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Mechanistic Details of Glutathione Biosynthesis Revealed by
Crystal Structures of Saccharomyces cerevisiae Glutamate
Cysteine Ligase*□S
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Glutathione is a thiol-disulfide exchange peptide critical for
buffering oxidative or chemical stress, and an essential cofactor
in several biosynthesis and detoxification pathways. The rate-
limiting step in itsdenovobiosynthesis is catalyzedby glutamate
cysteine ligase, a broadly expressed enzyme for which limited
structural information is available in higher eukaryotic species.
Structural data are critical to the understanding of clinical glu-
tathione deficiency, as well as rational design of enzyme modu-
lators that could impact human disease progression. Here, we
havedetermined the structures ofSaccharomyces cerevisiaeglu-
tamate cysteine ligase (ScGCL) in the presence of glutamate and
MgCl2 (2.1 Å; R � 18.2%, Rfree � 21.9%), and in complex with
glutamate, MgCl2, and ADP (2.7 Å; R � 19.0%, Rfree � 24.2%).
Inspection of these structures reveals an unusual binding pocket
for the �-carboxylate of the glutamate substrate and an ATP-
independent Mg2� coordination site, clarifying the Mg2�

dependence of the enzymatic reaction. The ScGCL structures
were further used to generate a credible homology model of the
catalytic subunit of human glutamate cysteine ligase (hGCLC).
Examination of the hGCLC model suggests that post-transla-
tional modifications of cysteine residues may be involved in the
regulation of enzymatic activity, and elucidates the molecular
basis of glutathione deficiency associated with patient hGCLC
mutations.

Glutathione, �-glutamylcysteinyl glycine, is a low molecular
weight thiol, central to maintenance of redox homeostasis.
Among its normal functions are the scavenging of reactive oxy-
gen and nitrogen species (1), storage and transport of cysteine
(2, 3), leukotriene, and prostaglandin biosynthesis (4, 5), and
regulation of enzyme activity via reduction of disulfide bonds
and glutathionylation (6, 7). Disruption of glutathione metabo-
lism is associated with the progression of AIDS, cancer, and
neurodegenerative conditions such as Parkinson and Alzhei-
mer disease (8–12). Polymorphisms that reduce activity of glu-

tamate cysteine ligase (GCL),2 the first and rate-limiting
enzyme in de novo synthesis of glutathione, are correlated with
reduced glutathione levels in patients with hemolytic anemia,
schizophrenia and other neurological disorders (13–16). Given
its importance both in normal and disease states, there is con-
siderable interest in the development of novel compounds that
could be used to modulate intracellular glutathione levels,
potentially via GCL.
Glutathione is synthesized from its three constituent amino

acids by consecutive action of two cytosolic ATP-dependent
enzymes: GCL and glutathione synthetase (17). GCL catalyzes
the conjugation of the �-carboxyl group of L-glutamate to the
amino group of L-cysteine (17). The proposed catalytic mecha-
nism proceeds via phosphorylation of the �-carboxylate of
L-glutamate by ATP (18–20). The �-amino group of L-cysteine
acts as a nucleophile, attacking the �-glutamyl phosphate inter-
mediate to produce �-glutamylcysteine. This dipeptide is then
coupled in an analogous fashion to glycine by glutathione syn-
thetase to generate glutathione. As the committed step of glu-
tathione biosynthesis, GCL activity is regulated by L-cysteine
availability (21), feedback inhibition by glutathione (22), and
transcriptional and post-translational regulation (23).
Based on sequence analysis, three distinct groups of GCL

have been identified. Groups 1 and 3 are comprised of bacterial
and plant orthologues (24). Recently, x-ray crystal structures of
Escherichia coli (Group 1) (25) and Brassica juncea (Group 3)
(26) GCL were described, providing the first structural insights
into �-glutamylcysteine synthesis. However, low sequence
identity (�10%) between enzymes of different groups has pre-
cluded translation of these structural data into a detailed under-
standing of the molecular features of enzymes in Group 2, the
class that encompasses yeast and mammalian GCL. One struc-
turally unique feature of several Group 2 GCL is the potential
for higher order regulation imposed by their existence in
reversible heterodimeric complexes of a catalytic (GCLC)
and a modulatory subunit (GCLM) (17). To circumvent the
inherent challenges associated with structural studies of the
complex, we selected the monomeric Saccharomyces cerevi-
siae GCL (ScGCL), a member of a unique subclass of Group
2 GCL, as a model system for higher eukaryotic GCL.
Although ScGCL differs from human GCLC in its oligomeric
state, the two enzymes share �45% sequence identity (24).

* This work was supported, in whole or in part, by National Institutes of Health
Grant Number 1R01 GM077289 (to J. J. B.).

The atomic coordinates and structure factors (codes 3IG5 and 3IG8) have been
deposited in the Protein Data Bank, Research Collaboratory for Structural
Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).
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In the current study, we present the crystal structures of
ScGCL in complex with glutamate and Mg2�, as well as in the
presence of glutamate, Mg2�, and ADP. Examination of these
structures provides considerable insights into catalysis and
reveals a unique coordination at the �-carboxylate of the gluta-
mate substrate. Based on the ScGCL structure, a homology
model of humanGCLCwas generated to investigate themolec-
ular details of several human patient mutations with reduced
activity, and to aid in the design of novel modulators of GCL
activity.

