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Abstract – Determining the factors that influence recruitment to sequential ontogenetic stages is critical for
understanding recruitment dynamics of fish and for effective management of sportfish, particularly in dynamic and
unpredictable environments. We sampled walleye (Sander vitreus) and white bass (Morone chrysops) at 3
ontogenetic stages (age 0 during spring: ‘age-0 larval’; age 0 during autumn: ‘age-0 juvenile’; and age 1 during
autumn: ‘age-1 juvenile’) from 3 reservoirs. We developed multiple linear regression models to describe factors
influencing age-0 larval, age-0 juvenile and age-1 juvenile walleye and white bass abundance indices. Our models
explained 40–80% (68 � 9%; mean � SE) and 71%–97% (81 � 6%) of the variability in catch for walleye and
white bass respectively. For walleye, gizzard shad were present in the candidate model sets for all three ontogenetic
stages we assessed. For white bass, there was no unifying variable in all three stage-specific candidate model sets,
although walleye abundance was present in two of the three white bass candidate model sets. We were able to
determine several factors affecting walleye and white bass year-class strength at multiple ontogenetic stages;
comprehensive analyses of factors influencing recruitment to multiple early ontogenetic stages are seemingly rare in
the literature. Our models demonstrate the interdependency among early ontogenetic stages and the complexities
involved with sportfish recruitment.
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Introduction

Fish recruitment refers to the size, age or develop-
mental stage at which a fish surpasses a certain
benchmark (Everhart et al. 1975). Autumn age-0 fish
are often considered an acceptable stage to measure
recruitment (Willis 1987), however, age-1 abundance
is a more conservative estimate that considers over-
winter mortality (sensu Pratt & Fox 2002), among
other factors. Successful recruitment is often consid-
ered to be a function of a series of successfully navi-
gated sequential events or stages (Neill et al. 1994).
Determining the factors that influence recruitment to
sequential ontogenetic stages or benchmarks (i.e. age

0 during spring: ‘age-0 larval’; age 0 during autumn:
‘age-0 juvenile’; and age 1 during autumn: ‘age-1
juvenile’) is critical for understanding recruitment
dynamics of fish and for effective management of
sportfish (Ludsin & DeVries 1997; Hoxmeier et al.
2006; Kaemingk et al. 2014a). These factors are
more identifiable if fish abundances are monitored
during each of the early ontogenetic stages from
hatch to recruitment (Forney 1976), as survival grad-
ually increases with progression through early onto-
genetic stages; mortality rates for freshwater fish
larvae average 15% per day, although mortality rates
for juveniles are often an order of magnitude less
(Houde 2002).
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First-year survival, and therefore year-class
strength (i.e. the relative number of individuals in a
cohort), of fish is often less consistent in dynamic
and unpredictable environments because abiotic and
biotic environmental factors can interact to affect
year-class strength of fish (Boehlert & Mundy 1988;
Hansen et al. 1998; Daskalov 1999; DeBoer et al.
2013; Uphoff et al. 2013; Kaemingk et al. 2014b).
For a particular cohort, environmental regulation of
year-class strength likely begins before that cohort
even hatches; environmental factors can affect paren-
tal fish condition and thus reproductive investment
by adult fish (Baltz & Moyle 1982; Johnston &
Leggett 2002; DeBoer et al. 2015). Dynamic abiotic
conditions – including temperature and water levels –
can decrease survival of deposited eggs (Walburg
1972; Groen & Schroeder 1978; Colby et al. 1979;
Schaeffer & Margraf 1987). After hatching, age-0
fish survival and growth are often positively corre-
lated to habitat temporal stability and food availabil-
ity (Houde 1987; Mion et al. 1998; Hoxmeier et al.
2004); fish in reservoirs are especially vulnerable
during the age-0 larval and age-0 juvenile stages,
often due to unpredictable water-level fluctuations for
which reservoirs – particularly irrigation reservoirs
and their patterns of annual drawdown – are known
(June 1977; Quist et al. 2003; Olds et al. 2011). A
high reservoir flushing rate can lead to low zooplank-
ton abundance (sensu Watson et al. 1996; Kalff
2003), which could reduce food availability for age-0
fish at a critical stage. Compounding the difficulty of
locating prey in dynamic abiotic conditions, age-0
fish may also contend with hyperabundant competi-
tors such as gizzard shad (Dorosoma cepedianum)
(Michaletz et al. 1987; Dettmers & Stein 1992). Fail-
ure to consume enough prey restricts growth and
may thus prevent age-0 fish from making ontogenetic
shifts, which are often necessary to consume higher
energy prey that increase growth rates. Age-0 fish in
temperate climates must survive this myriad of envi-
ronmental challenges prior to the onset of winter, as
undersized – and thus often undernourished – indi-
viduals in a cohort often perish during the overwinter
period, a key stage in determining year-class strength
(e.g. Johnson & Evans 1991; Hurst & Conover 1998;
Sutton & Ney 2001). Therefore, we believe it is
important to evaluate the influence of key environ-
mental factors at multiple stages prior to recruitment
to gain a better understanding of not only what fac-
tors are influential, but also the stage or period at
which those influences are manifested.
Walleye (Sander vitreus) and white bass (Morone

chrysops) are among the most popular sportfish in
the reservoirs of the Great Plains, USA (Stone 1996;
Bauer 2002; Hurley & Duppong-Hurley 2005). Popu-
lations of walleye and white bass in south-west

