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Abstract 
Vestigial mutants are associated with imaginal disc cell death which results in the deletion of adult 
wing and haltere structures. The vestigial locus has previously been cloned, and mutational lesions 
associated with a number of vg alleles were mapped within a 19 kb DNA region defined as essential 
for vg function. Herein we report the identification and characterization of a developmentally regu-
lated 3.8 kb vg transcript which is spliced from exons distributed throughout the essential interval 
defined above. All the characterized classical alleles have predictable effects on this transcription 
unit, and the severity of this effect is directly proportional to the severity of the wing phenotype. A 
repetitive domain within this transcription unit was identified and may serve as a tag to isolate other 
genes with functions related to vg. We also report an exceptional vg allele (vg 8 3 b 2 7) that produces an 
extreme wing and haltere phenotype, but which defines a second vg complementation unit. This 
allele is associated with a 4 kb deletion entirely within a 4.5 kb vg intron as defined by the 3.8 kb 
transcription unit. Molecular and genetic evidence indicates that the vg 8 3 b 2 7 mutation has a func-
tional 3.8 kb transcription unit, thus accounting for its ability to complement classical alleles. The 
results indicate that sequences within a vg intron are essential for normal wing and haltere develop-
ment. 
 
Keywords: Drosophila, vestigial, transcripts, complementation, cDNA 
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Introduction 
 
A wild-type vestigial (vg) gene is required for normal wing imaginal disc development, 
since the absence of a vg+ gene product results in extensive cell death in this disc (Fristrom 
1969). This results in concomitant complete loss of adult wing margin structures in strains 
containing null alleles, while hypomorphic alleles have less severe wing margin loss. Thus, 
the phenotypes produced by vg alleles range from those which are homozygous wild type 
through nicked, notched, or strap wing phenotypes to the classical, more extreme alleles 
(described in Lindsley and Grell 1968; Williams and Bell 1988). Bownes and Roberts 
(1981b) have proposed that the cell death observed in vg mutants may be the consequence 
of abnormal positional information in vg wing imaginal discs. Thus, a molecular analysis 
of vg is important since it may help to elucidate the mechanisms by which positional infor-
mation in imaginal discs is established. 

In addition to wing margin loss, the extreme vg alleles also exhibit haltere reduction, 
erect postscutellar bristles, female sterility, and other less well-defined phenotypes (i.e., 
extended duration of first and third larval instars, pupal lethality, and leg and abdominal 
abnormalities; Erk and Podraza 1986; Bownes and Roberts 1981a; Borot and Goux 1981). 
All but two extant extreme vg alleles are completely recessive and define a single comple-
mentation group in that they are noncomplementing in trans and affect all four phenotypes 
associated with such vg alleles. Of course, hypomorphic weaker vg alleles do not show 
each of these four phenotypes so complementation of these phenotypes in trans (i.e., female 
sterility) is possible (Lindsley and Grell 1968). 

Three vg alleles exist which differ from those described above. Two of these behave as 
strong dominants (vgU and vgW). These dominant alleles both show more severe wing and 
haltere deficiencies when heterozygous with other vg alleles, indicating that they likely 
produce an antimorphic product. The third exceptional vg allele (vg 8 3 b 2 7) is unusual in 
that it defines a second vg complementation unit. The vg 8 3 b 2 7 allele when homozygous 
produces an extreme wing phenotype, but complete or nearly complete complementation 
occurs when it is in trans with all recessive fertile and viable vg alleles (Alexandrov and 
Alexandrova 1987). The recessive sterile or lethal vg alleles are partially complemented or 
not complemented at all by vg 8 3 b 2 7. Moreover, homozygous vg 8 3 b 2 7 flies affect only the 
wing and haltere phenotypes, and have normal female fertility and postscutellar bristles. 
Thus, vg 8 3 b 2 7 appears to have a complex (or at least different) genetic basis (Alexandrov 
and Alexandrova 1987; and our unpublished results) than all other previously described 
vg alleles. 

In previous studies (Williams and Bell 1988; Williams et al. 1988), we have reported the 
cloning of the vg locus and the physical mapping of the lesions associated with various vg 
alleles, including vg 8 3 b 2 7. The relevant respective physical lesions affecting vg function 
were localized to a 19 kb stretch of DNA within the cloned region. In the present study, 
cDNAs corresponding to a 3.8 kb vg transcript were isolated and located on the physical 
map within the 19 kb sequence of DNA previously shown to be involved in vg function. 
An exon map was established for the cDNA and correlated with respect to the lesions as-
sociated with the classical vg viable and lethal alleles previously placed on the physical 
map. Our results indicate that the 3.8 kb transcript is the functional vg transcript affected 
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by classical vg alleles. A novel repetitive internal region was identified which may serve as 
a valuable tag to clone other Drosophila genes functionally related to vg. Analysis of the 
vg 8 3 b 2 7 allele indicates that it does not remove this transcription unit and defines further 
sequences, within a major vg intron, which are required for normal wing development. 
 