EXPERIMENTAL PROCEDURES

Generation of ScGCL Expression Construct—A predicted
open reading frame in the S. cerevisiae genome (KEGG Data
Base Entry YJL101C) (27, 28) was amplified by the polymerase
chain reaction using S. cerevisiae genomic DNA (American
Type Culture Collection) as a template. Designed primers con-
tained SpeI (forward) and SalI (reverse) restrictions sites. The
resultant 2-kb product was digested with the relevant enzymes
and ligated into a complementarily digested pET-21a(�)
expression vector (Novagen; NheI and SalI), thus incorporating
a C-terminal histidine tag. The expression construct was
sequenced at the Genomics Facility of University of Nebraska
(Lincoln, NE) and confirmed to be identical to the YJL101C
sequence.
Protein Expression and Purification—The ScGCL construct

was used to transform Escherichia coli RosettaTM2(DE3) pLysS
cells (Novagen). Cells were grown in 2xYTmedium containing
100 �g ml�1 ampicillin and 34 �g ml�1 chloramphenicol at
37 °C, and ScGCL production was induced by the addition of
500 �M isopropyl-1-thio-�-D-galactopyranoside once the cells
reached anA600 of 0.6. After induction, cultures were grown for
4 h at 30 °C. Cells were harvested by centrifugation (20 min,
8000 � g, 4 °C) and stored at �80 °C. Frozen cell pellets were
thawed, resuspended in lysis buffer (50 mM sodium phosphate
buffer, pH 8.0, 300 mMNaCl, 0.2 mM protease inhibitor, 10 mM

imidazole), and disrupted by sonication. Following centrifuga-
tion to remove cellular debris (30 min, 20,000 � g, 4 °C), the
supernatant was loaded onto a HisTrap Chelating HP Column
(GEHealthcare) equilibrated with lysis buffer. The columnwas
washed to baseline (A280), and the remaining bound proteins
were eluted using a linear imidazole gradient (10–250 mM).
Fractions containing ScGCL were pooled, concentrated, and
loaded onto a Sephacryl 200 gel filtration column (16 � 600
mm) equilibrated with 50 mM Tris-HCl, pH 7.4, 300 mM

NaCl, and 2 mM DTT. Samples containing ScGCL were
pooled and dialyzed against crystallization buffer (20 mM

Tris-HCl, pH 7.4, 2 mMDTT). The enzyme was concentrated
to 12 mg ml�1 using an Amicon ultrafiltration device
(Stirred cell 8050, 10-kDa cutoff), flash-frozen in liquid
nitrogen, and stored at �80 °C. The enzyme concentration
was determined by absorbance (280 nm) using a calculated
extinction coefficient (29) of 105,200 M�1 cm�1.
Characterization of ScGCL—ScGCL was examined by ana-

lytical gel filtration chromatography on a Superdex 200 HR
10/30 column (GE Healthcare, equilibrated with 20 mM Tris,
pH 7.4, 150 mM NaCl, 2 mM DTT). Molecular weight determi-
nations were made by comparison with the following stand-

ards: thyroglobulin, 699 kDa; ferritin, 416 kDa; catalase, 219
kDa; aldolase, 176 kDa; albumin, 67 kDa; ovalbumin, 47 kDa;
chymotrypsinogen A, 20 kDa; RNase A, 15 kDa (GE Health-
care). Enzymatic activity was measured in the presence of 20
mM L-glutamate, 10 mM L-cysteine, 5 mM ATP, and 50 mM

MgCl2, using an indirect assay that couples ADP production to
NADH oxidation (30).
Structure Determination of ScGCL—Initial crystallization

screening was performed by the sitting-drop vapor-diffusion
method using sparse matrix crystal screens (Qiagen). Crystals
of ScGCL (7 mg/ml) were ultimately grown at 18 °C out of a
solution of 12% (w/v) PEG 400, 100 mM MES, pH 6.8, and
reached the dimensions 0.15 � 0.15 � 0.15 mm. Once suitable
crystallization conditions were established, several complexes
were co-crystallized as indicated below.
An extensive search of potential heavy metal derivatives was

conducted and a derivative suitable for phasing was identified.
ScGCL was incubated with 1 mM trimethyl lead acetate, 5 mM