Nebraska irrigation reservoirs are dynamic (DeBoer
et al. 2013), despite considerable effort by the
Nebraska Game and Parks Commission (NGPC)
stocking walleye and managing reservoirs for walleye
and white bass. Age-0 walleye feed on zooplankton
and macroinvertebrates (Hoxmeier et al. 2004), but
shift to piscivory as soon as they are able (Gala-
rowicz et al. 2006). Age-0 white bass feed primarily
on zooplankton, although they will utilise more
insects and fish as the summer progresses, including
age-0 gizzard shad (Michaletz et al. 1987; Schultz
et al. 2002; Willis et al. 2002). Diet overlap between
walleye and white bass can be highly variable at both
the larval and juvenile stages (J. DeBoer unpublished
data), although diet overlap in and of itself does not
result in competition, as abundant prey can preclude
food limitation. Nonetheless, in years when preferred
zooplankton abundance is low and suitable alterna-
tive prey is scarce, larval walleye and white bass may
compete with each other (Michaletz et al. 1987; Beck
et al. 1998), as well as with age-0 gizzard shad
(Michaletz et al. 1987; Quist et al. 2004; Sullivan
et al. 2011), and other fishes (e.g. yellow perch
(Perca flavascens), Michaletz et al. 1987; freshwater
drum (Aplodinotus grunniens), Sullivan et al. 2012;
black crappie (Pomoxis nigromaculatus), Pope et al.
1996; Galinat et al. 2002) and juvenile walleye and
white bass prey on age-0 gizzard shad (Hartman &
Margraf 1992; Einfalt & Wahl 1997; Michaletz 1997;
Schultz et al. 2002; Willis et al. 2002; Quist et al.
2003; Olson et al. 2007). However, diet overlap
between age-0 walleye and white bass may be limited
depending on selective feeding traits (Bulkley et al.
1976) or diet divergence (Willis et al. 2002), which
could result from differences in spawning seasons for
adult walleye and white bass (DeBoer et al. 2013).
There is a need for more large-scale, multilake

studies (Hinch et al. 1991); abiotic variance is prob-
lematically reduced with smaller spatial and temporal
scales. Irrigation reservoirs are inherently perturbed
systems, which compounds the difficulty of our study
because even fish populations in unperturbed systems
tend to fluctuate in abundance (Kelso & Bagenal
1977). Management of water levels in reservoirs is
typically guided by hydrological and economic fac-
tors (e.g. flood control, hydropower generation and
crop irrigation), with little consideration given to fish
populations (Sammons et al. 1999; Sammons & Bet-
toli 2000). Our objective was to understand the fac-
tors affecting year-class strength of walleye and
white bass, and whether and how those factors might
change during a progression through early ontoge-
netic stages in irrigation reservoirs. This study will
help managers design proper courses of action for
managing walleye and white bass populations in
these dynamic ecosystems and provide information

505

Recruitment of walleye and white bass



about factors regulating year-class strength of fish in
semi-arid regions such as the Great Plains USA. We
focused on walleye and white bass to make infer-
ences about sportfish in unpredictably dynamic eco-
systems. These two species are top-level predators
that often flourish in Midwestern reservoirs, have
similar life expectancy and also have similar feeding
strategies across multiple ontogenetic stages.

Methods

There are several major multipurpose reservoirs
located in the Republican River basin in Nebraska
(see DeBoer et al. (2013) for descriptions). As a
result of over appropriation of groundwater wells in
the region, most of these reservoirs did not refill
annually over the last decade and thus did not regu-
larly discharge water for irrigation (USBR 2013). We
sampled age-0 larval, age-0 juvenile and age-1 juve-
nile walleye and white bass from Enders, Red Wil-
low and Medicine Creek reservoirs.

Field and laboratory data collection

We obtained reservoir data (e.g. water level) from the
U. S. Bureau of Reclamation (USBR 2013). We sam-
pled age-0 larval fish once weekly beginning in
accordance with an estimation of the start of hatching
of age-0 larval walleye (approximately mid-April)
and continuing until age-0 larval walleye and white
bass were no longer captured, typically in early sum-
mer (approximately late June), from 2008 to 2011.
We used nine paired nearshore and offshore transects,
with starting points for nearshore transects randomly
selected using GIS software (ArcMap 9.3.1; ESRI,
Inc., Redlands, CA, USA). Where possible, starting
points for nearshore transects were located ≤25 m
from shore and starting points for offshore transects
were located ~100 m offshore from nearshore starting
points. We selected transects using a stratified ran-
dom sampling design (Johnson & Nielsen 1983)
along the longitudinal reservoir gradient. Transects
were parallel to shore, fixed (i.e. sampled repeatedly)
within a year and rerandomised in each subsequent
year. We sampled transects after dark using two 0.5-
m diameter, 750-lm mesh, bow-mounted icthyo-
plankton push nets. The nets were pushed at ~0.7 m/
s for 5 min (approximately 200 m) per transect, or
until nets became clogged. We estimated age-0 larval
fish densities by recording the volume of water fil-
tered through each net, using a calibrated flow meter
(Model 2030 flow meter; General Oceanics, Miami,
FL, USA) attached to the mouth of each net. After
completing each sampling transect, we collected
water-temperature and zooplankton-assemblage data
to better understand factors influencing early life his-