Material and methods 
 
Stocks and recombination analysis 
Drosophila melanogaster stocks were grown at 24°C and maintained on a synthetic medium 
(Nash and Bell 1968). The phenotypes and origins of the alleles used in this study are de-
scribed in Williams and Bell (1988) and Williams et al. (1988). Recombination analysis was 
utilized to demonstrate that both the complementation behavior and the wing phenotype 
of vg 8 3 b 2 7 are closely linked to other vg alleles. Female vg 8 3 b 2 7/b cn vgnw heterozygotes were 
mated to homozygous vg 8 3 b 2 7 males and wild-type recombinants were selected. Two phe-
notypically wild-type flies were isolated from 1000 flies scored, but neither was recombi-
nant. Rather, they were due to the weak (or occasional) complementation between vg 8 3 b 2 7 
and vgnw. These results indicate that the mutant phenotype of vg 8 3 b 2 7 is very closely linked 
to a classical vg allele (vgnw). Heterozygous females of vg 8 3 b 2 7/vg 7 9 d 5 and vg 8 3 b 2 7/vg2 1 
genotypes (which are complementing combinations) were mated to homozygous vg 7 9 d 5 
and vg21 males respectively, to select recombinants that had lost the ability to complement 
the above alleles. No genetic recombinants were isolated from among the 5000 F2 flies 
scored for each cross. These results demonstrate that the ability of vg 8 3 b 2 7 to complement 
other alleles is not due to the presence of a specific second-site vg suppressor in the vg 8 3 b 2 7 
genetic background. 
 
Materials 
Restriction enzymes and other DNA modifying enzymes were obtained from BRL or Phar-
macia and used according to the manufacturer’s instructions. All radioisotopically labeled 
compounds were purchased from either New England Nuclear or ICN. Nick-translated 
and oligolabeled probes were made with [α3 2P]dCTP (3000 Ci/mmol); RNA probes were 
labeled with [α3 2P]UTP (3000 Ci/mmol), and DNA sequences utilized [α3 5S]dATP (500 
Ci/mmol). The third instar larval disc cDNA library was kindly provided by Dr. G. Rubin. 
The RP49 clone was a gift from Dr. M. Rosbach. 
 
DNA manipulations 
All DNA isolations and manipulations were performed as previously described (Williams 
and Bell 1988). 
 
Genomic libraries 
The vg 7 9 d 5 and vg 8 3 b 2 7 libraries were constructed in λGT10. Genomic DNA was digested 
with EcoRI, size selected on 1% agarose gels, and electroeluted onto a dialysis membrane. 
Purification, ligation, and packaging were done as previously described (Williams et al. 
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1988). These genomic libraries, as well as the cDNA library, were plated on C600 Hfr, trans-
ferred to Biodyne membranes (Pall), and prepared for hybridization by standard method-
ologies (Maniatis et al. 1982). 
 
Southern and Northern filter hybridizations 
All gels for Southern or Northern hybridization analyses were blotted onto Genescreen 
Plus membranes using the capillary blot protocol recommended by the manufacturer 
(DuPont). All RNA samples were extracted by the guanidinium thiocyanate/CsCl method 
(Berger and Kimmel 1987) and analyzed on 1% formaldehyde agarose gels as described by 
Gietz and Hodgetts (1985). Hybridization conditions for all plaque lifts, genomic South-
erns, and DNA-probed Northerns were according to Klessig and Berry (1983). Preparation 
of oligolabeled DNA probes and washing of filters were done as previously described 
(Williams and Bell 1988). RNA probes for Northern hybridization analyses were prepared 
from restriction fragments cloned into Bluescribe (Vector Cloning Systems) and using the 
transcription protocol of Melton et al. (1984). Hybridizations and washing of RNA-probed 
Northerns were as described by Williams et al. (1988). Southern hybridization blots of re-
combinant λ phage or plasmid DNAs were hybridized to nick-translated probes as de-
scribed by Maniatis et al. (1982). 
 
DNA sequencing 
All sequencing was performed by either the dideoxy method (Sanger et al. 1977) from in-
serts in M13mp18 and M13mp19 or by double-stranded DNA sequencing (Chen and See-
burg 1985) of inserts cloned into Bluescribe. 
 