L-glutamate, 5 mM ATP, and 20 mMMgCl2 and co-crystallized.
Crystals were transferred into an appropriate stabilizing solu-
tion, containing 100 mM MES, pH 6.8, 5 mM ATP, 5 mM L-glu-
tamate, 20 mM MgCl2, and 30% PEG 400 and vitrified in the
cryostream (X-Stream cooling system; Rigaku) (31). Diffraction
data were collected using radiation produced by a Rigaku
MicroMax-007 x-ray generator fitted with confocal blue optics
and an R-axis IV�� image plate system (� � 1.54 Å; 100 K).
Data were processed with the HKL2000 software package (32).
The structure of ScGCL derivatized with trimethyl lead ace-
tate was solved using experimental phases determined by
single wavelength anomalous diffraction utilizing the PHENIX
software suite (33). A readily interpretable electron densitymap
was obtained, and automated model building was employed.
The initial model contained a single Pb2� bound at the enzyme
active site. Since the Pb2� occupied one of the three Mg2�

binding sites,M2 (see below), this initialmodel was used only as
a search probe for subsequent ScGCL complex structure
determinations.
To examine the structural basis of catalysis and substrate

recognition, several ScGCL complexes were pursued. ScGCL
was incubated with 5 mM L-glutamate, 5 mM AMP-PNP, 5 mM

L-cysteine, and 20 mMMgCl2 or 5 mM L-glutamate, 5 mM ADP,
5 mM L-cysteine, and 20 mM MgCl2 and both complexes were
crystallized. Crystals were transferred to a suitable cryosolution
(30% PEG 400, 100 mM MES, pH 6.8, and the appropriate
ligands) and then stored in liquid nitrogen. Diffraction data
(� � 0.9 Å; 100 K) were collected on Beamline 14-BM-C of
BioCARS at Argonne National Laboratory’s Advanced Photon
Source and were processed with the HKL2000 software pack-
age (32).
The structures were solved bymolecular replacement within

the PHENIX software suite (33) using the initial ScGCL model
as a probe. Iterative rounds of model building and refinement
were carried out using Coot (34) and Refmac5 (35) respectively.
As the protein models neared completion, water molecules
obeying proper hydrogen-bonding constraints with electron
density greater than 1.0 � on a 2Fo–Fc map and 4.0 � on an
Fo–Fc map were also included in the final structure. Model
geometry was monitored using MOLPROBITY (36), and fig-
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ures were produced using Chimera (37). To validate the loca-
tion of the metal binding sites, ScGCL was crystallized in the
presence of 5mM L-glutamate, 5mMADP, 5mM L-cysteine, and
20 mM MnCl2. Diffraction data were collected using radiation
produced by a Rigaku MicroMax-007 x-ray generator fitted
with confocal blue optics and an R-axis IV�� image plate sys-
tem (� � 1.54 Å; 100 K). Data were processed with the
HKL2000 software package (32) and an anomalous difference
map was calculated.

RESULTS

Characterization of ScGCL—ScGCLwas purified fromE. coli
with a specific activity of�10�moles/min/mg of protein, com-
parable to other glutamate cysteine ligases. Both analytical gel
filtration chromatography as well as sedimentation velocity
experiments indicated that ScGCL was likely a monomer in
solution (data not shown). As discussed below, a single
polypeptide chain is contained within the asymmetric unit of
ScGCL crystals, and relatively modest interactions between
crystallographically related molecules are observed, consistent
with a monomeric enzyme. Although GCL is typically a het-
erodimer comprised of a catalytic subunit and a modifier sub-
unit in higher eukaryotes (Group 2), phylogenetic analysis sug-
gests thatmembers of the hemiascomycete class of fungi do not
have a modifier subunit and that ScGCL likely functions as a
monomer in vivo.
Overall Structure of ScGCL—Phase information was ob-

tained using single wavelength anomalous diffraction data col-
lected from a crystal of ScGCL derivatized with trimethyl lead
acetate (Table 1). The PHENIX software suite (33) was used to
identify the positions of one lead (coincident with theM2 bind-

ing site described below) and each of the ordered 22 sulfur
atoms in the final model (8 of 9 cysteine residues; 14 of 15
methionine residues), and to calculate an initial experimentally
phased map. ScGCL crystals have a calculated solvent content
of �65% and density modification in PHENIX significantly
improved the experimental phases (supplemental Fig. S1).
Automated chain tracing resulted in a model that contained
�90% of the ScGCL sequence. This initial model was used for
subsequent structure determinations of the ScGCL complexes
by molecular replacement. ScGCL was also crystallized in the
presence of L-glutamate, AMP-PNP, cysteine, and Mg2�, or
L-glutamate, ADP, cysteine, andMg2�. Data sets were collected
to 2.1 Å and 2.7 Å, respectively (Table 1). However, convincing
electron density was not observed for either AMP-PNP or cys-
teine. Refinement statistics for the final ScGCL models, corre-
sponding to residues 2 through 676, are provided in Table 1.
The ScGCL/Glu/Mg2� and the ScGCL/Glu/Mg2�/ADP com-
plexes have 99.7 and 99.0% of residues, respectively, in the
allowed region of the Ramachandran plot as assessed by MOL-
PROBITY (36).
A single polypeptide chain is contained within the asymmet-

ric unit of ScGCL crystals, and relatively modest interactions
between crystallographically related molecules are observed,
consistent with a monomeric enzyme. The ScGCL fold (Fig. 1)
shows strong structural similarity to other members of the
ATP-grasp superfamily, and has a core�-sheet comprised of six
anti-parallel �-strands surrounded by �-helices. The N termi-
nus of the protein defines a lip of the active site, which is situ-
ated in a central cavity of the protein. Despite low sequence
identity (�10%), the core fold of the ScGCL structure is similar