tory of fishes in these reservoirs. We measured water
temperature (°C) within 0.5 m of the water’s surface
using a YSI multimeter (model 556; YSI Environ-
mental, Yellow Springs, OH, USA). We sampled the
zooplankton assemblage from the top 2 m of the
water column using a 2.1-m (7.5-cm diameter, 8.8-l
volume) plastic tube sampler placed vertically in the
water column (DeVries & Stein 1991). We filtered
the sample through an 80-lm mesh net, preserved the
sample with 4% sucrose–formalin solution (Haney &
Hall 1973) and transported the sample back to the
laboratory. We identified, enumerated and measured
(TL, nearest 0.1 mm; up to 10 individuals per taxon)
a 25% subsample of zooplankton from each sample.
If <250 total zooplankters were counted in a subsam-
ple, we processed additional 25% subsamples until
≥250 total zooplankters were counted. We identified
calanoid and cyclopoid copepods to order, copepod
nauplii to subclass and Bosmina and Daphnia to
genus. We examined stomach contents of all captured
age-0 larval walleye and white bass. We removed
individual prey items from the stomach by dissection
and identified them to the lowest possible taxonomic
group using a dissecting microscope to determine
which zooplankton were important to larval walleye
and white bass diets (using the linear index of food
selection (Strauss 1979); J. DeBoer unpublished
data).
We sampled age-0 juvenile walleye and white bass

every other week beginning in late August and
continuing until mid-October from 2008 to 2011;
autumn assessments of age-0 fish targeted water tem-
peratures between 10 and 20 °C to maximise catch
per unit effort (CPUE) (Borkholder & Parsons 2001).
We sampled at night using a boat electrofisher with
pulsed DC, along 100-m transects in ≤2 m water
depth. We sampled 9 randomly selected shoreline
transects every other week during 2008 and 2009 and
12 randomly selected shoreline transects every other
week during 2010 and 2011. We randomly selected
starting points for transects using GIS software and
rerandomised transects for each sampling trip. We
netted, enumerated and measured (total length (TL),
mm) only walleye and white bass. We collected
water-temperature data at the end of each transect, as
detailed above. For age-verification purposes (i.e.
confirming that fish were age 0), we removed sagittal
otoliths from up to 25 walleye and 25 white bass
(that we believed to be age 0, based on size) per sam-
pling week and transported otoliths to the laboratory
for further processing. We air-dried sagittal otoliths
from juvenile walleye and white bass and placed
them in a water-filled black plastic cap; a single
reader viewed otoliths through a dissecting micro-
scope to confirm that these fish were age-0 individu-
als (and not ≥ age 1).
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We sampled gizzard shad using small-mesh gill-
nets in cooperation with NGPC staff during autumn
from 2008 to 2011. A standard small-mesh gillnet
survey consisted of 2 monofilament gillnets that were
set overnight once in each reservoir during Septem-
ber of each year. Gillnets were 60.9 m long and
1.8 m deep, with two 30.45-m panels consisting of
1.3- and 1.9-cm bar mesh. We identified (to species),
enumerated and measured (TL, 10-mm length
groups) all fish captured.
We sampled age-1 juvenile walleye and white bass

and adult walleye and white bass using experimental
gillnets in cooperation with NGPC staff during
autumn from 2008 to 2012. A standard experimental
gillnet survey consisted of four monofilament gillnets
that were set overnight once in each reservoir during
October of each year. Gillnets were 45.6 m long and
1.8 m deep, with six 7.6-m panels consisting of 1.9-,
2.5-, 3.2-, 3.8-, 5.1- and 7.6-cm bar mesh. We mea-
sured (TL, mm) and weighed (g) the first 10 white
bass and 10 walleye from each cm length group. Sub-
sequent walleye and white bass from each cm length
group were only enumerated. A single reader from
NGPC determined ages of captured walleye and
white bass (from experimental gillnet surveys) using
scales pressed into acetate slides and a microfiche
reader (Smith 1954).

Data analyses

We modelled factors affecting age-0 larval walleye
and white bass abundances, age-0 juvenile walleye
and white bass abundances and age-1 juvenile wall-
eye and white bass abundances using data from End-
ers, Red Willow and Medicine Creek reservoirs. For
all models, we only included data from Red Willow
reservoir for 2008 and 2009 because an extreme
drawdown occurred at the reservoir during winter
2009 (Chizinski et al. 2014; DeBoer et al. in press).
We indexed age-0 larval walleye, white bass and giz-
zard shad abundances (from the larval trawls) as the
maximum mean daily densities for each reservoir and
year. We indexed diet zooplankton taxa abundances
for age-0 larval walleye and age-0 larval white bass
as the mean densities of diet taxa (collected from lar-
val trawl locations) pooled across days for each reser-
voir and year. We indexed age-0 juvenile walleye
and age-0 white bass abundances as the maximum
mean daily CPUE (number per hour of electrofish-
ing) for each reservoir and year. We indexed mean
size and maximum size of age-0 juvenile walleye and
white bass as the mean and maximum for each spe-
cies for each reservoir and year for fish captured after
September 15 (i.e. during the last two sampling
events) of each year. We chose to truncate the data to
the period when fish had likely completed growth for

