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Rerouting Cellular Electron Flux To Increase the Rate of Biological
Methane Production

Jennie L. Catlett, Alicia M. Ortiz, Nicole R. Buan

Department of Biochemistry, Redox Biology Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA

Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent
greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the
rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes
are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron trans-
port system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfo-
nate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC ex-
pression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When
acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or meth-
ane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses
due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron do-
nor in acetate-grown cells.

Methane is a combustible gas fuel that can be used to produce
heat and electricity. Methanogens are anaerobic archaea

that naturally produce methane in soil, ocean sediment, and the
gastrointestinal tracts of animals (1). In anaerobic environments,
methanogens catalyze the terminal step in the carbon cycle by
reducing C1 compounds (such as CO2, CO, formate, methanol,
methylsulfides, and methylamines) and acetate to methane gas,
which diffuses up to aerobic zones, where it can be oxidized by
methanotrophic bacteria (2). Because of their intrinsic ability to
produce methane, methanogens are harnessed in anaerobic di-
gesters to turn municipal, agricultural, and industrial waste prod-
ucts into renewable fuel (biogas), heat, and electricity (3).

The model organism Methanosarcina acetivorans is one of a
small group of methanogens capable of producing methane both
from acetate and from methylated substrates, such as methanol,
methylamines, and methylsulfides (4). In the methylotrophic
methanogenesis pathway, electrons obtained from oxidizing one
molecule of methanol to carbon dioxide are used to reduce three
molecules of methanol to methane (5–7). The cell conserves en-
ergy by coupling generation of a transmembrane ion gradient
(��) to electron transport between reduced electron carriers and
the terminal electron acceptor, a coenzyme M (2-mercaptoethane
sulfonate) (CoM)-coenzyme B (7-mercaptoheptanoylthreonine
sulfonate) (CoB) heterodisulfide molecule (CoM-S-S-CoB) that
is produced in the last step of methanogenesis (6). The CoM-S-S-
CoB heterodisulfide must be reduced to the CoM-SH and
CoB-SH thiols to be reused for subsequent rounds of methano-
genesis.

Reduction of CoM-S-S-CoB is performed by one of two het-
erodisulfide reductases: two-subunit membrane-bound HdrED
(energy-conserving CoM-S-S-CoB reductase) and three-subunit
cytosolic HdrABC (heterodisulfide reductase) (8). Genes encod-
ing HdrED (MA0687-MA0688) are essential for growth on trim-
ethylamine, methanol, acetate, and methanol plus acetate (8).
HdrED oxidizes the membrane electron carrier methanophenazine
(MP) and reduces the CoM-S-S-CoB heterodisulfide. In the pro-
cess, HdrED conserves energy using a q-loop mechanism to con-

tribute to the transmembrane ion gradient by translocating pro-
tons across the cell membrane (9). The flow of protons back into
the cell via ATP synthase produces ATP, which is then used for
other biosynthetic reactions (10). The hdrA1C1B1 (MA3126-
MA3128) operon (here referred to as hdrABC) is expressed on
methylotrophic substrates but is nonessential. In contrast to
HdrED, the HdrABC enzyme is cytoplasmic and does not con-
serve energy. M. acetivorans also expresses genes encoding HdrD2
(MA0526), HdrA2 and polyferredoxin (MA2867-MA2868), and
HdrC2B2 (MA4236-MA4237), all of which are constitutively ex-
pressed (8). The physiological roles of the hdrD2, hdrA2, and
hdrC2B2 genes are not yet understood.

In hydrogenotrophic methanogens, such as Methanococcus,
HdrABC accepts electrons from hydrogen via a bound hydroge-
nase, Vhu. An electron bifurcation mechanism is used to drive
reduction of CO2 to formyl-methanofuran by the formyl-metha-
nofuran dehydrogenase Fmd, coupling the reaction with the ther-
modynamically favorable reduction of CoM-S-S-CoB (11, 12).
Though it does not itself conserve energy, HdrABC is essential for
methanogenesis by Methanococcus because it provides the low-
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potential electrons necessary for the first step of the hydrog-
enotrophic methanogenesis pathway.

However, because functional hydrogenases are not expressed
in M. acetivorans and some other Methanosarcinales species, Vhu
or another hydrogenase cannot be the electron donor for HdrABC
in these organisms. In light of this fact, it is possible that HdrABC
may use one of three general mechanisms for catalysis: an electron
confurcation mechanism (defined as when one electron each from
two separate donors is transferred to one two-electron acceptor),
where electrons from both reduced ferredoxin (FdxH2) and re-
duced F420 (8-hydroxy-5-deazaflavin [F420H2]) are used to reduce
two molecules of CoM-S-S-CoB (Fig. 1A); a direct-reduction
mechanism, where either FdxH2 or F420H2 could reduce CoM-S-
S-CoB (Fig. 1B); or an electron bifurcation mechanism that cou-
ples oxidation of FdxH2 to reduction of both CoM-S-S-CoB and
another electron carrier, such as F420 (Fig. 1C). Based on the lack
of hydrogenase activity in M. acetivorans and because the reac-
tion would be energetically favorable, HdrABC was thought to use
FdxH2 as a substrate to directly reduce CoM-S-S-CoB (Fig. 1B)
(8).