TABLE 1
Data collection and refinement statistics

Glu/ADP/Mg2�/Pb Glu/Mg2� Glu/ADP/Mg2� Glu/ADP/Mn2�

Data collection
PDB Accession Code NA 3IG5 3IG8 NA
� 1.54Å 0.90 Å 0.90 Å 1.54Å
Temperature (K) 100 100 100 100
Space group P43212 P43212 P43212 P43212
Cell dimensions
a, b, c (Å) 117.7, 117.7, 165.7 117.4, 117.4, 165.4 117.8, 117.8, 165.4 117.7, 117.7, 165.7

Resolution (Å) 50-2.3 (2.38-2.30)a 50-2.1 (2.18-2.10) 50-2.7 (2.75-2.70) 50-2.9 (2.95-2.90)
Rmerge (%) 8.4 (63.7) 6.9 (57.8) 9.6 (72.7) 11.3 (71.5)
Mean I/�I 40.2 ( 3.9) 20.9 (1.8) 19.4 (2.3) 12.1 (1.8)
Completeness (%) 99.9 (100) 97.5 (96.1) 94.7 (96.0) 99.6 (99.7)
Redundancy 17.4 (16.1) 4.5 (3.6) 7.0 (5.8) 5.5 (5.3)

Refinement
Resolution (Å) 32-2.1 (2.15-2.10) 34-2.7 (2.76-2.70)
No. reflections 54225 27023
Rwork/Rfree (%) 18.2/21.9 (26.2/29.8) 19.0/24.2 (22.8/29.7)
No. atoms 5869 5621
Protein 5490 5461
Ligand/ion 51 50
Water 328 110

Average B-factors (Å2) 38.0 43.2
Protein 37.7 43.4
Ligand/ion 54.1 51.5
Water 39.7 36.9

R.m.s. deviations from ideal
Bond lengths (Å) 0.019 0.019
Bond angles (°) 1.68 1.88

Ramachandran statistics
Favored 96.7% 94.0%
Allowed 99.7% 99.0%

a Values in parentheses are for highest-resolution shell.
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to those of the previously determined E. coli (25) (2D32; rmsd
2.3 Å for 266 C� atoms) and B. juncea (26) (2GWD; r.m.s.d. 2.0
Å for 321 C� atoms) GCL structures with several differences of
note (Fig. 1). The larger ScGCL structure (678 residues), rela-
tive to the bacterial (518 residues) and plant (514 residues)
homologues, contains three additional short �-sheets formed
by anti-parallel �-strands, as well as extended �-helical and
loop regions.
An intriguing feature of the structure is a cysteine residue,

Cys-70, that appears to be oxidized to sulfenic acid (supple-
mental Fig. S2). As discussed below, there are several prom-
inent cysteine residues in ScGCL, suggesting that cysteine
oxidation and/or additional post-translational modifica-
tions may play an important regulatory role. In support of
this hypothesis, previous studies have shown that H2O2
increases the enzymatic activity of GCL (38, 39). However,
the mechanism of this activation was not demonstrated, and
additional studies are needed to clarify the functional signif-
icance of Cys-70 oxidation.
Identification of the L-glutamate Binding Site and an ATP-

independent Bound Mg2� Cofactor—In the ScGCL structure,
L-glutamate is bound in the extended conformation in the inte-
rior of the funnel-shaped active site cavity (Fig. 2A), with the
side chains of Arg-313 and Tyr-362 positioning the �-car-
boxylate of the glutamate substrate. The �-amino group of
glutamate is within hydrogen bond distance of the backbone
carbonyl of Cys-264, the �-carboxylate of Glu-52, and a
bound water molecule, which is positioned by the carboxy-
late of Glu-96 and the backbone carbonyl of Met-262. The
�-carboxylate of the glutamate substrate occupies one of the
coordination sites of an interesting Mg2� cofactor (dis-
cussed below) and is in close proximity to the side chain of
Arg-472. An additional feature of the glutamate-binding
pocket is Cys-266, which is stacked 3.2 Å below the �-car-
boxylate carbon atom.

Interestingly, despite the absence of ATP, electron density
was also observed for an octahedrally coordinated Mg2� at the
enzyme active site. The bound Mg2� is within 2.2 Å of two
active site glutamate residues, Glu-52 and Glu-103, and near
the �-carboxylate of the glutamate substrate (Fig. 2B). A fourth
glutamate, Glu-96, and an ordered water molecule, positioned
by Glu-50, are also located adjacent to the bound magnesium
ion (2.6 Å and 2.4 Å, respectively). A water molecule occupies
the final coordination site (1.9 Å), but its corresponding elec-
tron density is poorly defined. As discussed below, binding of
ADP is accompanied by the formation of two additional mag-
nesium binding sites.
Identification of the ADPBinding Site and Examination of the