Results 
 
cDNA isolation 
A restriction map of the vg region with the physical locations and the nature of lesions 
associated with various vg alleles is shown in figure 1. These mutations define a previously 
characterized region comprising approximately 19 kb of DNA, which is required for vg 
function (Williams and Bell 1988). Several DNA probes from within the 0 to + 16 interval 
(fig. 1) identified a low abundance 3.8 kb transcript, present in post 8–12 h embryos, but 
undetected in larval stages. An imaginal disc cDNA library derived from third instar lar-
vae was screened and six vg cDNAs, whose restriction patterns indicated independent or-
igins, were isolated. All six cDNAs hybridized to EcoRI DNA restriction fragments 
scattered throughout the 0 to + 16 interval on the physical map of genomic vg DNA. The 
hybridization patterns of cDNAs 1–4 were nearly identical except that cDNA1 hybridized 
to an additional proximal EcoRI fragment (fig. 1B). This is consistent with the observation 
that cDNA1 is the longest cDNA, encompassing two EcoRI fragments of 3.2 kb and 0.5 kb 
in size (fig. 1B). Subcloning, restriction mapping, and hybridization of cDNA1 restriction 
fragments to cloned genomic restriction digests of DNA from the vg region allowed orien-
tation of the cDNA exons with respect to the genomic physical map and resulted in the 
definition of five exons. This alignment is presented in figure 1A, and a restriction map of 
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cDNA1 is shown in figure 1B with the extent of cDNAs 2–6 also indicated. cDNA6 is unu-
sual in that it has homology to the 5′ and 3′ exons but not to one internal exon (see fig. 1B). 
Whether this represents a functionally significant splicing product or merely an aberrant 
event is unknown. Hybridization of radiolabeled cDNA subclones to Northern blots of 
RNA obtained throughout ontogeny identified a 3.8 kb transcript expressed in post 8–12 h 
embryos (see below). Thus, it appears that the isolated cDNAs correspond to the 3.8 kb 
transcript identified previously. Since cDNA1 is 3.7 kb long and cDNA3 extends a further 
100 bp distally (fig. 1B), we feel that we have cDNAs representing essentially the full length 
of the vg transcription unit. Hybridization of single-stranded RNA probes to Northern 
blots indicates that transcription is from proximal to distal in relation to the physical map 
shown in figure 1A. 

 
 

Figure 1A and B. The vestigial loeus of Drosophila melanogaster. (A) A partial restriction 
map of the locus. Pertinent restriction sites are indicated: R, EcoRI; S, SalI; T, SstI; P, PstI; 
B, BamHI; G, BglII; H, HindIII; X, XhoI; C, ClaI; M, SmaI; N, HincII. The open bars above the 
restriction map designate deletions associated with specific vg alleles, while triangles des-
ignate insertion alleles. Coordinate 0 is designated as the site of the original P element 
insert (vg21) used to clone the locus, and +16 is 16 kb distal to 0. The data are from Williams 
and Bell (1988) and Williams et al. (1988). The bars below the restriction map denote the 
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exons of cDNA1, with some pertinent restriction sites indicated. The four mapped intrans 
are labeled 1 to 4. The location of intron 2 has been conclusively determined by DNA 
sequencing of genomic and cDNA clones spanning this intron. Similar sequencing distal 
from the genomic EcoRI site (at coordinate +0.4) demonstrated that the cDNA internal 
EcoRI site is genomic and the 5′ splice site of intron 1 is located approximately 150 bp more 
distal to this site. The localization of intron 3 is inferred by the absence of an EcoRI site. 
This site is not polymorphic in any Drosophila stock we have examined. We cannot yet 
discount the possibility of micro-exons in introns 3 and 4 or of minor introns within the 
major exons. The splice junctions indicate that transcription is from left to right. The black 
arrow (labeled 1) denotes the orientation and extent of the antisense RNA probe used by 
Williams et al. (1988). Centromere proximal and distal is also indicated. (B) A restriction 
map of cDNA1. The terminal EcoRI sites are linkers utilized in the cDNA cloning protocol. 
The extent of cDNAs 2–6 is indicated by numbered lines above this map, and these lengths 
were determined by homology to restriction fragments and partial restriction mapping. 
Segments A–D (below cDNA1) denote the location and extent of DNA probes, and 2–5 
(also below cDNA) the extent and polarity of the RNA probes used in this study. A 1 kb 
scale bar indicates the relative sizes of the cDNAs. 

 
DNA sequencing of the putative 3′ end of cDNA1 identified two overlapping poly(A) 

addition sites preceded by a third poly(A) site. DNA sequencing of M13 clones of genomic 
vg DNA from the +16 SalI site indicates that these poly(A) addition sites are located ap-
proximately 150 bp proximal to the SalI site, and thus map the 3′ end of the locus to this 
region (fig. 2A). This is consistent with the distal limits of the locus as described above. 
 
