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Abstract 
The purpose of this work was to examine the tRNATrp-encoding genes (tRNATrp) of Saccharomyces 
cerevisiae to gain insight as to why tRNATrp amber suppressors, isolated by conventional genetic tech-
niques, have not been reported. The results herein indicate that the haploid yeast genome contains 
six tRNATrp genes which map to five or six chromosomes. Not only do the six genes have identical 
coding sequences but their introns are also identical. Gene replacement experiments indicate that 
five copies of tRNATrp are sufficient for cell viability. Thus, mutation of one tRNATrp gene to a sup-
pressor in vivo, lowering the functional number of tRNATrp genes, would not be expected to be lethal. 
 
Keywords: suppressor, recombinant DNA, intron, amber suppressor, mutagenesis, pulsed-field gel 
electrophoresis, gene replacement, tetrad analysis 
 
Abbreviations: bp, base pair(s); kb, kilobase(s) or 1000 bp; nt, nucleotide(s); oligo, oligodeoxyribo-
nucleotide; PCR, polymerase chain reaction; RFLP, restriction-fragment length polymorphism; 
tRNA, transfer RNA; tRNATrp, gene encoding tRNATrp; ::, novel junction (fusion or insertion) 
 
Introduction 
 
To date, all of the spontaneous nonsense suppressors in S. cerevisiae are alleles of genes 
encoding tRNATyr, tRNASer, tRNALeu, or tRNAGln (reviewed in Sherman, 1982; Edelman and 
Culbertson, 1991). Although there are six other tRNA genes which should require only a 
single base change in the anticodon to encode a functional suppressor, in vivo mutations 
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involving these tRNA genes have not been isolated. For example, a single base substitution 
in a tRNATrp gene to change an encoded C to a U in either the first base or the second base 
of the anticodon should be sufficient to produce a tRNA capable of reading either the opal 
or amber nonsense codons, respectively. The cloning of a S. cerevisiae gene specific for 
tRNATrp was originally reported by Kang et al. (1980). An opal suppressor allele of this 
gene can be constructed by in vitro mutagenesis to change a single base in the anticodon. 
Suppression by the product of this gene is seen only when the gene is present on a multi-
copy plasmid (Kim et al., 1990). A gene with changes in both the anticodon and the intron 
is a more efficient opal suppressor, but this gene must also be present on a multicopy plas-
mid to observe suppression (Atkin et al., 1990). In contrast, it has been demonstrated that 
an amber suppressor can be constructed by a single change in the CCA anticodon of this 
gene to CTA (Kim and Johnson, 1988; Atkin et al., 1990). This gene was found to be an 
efficient suppressor when expressed from a single copy plasmid. These results suggest that 
it may not be possible to isolate tRNATrp opal suppressors by conventional genetic tech-
niques. However, the ability to construct an efficient amber suppressor by a single engi-
neered change raises the question of why it has not been possible to isolate tRNATrp amber 
suppressors by conventional genetic techniques. 

One species of tRNATrp precursor accumulates in rna1 mutants of S. cerevisiae (Ogden et 
al., 1984). This, and the inability to isolate spontaneous amber suppressor alleles of this 
gene, suggests there could be gene dosage constraints that prohibit mutating a tRNATrp 
gene to a suppressor. All copies of this gene may be required for tRNATrp function. Alter-
natively, there may be several tRNATrp genes with one being transcribed more efficiently 
than the others, making it indispensable for tRNATrp function. In this case, mutating one of 
the other copies to a suppressor-encoding gene would not result in measurable suppres-
sion due to inefficient expression of these copies of the gene. To examine these possibilities, 
the number of functional tRNATrp genes was determined and the consequences of disrupt-
ing a functional copy of a tRNATrp gene were examined. 
 