the year (because of cooling water temperatures),
which is a critical benchmark for many temperate
freshwater fishes (e.g. Johnson & Evans 1991; Hurst
& Conover 1998; Sutton & Ney 2001). We indexed
age-1 juvenile walleye and age-1 juvenile white bass
abundances as the CPUE (number per gillnet night)
for each reservoir and year.
We indexed spring warming rate (during larval

fish sampling period) as the slope of the regression
line from modelling the mean daily water tempera-
ture as a function of day of year for each reservoir
and year. We indexed autumn cooling rate (during
juvenile fish sampling period) as the slope of the
regression line from modelling the mean daily water
temperature as a function of day of year for each
reservoir and year. We indexed the rate of spring
water-level change as the slope of the regression
line of water level versus day of year (i.e. February
1–April 30 for walleye, February 1–May 31 for
white bass; typical open water period prior to pre-
dicted end of spawning). We indexed the rate of
water-level change during irrigation season as the
slope of the regression line of water level versus
day of year (i.e. June 1–September 31; typical irri-
gation season). We indexed autumn gizzard shad
abundance as the CPUE (number per gillnet night)
from small-mesh gillnet surveys for each reservoir
and year. We included gizzard shad because they
numerically dominate the age-0 fish assemblage and
are important prey for piscivores in these systems.
We indexed body condition of adult (those with
maturing gametes) walleye and white bass using
relative weight (Wr; Wege & Anderson 1978). The
equation for Wr is as follows:

Wr ¼ 100 �W=Ws

where W is total weight of the fish (g) and Ws is the
standard weight of the fish derived from equations
(walleye: Murphy et al. 1990; white bass: Brown &
Murphy 1991). We included adult condition because
we believe a well-conditioned adult population could
positively affect larval abundance (i.e. year-class
strength, sensu Donelson et al. 2008; Venturelli et al.
2010). We intended to include walleye stocking as an
independent variable, but larval walleye were stocked
in all study reservoirs at similar densities during all
years of study; thus, we did not include walleye
stocking. We also included reservoir as a categorical
variable.
We developed multiple linear regression model

sets that best described ln(CPUE) for age-0 larval
(during 2008–2011), age-0 juvenile (during 2008–
2011) and age-1 juvenile (during 2009–2012) walleye
and white bass independently. All independent variab-
les were treated as random effects except for reservoir,
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which was a fixed effect; we did not include nesting
or interactions of variables. We loge-transformed (ln
[x + 1]) CPUE of each fish species and transformed
independent variables when appropriate. We used
independent Durbin–Watson tests for temporal auto-
correlation on residuals in the candidate model sets.
We assigned a 1-calendar-year advance to all inde-
pendent variables used to model age-1 juvenile wall-
eye and white bass abundances, so as to understand
their effect on age-0 walleye and white bass. For
example, we included autumn water temperature
cooling rate from 2008 to model abundance of age-1
juvenile walleye from 2009, so as to understand the
effect of autumn cooling rate on age-0 walleye. We
screened independent variables for autocorrelation
(using r = 0.7) and removed the less influential vari-
able. We added independent variables to ontogenetic-
stage-specific models as they became relevant (i.e.
the age-0 juvenile model contains all variables in the
age-0 larval model, plus additional variables;
Tables 1 and 2). We developed a complete model set
using an all-subsets approach. This resulted in 128
possible models in the complete age-0 larval model

sets, 1,024 possible models in the complete age-0
juvenile model sets and 65,536 possible models in
the complete age-1 juvenile model sets. These large
complete model sets are not problematic because we
did not use a significance approach, but rather we
selected a candidate model set from the complete
model set using Akaike’s Information Criterion
(Akaike 1987) corrected for small sample size (AICc,
Hurvich & Tsai 1989). We excluded models with
a DAICc > 2 from the candidate model set (sensu
Royall 1997). We calculated R2 for each model in
the candidate set to evaluate goodness of fit. We
assessed relative variable importance (hereafter, ‘impor-
tance’; 1 = very important, 0 = not important) by
summing the AICc weights over all models including
the explanatory variable (Murray & Conner 2009).
The relative variable importance is the probability
that, of the variables considered, a certain variable is
in the best approximating model (Yu et al. 2014).
We used SAS (Version 9.2, SAS Institute Inc., Cary,
NC) and R (Version 3.0.1, The R Foundation for
Statistical Computing; Vienna, Austria) for statistical
analyses.

Table 1. Input variables for models and explanation of variable abbreviations. We obtained annual water-level fluctuation data from the U.S. Bureau of
Reclamation. We obtained fish data from our own surveys and from standardised gillnet surveys conducted by the Nebraska Game and Parks Commission
during 2008–2012.