Correlating the genomic locations of exons and the lesions of classical vg alleles 
Essentially, all recessive viable and recessive lethal vg alleles are noncomplementing and 
thus define a single complementation group. A previously characterized classical vg allele, 
Df(2R)vg 5 6, was shown to have a deletion endpoint near the centromere distal limit of the 
sequences required for vg function (Williams and Bell 1988). The very weak phenotype of 
Df(2R)vg 5 6 (i.e., Df(2R)vg5 6/vgBG shows only a strap-wing phenotype) is likely due to a po-
sition effect of the vg 5 6 breakpoint with respect to the boundaries of the vg transcription 
unit, since the centromere proximal deletion endpoint of vg 5 6 is now known to be ~3 kb 
from the 3′ end of the vg transcription unit (at +19). The characterized alleles presented in 
figure 1 were aligned with respect to the exons, to predict how they would affect the 3.8 
kb vg transcription unit. Su(z)25 exhibits an intermediate vg phenotype, stronger than 
Df(2R)vg 5 6 but weaker than vgBG. Interestingly, the centromere proximal deletion endpoint 
of Su(z)25 is within the vg transcription unit but only ~150 bp from the 3′ end (fig. 1 ). Thus, 
the Su(z)25 breakpoint likely affects 3′ end maturation but probably does not affect the 
product drastically, resulting in only an intermediate vg phenotype. The deletion alleles 
vgnw and vg21–9 (at the 3′ and 5′ end of the transcription unit, respectively) are null alleles, 
consistent with the fact that both deletions remove large exonic regions of the locus. The 
null allele, vg 1 2, has a large insertion into an exon, while the hypomorphic mutants vgBG 
and vgnp are insertions into intronic regions. Sequence analysis of the insertion sites of these 
alleles will be required to determine the exact relationship of the respective insertions to 
the vg exons. The vg 7 9 d 5 strain is homozygous viable with a strap-wing phenotype, and 
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the physical lesion associated with it is an ~400 bp deletion (fig. 1). Cloning of the altered 
region and DNA sequence analysis indicates that the distal endpoint of the vg 7 9 d 5 deletion 
removes 28 bp of a vg exon (see below). The use of more distal alternative splice sites would 
generate an internally truncated transcript which may retain partial function. A P element 
insertion allele (vg21) is located near the 5′ end of the vg transcription unit (fig. 1). The ge-
nomic DNA sequence of the region surrounding the vg21 insertion site is presented in figure 
2B. These sequence data and those from cDNA1 indicate that vg21 is positioned within the 
promoter region, since the longest cDNA appears to be full length and its 5′ end is close to 
the 3′ end of the vg21 insert (see fig. 2B). However, primer extension mapping of the vg 
promoter will be needed to confirm the above prediction. 

 
 

Figure 2A and B. DNA sequence analysis at the 3′ and 5′ ends of the vg locus. (A) The 
genomic DNA sequence of the distal (3′) region of the vg locus. This was determined by 
single-strand sequencing of an ORR (Oregon-R) derived fragment from the +16 SalI site 
(fig. 1) located approximately 100 bp 3′ to the sequence shown. Open boxes designate pol-
yadenylation signals, and the arrow indicates the 3′ end of cDNA1. cDNA3 is approxi-
mately 100 bp longer (fig. 1B), but preliminary evidence indicates that this is likely due to 
a long poly(A) tail in this cDNA. (B) The DNA sequence in the vicinity of the vg21 P ele-
ment insert (near the 5′ end of the gene). The open triangle denotes the 687 bp insert of an 
internally deleted P element which is the physical lesion associated with vg21 • Numbers 
within this insert indicate which P element sequences are present (O’Hare and Rubin 
1983). The genomic PstI and SstI sites which flank the vg21 insert are at –139 and +62 bp, 
respectively. The sizing data for vg21 are from Williams et al. (1988). The arrow indicates 
where the cDNA and genomic sequences diverge. An additional 180 bp is present at the 
5′ end of cDNA1; these sequences are from exon 2 and probably represent a cDNA cloning 
artefact. DNA sequence analyses of cDNA1 and genomic clones distal to the SstI site in-
dicate that the SstI site in the cDNA corresponds to the genomic site (data not shown). 
The dashed line indicates the extent of the vg21-4 deletion (Williams et al. 1988). 
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Secondary derivatives of vg21 show varying vg phenotypes associated with changes in 
the amount of P element DNA at this site (Williams et al. 1988), consistent with the notion 
that vg21 is a promoter insertion. The vg21–4 allele, a homozygous viable phenotypically ex-
treme derivative of vg21, is associated with a 36 bp deletion of genomic DNA immediately 
adjacent to the vg21 insert (fig. 2B). This deletion removes part of the putative promoter 
region consistent with the extreme nature of vg21–4. Thus, all of the noncomplementing vg 
alleles that we have examined in detail appear to have explainable vg phenotypes based 
on their predicted effects on the 3.8 kb transcription unit. 
 