Results and Discussion 
 
(a) Copy number determination for the tRNATrp genes of Saccharomyces cerevisiae 
The number of tRNATrp genes in the haploid genome of S. cerevisiae was determined by 
genomic Southern analysis. Genomic DNA was isolated from four haploid yeast strains 
(RJ293-13C, JG369-3B, N123, and JG 113-5R), and aliquots were digested individually with 
BamHI, EcoRI, HindIII, and PstI. The yeast strains used in this study are described in table 
I. Figure 1 shows the autoradiographs of Southern blots of genomic DNA from two of these 
strains (RJ293-13C and JG369-3B). The Southern transfers were first probed with an end-
labeled oligo complementary to the 21 bases at the 3′ end of the gene (fig. lA,C). Six bands 
of equal intensity were observed in each genomic digest for each of the haploid yeast 
strains shown, as well as the other two strains (not shown). RFLPs were observed between 
each of the four strains analyzed. For example, a single RFLP can be observed between the 
two strains shown. The other two strains (data not shown) also exhibited polymorphisms. 
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Table I. Yeast strains used in this study 
Straina Genotype Source 

RJ293-13C MATa, his4-260, leu2-3,112, ura3-52 J. Johnson 
JG369-3B MATα, ade2-1, lys2-1, can1-100, met8-1, trp1-1, leu2-2, his4-260, ura3-52 J. P. Gelugne 
JG113-5R MATa, ade2-1, can1-100, met8-1, trpl-1, leu2-2, his4-260 J. P. Gelugne 
N-123 MATa, his1 (rho +, ome –, CHLS, ERYS, OLIS) R. C. von Borstel 
ALA1-12B MATα, lys2-1, met8-1, trpl-1, his4-260, ura3-52 This study 
ALA2-28C MATa, ade2-1, met8-1, trpl-1, ura3-52, ilv1 This study 
ALA11 ALA1-12B × ALA2-28C This study 

a. The above strains were constructed using standard genetic techniques (Ausubel et al., 1989). 

 

 
 

Figure 1. Southern analysis of genomic DNA from Saccharomyces cerevisiae strains RJ293-
13C and JG369-3B. (Panel A) The Southern transfer of genomic DNA from RJ293-13C di-
gested with BamHI (B), EcoRI (E), HindIII (H), and PstI (P) was hybridized with an end-
labeled oligo probe which is complementary to 21 nt of the antisense strand at the 3′ end 
of the gene. (Panel B) The same Southern transfer hybridized to a probe which is comple-
mentary to 15 nt, extending 5′ from 12 nt upstream from the mature coding sequences of 
the tRNATrp gene cloned by Kang et al. (1980). (Panel C) An autoradiograph of a Southern 
transfer of genomic DNA from JG369-3B digested with BamHI, EcoRI, HindIII, and PstI 
hybridized with the same probe as in A. The location of the λ HindIII size markers (in kb) 
has been indicated. Methods. Yeast genomic DNA was prepared by the method of Au-
subel et al. (1989). These DNAs, digested with the appropriate restriction enzymes, were 
resolved on 1% agarose gels and subsequently transferred to GeneScreen Plus following 
the manufacturer’s (duPont Co.) instructions. The Southern transfers were hybridized to 
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the 5′ end-labeled oligo as described in Van Tol et al. (1988), with modifications (Wallace 
and Miyada, 1987). The design of the oligos used as probes was based on the sequence of 
the previously cloned S. cerevisiae tRNATrp gene (Kang et al., 1980). 

 
To determine whether each of the six tRNATrp genes contains an intron, Southern blots 

were probed with an end-labeled oligo which is complementary to 10 nt 5′ and 10 nt 3′ to 
the intron, or an oligo complementary to 10 nt of intronic sequences and 10 nt of exonic 
sequence surrounding the 3′-splice junction. These hybridizations were done under strin-
gent conditions. A blot with mature tRNATrp was included in the experiment as a control. 
We have previously shown that the first end-labeled oligo hybridizes specifically to ma-
ture tRNATrp and not intron-containing precursors (Atkin et al., 1990), while the second 
end-labeled oligo hybridizes only to intron-containing precursors under the experimental 
conditions used. In agreement with these previous experiments, the first end-labeled oligo 
hybridized to only the mature tRNATrp. The second end-labeled oligo hybridized to the 
same bands as the end-labeled oligo (complementary to 21 bases of the 3′ end of the gene) 
used to determine the copy number of the tRNATrp gene (results not shown). Thus, all of 
the tRNATrp genes in S. cerevisiae appear to contain an intron. 