Whether HdrABC uses both or either ferredoxin and F420 as
an electron carrier has predictable consequences for the cell.
Ferredoxin is also thought to be the electron donor for the
sodium-pumping ferredoxin-methanophenazine oxidoreduc-
tase, Rnf (named for homology to the Rhodobacter nitrogen fixa-
tion enzyme complex) (13–15). On methylotrophic growth in
high-salt (HS) medium, Rnf pumps 0.04 sodium ion across the
cell membrane per 2 electrons (16). F420H2 is the electron donor
for the proton-pumping F420H2-methanophenazine Fpo com-
plex. Fpo pumps two protons across the cell membrane per two
electrons (17). The reduced methanophenazine (MPH2) pro-
duced by both Rnf and Fpo is oxidized by HdrED to translocate
protons across the cell membrane. Therefore, if HdrABC confur-
cates electrons from both FdxH2 and F420H2 in a 1:1 stoichiome-
try, HdrABC will compete for electrons with both Rnf and Fpo
complexes, decreasing electron flux through HdrED and resulting
in lower ion motive force generated per mole substrate consumed
(Fig. 1A). If HdrABC uses a direct mechanism using either FdxH2

or F420H2 to reduce CoM-S-S-CoB, then it will compete with ei-
ther Rnf or Fpo for substrate and lower the electron flux through
HdrED. However, because Rnf and Fpo have a 50-fold difference
in transmembrane ion translocation activity, the effect of
HdrABC enzyme activity on the ion motive force generated would
depend on whether HdrABC competes with Rnf or Fpo (Fig. 1B).
Finally, if HdrABC can bifurcate electrons by using FdxH2 to re-

duce both CoM-S-S-CoB and F420, then HdrABC may compete
with Rnf for substrate but increase the electron flux through the
more energy-efficient Fpo (Fig. 1C).

We tested these hypotheses by adding a second copy of the
methylotrophic HdrABC operon to the M. acetivorans chromo-
some and by using computational metabolic-flux modeling. In-
stead of observing a growth defect compared to the parental strain,
as we had anticipated, we discovered that the mutant cells had
growth kinetics and biomass identical to those of the parent while
increasing the methane production rate by 30%. This suggests that
an increased substrate uptake rate can compensate for decreased
metabolic efficiency and that hdrA1B1C1 in M. acetivorans uses a
direct mechanism (Fig. 1B) rather than an electron bifurcation
mechanism to reduce CoM-S-S-CoB.

MATERIALS AND METHODS
Culture conditions. Escherichia coli strains were grown at 35°C in lysis
broth or 1.5% agar medium with 10 mM rhamnose and/or chloramphen-
icol (35 �g/ml or 8 �g/ml) when appropriate (18, 19). M. acetivorans
strains were grown at 35°C in 18-mm by 150-mm anaerobic culture tubes
with 10 ml HS mineral salt medium under a 5% H2–20% CO2-balance N2

atmosphere and strict anaerobic conditions (where “balance” indicates
the remainder of the atmosphere) (20). HS mineral salt medium was
supplemented with the carbon source 50 mM trimethylamine (TMA),
125 mM MeOH, 120 mM sodium acetate, or a mixture of 40 mM sodium
acetate and 125 mM MeOH (21). M. acetivorans strains were plated on
1.4% HS agar, TMA (50 mM), and puromycin (2 mg/liter) and incubated
at 35°C under a 0.1% H2S–20% CO2-balance N2 atmosphere.

Strain construction. The primers and DNA sequences listed in Ta-
ble S1 in the supplemental material were designed using Vector NTI
software (Invitrogen). Genes, oligonucleotides, and multiple-cloning
sites were synthesized commercially by IDT and Invitrogen. To overex-
press hdrABC, the operon (MA3126-MA3128) was amplified from the M.
acetivorans (strain NB34) chromosome using primers oNB68, oNB69,
and oNB72 to -81 (see Table S1 in the supplemental material). Primers
oNB72 to -81 introduce five point mutations to remove five NdeI restric-
tion sites from the hdrABC operon. The resulting fused PCR product
contained BamHI restriction sites at the 5= and 3= ends, as well as an NdeI
site preceding the start codon of the hdrA gene. The PCR product was
ligated into plasmid pNB708, creating pNB709, and verified by restriction
digestion and sequencing. The mutated hdrABC* operon (Nicole R. Buan
Murphy and Jennifer L. Catlett, U.S. provisional patent 61/980,656) was
amplified from pNB709 using oligonucleotides oNB68 and oNB69 and
ligated into pJK027A at the NdeI and BamHI restriction sites to create
plasmid pJC1 (see Table S2 in the supplemental material). The hdrABC*
operon is under the control of the PmcrB(tetO1) (also called Ptet) pro-
moter. The Ptet promoter is constitutive when transformed into strains
lacking the tetR repressor gene but can be controlled by addition of tetra-
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cycline in strains that express the TetR repressor. M. acetivorans was trans-
formed with pJC1 as previously described (22). Briefly, 10 ml stationary-
phase culture was pelleted by centrifugation and resuspended in 1 ml
bicarbonate-buffered 0.85 M sucrose. Then, 10 �l plasmid DNA (0.2 �g/
�l) was mixed with 30 �l DOTAP transfection reagent (1 �g/�l; Roche)
and 70 �l bicarbonate-buffered 0.85 M sucrose and incubated at room
temperature for 15 min in sterile glass test tubes. Cells were added to the
liposome-encapsulated DNA and incubated for 2 to 4 h at room temper-
ature. The transfected cells were incubated in 25 ml HS medium supple-
mented with 50 mM TMA overnight at 35°C. The cells were plated on HS
TMA 0.5% agar plates with puromycin (2 mg/liter) and grown at 35°C
under a 0.1% H2S–20% CO2-balance N2 atmosphere for 10 to 14 days.
Colonies were streaked for isolation before being picked to liquid HS
TMA medium. Transformants were verified via a PCR screen for wild-
type hdrABC, the �hdrABC operon deletion, and Ptet hdrABC* (in pJC1)
using primers listed in Table S1 in the supplemental material. Various
PCR techniques were employed to create plasmids (listed in Table S2 in
the supplemental material), including overlap extension and site-directed
mutagenesis (23, 24).