Northern analysis 
Northern hybridization analysis of RN As collected throughout ontogeny was used to de-
termine the temporal profile of vg transcription. Figure 3A shows such a Northern blot 
probed with cDNA probe A (see fig. 1B). Vestigial is expressed at maximal levels in em-
bryos and pupae, and at a lower level in adults. Thus, vg is temporally regulated, with an 
expression profile characteristic of Drosophila developmental genes. Although we have not 
yet detected the 3.8 kb transcript in third instar larvae, it must be present since the vg 
cDNAs were isolated from a larval imaginal disc cDNA library. We feel that this indicates 
the transcript is spatially localized in larvae (i.e., only in imaginal tissues); however, tissue 
in situ analysis will be required to confirm this prediction. The onset of embryonic expres-
sion was determined and is shown in figure 3B. The transcript is expressed at very low 
levels in 0–4 and 4–8 h embryos, but is expressed at much higher levels in 8–12 h embryos. 
The 0–8 h expression may be due to minor contamination of these samples with later stage 
embryos. The vg transcription unit remains expressed through the remainder of embryo-
genesis (i.e., 12–16 hand 20–24 h embryos) before decreasing in first instar larvae (data not 
shown). 
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Figure 3A–D. Northern hybridization analysis of vg transcription throughout ontogeny. 
(A) Northern hybridization blot hybridized to DNA probe A (fig. 1B). Size markers are 
shown in kilobases, with the arrowhead indicating the 3.8 kb vg transcript. The lane desig-
nations are: vg21; 79d5, vg 7 9 d 5; 83b27, vg 8 3 b 2 7, and the RNA was collected from 0–24 h 
embryos. The remaining lanes contain ORR RNA from the following stages: 0–12 and 0–
24 h embryos; 1, first instar larvae; 2, second instar larvae; E3, early third instar larvae; L3, 
late third instar larvae; P, brown pupae; A, adult. The size markers were a BRL RNA lad-
der. (B) Northern hybridization blot of ORR embryonic RNA samples harvested from sam-
ples of the indicated embryonic ages (raised at 23°C). The probe and arrow designations 
are as in A. (C) Northern hybridization blot probed with RNA probe 3 (fig. 1B). The ar-
rowheads indicate the 3.8 kb vg transcript and the prominent 2 kb transcript which is also 
detected by cDNA probe B. Ontogenic stage designations are as in A. All three blots were 
reprobed with a ribosomal protein probe (RP49; O’Connell and Rosbach 1984) to stand-
ardize the amount of RNA loaded per lane. The RP49 hybridizations are shown at the top 
of each panel. All of the above Northern hybridizations were from RNA loaded onto 1% 
formaldehyde-agarose gels. (D) Predicted amino acid sequence from the open reading 
frame in the portion of exon 3 for which the DNA sequence is at present known. This 
comes from a 285 bp portion sequenced proximally from the SmaI site at coordinate +7 on 
the physical map (see fig. 1). 
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The cDNA probes A, C, and D (see fig. 1B) recognize only the 3.8 kb transcript. How-
ever, probe B also recognizes a 2 kb transcript, and several other transcripts very weakly 
(data not shown). Duplicate filters of the disc cDNA library were screened with probes B 
and C to isolate B-specific cDNAs. However, the only B-specific cDNA isolated (from > 20 
cDNAs identified) was a partial cDNA of the 3.8 kb transcript (cDNA5, fig. 1B). Also, since 
probes A and D do not recognize the 2 kb transcript, it is unlikely that this transcript rep-
resents the cDNA6 splicing product. Antisense RNA probes of A and D also recognize only 
the 3.8 kb transcript, while an antisense RNA probe of B recognizes the 3.8 kb and 2.0 kb 
transcripts as well as several other developmentally regulated transcripts (fig. 3C). This is 
not necessarily unusual, since RNA probes have been demonstrated to detect small regions 
of cross homology which remain undetected with DNA probes (Cavener et al. 1986). The 
multiple transcripts are recognized by antisense RNA probes both proximal and distal to 
the SmaI site at +7 (fig. 1). Since these transcripts are not detected with proximal or distal 
cDNA clones, are not represented in the disc library, and the RNA probes wash off filters 
at stringencies which do not melt off the probes that hybridize to the 3.8 kb transcript (data 
not shown), we feel that this exonic region may encode a protein domain which is present 
in other non-vg RNAs (as seen in fig. 3C). We sequenced this exonic region proximally 
from the SmaI site at coordinate +7 (fig. 1). This region comprises 285 bp with only one 
open reading frame through it. If translated, this region would produce a 95 amino acid 
protein domain which contains serine, alanine, and glycine rich stretches (fig. 3D). Neither 
this protein motif nor the DNA sequence is strongly homologous to any known cloned 
Drosophila gene (Bionet). However, weak homologies exist between the vg polyserine and 
polyalanine stretches and the comparable regions seen encoded in the engrailed gene 
(Poole et al. 1985). However, since these stretches are in the opposite polarity in the respec-
tive proteins, the meaning of the homology, if any, is obscure. We are currently extending 
our DNA sequence analysis of this and other exonic regions. 
 