The Southern blots were also probed with an end-labeled oligo complementary to se-
quences 5′ to the start of the mature coding sequences of the gene cloned by Kang et al. 
(1980). A single band was observed in each genomic digest for each strain (fig. 1B), sug-
gesting that there is very little sequence homology in the 5′ flanking sequences between 
the original member to be cloned (Kang et al., 1980) and the other members of this family 
of genes. The pattern of bands observed for RJ293-13C (fig. 1B) was identical to the patterns 
of bands observed for the Southern blots of genomic digests of DNA isolated from the 
three other strains. Thus, no RFLPs appear to be associated with this member of the tRNATrp 
gene family, at least among the four strains studied herein. 
 
(b) Chromosomal location of the tRNATrp genes 
The genomic locations of the tRNATrp genes were examined by probing Southern blots of 
intact yeast chromosomes separated by pulsed-field gel electrophoresis (fig. 2). The South-
ern blot of the yeast chromosomes was first probed with the end-labeled oligo complemen-
tary to the 3′ end of a tRNATrp gene, as in figure 1. Five bands were observed (fig. 2A), four 
of equal intensity and one with approximately twice the intensity. The more intense band 
correlated with the expected positions of chromosomes XV and VII. Thus, there may be 
two genes on one of these chromosomes, or these genes may be located on separate chro-
mosomes. The same Southern blot was hybridized with a 0.41-kb tRNATrp fragment sub-
cloned from the 3.4-kb fragment cloned by Kang et al. (1980) to determine to which chro-
mosome this gene maps. This probe hybridizes to chromosome XV or VII (fig. 2B). Thus, 
the first member of this gene family to be cloned maps to chromosome XV or VII, and the 
six tRNATrp genes in the haploid genome of S. cerevisiae are dispersed on five or six chro-
mosomes. 
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Figure 2. Southern hybridization of yeast chromosomes separated by pulsed-field gel 
electrophoresis. (Panel A) The Southern transfer was hybridized with an end-labeled ol-
igo complementary to 21 nt of the antisense strand at the 3′ end of the tRNATrp gene, as in 
figure 1. (Panel B) The same Southern blot was hybridized to a random primer-labeled 
0.41-kb fragment of yeast DNA containing a tRNATrp gene. The location of the yeast chro-
mosomes is indicated. The position that the individual yeast chromosomes migrated to 
was determined from the ethidium-bromide-stained 1% agarose gel before the Southern 
transfer. The isolation of intact yeast DNA for pulsed-field gel electrophoresis was per-
formed as described in Sambrook et al. (1989). Intact yeast chromosomes were resolved 
in a CHEF gel system, and DNA transferred to GeneScreen Plus was hybridized to end-
labeled oligos, as in figure 1. The protocol of Klessig and Berry (1983) was used for hy-
bridizing the random primer-labeled probe to these Southern transfers. 

 
The results of the Southern analyses for gene enumeration and chromosomal locations 

are substantially in accordance with those previously reported (Yesland et al., 1991). Using 
similar methodology (and including strain RJ293-13C), their analysis suggests there are 
seven copies of the tRNATrp gene in S. cerevisiae. This conclusion was based on the observa-
tion of a seventh very faint band in addition to six prominent bands of approximately equal 
intensity in the lane with the HindIII digest of RJ293-13C genomic DNA probed with an 
end-labeled oligo. Figure lA shows a HindIII digest of RJ293-13C genomic DNA, also 
probed with an end-labeled oligo. Only six bands of equal intensity were observed. We 
feel that the fainter band observed by Yesland et al. (1991) is artefactual or the result of a 
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polymorphism within their culture of the strain, although the authors reported no RFLPs 
within this family of genes for any of the three yeast strains that they examined. The pre-
sent work supports the original estimate that the haploid genome of S. cerevisiae has six 
copies of the tRNATrp gene (Kim and Johnson, 1988; Atkin et al., 1990) but also demonstrates 
that RFLPs may be associated with at least some of the members of this gene family. 
 