For all PCRs, Phusion Flash PCR master mix (Thermo Scientific) was
used as a source of proofreading DNA polymerase. DNA was purified
using Wizard kits from Promega (Madison, WI). DNA fragments were
joined using T4 DNA ligase (New England BioLabs) or GeneArt kits (In-
vitrogen). Restriction enzymes (AscI, BamHI, NdeI, NcoI, EcoRI, SphI,
and XbaI) were purchased from New England BioLabs (Ipswich, MA). All
plasmids were sequenced by Eurofins Operon MWG (Huntsville, AL).

Hdr enzyme assays. Coenzyme M was purchased from Sigma-Aldrich
(St. Louis, MO). Coenzyme B and CoM-S-S-CoB were synthesized in
house (25, 26). Cells were grown to early stationary phase (optical density
at 600 nm [OD600] � 1.0) in HS medium supplemented with 125 mM
MeOH. Under strict anaerobic conditions, 30 ml of cell cultures was har-
vested, pelleted by centrifugation, and washed twice with 10 ml 0.1 M
NaPO4, 0.4 M NaCl, pH 8.0. Cells were lysed osmotically by addition of 3
ml 0.1 M NaPO4, pH 8.0, without NaCl. Halt protease inhibitor cocktail
(Thermo Pierce) was added, and the lysate was centrifuged at 22,000 � g
for 1 h to pellet cell debris and membranes. The concentration of soluble
cytoplasmic protein in the resulting extract was measured via Bradford
assay against a 2-mg bovine serum albumin (BSA) standard (Thermo
Pierce). Hdr assays according to the method of Welte and Deppenmeier
(26) were modified for a 96-well plate format. Briefly, reaction mixtures
were prepared with 170 �l 0.1 M NaPO4, pH 8.0, 28 �l extract, and 2 �l
reduced methyl viologen (1 mM stock). The reaction was started by the
addition of 30 �l CoM-S-S-CoB heterodisulfide (1.125 mM stock), and
the increase in oxidized methyl viologen was followed at 578 nm in a
Tecan Sunrise plate reader at 35°C under a 5% H2–20% CO2–75% N2

atmosphere and strict anaerobic conditions.
Growth curves. M. acetivorans strains were grown in 10 ml TMA and

then transferred to 125 mM MeOH, 120 mM acetate, or a mixture of 40
mM acetate and 125 mM MeOH. Growth was assessed by measuring the
change in optical density at 600 nm using a Spec 20D spectrophotometer
modified with an 18-mm tube adapter. Growth data were obtained im-
mediately after inoculating from TMA into fresh medium containing a
different carbon source, or the cultures were passaged for 25 generations
before commencing growth measurements.

Methane production assays. For methane endpoint assays, 10-ml cul-
tures were grown in 125 mM methanol HS medium to stationary phase,
and 100-�l headspace samples were transferred to empty crimped 2-ml
serum vials using a gas-tight Hamilton syringe. For cell suspension assays,
cells were grown with an appropriate carbon source to an OD600 between
0.3 and 0.5 (exponential growth) and put on ice. Under strict anaerobic
conditions, cells from 10 ml of culture were harvested, pelleted by centrif-
ugation, and washed twice in HS medium without a carbon source. The
cells were resuspended in 0.5 ml HS medium with 50 �M mupirocin to
halt protein synthesis and then aliquoted in replicates of 5 into 2-ml serum
vials containing HS plus 125 mM MeOH or 120 mM acetate. The serum

vials were sealed with aluminum crimps and warmed for 5 min at 35°C to
start the assay. Methane in the headspace was measured via flame ioniza-
tion on an Agilent 7890 gas chromatograph with a GS CarbonPlot column
at 145°C using an autoinjector.

Methanol consumption assays. For each strain, 100-ml HS-MeOH
medium (125 mM) cultures were grown to an OD600 of approximately
0.5. Under strict anaerobic conditions, cells were harvested by centrifuga-
tion, washed once in 10 ml plain HS medium, and resuspended in 10 ml
HS-MeOH medium (125 mM). The cells were warmed to 35°C to start the
assay. Every 15 min, 1-ml aliquots were withdrawn and filtered using a
0.2-�m PES syringe filter (Thermo Scientific) to remove cells. The MeOH
content in the spent medium was measured via flame ionization on an
Agilent 7890 gas chromatograph with a GS CarbonPlot column at 200°C
using an autoinjector.

Biomass measurements. For each strain, 10 cultures (10 ml each)
were grown to stationary phase on HS medium containing 125 mM
MeOH. The methane in the headspace was measured as described above,
and cells were collected on preweighed 0.2-�m nylon filters by vacuum.
The filters were dried at 95°C and weighed daily until the weights stabi-
lized and remained consistent for 3 days. Uninoculated medium was used
as a blank.

RESULTS
Overexpression of HdrABC in M. acetivorans. To determine the
effect of increased HdrABC enzyme activity on cell physiology, we
created a plasmid to introduce a second hdrABC* operon on the
M. acetivorans chromosome (Fig. 2A). The open reading frames
corresponding to the methylotrophic hdrABC operon, MA3126-
MA3128, were amplified from the M. acetivorans C2A chromo-
some and cloned into the pJK027A plasmid, resulting in plasmid
pJC1. The hdrABC operon in pJC1 was designed to include five
mutations to distinguish the inserted genes from the wild-type
genes by removing NdeI restriction sites (see Table S1 in the sup-
plemental material). Four of the mutations are silent mutations
that do not change the translated protein sequence. One mutation
necessitated a change to the translated protein primary sequence
so that the pJC1 plasmid expressed HdrBM249V mutant protein.
The HdrB M249V mutation is in a predicted disordered region
within the second cysteine-rich motif at residues 166 to 257 (Inter-
ProScan) (27).