vg 8 3 b 2 7 analysis 
The vg 8 3 b 2 7 allele results in a complex phenotype. Homozygous vg 8 3 b 2 7 flies show extreme 
vg wing and haltere phenotypes but are wild type with respect to the postscutellar bristle 
and female fertility phenotypes. As well, vg 8 3 b 2 7 completely, or nearly completely, com-
plements Su(z)25, Df(2R)vg56, and all recessive viable vg alleles (Alexandrov and Alexan-
drova 1987; and our unpublished results). Partial complementation is exhibited with vgnw 
and vg12. Thus, vg 8 3 b 2 7 identifies a second vg complementation unit. Figure 4A shows an 
example of this complementation ability with vgBG. Most of the hybrid heteroallelic flies 
are wild type, but some heterozygotes fail to exhibit complete complementation. The wing 
phenotype of these latter flies is unusual, showing bubble wings and unequal wing defi-
ciencies uncharacteristic of classical vg wing deficiencies (results not shown). Recombina-
tion analysis indicates that both the extreme wing phenotype and the complementation 
phenotype of vg 8 3 b 2 7 are very closely linked to the vg locus (see Materials and methods). 
This provides evidence that both phenotypes are vg specific and not due to a strong sup-
pressor of classical vg alleles linked to vg 8 3 b 2 7 which is itself unaffected by this hypothetical 
suppressor. 
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Figure 4A and B. Complementation behavior of vg 8 3 b 2 7 and DNA sequence analysis of 
vg 8 3 b 2 7 and vg 7 9 d 5. (A) Whole flies of vgBG(1), vgBG/vg 8 3 b 2 7 (2), and vg 8 3 b 2 7 (3) genotypes 
are shown. The vg 8 3 b 2 7 homozygotes show strong wing and haltere reductions which 
differ from the corresponding reductions seen in vgBG or other classical vg allele homozy-
gotes. In addition, vg 8 3 b 2 7 flies have normal postscutellar bristles. (B) The DNA sequence 
of the 135 bp BglII-PstI region affected by the vg 8 3 b 2 7 and vg 7 9 d 5 alleles. The 3′ splice 
acceptor site of cDNA1 is indicated with intronic bases italicized. Labeled arrows denote the 
centromere-distal deletion endpoints associated with the vg 8 3 b 2 7 and vg 7 9 d 5 lesions. 

 
Df(2R)vg56 and Su(z)25 are chromosome deficiency mutations which extend into the vg 

region (see above), yet are complemented by vg 8 3 b 2 7. These deficiency mutants are likely 
to disrupt local pairing somewhat, which is indicative that the complementation pheno-
type of vg 8 3 b 2 7 is unlikely to be due to a transvection-like process (Lewis 1954). However, 
it is possible that chromosome pairing in the vg region is maintained even in the presence 
of these deletion alleles. The zeste gene product is required for the manifestation of trans-
vection effects (Kaufman et al. 1973; Zachar et al. 1985) and has been shown to bind co-
operatively to sites in the regulatory region of many genes (Benson and Pirrotta 1988). A 
strong zeste allele (z v 7 7 h 3; kindly provided by V. Pirrotta) does not alleviate the comple-
mentation ability of vg 8 3 b 2 7 (J. Williams, unpublished data) thus indicating that the behav-
ior of vg 8 3 b 2 7 is unlikely to be mediated by a transvection-like process. 

Previous analyses of vg 8 3 b 2 7 (Williams and Bell 1988) detected a single 4.0 kb deletion 
that physically maps within the locus (fig. 1). This deletion removes most of the 4.5 kb 
intron of the vg transcription unit. This is surprising, since homozygous vg 8 3 b 2 7 flies have 
an extreme wing and haltere phenotype more typical of that expected for null alleles that 
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perturb exons. The 5′ end of this deletion clearly does not overlap a vg exon since it maps 
at least 500 bp from the 3′ end of the upstream exon. However, the 3′ end of the vg 8 3 b 2 7 
deletion appears to map quite close to the 5′ end of the downstream exon, as does the 3′ 
endpoint of vg 7 9 d 5 (fig. 1). 

Genomic Southern hybridization analysis of vg 8 3 b 2 7 and vg 7 9 d 5 indicated that both 
vg 8 3 b 2 7 and vg 7 9 d 5 break within a 70 bp BglII-HincII fragment. The vg 8 3 b 2 7 deletion appears 
to break closer to the BglII site while the vg 7 9 d 5 deletion endpoint is closer to the HincII site 
(data not shown). The cDNA exon/intron junction in question is also within this small 
DNA restriction fragment. Genomic libraries of vg 7 9 d 5 and vg 8 3 b 2 7 were constructed and 
clones of the relevant region were isolated (see Materials and methods). The results of 
DNA sequence analysis of genomic vg 8 3 b 2 7, vg 7 9 d 5, and vg+ cloned DNA from this region 
are shown in figure 4B. The cDNA exon/intron junction is indicated, and the genomic se-
quence indicates that the junction is a consensus 3′ splice junction. The vg 7 9 d 5 deletion 
includes 28 bp of the downstream exon. Northern blot analysis of RNA isolated from vg 7 9 d 5 
embryos indicates that this allele has normal levels of a transcript approximately 100 bp 
smaller than the wild-type 3.8 kb transcript (fig. 3A). This indicates that vg 7 9 d 5 uses an 
alternative splice site ~100 bp within the exon affected by the deletion. A number of puta-
tive splice junctions are within this region, in all three frames (data not shown). Since vg 7 9 d 5 
is only an intermediate allele, we feel that the splice is likely to be in the correct reading 
frame. However, isolation and sequencing of cDNAs from vg 7 9 d 5 will be required to con-
firm this. The vg 8 3 b 2 7 deletion removes only the proximal two bases of the BglII site. Thus, 
the 3′ deletion endpoint of vg 8 3 b 2 7 is about 50 bp upstream from the splice site and should 
not reduce splicing. This is consistent with Northern hybridization analyses which indicate 
that the 3.8 kb transcript is unaltered in both size and amount in vg 8 3 b 2 7 embryos (fig. 3A). 
Finally, the vg 8 3 b 2 7 deletion does not remove a micro exon within the 4.5 kb intron, since 
sequence analysis of genomic and cDNA clones has conclusively mapped the ends of this 
intron (fig. 1, legend). 
 