(c) Cloning of the tRNATrp genes 
The sequence of one of the tRNATrp genes has been published (Kang et al., 1980). This se-
quence and additional 5′ and 3′ flanking sequences are shown in figure 3. Based on this 
sequence, primers A and B were designed to clone each of the tRNATrp genes from the 
haploid yeast genome by the polymerase chain reaction (PCR). Yeast genomic DNA (iso-
lated from RJ293-13C) was digested with HindIII and size-fractionated on an agarose gel. 
DNA from gel slices was used in different PCR reactions. Products were obtained only 
from the DNA of the expected size fractions. PCR products were not detected in any of the 
control reactions containing DNA from gel slices of size fractions which were not expected 
to contain tRNATrp genes. The products were cloned into pUC119 for sequencing in both 
directions. Multiple independently isolated PCR products were sequenced for each size 
class with T7 DNA polymerase, using the –20 universal primer and the reverse sequencing 
primer (Sambrook et al., 1989). The sequences of the mature coding regions and the introns 
of the cloned tRNATrp genes were identical; however, the PCR technology used herein 
could have missed encoded polymorphisms that were included within sequences covered 
by the primers. 
 
(d) Replacement of a copy of a tRNATrp gene with URA3 
To determine whether six copies of the tRNATrp gene are necessary for viability of haploid 
cells, a copy of this gene was replaced by the URA3 gene. The first member of the tRNATrp 
gene family to be cloned was chosen for gene replacement. No restriction length polymor-
phisms are associated with this tRNATrp gene (see section a). This raises the possibility that 
it is tightly flanked by essential sequences. To ensure that only the tRNATrp gene was re-
placed by the URA3 gene, PCR was used to clone the 5′ and 3′ flanking DNA from this 
tRNATrp gene and create restriction sites for insertion of the URA3 gene between these se-
quences. Primers C and D (fig. 3) were used to clone a 155-bp fragment from the 5′ flank. 
These primers were designed to create HindIII and EcoRI restriction sites, respectively. The 
149-bp fragment from the 3′ flank was cloned using primers E and F (fig. 3). These primers 
were designed to create PstI and KpnI restriction sites, respectively. A 0.9-kb SmaI-PstI 
fragment (with an EcoRI linker added to the SmaI end) capable of complementing the ura3-
52 mutation was cloned between the 5′ and 3′ tRNATrp flanking sequences. The resultant 
1.2-kb HindIII-KpnI fragment, with the URA3 gene cloned between the 5′ and 3′ tRNATrp 
flanking sequences, was used to transform a diploid strain, ALA11, constructed for this 
study (see table I). 
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Figure 3. Sequence of a cloned tRNATrp gene (modified from Kang et al., 1980). A 0.41-kb 
fragment of yeast DNA in M13mp19 was sequenced using dideoxy-mediated sequencing 
reactions with the Klenow fragment of E.coli DNA polymerase 1 (Sambrook et al., 1989). 
The location of the tRNATrp gene is indicated by the stippled line below the sequence. Pri-
mers A, B, C, D, E, and F were used for PCR according to published methods (Saiki et al., 
1988). Yeast genomic DNA, isolated from yeast strain RJ293-13C, served as the PCR tem-
plate for isolation of the tRNATrp genes with primers A and B. Plasmid DNA with the 0.41-
kb fragment of yeast DNA encoding a tRNATrp gene was used to clone 5′ and 3′ flanking 
sequences. Primers C and D were used to clone a 155-bp fragment from the 5′ flank of the 
tRNATrp gene. A 149-bp fragment was cloned from the 3′ flank of the tRNATrp gene with 
primers E and F. These DNA fragments were incorporated, respectively, into a construct 
flanking a copy of the URA3 gene for the replacement experiment. 