Model variable Explanation

Age-0 larval models Age-0 juvenile models Age-1 juvenile models

Walleye White bass Walleye White bass Walleye White bass

RES Reservoir X X X X X X
LARV_WAE Larval walleye abundance (N�m�3) X† X X X X X
LARV_WHB Larval white bass abundance (N�m�3) X X† X X X X
LARV_GSD Larval gizzard shad abundance (N�m�3) X X X X X X
SPR_RATE Spring water temperature warming rate (°C per day of year) X X X X X X
WAE_Wr Relative weight (Wr) of adult walleye X X X
WAE_SPRING Rate of spring water-level change from Feb 1 – April 30 X X X
WAE_ZOOPS Abundance of zooplankton selected for by larval walleye (N�l�1) X X X
WHB_Wr Wr of adult white bass X X X
WHB_SPRING Rate of spring water-level change from Feb 1–May 31 X X X
WHB_ZOOPS Abundance of zooplankton selected

for by larval white bass (N�l�1)
X X X

JUV_WAE Catch per unit effort (CPUE) of juvenile
walleye (catch per minute of electrofishing)

X† X X X

JUV_WHB CPUE of juvenile white bass (catch
per minute of electrofishing)

X X† X X

IRRIG Rate of water-level change during
typical irrigation season from June 1–Sept 31

X X X X

AGE1_WAE CPUE of age-1 walleye (catch per gillnet night) X† X
AGE1_WHB CPUE of age-1 white bass (catch per gillnet night) X X†
AUT_RATE Autumn water temperature

cooling rate (°C per day of year)
X X

JWAE_MAX Maximum total length (TL) of juvenile walleye X
JWAE_MEAN Mean TL of juvenile walleye X
JWHB_MAX Maximum TL of juvenile white bass X
JWHB_MEAN Mean TL of juvenile white bass X
GSD_SM CPUE of gizzard shad (catch per gillnet night) X X

†Used as dependent variable.
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Results

Age-0 larval walleye and white bass models

Durbin–Watson tests for temporal autocorrelation on
all age-0 larval model residuals were not significant.
The candidate model set for age-0 larval walleye
(Table 3) included one model with a DAICc ≤ 2, the
global model. Larval gizzard shad abundance, larval
white bass abundance and Wr of adult walleye had a
negative effect on age-0 larval walleye abundance,
whereas spring warming rate, rate of spring water-
level change and walleye diet zooplankton taxa abun-
dance had a positive effect. There was a consistent
pattern in these variables among the reservoirs, with
greatest age-0 larval walleye abundance at Red Wil-
low reservoir and least age-0 larval walleye abun-
dance at Medicine Creek reservoir. The model had an
R2 of 0.80, and each independent variable had an
importance of 1.
The candidate model set for age-0 larval white bass

(Table 3) included one model with a DAICc ≤ 2, the
global model. Larval gizzard shad abundance, larval
walleye abundance, spring warming rate and white
bass diet zooplankton taxa abundance had a negative
effect on age-0 larval white bass abundance, whereas
Wr of adult white bass and rate of spring water-level
change had a positive effect. There was a consistent
pattern in these variables among the reservoirs, with
greatest age-0 larval white bass abundance at Enders
reservoir, and least age-0 larval white bass abundance
at Red Willow and Medicine Creek reservoirs. The
model had an R2 of 0.97, and each independent vari-
able had an importance of 1.

Age-0 juvenile walleye and white bass models

Durbin–Watson tests for temporal autocorrelation on
all age-0 juvenile model residuals were not signifi-
cant. The candidate model set for age-0 juvenile wall-
eye (Table 3) included two models with a
DAICc ≤ 2. Larval gizzard shad abundance had a
positive effect on age-0 juvenile walleye abundance,
and rate of water-level change during irrigation sea-
son had a negative effect. The top model had an AICc

weight more than double that of the second model.
The mean � SE R2 for the age-0 juvenile walleye
candidate model set was 0.57 � 0.17. Larval gizzard
shad abundance had an importance of 0.63, and rate
of water-level change during irrigation season had an
importance of 0.43.
The candidate model set for age-0 juvenile white

bass (Table 3) included one model with a
DAICc ≤ 2. Larval white bass abundance had a posi-
tive effect on age-0 juvenile white bass. The model
had an R2 of 0.71, and larval white bass abundance
had an importance of 0.96.

Age-1 juvenile walleye and white bass models

Durbin–Watson tests for temporal autocorrelation on
all age-1 juvenile model residuals were not signifi-
cant. The candidate model set for age-1 juvenile wall-
eye (Table 3) included one model with a DAICc ≤ 2.
Autumn cooling rate and gizzard shad CPUE both
had a negative effect on age-1 juvenile walleye abun-
dance. The model had an R2 of 0.77. Autumn cooling
rate had an importance of 0.72, and gizzard shad
CPUE had an importance of 0.49.

Table 2. Mean � SE of variables (refer to Table 1
for units) used to model recruitment of walleye
and white bass. Data are from Enders, Red Willow
and Medicine Creek reservoirs in the Republican
River basin, Nebraska, USA 2008–2011 (Red
Willow 2008–2009 only).