The parent M. acetivorans strain contains a �C31 site-specific
recombinase and a �C31 attP site at the hypoxanthine phospho-
ribosyltransferase (hpt) locus (see Table S2 in the supplemental
material). The complementary attB sequence in the pJC1 plas-
mid (Fig. 2A) allows it to recombine into the host chromosome
at the attP sequence (28, 29). Plasmid pJC1 was transformed
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into the parent strain, creating the att::hdrABC* strain, as well
as into the �hdrABC deletion mutant strain, creating the
�hdrABC att::hdrABC* mutant strain (see Fig. S1 in the supple-
mental material). We designed a PCR screen (Fig. 2B; see Fig. S1 in
the supplemental material) to simultaneously detect the inte-
grated hdrABC* operon (423-bp amplicon), the native
MA3126-MA3128 operon (1,287-bp amplicon), and deletion
of the MA3126-MA3128 operon (1,607-bp amplicon) to validate
each transformed strain. This PCR screen was used as a quality
control measure after all growth curves and methanogenesis as-
says to ensure that strains were not switched or contaminated.

Hdr enzyme activity in cell extracts of each strain was mea-
sured to check that the HdrB M249V point mutations did not
abolish enzyme activity (Fig. 3D). Assaying Hdr enzyme activity in
cell extracts is complicated by the fact that M. acetivorans expresses
multiple hdr genes during growth on methanol. The hdrA1C1B1
(MA3126-MA3128) operon is methanol specific but nonessential,
while genes encoding the membrane-bound HdrED (MA0687-
MA0688) are essential. M. acetivorans also expresses hdrD2
(MA0526), hdrA2, polyferredoxin genes (MA2867-MA2868), and
hdrC2B2 (MA4236-MA4237), which are constitutively expressed.
We assayed CoM-S-S-CoB-dependent methyl viologen oxidation
in clarified cell extracts to minimize HdrED protein levels, which
could mask HdrABC activity. Methyl viologen was used as the
electron donor because the specific electron donor for M. acetiv-
orans HdrABC is unknown.

The HdrABC enzyme activity correlates with each strain geno-
type (Fig. 3D). Hdr activity is 20% decreased in the �hdrABC
mutant extract relative to the parental strain. This level of Hdr
activity presumably results from incomplete removal of HdrED

and from HdrA2C2B2 and/or HdrD2 protein. Extract from the
att::hdrABC* overexpression strain has 14% increased activity
versus the parental strain, indicating that HdrABC proteins
expressed from the integrated pJC1 plasmid are enzymatically
active. Seventy percent of the activity is lost after heat treat-
ment, and CoM-S-S-CoB-dependent methyl viologen oxida-
tion cannot be detected when protein is omitted from the assay.
No CoM-S-S-CoM-dependent oxidation of methyl viologen
was detected (data not shown). These results indicate that the
HdrABC protein expressed from the integrated copy of the
pJC1 plasmid is enzymatically active and that by integrating a
second copy of the hdrABC* operon onto the chromosome it is
possible to increase the level of HdrABC enzyme activity in cell
extracts above wild-type levels.

pJC1 complements the growth and methanogenesis pheno-
types of the �hdrABC deletion mutant on methylotrophic sub-
strates. Plasmid pJC1 was transformed into the �hdrABC deletion
mutant to test whether the cloned hdrABC* operon on pJC1 func-
tions in vivo and could complement the growth and methanogen-
esis phenotypes of the �hdrABC deletion mutant (Fig. 3A). When
grown on methanol, the �hdrABC mutant displays an increased
lag phase and a 20% decreased growth rate versus the parental
strain. Integration of plasmid pJC1 in the �hdrABC strain results
in growth rates and culture lag times similar to those of the orig-
inal parent strain (Table 1). In cell suspension assays, the
�hdrABC att::hdrABC* mutant had a 46% increased methane
production rate versus the �hdrABC strain (Fig. 3B). These results
indicate that the hdrABC* operon cloned into the pJC1 plasmid is
capable of complementing the growth and methanogenesis phe-
notypes of a �hdrABC deletion mutant.
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TABLE 1 Culture doubling times for adapted cellsa

Strain

MeOH MeOH 	 acetate Acetate

Doubling time (h)
(
SD)

P vs
parent

P vs
�hdrABC

Doubling time (h)
(
SD)

P vs
parent

P vs
�hdrABC

Doubling time (h)
(
SD)

P vs
parent

P vs
�hdrABC

Parent 8.5 
 0.17 1 0.0000 9.4 
 0.28 1 0.0046 44.0 
 2.80 1 0.0000
att::hdrABC* 8.4 
 0.35 NS 0.0001 9.7 
 0.16 NS NS 47.6 
 2.64 NS 0.0003
�hdrABC att::hdrABC* 9.1 
 0.14 0.0012 0.0010 10.3 
 0.48 NS NS 58.0 
 3.05 0.0002 NS
�hdrABC 9.9
 0.24 0.0000 1 10.1 
 0.20 0.0046 1 61.8 
 2.94 0.0000 1
a Cells were adapted to methanol for 25 generations. Data were collected from five biological replicates (n � 5). Significance (P values) was determined by unpaired Student t tests.
NS, not significant (P � 0.01).
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An increased rate of methane production is observed when
the HdrABC expression level is increased. After determining that
the pJC1 plasmid can complement the �hdrABC mutant growth
phenotype, we tested whether overexpression of HdrABC in the
parent strain (att::hdrABC*) would have the opposite effect of a
�hdrABC mutation and result in increased growth and methane
production. Decreased expression of HdrABC (by deleting the
hdrABC operon) resulted in a 50% decrease in methane produc-
tion and a 20% decrease in the growth rate. However, instead of
increasing growth and methane production, the att::hdrABC*
mutant strain we created had a growth rate identical to that of the
parent strain (Fig. 2A). When cells were switched from TMA to
methanol, the parent had a doubling time of 10.1 
 0.16 h versus
10.4 
 0.21 for the att::hdrABC* mutant strain (see Table S3 in the
supplemental material). When cells were preadapted to methanol
for 25 generations, both the parent and the att::hdrABC* mutant
had cell doubling times of 8.5 h (Table 1). When methane produc-
tion was measured in resting cell suspensions, the att::hdrABC*
mutant exhibited a 30% increase in the rate of methane produc-
tion from methanol versus the parental strain (Fig. 3B). The meth-
anol consumption rate was consistent with the methane produc-
tion rates. The �hdrABC deletion mutant had a 15% decrease in
the methanol consumption rate versus the parent strain, the
�hdrABC att::hdrABC* complemented strain had a rate 16%
higher than that of the parent strain, and the att::hdrABC* over-
expression strain had a 16% increase in rate compared to the par-
ent. The Hdr enzyme assays, growth phenotypes, and methane
rate assays suggest that an increased HdrABC enzyme activity of
12% results in a 30% increase in conversion of methanol to meth-
ane without affecting the kinetics of cell growth. Our data show
that the rate of methane production is dependent on the rate of
Hdr enzyme activity by a direct linear correlation (Fig. 4A). As
Hdr enzyme activity (kHdrABC) in the cell is increased, the rate of
methane production (kCH4) increases according to equation 1:

kCH4 � 41.817 � kHdrABC � 295.65 (1)

The correlation coefficient (R2) between HdrABC activity and
the methane production rate is 1.00. This suggests that extra
HdrABC may circumvent the production of a transmembrane ion
gradient, leading to decreased ATP generation, and consequently
may result in decreased cell growth from an equivalent amount of
substrate. These results also suggest that, in the range of HdrABC

expression we tested, the substrate (methanol), enzymes (methyl-
transferases, the oxidative and reductive branches of the metha-
nogenesis pathway), and cofactor availability (coenzyme M) are
not rate limiting.

In contrast, the rate of population growth (kg) depends on the
rate of methane production (kCH4), which is described by equa-
tion 2:

kg � �7E�0.5 � kCH4
2 � 0.0335 � kCH4 � 4.2204 (2)

The goodness of fit for the correlation is as follows: R2 � 0.9813
(Fig. 4B). This result suggests that other biosynthetic and meta-
bolic reactions in the cell are constrained even when the rate of
methane production increases. Presuming that the other biosyn-
thetic and metabolic reactions are dependent on the turnover of
reduced ferredoxin or F420H2 or ATP synthesis, these data are
consistent with either the direct-reduction pathway shown in Fig.
1B or the bifurcation pathway shown in Fig. 1C. These results do
not support the pathway shown in Fig. 1A, because if HdrABC
confurcated electrons and competed equally with both Rnf and
Fpo for electron donors, the growth rate would be inversely pro-
portional to the rate of methane production.

HdrABC uncouples methanogenesis from ATP synthesis. If
overexpression of HdrABC increases the rate of methane produc-
tion but does not affect the rate of biomass synthesis, this suggests
that HdrABC can partially or completely uncouple methanogen-
esis from growth (Fig. 1B and C). The degree of uncoupling can be
quantified by measuring the endpoint biomass or methane yield
and by determining the metabolic efficiency of substrate turnover.
We observed that the att::hdrABC* and �hdrABC att::hdrABC*
strains had biomass yields equivalent to that of the parent strain
but that the �hdrABC mutant cultures had a 16% increase in
biomass compared to the parental strain (P � 0.00805) (Table 2).
Therefore, when the hdrABC genes are deleted, cells are 16% more
efficient at conserving energy, and in the parent strain, in the
�hdrABC att::hdrABC* strain, and in the att::hdrABC* overex-
pression strain, HdrABC expression satisfies a lower-limit thresh-
old for energy losses.

We measured the total methane yield from each strain grown
on methanol. The total methane yields for all strains were equiv-
alent (Table 2). These results indicate that when HdrABC is de-
leted, growth and methane production rates are constrained by a
decreased CoM-S-S-CoB reduction rate but that substrate affinity
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is not affected. When HdrABC is overexpressed, cells take up and
turn over substrate more quickly, but ATP and/or macromolecu-
lar biomass synthesis rates have reached a maximum.

If the cell always translocates the same number of ions across
the membrane and, hence, attains the same ATP production rate,
then any increase in the rate of methanogenesis (kCH4) should
proportionally increase the growth rate (kg), assuming that the
rate of substrate uptake is not rate limiting. However, if HdrABC
uncouples ATP synthesis from methanogenesis, the ratio between
kCH4 and kg will change in accordance with the expression level of
HdrABC. The relationship between kCH4 and kg can be described
by expressing the metabolic efficiency, e, of each strain using equa-
tion 3 (Fig. 4C) (30):

Percent e �
kg

kCH4
� 100 (3)

We observed a strong negative correlation between metabolic
efficiency and HdrABC expression levels. As HdrABC levels in-
crease, the rate of substrate conversion to methane increases at the
expense of the growth rate. The relationship between HdrABC
activity (kHdrABC) and e can be described by equation 4:

Percent e � �0.6366 � kHdrABC � 229.4 (4)

where the goodness of fit is as follows: R2 � 0.9838 (Fig. 4D).
These results rule out the bifurcation pathway shown in Fig. 1C for
the putative function of HdrABC. If HdrABC only partially by-
passed energy-conserving steps in the methanogenesis pathway,
then we would have expected a nonlinear correlation between
metabolic efficiency and HdrABC activity. For electron bifurca-
tion, the relationship between HdrABC enzyme activity and met-
abolic efficiency would follow equation 5:

Percent e � 100 � e�0.5�kHdrABC�substrate (5)

This is because half of the electrons donated to HdrABC would
be diverted to an energy-conserving ion translocation step. How-
ever, the linear relationship between metabolic efficiency and
HdrABC activity does not fit the bifurcation model. Therefore, the
experimental results are consistent with the idea that HdrABC
uncouples methanogenesis from the generation of a transmem-
brane ion potential by increasing the rate of substrate turnover
while bypassing HdrED and Rnf (Fig. 1B).