Metal Coordination—Since convincing electron density was
not observed for the non-hydrolyzable ATP analogue in the
active site of the initial ScGCL/Glu/Mg2� complex, a second
data set was collected inwhichADP replacedAMP-PNP (Table
1). In the ScGCL/Glu/Mg2�/ADP complex, ADP is largely sol-
vent-exposed, with its adenine ring on the outer edge of the
active site pocket, and its �-phosphate positioned near the
�-carboxylate of the bound glutamate substrate. Relatively few
hydrogen bonds anchor the adenosine portion of the molecule
(Fig. 3A). The N6 atom of the adenine ring is within hydrogen
bond distance of the side chain of Gln-272. The 2�-hydroxyl
group of the ribose ring interacts with the backbone carbonyl of
Pro-106 via a bridging water molecule, and the 3�-hydroxyl
group is within hydrogen bond distance of the backbone car-
bonyl of Asp-49. In addition, the 3�-hydroxyl group forms a
hydrogen bond with a structurally conserved water molecule
that is held in place by hydrogen bonds to the backbone car-
bonyl of Gly-48 and the side chains of Thr-270 and Glu-50.
Lys-451, via bridging water molecules, appears to contribute to
the orientation of the �-phosphate. However, the most striking
interactions of this terminal phosphate are with two bound
magnesium ions, M2 and M3 (Fig. 3).

FIGURE 1. Ribbon representation of the recombinant ScGCL crystal structure. A functionally active ScGCL monomer (�78 kDa) is contained in the
asymmetric unit (center). The core �-sheet is colored in yellow, �-helical elements in green, and loop regions in gray. The glutamate substrate is shown in ball
and stick representation with carbon atoms colored in gray, oxygen atoms in red, and nitrogen atoms in blue. A bound Mg2� is represented by a purple sphere,
and the N- and C-terminal residues are indicated. For comparison, the ribbon representations of the previously determined E. coli (25) (2D32) and B. juncea (26)
(2GWD) GCL structures are shown with �-strands colored in yellow, �-helices in blue, and loop regions in gray.
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Three bound metal ions were identified in the ScGCL/Glu/
Mg2�/ADP complex. The first metal binding site, M1, is com-
parable to the Mg2� site identified in the initial ScGCL/Glu/
Mg2� complex. As before, the �-carboxylates of Glu-52, Glu-
103, and the glutamate substrate are within 2.2 Å of the metal.
The side chain carboxylate of Glu-96 moves �0.4 Å closer to
theM1metal site, and is also positioned�2.2Å from the bound
Mg2�. The two boundwatermolecules seen in the ScGCL/Glu/
Mg2� complex are absent in the ScGCL/Glu/Mg2�/ADP com-
plex. The binding of ADP results in the formation of two addi-
tional Mg2� sites. The second site, M2, is created by the side
chain oxygen atoms of Gln-268, Glu-470, and Glu-50 as well as
an oxygen atom from the �-phosphate of ADP. Similarly, the
third Mg2�, M3, is coordinated by side chain oxygen atoms of
Glu-103 andGlu-50 aswell as an oxygen atom from the�-phos-
phate of ADP. The �-phosphate of ATP would likely bind adja-
cent to the �-carboxylate of the glutamate substrate, positioned
optimally for catalysis by the three bound Mg2� ions.

To confirm the placement of the
threeMg2� in the final ScGCL/Glu/
Mg2�/ADP complex model, a com-
parable data set in which the Mg2�

was replaced with Mn2� during
crystallization was collected (Table
1).Mn2�has been shown to support
catalysis by glutamate cysteine
ligase (40) and has a significant
anomalous signal at a wavelength of
1.54 Å (K edge at 1.89 Å). An anom-
alous difference map was calculated
and examined (Fig. 3B). Three
major peaks (�8�) were identified,
presumably corresponding to each
of the three bound Mn2� ions,
which superimpose well on the
three bound Mg2� in the final
ScGCL/Mg2�/ADP/Glu complex
model. The interatomic Mg2� dis-
tances are 4.75 Å between M1 and
M2, 4.06 Å between M2 and M3,
and 3.36 Å between M1 and M3.
Homology Modeling of the Human

Glutamate Cysteine Ligase Catalytic
Subunit (hGCLC)—There have been
several published attempts to gener-
ate a homology model of hGCLC
using either the functionally related
T. thermophilus glutamyl-tRNA syn-
thetase or E. coliYbdK (41, 42). How-
ever, comparison of these models
with the ScGCL structure reported
herein shows significant structural
dissimilarities, revealing the limita-
tions of models derived from such
distant homologues. Using the PDB-
Viewer software package (43), a
homologymodel of hGCLCwas gen-
erated (Fig. 4) that retains the overall

fold of ScGCL. Several regions of the hGCLC sequence (residues
210–223, 312–324, 490–507) have low sequence identity to
ScGCL. These regions correspond to poorly defined surface loops
(shown in green) in the final hGCLC model. Comparison of the
active sites of the hGCLC homologymodel and the ScGCL struc-
ture indicates that the twoenzymeshavenearly identical active site
architectures with almost complete conservation of side chain
functionality. A remarkable feature of the hGCLC model is that
the fourteen cysteine residues of the protein are located primarily
in a single hemisphere of the protein. Several of these solvent-
exposed cysteine residues may be important for the post-transla-
tional regulation of hGCL activity. Atomic coordinates and struc-
ture factorshavebeendeposited in thePDBunder accessioncodes
3IG5 and 3IG8.