Variable Enders Red Willow Medicine Creek Overall

LARV_WAE 0.1 � 0.04 0.2 � 0.09 0.07 � 0.02 0.1 � 0.02
LARV_WHB 0.09 � 0.04 0.07 � 0.03 0.02 � 0.003 0.06 � 0.02
LARV_GSD 8.9 � 4.2 5.6 � 0.9 6.0 � 1.4 7.1 � 1.7
SPR_RATE 0.2 � 0.01 0.2 � 0.003 0.2 � 0.01 0.2 � 0.005
WAE_Wr 86.4 � 1.4 88.0 � 3.3 89.9 � 1.9 88.1 � 1.1
WAE_SPRING 0.01 � 0.003 0.001 � 0.002 0.01 � 0 0.01 � 0.002
WAE_ZOOPS 49.2 � 6.2 55.1 � 17.5 52.2 � 8.1 51.6 � 4.6
WHB_Wr 92.3 � 2.8 92.8 � 5.4 95.4 � 2.7 93.6 � 1.7
WHB_SPRING 0.01 � 0.003 0.02 � 0.01 0.01 � 0.002 0.01 � 0.002
WHB_ZOOPS 62.6 � 5.3 70.6 � 19.8 110.7 � 14.0 83.4 � 9.7
JUV_WAE 0.2 � 0.1 0.1 � 0.09 0.3 � 0.09 0.2 � 0.06
JUV_WHB 2.2 � 0.4 1.9 � 0.7 1.3 � 0.2 1.8 � 0.2
IRRIG �0.01 � 0.002 �0.03 � 0.01 �0.05 � 0.01 �0.03 � 0.01
AGE1_WAE 4.6 � 3.2 1.5 � 0.8 1.3 � 0.5 2.7 � 1.3
AGE1_WHB 4.9 � 3.9 0.5 � 0.5 6.1 � 2.4 4.5 � 1.8
AUT_RATE �0.2 � 0.03 �0.2 � 0.06 �0.2 � 0.03 �0.2 � 0.02
JWAE_MAX 221.0 � 17.4 217.0 � 29.0 206.5 � 16.2 214.4 � 10.0
JWAE_MEAN 179.9 � 15.0 183.4 � 24.6 167.6 � 12.3 175.7 � 8.3
JWHB_MAX 190.8 � 14.6 199.5 � 28.5 223.8 � 5.9 205.7 � 8.7
JWHB_MEAN 117.3 � 12.4 137.9 � 5.4 140.0 � 2.8 130.5 � 5.9
GSD_SM 63.8 � 29.9 108.5 � 104.0 162.5 � 85.9 112.2 � 39.5
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The candidate model set for age-1 juvenile white
bass (Table 3) included two models with a
DAICc ≤ 2. Age-0 juvenile walleye abundance and
autumn cooling rate had a positive effect on age-1
juvenile white bass abundance. Both models had an
AICc weight of >0.4. The mean � SE R2 for the
age-0 juvenile white bass candidate model set was
0.77 � 0.06. Age-0 juvenile walleye abundance had
an importance of 0.83, and autumn cooling rate had
an importance of 0.22.

Discussion

It is imperative to accurately describe factors influ-
encing year-class strength of sportfish. However,
description of year-class strength has been difficult;
many fishes require different prey and habitat while
progressing through their first year of life, and other
biotic and abiotic factors that may affect year-class
strength are difficult to identify. Overall, our models
demonstrate the interdependency among early onto-
genetic stages and the complexities involved with
sportfish recruitment processes. Our models
explained 40%–80% (68 � 9%; mean � SE) and
71%–97% (81 � 6%) of the variability in catch for
walleye and white bass respectively; this compares
favourably with other models describing year-class
strength of walleye (31%, Quist et al. 2003; 57%–

97%, Hoxmeier et al. 2004; 66%–69%, DeBoer et al.
2013) and white bass (31%–36%, DeBoer et al.
2013) in multiple water bodies. Environmental fac-
tors often explain much of the variation in year-class
strength observed in fish populations (Boehlert &
Mundy 1988; Hansen et al. 1998; Daskalov 1999;
DeBoer et al. 2013; Uphoff et al. 2013; Kaemingk
et al. 2014a); these factors are more identifiable if
fish abundances are monitored during each of the
early ontogenetic stages from hatch to recruitment
(Forney 1976; Hoxmeier et al. 2006), as survival
gradually increases through early ontogenetic stages
(Houde 2002).

Age-0 larval walleye and white bass

Age-0 larval walleye abundance was negatively
related with both larval gizzard shad abundance and
age-0 larval white bass abundance; age-0 larval white
bass abundance was negatively related with both lar-
val gizzard shad abundance and age-0 larval walleye
abundance. This is likely because larval walleye (or
saugeye Sander vitreus 9 S. canadensis) and white
bass may compete for resources with each other
(Michaletz et al. 1987; Beck et al. 1998), as well as
larvae of other species, including gizzard shad
(Michaletz et al. 1987; Dettmers & Stein 1992; Quist
et al. 2004), yellow perch, (Michaletz et al. 1987)

Table 3. Parameter estimates for variables (Table 1) in candidate model set for age-0 larval, age-0 juvenile and age-1 juvenile walleye and white bass. Models
with a DAICc > 2 were excluded from consideration. Data are from Enders (EN), Medicine Creek (MC) and Red Willow (RW) reservoirs in the Republican River
basin, Nebraska, USA 2008–2011 (RW 2008–2009 only).