Hdr competes with Rnf for the same electron pool. Deter-

mining the substrate of HdrABC is complicated by the fact that it
contains two 4Fe-4S clusters and a bound flavin. Therefore, it is
theoretically possible that HdrABC could directly accept electrons
from any of the three electron carriers that shuttle electrons be-
tween the oxidative branch of the methylotrophic methanogenesis
pathway and the electron transport system: a low-potential iron-
sulfur cluster (via a ferredoxin or a protein-protein interaction),
reduced F420H2, or the reduced CoM-SH and CoB-SH sulfhydryls
(see Fig. S2 to S4 in the supplemental material). Therefore, there
are seven possible mechanisms for HdrABC biochemistry: elec-
tron confurcation ([i] electrons from sulfhydryls and ferredoxin
are used to reduce F420, or [ii] electrons from both ferredoxin and
F420 are used to reduce CoM-S-S-CoB), electron bifurcation ([iii]
electrons from ferredoxin are used to reduce F420 and CoM-S-S-
CoB, or [iv] electrons from F420 are used to reduce both ferredoxin
and CoM-S-S-CoB), direct reduction of CoM-S-S-CoB with ei-
ther (v) ferredoxin or (vi) F420H2 (competitive with Rnf, compet-
itive with Fpo, and noncompetitive with either Rnf or Fpo), and
(vii) direct nonspecific oxidation of either ferredoxin or F420H2 to
reduce CoM-S-S-CoB.

Electron confurcation using F420 and sulfhydryls as donors is
not favorable with a positive change in Gibbs’ free energy for the
reaction under standard conditions (�G°=� 38.59 kJ mol�1), but
all other possible mechanisms are thermodynamically favorable,
with �G°= values ranging between �46.31 and �239.3 kJ mol�1

(see Table S4 in the supplemental material). Electron confurca-
tion using either sulfhydryls and F420H2 or sulfhydryls and FdxH2

as electron donors, however, requires an additional 2 mol of elec-
tron input per mol substrate oxidized to balance the redox reac-
tions and decreases the CH4/CO2 product ratio below the experi-
mental 3:1. This is because methyl-CoM reductase (Mcr) requires
CoB-SH as an electron donor. Hence, confurcation mechanisms
would result in HdrABC competing with Mcr for electron donors,
and increasing HdrABC activity would slow down methanogen-
esis. However, the �hdrABC mutant has a lower rate of methane
production, and increased HdrABC activity results in an increased
rate of methane production (Fig. 3B). For these reasons, HdrABC
electron confurcation models using sulfhydryls as electron donors
are excluded as possibilities in M. acetivorans growing on metha-
nol. If HdrABC confurcates electrons from stoichiometric oxi-
dation of both FdxH2 and F420H2 to reduce CoM-S-S-CoB (Fig.
1A), then HdrABC would compete equally with both Rnf and Fpo
for electrons. Therefore, the �hdrABC mutant would have in-
creased in biomass versus the parent strain because more electrons
would flow through Rnf and Fpo and increased HdrABC activity
would decrease the biomass. This mechanism is not supported by
our growth rate or biomass yield results and can also be excluded
(see Table S5 in the supplemental material).

Direct-reduction mechanisms can be distinguished by the
physiological predictions they imply (Fig. 1C; see Table S5 in the
supplemental material). If HdrABC accepts electrons only from
F420, then high HdrABC activity would result in decreased growth.
This is because, under the conditions we tested, Rnf only weakly
couples electron transport with sodium ion translocation, and
ATP synthesis is primarily dependent on proton pumping by Fpo
and proton translocation by HdrED (16). This prediction does not
match the experimental results. Conversely, if HdrABC can accept
electrons only from reduced ferredoxin, then as HdrABC levels
increase, the biomass would change negligibly because the elec-
trons from ferredoxin are not used to conserve energy via Rnf and

TABLE 2 Growth yields and methane yieldsa

Strain Yieldb SD P vs parent

Biomass
Parent 7.295 0.7378 1
att::hdrABC* 6.977 0.6565 NS
�hdrABC att::hdrABC* 7.020 0.7550 NS
�hdrABC 8.634 0.5642 0.0081

Methanec

Parent 95.0 3.66 1
att::hdrABC* 95.7 1.77 NS
�hdrABC att::hdrABC* 95.9 2.62 NS
�hdrABC 97.6 3.71 NS

a Cells were adapted to methanol for 25 generations. Data were collected from 10
biological replicates (n � 10). Significance (P values) was determined by unpaired
Student t tests. NS, not significant (P � 0.01).
b Biomass yields are in grams per mole; methane yields are in millimoles per liter.
c Theoretical methane yield, 93.75 mmol liter�1.
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Mrp (31). If HdrABC can accept electrons nonspecifically from
either FdxH2 or F420H2, HdrABC would probabilistically compete
for substrate with Rnf (33%) and Fpo (66%) (see Table S5 in the
supplemental material). However, because HdrABC is nonspe-
cific, the decrease in biomass that results from bypassing Rnf and
Fpo would follow a linear correlation with the amount of HdrABC
activity in the cell. This prediction does not reflect the experimen-
tal data. Our growth data support a direct mechanism using only
FdxH2 as the substrate because successive increases in HdrABC
activity did not affect the growth rate or biomass yield (Tables 1
and 2).