Analysis of the vg 8 3 b 2 7 complementation phenotype 
Since the vg 8 3 b 2 7 lesion does not remove the 3.8 kb vg transcript, then perhaps the comple-
menting behavior of the vg 8 3 b 2 7 allele is simply due to the presence of this vg transcription 
unit. This was tested by selecting derivatives of vg 8 3 b 2 7 that had lost the ability to comple-
ment other vg alleles. Males of vg 8 3 b 2 7 genotype were treated with 4000 rads γ irradiation 
(60Co), mated to vg21–7 flies (i.e., a strapwing vg21 derivative that is normally complemented 
in combination with vg 8 3 b 2 7, Williams et al. 1988) and noncomplementing progeny se-
lected. One such fly was isolated from 1.2 × 104 screened, and it had a phenotype typical of 
that produced by a vg null allele. It differed from vg 8 3 b 2 7 in that it had lost the complemen-
tation ability and also displayed erect postscutellar bristles and homozygous female steril-
ity. Genomic Southern hybridization analysis (fig. 5) indicates that this allele has the 
original vg 8 3 b 2 7 deletion as well as a second deletion similar in size and location to that of 
vgnw (see fig. 1). Since this second deletion removes the 3′ exon of the 3.8 kb transcript, by 
inference it appears that the complementation ability of vg 8 3 b 2 7 is likely due to the ability 
to make an intact 3.8 kb transcript. Thus, the puzzling feature of this allele is not its com-
plementation ability but its homozygous extreme vg wing phenotype. Since the phenotype 
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of vg 7 9 d 5 homozygotes is much weaker than vg 8 3 b 2 7 homozygotes and the vg 7 9 d 5 effect 
can be attributed to alterations of the downstream exon, then the more extreme homozy-
gous phenotype of vg 8 3 b 2 7 must be due to the deletion of DNA unique to the vg 8 3 b 2 7 allele 
and thus proximal to the vg 7 9 d 5 deletion. Since this DNA is entirely intronic with respect 
to the 3.8 kb transcript, this indicates that there are DNA sequences within the intron which 
are required for normal wing and haltere development. Thus, the second vg functional unit 
defined by vg 8 3 b 2 7 resides at least partially within this intron. 
 

 
 

Figure 5. Genomic Southern hybridization analysis of vg 8 3 b 2 7–R. An autoradiogram of a 
genomic Southern hybridization blot of EcoRI(R), PstI(P) and XhoI(X) digested DNA from 
Canton S (C.S.), vg 8 3 b 2 7–R, and vg 8 3 b 2 7 strains is shown. The probe was a 1.9 kb SalI DNA 
fragment from coordinates +16 to +18 (fig. 1A). The arrowheads indicate the novel deletion 
fragments in EcoRI and XhoI digested vg 8 3 b 2 7–R DNA. The vg 8 3 b 2 7–R lesion removes a PstI 
site at ~ + 15, creating a fusion fragment the same size as that seen from PstI digested 
Canton S DNA (6.5 kb). Subsequent stripping and reprobing of the blot with other vg 
region clones indicates the vg 8 3 b 2 7–R also contains the expected 4 kb deletion diagnostic 
of vg 8 3 b 2 7, but no other detectable alterations (data not shown). 

 
Discussion 
 
In this study we report the isolation of cDNAs corresponding to a 3.8 kb vg transcript. 
Mutational lesions affecting this transcript appear to be responsible for the phenotype of 
the classical noncomplementing recessive viable and recessive lethal vg alleles for several 
reasons. The transcript is expressed in third instar larval imaginal discs (i.e., vg cDNAs 
were isolated from an imaginal disc cDNA library), the tissue which undergoes cell death 
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in vg mutants. As well, the cDNA exons are spread throughout the exact region previously 
defined by deficiency and mutant analyses (Williams and Bell 1988) as essential for vg 
function. The respective mutant phenotypes of all classical vg alleles examined are explain-
able by alterations to this transcription unit. In the case of vg 7 9 d 5, sequence data indicate 
that the mutant lesion alters splicing. Indeed, the small exonic deletion predicted with vg 7 9 d 5 
sequencing data is observed on Northern hybridization blots. An allele (vg21) with a P 
element insertion into a putative promoter is associated with both a normal and an aber-
rant larger sized vg transcript (fig. 3A). Finally, the severity of the vg phenotype of an allele 
is correlated with how our results predict the respective lesion would affect the 3.8 kb tran-
script. We feel that our evidence argues strongly that classical vg alleles are the result of 
alterations to, or influences on, the 3.8 kb transcription unit. Null alleles which destroy the 
integrity and thus the biological activity of this transcript show extreme wing and haltere 
loss, erect postscutellar bristles, and female sterility as well as other poorly defined pheno-
types, including developmental delay, pupal lethality, and leg or abdominal abnormali-
ties. 