Stage Species Model Intercept Variable Parameter estimate R2 DAICc AICc w

Age-0 larval Walleye 1 0.3 RES EN 0 0.80 0 1
MC �0.2
RW 0.05

LARV_GSD �0.08
LARV_WHB �1.2
SPR_RATE 5.9
WAE_K �1.6
WAE_SPRING 30.8
WAE_ZOOPS 0.002

White bass 1 �0.8 RES EN 0 0.97 0 1
MC �0.1
RW �0.1

LARV_GSD �0.1
LARV_WAE �0.2
SPR_RATE �1.2
WHB_K 1.1
WHB_SPRING 9.1
WHB_ZOOPS �0.001

Age-0 juvenile Walleye 1 �0.3 LARV_GSD 0.2 0.73 0 0.72
IRRIG �3.7

2 �0.1 LARV_GSD 0.2 0.40 1.9 0.28
White bass 1 �0.8 LARV_WHB 4.1 0.71 0 1

Age-1 juvenile Walleye 1 �0.5 AUT_RATE �13.2 0.77 0 1
GSD_SM �0.3

White bass 1 0.1 JUV_WAE 5.7 0.71 0 0.58
2 1.2 JUV_WAE 7.4 0.83 0.64 0.42

AUT_RATE 7.5
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and black crappie (Pope et al. 1996; Galinat et al.
2002). Thus, it is likely that age-0 larval walleye and
white bass abundances are greater in years or reser-
voirs with fewer competitors.
Age-0 larval walleye abundance was positively

related with walleye diet zooplankton taxa abun-
dance, although age-0 larval white bass abundance
was negatively related with white bass diet zooplank-
ton taxa abundance. It is likely that age-0 larval wall-
eye abundance is greater in years or reservoirs with
greater preferred zooplankton abundance. Conversely,
although white bass-preferred zooplankton prey may
be abundant, they could be larger or smaller than the
size range preferred by age-0 larval white bass
(Michaletz et al. 1987; Beck et al. 1998), which
could partially explain the negative relationship seen
in our model.
Age-0 larval walleye abundance was positively

related with spring warming rate, a similar effect to
walleye recruitment in Lake Erie (Madenjian et al.
1996). Unlike age-0 larval walleye abundance, age-0
larval white bass abundance was negatively related
with spring warming rate. Rapidly warming water
temperature during incubation leads to better survival
of fish eggs (Colby et al. 1979), as colder tempera-
ture can delay hatching (Becker 1983; Pflieger 1997)
and subject fish eggs to increased risk of predation
and sedimentation (Schaeffer & Margraf 1987; Lisle
1989; Steinhart et al. 2004; Kock et al. 2006).
Greater survival during the egg stage could result in
greater age-0 larval walleye abundances. Addition-
ally, fish grow faster when enzymatic and metabolic
activity increases with temperature (Higley et al.
1986; Clarke & Johnston 1999), and there is a high
correlation between growth and survival for age-0
fish (reviewed by Sogard 1997). Age-0 walleye
growth (and presumably survival) was positively
affected by the number of growing-degree days in a
nearby reservoir (Uphoff et al. 2013). The negative
relationship between spring warming rate and age-0
larval white bass abundance was unexpected, given
that growth of white bass has been positively corre-
lated to water temperature (Ruelle 1971) or air tem-
perature (Pope et al. 1997; Phelps et al. 2011). In our
systems, it is possible that warmer temperatures allow
potential competitors (i.e. earlier hatching larval fish
such as walleye) a greater advantage than larval white
bass, thus resulting in the negative relationship seen
in our age-0 larval white bass model.
Age-0 larval walleye and white bass abundances

were positively related with rate of spring water-
level change. Constant postspawn water levels in
reservoirs are important for survival of walleye and
sauger eggs (Walburg 1972; Groen & Schroeder
1978), and year-class strength of walleye has been
positively correlated with increases in reservoir

spring water level (Cohen & Radomski 1993).
Although walleye year-class strength was negatively
related to spring water level in Kansas, low spring
elevations were observed in years with high storage
ratios (i.e. stable water levels) and relatively small
increases in water level (Quist et al. 2003). Addi-
tionally, walleye, saugeye and white bass often pro-
duce strong year classes in wet years (Martin et al.
1981; Sammons & Bettoli 2000). As a consequence
of increasing spring water levels in reservoirs, there
is a greater availability of spawning habitat, which
can have a direct benefit on white bass year-class
strength (Beck et al. 1997; Pope et al. 1997; DiCe-
nzo & Duval 2002). In addition, incoming water
flows have been directly linked to white bass
spawning success (Martin et al. 1981; DiCenzo &
Duval 2002), as have spring air temperature and
precipitation (Pope et al. 1997; Sammons & Bettoli
2000; Quist et al. 2002; Schultz et al. 2002), which
may influence incoming water flow.
Age-0 larval walleye abundance was negatively

related with adult walleye Wr, whereas age-0 larval
white bass abundance was positively related with
adult white bass Wr. Walleye populations in these
reservoirs are augmented by stocking; white bass
populations in these reservoirs are not augmented by
stocking and are thus reliant on natural production.
Parents in better condition can commence spawning
earlier and increase their reproductive output, relative
to parents in worse condition (Donelson et al. 2008).
Earlier spawning generally results in offspring having
a longer first growing season, which affords them the
potential for increased size; larger size often provides
benefits to offspring by reducing their susceptibility
to size-selective mortality (Eckmayer & Margraf
2004; Donelson et al. 2008). Offspring from parents
with a higher condition survive better than offspring
from parents with a lower condition (Donelson et al.
2008; Venturelli et al. 2010); thus, larval fish could
be more abundant in systems that have parental fish
with a higher condition and could thus suffer nega-
tive density-dependent effects if food is limited and
competitors (either inter- or intraspecific) are abun-
dant. Alternatively, the negative effect of adult wall-
eye condition could be manifesting itself indirectly,
perhaps via predator–prey interaction. Populations of
adult walleye with a high Wr could be indicative of
abundant adult walleye prey such as gizzard shad
(Madenjian et al. 1996; VanDeHey et al. 2014),
which can produce abundant gizzard shad larvae
(Miller 1960; Pierce 1977) that could compete with
larval walleye if preferred larval walleye prey is
limiting (Michaletz et al. 1987; Quist et al.
2004), thus indirectly manifesting the negative effect
of adult walleye condition on age-0 larval walleye
abundance.
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For age-0 larval walleye and white bass, the dis-
parities in abundance indices among reservoirs
(Table 3) are likely resultant from differences in the
variables described above, as well as other regulating
factors that we did not include in our models. It was
not possible to differentiate among the variables in
the age-0 larval walleye and white bass models using
importance because the global model was the only
model selected for both species; thus, all variables in
the candidate models had an importance of 1. None-
theless, it is important to understand the nature of the
effect that each variable had on age-0 larval walleye
and white bass abundances.