If the model in Fig. 1C were correct and M. acetivorans
HdrABC could bifurcate electrons from FdxH2, then half of the
electrons from ferredoxin would be used to reduce F420. Electrons
from F420H2 would still be used to conserve energy via Fpo and
HdrED (Fig. 1C). As a result, at high HdrABC levels, there would
be up to five protons pumped by Fpo per mole substrate instead of
four, resulting in up to a 25% increase in biomass yield. If elec-
trons from F420H2 were bifurcated to reduce FdxH2 and CoM-S-
S-CoB, HdrABC would be competing with electrons from Fpo,
and because Rnf translocates only 0.02 sodium ion per electron,
overexpression of HdrABC would result in decreased biomass. In
addition, if FdxH2 was a product of the reaction catalyzed by
HdrABC, the only way to oxidize FdxH2 would be through Rnf or
through production of acetyl-CoA and other biosynthetic reac-
tions. This scenario would imply that a �rnf mutant would be
nonviable during methylotrophic growth, an implication that is at
odds with the experimental data (13, 14, 16). Therefore, growth,
biomass, and metabolic efficiency results support the conclusion
that M. acetivorans HdrABC competes with Rnf for the same pool
of electrons and does not use a bifurcation mechanism (Fig. 1B).

Metabolic-flux modeling of methylotrophic methanogen-
esis. We next used computational modeling to quantitatively eval-
uate which of the 22 possible methylotrophic methanogenesis
pathways most closely matches the experimental data (see Fig. S5
in the supplemental material). The 22 possible methanogenesis
pathways (M1 to M22) compare roles of HdrABC and Fpo in
methanogenesis: Fpo is an F420H2 oxidoreductase, Fpo uses ferre-
doxin (competes with Rnf), or Fpo obtains electrons from direct
reduction by association with either methylene-tetrahydrometha-
nopterin (H4MPT) reductase (Mer) or methylene-H4MPT dehy-
drogenase (Mtd) (see Fig. S2 to S4 in the supplemental material).
Each of the 22 models was evaluated to predict whether
HdrABC would be essential and what the relative biomass
would be based on the magnitude of ion motive force that
could be generated (see Table S4 in the supplemental material).
The number of protons pumped per mole CH3OH (mH	) was
calculated using equation 6:

mH � �
�Rnf � nRnf � �Fpo � nFpo � �HdrED � nHdrED

4
(6)

where � is the number of protons or sodium ions pumped across
the membrane per electron. For Rnf, � is equal to 0.02, and for
Fpo and HdrED, � is equal to 1. In the equation, n is the number
of electrons accepted by each enzyme in each model pathway, and
nHdrED is equal to the sum of nRnf and nFpo, because Fpo and Rnf
reduce methanophenazine, which is the substrate for HdrED. Cal-
culating the number of protons pumped in each pathway alone is
insufficient to account for biochemical blockages that could occur
if F420H2 pools accumulated without an oxidant.

To account for stoichiometric balance of electron donors and
acceptors, steady-state electron flux was calculated for each model
using equation 7:

0 � nFdx � nF420 � nother � �Fdx � nFdx � �F420 � nF420

� �other � nother (7)

where n is the number of electrons accepted by each electron car-
rier: Fdx, F420, or via an unknown direct protein-protein interac-
tion (Fpo-Mer or Fpo-Mtd?). The term  is the mole fraction of
electrons accepted by each enzyme (a combination of HdrABC,
Fpo, and Rnf) in each model. For the purpose of simulation, we
assumed that all enzymes (HdrABC, Fpo, and Rnf) could compete
equally well for each electron donor and that flux through the
oxidative branch of the methylotrophic methanogenesis pathway
did not change. When input and output fluxes disagreed, a fault
was declared, and the number of ions translocated was set to zero.
Faults were manually checked for each model, and when theoret-
ically biochemically possible, such as when two enzymes had the
same substrate, accumulated electrons were cleared by increasing
flux through the alternative enzyme(s).

The model simulations and flux calculations show that all but
one model, M13 (see Table S5 and Fig. S4 in the supplemental
material), are excluded by comparing predicted and actual bio-
mass measurements. Model M13 is very similar to our physiolog-
ical data in that a direct mechanism for CoM-S-S-CoB reduction
by reduced ferredoxin is characterized by a 5 to 15% increase in
biomass in the �hdrABC mutant relative to the parent strain
(within the error of experimental �hdrABC biomass measure-
ment), a 5 to 10% decrease in biomass in the �rnf mutant (within
the error of experimental �rnf biomass measurement) (32), and
equivalent biomasses between the parent and att::hdrABC*
strains. The available data and model predictions suggest that
when M. acetivorans is growing on methylotrophic substrates, the
role of HdrABC is to bypass Rnf by using electrons from ferre-
doxin to reduce CoM-S-S-CoB (Fig. 5).

Overexpression of HdrABC does not affect acetoclastic
methanogenesis. We also tested whether HdrABC could increase
methanogenesis or affect growth when it is expressed during ace-
toclastic growth. Methanogens use a different methanogenesis
pathway to grow on acetate as the sole carbon source (see Fig. S6 in
the supplemental material). Expression of the hdrABC genes, like
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that of many of the methylotrophic methanogenesis genes, is
greatly reduced when cells are growing acetoclastically (33, 34).
Transcription from the PhdrABC promoter could not be detected
on acetate, and deletion of the hdrABC operon did not affect
growth or methane production from acetate versus the parental
strain (8). HdrABC is thought to accept electrons from ferredoxin,
the primary electron carrier during acetoclastic growth, which
accepts two electrons per acetate molecule consumed (12, 35).
Electrons from ferredoxin are donated to either the proposed so-
dium-pumping ferredoxin-methanophenazine oxidoreductase,
Rnf, or potentially to HdrA2C2B2 to reduce CoM-S-S-CoB.
Ferredoxin–CoM-S-S-CoB heterodisulfide oxidoreductase (Fho)
activity has been detected in acetate-grown cells and is coupled
with Rnf activity (16). Presumably, HdrA2C2B2 or HdrED may be
the enzyme responsible for Fho activity during acetoclastic
growth. If the methylotrophic HdrABC can substitute for Fho, or
if it can compete with Rnf for electrons from ferredoxin, overex-
pression of HdrABC in the att::hdrABC* strain could potentially
increase the rate of methanogenesis from acetate when expressed
from a constitutive promoter on the integrated pJC1 plasmid.