 
The single-step gene replacement of a chromosomal copy of the tRNATrp gene with the 

1.2-kb HindIII-KpnI fragment was performed essentially as described by Rothstein (1983). 
A diploid recipient, ALA11, was used in case the disruption was a lethal event in a haploid 
strain. Transformants that were prototrophic for uracil were selected and examined for a 
tRNATrp::URA3 disruption by Southern analysis. Genomic DNA from untransformed and 
transformed diploids was digested with BamHI and hybridized with a URA3-specific 
probe. The same blots were stripped and rehybridized with the 0.41-kb tRNATrp probe. 
DNA from the parental diploid (ALA11) produced a 15-kb BamHI band when hybridized 
to the URA3 probe. DNA from the selected transformants produced two bands of homol-
ogy to the URA3 probe, a 15-kb band representative of the endogenous mutant ura3-52 
gene and a 6-kb band (fig. 4A). The faster migrating 6-kb band also hybridizes to the 0.41-
kb tRNATrp probe (data not shown), indicating that this band represents the targeted re-
placement event. 
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Figure 4. Single-step gene replacement of a chromosomal copy of a tRNATrp gene with the 
URA3 gene. (Panel A) An autoradiograph of a Southern hybridization of genomic DNA 
from the parental diploid, ALA11 (lane 1), and two uracil-prototrophic transformants, 
ALA12 (lane 2) and ALA13 (lane 3), restricted with BamHI and hybridized with an oligo-
labeled URA3 probe, as described in figure 2. The sizes of the bands observed were deter-
mined by comparison to a λ HindIII size marker in kb. Yeast genomic DNAs were iso-
lated, restricted, electrophoresed, and blotted as in figure 1. (B) Tetrad analysis of the 
parental diploid, ALA11, and three uracil-prototrophic transformants, ALA12, ALA13, 
and ALA14. Segregation patterns were determined for all tetrads. 

 
The parental diploid (ALA11) and the disrupted diploids (ALA12, ALA13, and ALA14) 

were sporulated, and the asci were dissected. Tetrad analysis showed that, in all 32 asci 
from diploids containing the gene disruption and which produced four viable spores, URA 
segregated 2 + :2 – (fig. 4B). This is the expected result if one copy of the tRNATrp gene has 
been replaced by URA3 in an otherwise ura3-52 background. This demonstrates that all six 
copies of the tRNATrp gene in the haploid yeast genome are not essential for growth, since 
the Ura+ spores were viable but had only five copies of the tRNATrp gene. Thus, a maximum 
of five copies of this gene are sufficient for viability. 
 
(e) Conclusions 
(1) An attempt was made to determine why suppressor alleles of a S. cerevisiae tRNATrp 
gene, isolated by conventional genetic techniques, have not been reported. A single change 
in the CCA anticodon of a tRNATrp gene to CTA should be sufficient to create a tRNA ca-
pable of interacting with amber nonsense codons. A gene with this change has been con-
structed in vitro and was found to be an efficient suppressor when expressed from a single 
copy plasmid (Kim and Johnson, 1988; Atkin et al., 1990). Yeast cells which have a single 
copy of this gene have growth rates similar to those of yeast cells transformed with a single 
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copy of the wild-type gene, although this amber suppressor is toxic when present on a 
multicopy plasmid (Kim et al., 1988; Atkin et al., 1990). The inability to recover amber sup-
pressor alleles of this gene by conventional genetic techniques suggested that there may 
be only a few copies of the tRNATrp gene in the yeast genome and that all may be essential. 
This possibility was addressed herein by identification and partial characterization of all 
of the tRNATrp gene. Data are presented which show there are six copies of this gene in the 
haploid genome of S. cerevisiae. All copies were cloned and shown to contain identical in-
trans. The possibility that all six copies are required was tested by replacing a copy with 
the URA3 gene. The results of this experiment clearly show that a maximum of five tRNATrp 
genes is sufficient for viability of haploid yeast cells. Although this result could be ex-
tended by systematically replacing additional and/or specific tRNATrp genes to see what 
minimum number of tRNATrp genes is essential, it is important to note that at least one gene 
can be replaced. This eliminates simple dosage constraints as the reason spontaneous 
tRNATrp suppressors have never been reported. 