DISCUSSION

Glutathione is a vital cellular reductant and a critical biolog-
ical cofactor. GCL catalyzes the rate-limiting step in its biosyn-

FIGURE 2. Stereodiagrams of the glutamate and Mg2� binding sites. The refined model of ScGCL in com-
plex with glutamate and Mg2� is depicted with pertinent active site residues shown in stick representation.
Oxygen atoms are shown in red, nitrogen atoms in blue, sulfur atoms in yellow, and Mg2� in purple. Carbon
atoms are colored green in ScGCL and gray in the bound glutamate (shown in ball and stick representation).
Panel A, potential hydrogen bonds between the bound glutamate substrate and ScGCL are indicated as solid
black lines. Of particular interest is the proximity of the side chain of Cys-266 to the �-carboxylate of the bound
glutamate. Panel B, the coordination of the bound M1 Mg2� is illustrated with relevant interatomic distances
indicated (solid lines). A potential hydrogen bond between a bound water molecule and the side chain of
Glu-50 is designated by a dashed line.
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thesis and is an essential enzyme in mammalian systems (17).
Strikingly, the ScGCL structure maintains the overall fold
observed in the E. coli (Group 1) (25) and the B. juncea (Group 3)
(26) enzymes (Fig. 1), suggesting that the three classes of enzymes
arose from a common ancestor. Conservation of side chain func-
tionality is observed within each active site even though the three
enzymes share �10% sequence identity. For example, the M2
binding site of ScGCL formed by Glu-50, Gln-268, and Glu-470
(Fig. 3B) is similarly comprised of Glu27, His-150, and Glu-328 in
the E. coli enzyme. This proposed active site conservation is fur-
ther supported bymutagenesis studies ofGCL fromother species.
Arg-313 in ScGCL forms hydrogen bonds with the �-carboxylate
of theglutamate substrate. InTrypanosoma bruceiGCL,mutation
of the equivalent residue, Arg-366, to Ala increased itsKd for glu-
tamate�160-fold (44). Similarly,mutationofArg-491 (Arg-472 in
ScGCL; Fig. 2B) affectedKm for glutamatemodestly but decreased
enzymatic activity of T. brucei GCL 70-fold (44), suggesting a
direct role in catalysis.

A unique feature of the ScGCL
active site is the placement of a cys-
teine residue, Cys-266, proximal to
the �-carboxylate of the glutamate
substrate (Fig. 4). This residue is
highly conserved among higher
eukaryotic GCL and its importance
has been examined in a number of
homologues (45, 46). Previousmod-
eling studies of human GCL indi-
cated that Cys-249, analogous to
Cys-266 of ScGCL, was located in
the periphery of the enzyme active
site and not directly involved in sub-
strate binding or catalysis (41).
However, ourmodel of hGCLC sug-
gests that Cys-249 is located at the
base of the glutamate-binding
pocket. Further support for an
active role is provided bymutational
analysis of hGCLC in which
Cys-249 was substituted with a gly-
cine, resulting in a 10-fold reduction
in enzymatic activity (47). Similarly,
a C248A/C249A double mutant in
the mouse GCL catalytic subunit
resulted in a �4-fold reduction in
enzymatic activity (48). Mutagene-
sis studies to examine the precise
role of Cys-266 in ScGCL function
using both in vitro and in vivo
approaches are ongoing.
Despite its inclusion in crystalli-

zation trials, cysteine was not
observed in either ScGCL complex.
Examination of the ScGCL struc-
ture suggests a possible cysteine
binding site adjacent to the bound
glutamate substrate. Glu-96 likely
forms a hydrogen bond with the

�-amino group of the incoming cysteine residue. The side
chains of Trp-445 and Arg-196 both point into the putative
L-cysteine binding site, and either residuemay form a hydrogen
bond with the �-carboxylate of L-cysteine. A hydrophobic
pocket, lined by Tyr-97, Phe-197, Leu-200, Met-258, and Met-
262, could accommodate the sulfhydryl group.Additional stud-
ies of ScGCL are required to ascertain the precise recognition
mechanisms critical for cysteine binding.
Conflicting catalytic mechanisms have been postulated for

GCL. Early studies using the rat homologue suggested a quater-
nary complex in which ATP/Mg2� binds first, followed by
L-glutamate and L-cysteine in random order (20, 49). Recent
comprehensive reports support a random ter-reactant mecha-
nism in the T. brucei and Arabidopsis thaliana enzymes (46,
50). Examination of the reported ScGCL structures suggests
that the active site is large enough to accommodateATP,Mg2�,
glutamate, and cysteine simultaneously. However, the gluta-
mate-binding pocket would be completely obstructed if ATP/

