et al. [60] noted a similar exponential uptake after yolk
injection of PCBs 77, 153, and 180 into the embryo during
the last week of incubation. The penta-BDEs injected into the
air cell of chicken eggs were gradually absorbed over the
17-d exposure period, with an apparent increase in uptake rate
into egg contents between day 10 and pipping, perhaps sug-
gesting an exponential absorption relationship. This increase
in absorption rate could be the result of increased size and
density of vitelline blood vessels and the vast growth of the
blood vessels of the chorioallantoic network under the inner
shell membrane. Compared to chickens, penta-BDE appeared
to be absorbed at a greater rate through midincubation in kes-
trels (i.e., 18.4% vs 7.71% of administered dose). Thereafter,
PBDE absorption in kestrels appeared to level off, although
sample size was small.

Based on the concentrations of total PBDEs absorbed into
chicken and kestrel eggs (Table 3), effects in the present study
are occurring at substantially lower concentrations compared
with those in dosing solutions administered into the air cell.
We observed up to 29.6% of the analytically verified dose of
11.1 �g penta-BDE/g egg in the chicken egg by pipping. Sub-
lethal effects were noted in chicken hatchlings in the present
study, but from an ecological perspective, the most important
effects were on pipping and hatching in kestrels, a toxicolog-
ical model species often used in risk assessments for raptorial
birds. During the first half of incubation, more than twice as
much PBDE was absorbed in kestrel eggs compared to chicken
eggs. This could have influenced mortality rate; however, the
majority of mortality occurred at the end of incubation. By
the end of incubation, findings in experiment 2 indicate that
18% of the administered dose was absorbed in kestrels. Ad-
verse reproductive effects were observed in kestrels receiving
10 �g/g egg of this technical mixture into the air cell, and at
18% uptake, the LOEL associated with impaired pipping and
hatching success could be as low as 1.8 �g/g egg wet weight.
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This exposure is only approximately twofold greater than the
total PBDE concentrations reported in osprey eggs [4,5] and
is well within the range of total PBDE concentrations detected
in peregrine falcon eggs from the northeastern United States
[6]. On a lipid-weight basis, the LOEL for impaired pipping
and hatching success would be approximately 32 �g PBDE/
g egg lipid weight.

CONCLUSION

The present study demonstrates that air cell administration
of environmentally realistic concentrations of penta-BDE in-
duced EROD activity and reduced bursal follicle size and num-
ber in chicken hatchlings. Survival endpoints also were af-
fected in kestrel embryos. As previously demonstrated, PCB
126 reduced survival endpoints in both chicken and kestrel
embryos. Mallards were less sensitive than chickens or kestrels
to both PCB 126 and penta-BDEs. The observed effects are
cause for concern in free-ranging avian predators and other
wildlife exposed to PBDEs. Although the concentrations of
penta-BDE congeners commonly detected in the environment
seem to have plateaued in herring gull eggs in the Great Lakes,
levels of higher-brominated congeners are still increasing [3].
Further effect studies with higher-brominated congeners in top
predators are suggested.
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