However, integration of the plasmid pJC1 has no effect on
either growth or methane production when acetate is used as the
sole carbon source (Table 1). When cells are inoculated from trim-
ethylamine to acetate, the parent strain has a doubling time of
51.2 
 0.69 h versus 54.3 
 0.86 h (P � 0.0012) for the att::
hdrABC* mutant (see Table S3 in the supplemental material).
When strains are preadapted to growth on acetate for 25 genera-
tions, the doubling times are 44.0 
 2.8 h versus 47.6 
 2.64 h,
respectively (P � 0.1269) (Table 1). These results suggest the att::
hdrABC* strain has a modest carbon source switching defect but
that growth is not affected by overexpression of HdrABC once
cells are adapted to acetate. Cell suspension assays show no change
in the rate of methane production between the parent and the
att::hdrABC* strains (Fig. 3C). Therefore, the HdrABC enzyme is
specific for methylotrophic methanogenesis and overexpression
does not increase methane production from acetate.

DISCUSSION

M. acetivorans has evolved multiple mechanisms for survival un-
der a wide array of changing growth conditions. It can adjust to
take advantage of changes in carbon and energy sources by alter-
ing gene expression of multiple substrate-specific methyltrans-
ferases to utilize methanol, methylamines, and methylsulfide
(5, 34, 36–44). It can also adjust to changes in salt concentra-
tion by synthesizing glycine betaine as an osmoregulator; by
upregulating phosphate and sodium transporters; by using a
sodium proton antiporter, MrpA, to optimize the transmem-
brane proton gradient to maintain optimal ATPase function;
and by using a promiscuous H	/Na	 ATP synthase (31, 45,
46). Our observations suggest Hdr enzymes have also evolved
as a consequence of selective pressure to respond to fluctua-
tions in substrate availability.

Phylogenomic analyses show that there are several classes of
Hdr enzymes in methanogens. Obligate hydrogenotrophic meth-
anogens generally have two sets of HdrABC enzymes (one encod-
ing selenocysteines), while Methanosarcinales has two kinds of
Hdr enzyme (HdrABC and HdrED), as well as multiple copies of
Hdr subunit genes. Most Methanosarcinales genomes contain
hdrABC genes that share similarity with methylotrophic and ob-
ligate acetoclastic Methanosarcinales hdrABC genes, while the

other hdrA2 and hdrC2B2 genes are more similar to the obligate
hydrogenotrophic methanogen hdrABC genes (8). Therefore,
within the Methanosarcinales lineage, it appears as if there was a
strong selective pressure to evolve increased HdrABC levels to
uncouple methanogenesis and growth. Our physiological data
suggest hdrABC genes allow methylotrophic methanogens to rap-
idly take up substrate and grow, albeit at submaximal efficiency.
This scenario is consistent with M. acetivorans as a k-strategist at
high substrate concentrations that turns over substrate faster but
less efficiently. (Microbial k-strategists are characterized by an in-
ability to adjust their growth rate in order to compete for high
concentrations of substrate. Instead, k-strategists compete effec-
tively at low substrate concentrations by having increased sub-
strate affinity and uptake.) By converting substrate to methane
faster and rapidly dropping the concentration of available sub-
strate in the environment, over time, Methanosarcinales may out-
compete other microbes for substrate as long as it is still able to
generate ATP above a threshold maintenance level.

Multiple versions and copies of Hdr enzymes could have
evolved to form specialized protein-protein interactions. Metha-
nococcus HdrABC can use an electron bifurcation mechanism and
forms specific protein-protein interactions with the hydrogenase
Vhu; formyl-methanofuran dehydrogenase, Fmd; and formate
dehydrogenase, Fdh (11, 12). HdrABC enzymes in M. acetivorans
cannot interact with Vhu or another hydrogenase because none
are expressed. However, Fmd or another protein partner(s) is pos-
sible. HdrED may also participate in protein-protein interactions
in the cell. The HdrD subunit of HdrED interacts with acetyl-
CoA decarbonylase/synthase (ACDS) and methylene-tetrahydro-
methanopterin reductase (Mer) (47). Further experiments are
necessary to determine which proteins and enzymes interact with
each other, how these relationships change as Methanosarcina
switches between carbon and energy sources, and the degree of
relevance to growth of the organism.

Hdr enzymes may also tailor electron donor specificity as
cells switch from one methanogenesis pathway to another, for
instance, between methylotrophic and acetoclastic pathways.
Though HdrABC and Rnf compete for the same electron donor in
methanol-grown cells, Rnf is upregulated 4- to 10-fold when cells
are grown on acetate and genes necessary for the oxidative branch
of the methanogenesis pathway are poorly expressed (15, 33, 34,
36). Transcriptional-fusion experiments suggest HdrA2, poly-
ferredoxin, and HdrC2B2 genes in M. acetivorans are upregulated
on acetate, and acetate-grown cells are known to have ferredoxin-
heterodisulfide reductase activity (Fho), which is coupled with
Rnf (16). If overexpressed HdrABC cannot kinetically compete
with Fho, it may explain why overexpression of the methyl-
otrophic HdrABC is not able to increase the rate of methanogen-
esis from acetate (8). If the methylotrophic HdrABC enzyme in-
teracts directly with Fmd, or if it requires a ferredoxin that is not
expressed on acetate, HdrABC would not be able to compete with
Rnf for electrons when cells are grown on acetate. This idea is
consistent with the fact that the acetate-induced HdrA2 gene is
expressed as part of an operon that also contains a polyferredoxin.
Regardless of substrate specificity details, our results suggest ma-
nipulating Hdr gene expression increases the rate of substrate
turnover by bypassing rate-limiting redox reactions, further en-
hancing the k-strategist metabolism of M. acetivorans.
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