The temporal and putative spatial localization of the 3.8 kb transcript is consistent with 
a developmentally important role for the vg gene. An internal region of this transcription 
unit was identified that cross-hybridizes with a number of developmentally regulated non-
vg transcripts. The region codes for a predicted protein containing polyserine, polyalanine, 
and polyglycine repeats and shows weak homology to similar repeats in the Drosophila 
engrailed protein. Homoamino acid domains are a common feature of Drosophila regula-
tory genes (Laughon et al. 1985), consistent with the idea that vg codes for a regulatory 
protein required for wing disc pattern formation. This internal domain should serve as a 
useful “tag” to clone the developmentally regulated genes which cross-hybridize with it. 
Since no Drosophila genes sequenced at present show strong homology to this region (Bio-
net), it is possible that these related genes represent a new gene family, perhaps function-
ally related to vg. The cloning and analysis of these genes may also serve to increase our 
understanding of the role of vg in wing development. 

An exceptional vg allele exists (vg 8 3 b 2 7) which displays a complex complementation 
pattern. Homozygous vg 8 3 b 2 7 flies have severe wing and haltere reduction, indicating loss 
of vg function. However, vg 8 3 b 2 7 complements all recessive viable vg alleles, and weakly 
complements some recessive null vg alleles (i.e., vgnw, vg12). Thus, vg 8 3 b 2 7 defines a second 
vg complementation group. Interestingly, the molecular lesion associated with vg 8 3 b 2 7 does 
not appear to affect the 3.8 kb transcription unit but instead deletes most of a 4.5 kb intron. 
Indeed, our results indicate that the complementation ability of vg 8 3 b 2 7 is due to the pres-
ence of an intact 3.8 kb vg transcription unit. Thus, vg 8 3 b 2 7 defines additional sequences 
within a major vg intron, which are somehow required for wing and haltere development. 

It is of interest to speculate what the mechanism is by which these intronic sequences 
affect wing and haltere development. Our results do not provide support for models in 
which the intron is essential in controlling expression of the vg 3.8 kb transcription unit. 
For example, an exon which is required in some discrete developmental stage or tissue but 
not others, may be present within the relevant intron. We have only matched genomic 
DNA sequences with cDNA sequences for the cDNAs that we have identified at present. 
However, since none of the cDNAs isolated from discs contain this putative exon, and no 
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candidate transcripts have been identified on Northern hybridizations, we feel that this 
alternative exon explanation is unlikely, although not yet rigorously excluded. A second 
model implies that the intron deleted by vg 8 3 b 2 7 is required to modulate expression of the 
3.8 kb transcript in a tissue-specific manner. Thus, vg 8 3 b 2 7 may delete a binding site or 
regulatory sequence that is essential for normal regulation of vg expression. In this model, 
the extreme wing and haltere defects seen in vg 8 3 b 2 7 would be due to a selective absence 
of the vg product at a developmental stage or tissue where it is required. This would ac-
count for the observation that normal 3.8 kb vg transcripts are present in vg 8 3 b 2 7 embryos, 
and that vg 8 3 b 2 7 is mutant for only two of the four classical vg phenes. However, it is 
difficult to explain the partial complementation that vg 8 3 b 2 7 exhibits with vgnw and vg12 by 
any model which implies differential splicing, processing, or tissue-specific expression of 
the same primary transcript since vgnw and vg12 grossly disrupt two different exons of the 
3.8 kb transcript. Further, our results indicate that this complementation is not likely to be 
due to transference of cis-acting information from vgnw to vg 8 3 b 2 7 (or vice versa) via a zeste-
mediated transvection effect. Thus, if the intron is required to mediate expression of the 
3.8 kb transcript, the mechanism remains obscure and is likely to be complex. 

We have previously identified a family of transcripts (represented by a predominant 1 
kb transcript), which is expressed in adults and quantitatively altered in various vg mu-
tants (Williams et al. 1988). The RNA probe used to identify this transcript is shown in 
figure 1 and maps entirely within the region deleted in vg 8 3 b 2 7 (and this in turn is within 
the second vg intron). The polarity of the probe indicates that the polarity of the intron 
transcript is opposite that of the 3.8 kb transcript. Thus vg is a nested gene (i.e., as described 
in Henikoff et al. 1986) containing at least two different transcription units. It is possible 
that this intron transcription unit is required for wing and haltere development. In this 
model, the vg 8 3 b 2 7 deletion removes the intron transcription unit, resulting in extreme 
wing and haltere loss. Clearly, the exact localization and DNA sequencing of the intronic 
sequences that apparently are required for wing and haltere development will be required 
to test this and other model(s). This work is currently in progress. 
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