FIGURE 3. Stereodiagrams of the ADP and Mg2� binding sites. The refined model of ScGCL in complex with
ADP, glutamate, and Mg2� is depicted with pertinent active site residues in stick representation. Bound ligands
are shown in ball and stick representation, and atoms are colored as in Fig. 2, with the addition of phosphorus,
shown in orange. Panel A, shown are the calculated electron density maps after several rounds of refinement,
but prior to inclusion of ADP in the model. The relevant 2Fo–Fc electron density is contoured at 1.0 � and
illustrated in gray. Positive and negative peaks in the Fo–Fc difference map, contoured at 4.0�, are shown in blue
and red, respectively. Potential hydrogen bonds between ADP and ScGCL are indicated as solid black lines. The
adenine ring is located at the top of the active site cavity, near the surface of the protein. The �-phosphate is
positioned in part through interactions with Lys-451 via bridging water molecules. Panel B, the anomalous
difference map calculated using diffraction data from the corresponding Mn2� complex supports the location
of each of the three bound Mg2� ions in the final ScGCL model. The relevant anomalous difference peaks are
contoured at 3.0 � (gray) and 6.0 � (red). The coordination of each of the three Mg2� ions is shown as solid black
lines that correspond to atom/metal pairs with interatomic distances of �2.2 Å.
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Mg2� and cysteine were already bound, arguing against a truly
random binding of substrates. The ScGCL structures are
consistentwith an earlier study of bovine lenticularGCL,which
suggested that glutamate (or glutamate and Mg2� at the M1
site) is the first substrate to bind (51). Detailed kinetic studies of
ScGCL to establish its precisemechanism are needed to resolve
these inconsistencies.
The chemical reaction catalyzed by GCL involves two dis-

tinct steps. The glutamate �-carboxylate, which is coordinated
to theM1Mg2�, is oriented for an in-line attack of the �-phos-
phate of ATP (52), which is positioned optimally by the three
bound Mg2� ions (Fig. 3B) as well as Lys-451 (Fig. 3A). The
resulting �-glutamylphosphate intermediate is susceptible to
nucleophilic attack by the �-amino group of L-cysteine (20, 49),
whichmay be activated byGlu-96 (40). Furthermore, structural
data and mutagenesis studies support a role for a conserved
arginine residue, Arg-472, in peptide bond formation, which
may stabilize the developing negative charge on the tetrahedral
transition state (44). Binding of the M1 Mg2�, which contrib-
utes to the glutamate substrate site, is ATP-independent,
whereas binding of the M2 and M3 Mg2� ions requires the
presence of ATP, consistent with previous mutagenesis studies
of T. brucei GCL (40).
Homology modeling of the catalytic subunit of hGCL high-

lights cysteine residues that may be important for post-transla-
tional regulation. hGCL is a heterodimer comprised of a cata-
lytic subunit that catalyzes formation of �-glutamylcysteine
and a modifier subunit, that increases the overall rate of prod-
uct formation (30, 53). The heterodimer is stabilized by an
intersubunit disulfide bond that may couple glutathione bio-
synthesis with the redox state of the cell (30, 54). However,
recent work with mouse and Drosophila homologues suggests
that an intermolecular disulfide bond is not required for com-
plex formation and allosteric activation (48, 55).
Mutagenesis studies of hGCLC cysteine residues showed

that one of its 14 cysteines (Cys-553) affects enzymatic activity
(47). However, the subunits were still able to form the het-
erodimer, suggesting that noncovalent interactions are also
important for holoenzyme formation. Examination of the
hGCLC model indicates that Cys-553 is located in a surface
exposed loop andmay be involved in intersubunit interactions.
Three additional cysteine residues, Cys-339, Cys-491, and Cys-
501, map to similar mobile surface loops of the hGCLC model
(Fig. 4A). The loop containing residues 490–507 is absent in the
monomeric ScGCL, suggesting it may be a site of interaction
with the human modifier subunit. Systematic studies are
required to directly test the significance of each of these cys-
teine residues with respect to intersubunit interactions.
Hereditary disorder of hGCL is a rare autosomal recessive

disease reported in 8 unrelated cases (15, 41, 42, 56–58), and is
associated with low glutathione level in erythrocytes, markedly
decreased GCL activity, hemolytic anemia, jaundice, and in
some cases, progressive neurological disorders. Four single
nucleotide mutations have been reported in hGCL deficiency,
each leading to amino acid substitutions within the catalytic
subunit of the enzyme: R127C, P158L, H370L, and P414L (15,
41, 42, 57). Shown in Fig. 4 are the locations of each of these four
mutations in the hGCLC model. Although none are located