The ability to construct functional amber tRNATrp suppressors in vitro by a single bp 
change to the gene and the requirement for a maximum of only five of the six tRNATrp 
genes for viability of haploid yeast cells suggest that it should be possible to isolate tRNATrp 
amber suppressors by conventional genetic techniques. A possible explanation for this ap-
parent contradiction may be that the tRNATrp genes are not as active at their native loci as 
they are when present on a plasmid. Thus, suppression would not be detected when one 
of them is appropriately mutated. A direct test of this suggestion would be to replace a 
copy of a tRNATrp gene in its natural chromosomal context with an in vitro–constructed 
amber suppressor allele. These experiments will be attempted. 

(2) The absolute sequence identity observed for the introns of the yeast tRNATrp genes is 
unusual. Polymorphisms have been observed in the sequences of the introns encoded by 
members of other tRNA gene families in yeast. There appears to be little selective pressure 
on the sequence of introns in tRNA genes. Profound changes can be made to these se-
quences without affecting their removal from pre-tRNA. Only mutations which affect the 
secondary structure of the precursor or prevent the formation of the single-stranded loop 
at the 3′-splice junction have an effect on intron removal (reviewed in Atkin et al., 1990). 
Thus, the absolute sequence identity observed amongst the introns of the tRNATrp genes, 
despite the seemingly limited selective pressure and the dispersed locations of these genes, 
implies that ectopic conversion likely occurs among the members of this gene family. 

Ectopic conversion has been shown to occur among three genes encoding two serine 
tRNA isoacceptors located on different chromosomes or chromosome arms in Schizosac-
charomyces pombe (Kohli et al., 1984; Amstutz et al., 1985). All three of these genes are closely 
associated with methionine initiator tRNA genes and give rise to dimeric primary tran-
scripts. Conversion events among these genes were found to be limited to the sequences 
within the dimeric tRNA genes. Changes were never seen within the flanking DNA. In 
addition, the transfer of information was undirected. Ectopic conversion is also thought to 
occur between the tRNASer4 and tRNASer7 genes of Drosophila melanogaster (Cribbs et al., 
1987). The sequences of these genes are 96% identical, differing only at the first position of 
the anticodon and two other sites. This unusual degree of homology suggests these genes 
are undergoing concerted evolution. 
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The homology observed for the family of tRNATrp genes in S. cerevisiae and their dis-
persed locations suggest that they could be an excellent model system for studying ectopic 
conversion events among members of a family of genes in their native chromosomal con-
text. Most studies on ectopic recombination in yeast involve examination of events be-
tween a gene at its natural position and a copy of the gene which has been inserted into a 
different locus by gene replacement (reviewed in Petes and Hill, 1988). Although these 
studies have provided valuable information, it is still necessary to show that these results 
are representative of the recombination events that occur among genes at their normal loci. 
There is some evidence that the rate of conversion is lower among genes at their native 
chromosomal loci than expected from studies involving artificial duplications. Meiotic 
rates of conversion among Ty elements at different chromosomal locations in diploid yeast 
strains is considerably less than the rates detected in studies using artificial duplications 
(Pete and Hill, 1988). Key to studies on ectopic recombination among tRNATrp genes will 
be the development of a sensitive, quantitative assay for suppression by amber alleles of 
the tRNATrp genes at their native loci. With such an assay system it would be possible to 
monitor conversion at tRNATrp loci which have been replaced with amber suppressor al-
leles. 
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