FIGURE 4. Homology modeling of human glutamate cysteine ligase. The
folded structure of hGCLC was modeled with PDBViewer software package
using the determined ScGCL structure. Panel A, the overall structure of hGCLC
is shown in ribbon representation with �-strands colored in yellow, �-helices
in blue, and loop regions in gray. Areas with low sequence identity to ScGCL
are highlighted in green and represent regions of low model confidence. Cys-
teine residues are shown in ball and stick representation and amino acid res-
idues with associated clinical mutations are colored in red. For reference, ATP
was also docked within the model. Panel B, R127C mutation would disrupt a
critical structural salt bridge between Arg-127 and Asp-49 and negatively
impact the active site architecture. Panel C, Pro-158 is located in a loop region
on the surface of hGCLC. Substitution with a leucine residue may disorder this
loop, potentially impacting interactions with the modifier subunit. Panel D,
both His-370 and Pro-414 are in close proximately to a �-strand containing
Lys-412, which, based on comparison to ScGCL, is likely involved in orienting
the �-phosphate of ATP. The H370L mutation would likely lead to the loss of
two ordered water molecules which form hydrogen bonds that stabilize this
region of the structure. Similarly, P414L would disrupt this region of the pro-
tein and negatively impact ATP binding.
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directly in the enzyme active site, these residues, aswell as prox-
imal residues, are highly conserved in higher eukaryotic GCL,
including ScGCL. The exception is Pro-158. Analysis of the
ScGCL structures and the hGCLC homology model suggests
the molecular details of diminished catalytic activity.
Mutation of Arg-127 to a cysteine residue (Fig. 4B) would

disrupt a salt bridge with Asp-49 and negatively impact the
active site architecture. The backbone carbonyls of Asp-49 and
Gly-48 contribute to the ATP binding site (similar to ScGCL in
Fig. 3A) andGlu-50 is a critical catalytic residue. In addition, the
Arg-127—Asp-49 salt bridge is adjacent to a loop containing
Thr-105 and Pro-106 (Fig. 4B), which also contributes to for-
mation of the ATP binding site. Thus, the introduction of dis-
order in this region by this substitution would negatively
impact catalytic efficiency.
Pro-158 is located in a surface exposed loop found in both

human GCLC and ScGCL, far removed from the enzyme
active site (Fig. 4C). This region exhibits poor sequence con-
servation, with an isoleucine residue, Ile-170, at the equiva-
lent position in ScGCL. As such, it is difficult to fully explain
the phenotype associated with the P158L substitution. Per-
haps the loop containing Pro-158 is involved in binding of
the regulatory subunit in the heterodimeric human enzyme.
However, other regions are also likely involved, since the
modifier subunit can still interact with the P158L mutant
(48). Interestingly, Ile-170 in ScGCL is in close proximity to
Cys-70, a potential site of oxidation (supplemental Fig. S2),
suggesting that this regionmay generally be involved in post-
translational regulation.
Inspection of the human GCLC model suggests that both

the H370L and P414L mutations are structurally disruptive
(Fig. 4D). His-370 forms hydrogen bonds with two bound
water molecules, which are needed to stabilize the �-strand
containing Lys-412. Similarly, Pro-414 is located in a four-
proline stretch in the loop immediately following this same
�-strand. The reduced enzymatic activity observed in these
two mutants is likely the result of impaired ATP binding, as
Lys-412 is equivalent to Lys-451 in ScGCL (Fig. 3A). In
ScGCL, this lysine interacts via bridging water molecules
with the �-phosphate of bound ADP. Further kinetic char-
acterizations of the point mutants to confirm this assertion
are needed as previous studies did not report Km(ATP) values
for either enzyme (15, 42).
In summary, the reported complexes of ScGCL provide

considerable insight into substrate recognition, the role of
Mg2� in the enzyme-catalyzed reaction, and the overall cat-
alytic mechanism. The prominent locations of several con-
served cysteine residues indicate that post-translational
modifications may be important in the regulation of enzy-
matic activity. Furthermore, the ScGCL structures allowed
for the generation of a reasonable homology model of the
human enzyme. Analysis of the ScGCL structures and
hGCLC model explains the molecular basis of glutathione
deficiency, resulting from clinically observed mutations in
this enzyme. Furthermore, the results of these studies may
assist in the design of novel therapeutics that modulate
intracellular glutathione levels.
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Supplemental data. 
 
 
 

Supplemental Figure 1.  Representative experimentally phased electron density map.  The positions 
of 1 lead and 22 sulfur atoms were identified using the PHENIX software suite and used to calculate 
initial phase information. In the stereodiagram, the resulting electron density map following density 
modification is shown in grey and is contoured at 1 σ.  The final ScGCL model corresponding to this 
region of the map is shown in stick representation with carbon atoms colored in green, oxygen in red, 
nitrogen in blue, and sulfur in yellow. 



 

  2 

 

Supplemental Figure 2.  Cysteine70 of ScGCL is oxidized to sulfenic acid in the ScGCL/Glu/Mg2+ 
complex.  In the stereodiagram, the amino acid residues in close proximity to Cys70 are shown in stick 
representation and atoms are colored as in Supplemental Figure 1.  Also shown are the calculated electron 
density maps after several rounds of refinement, but prior to inclusion of sulfenic acid oxygen in the 
model.  The relevant 2Fo-Fc electron density is contoured at 1.0 σ and illustrated in grey.  Positive and 
negative peaks in the difference map, contoured at 3.0 σ, are shown in blue and red respectively.  
Potential hydrogen bonds were identified with Chimera and are indicated as solid black lines. 
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