Age-0 juvenile walleye and white bass

The most important variable in the age-0 juvenile
walleye candidate model set was larval gizzard shad
abundance during spring. The relationship was posi-
tive, indicating years (or reservoirs) with greater larval
gizzard shad abundance had greater relative abun-
dances of age-0 juvenile walleye. This is interesting,
given the negative relationship seen above between
age-0 larval walleye and larval gizzard shad. As we
stated, larval walleye can compete for resources with
larval gizzard shad; conversely, age-0 juvenile wall-
eye are known to prey preferentially on age-0 shad
(Hartman & Margraf 1992; Einfalt & Wahl 1997).
Thus, the presence of an abundant competitor at one
ontogenetic stage can have a different effect than the
presence of an abundant prey at a later stage.
The second most important variable in the age-0

juvenile walleye candidate model set was rate of
water-level change during irrigation season. In these
reservoirs, summer water levels are typically regu-
lated by the nuances of agricultural irrigation
demands; thus, the rate of water-level change during
irrigation season is generally negative. The relation-
ship between age-0 juvenile walleye abundance and
rate of water-level change was negative, indicating
years (or reservoirs) with a faster rate of water-level
change during irrigation season (i.e. greater water-
level decrease) had higher relative age-0 juvenile
walleye abundances. It is possible that quickly
decreasing water levels concentrate age-0 walleye
and their prey, resulting in greater foraging effi-
ciency, and increased growth and survival of age-0
juvenile walleye. Furthermore, concentrated age-0
walleye should have greater catchability with our
gear, and it is also possible their increased abundance
is an artefact of increased catchability (sensu Scho-
enebeck & Hansen 2005).
The only variable in the age-0 juvenile white bass

candidate model set was age-0 larval white bass
abundance; the relationship was positive, indicating
that greater age-0 juvenile white bass abundances are

related to greater age-0 larval white bass abundances.
We believe this indicates that there is no recruitment
bottleneck for white bass in these systems between
the age-0 larval and age-0 juvenile stages. However,
neither age-0 larval abundance nor age-0 juvenile
abundance was included in the age-1 juvenile white
bass model (described below); thus, it seems unfeasi-
ble to use either age-0 stage as an early index of
year-class strength for white bass (sensu Sammons &
Bettoli 1998). It also seems possible that the overwin-
ter period may be strongly regulating the year-class
strength of white bass in these reservoirs.

Age-1 juvenile walleye and white bass

The most important variable in the age-1 juvenile
walleye candidate model set was autumn cooling
rate; the relationship was negative, indicating that
age-1 juvenile walleye abundance was positively
related with a faster cooling rate (i.e. colder tempera-
tures). The second most important variable in the
age-1 juvenile white bass candidate model set was
autumn cooling rate; counter to age-1 juvenile wall-
eye, this relationship was positive, indicating that
age-1 juvenile white bass abundance was negatively
related with a faster cooling rate. Although the spe-
cific mechanism for this relationship is unknown, we
suspect it may be a function of fish metabolism and
thus growth and survival. A slower cooling rate dur-
ing autumn would result in a higher basal metabolic
rate (Kelso 1972; Madon & Culver 1993; sensu Jonas
& Wahl 1998), which would require higher energy
intake. Even if shad densities were high enough to
sustain walleye growth, a high metabolic rate could
deplete walleye energy reserves going into winter,
reducing overwinter survival. However, fish grow
faster when enzymatic and metabolic activity increase
with temperature (Higley et al. 1986; Clarke & John-
ston 1999); thus, a slower autumn cooling rate
affords age-0 juvenile white bass a longer growing
season (Wilde & Muoneke 2001). It is also possible
that the decrease in overwinter survival is a function
of predation; smaller age-0 walleye (Chevalier 1973;
Pratt & Fox 2002) and white bass (Eckmayer &
Margraf 2004) are more subject to over-winter preda-
tion by other fishes, perhaps a consequence of
behavioural changes resulting from depleted energy
reserves (Jonas & Wahl 1998). Indeed, for many tem-
perate freshwater fishes, survival during the overwin-
ter period is a key factor in determining year-class
strength (e.g. Johnson & Evans 1991; Hurst &
Conover 1998; Sutton & Ney 2001).
The second most important variable in the age-1

juvenile walleye candidate model set was gizzard
shad CPUE; the relationship was negative, indicating
reservoirs (or years) with fewer age-1 juvenile walleye
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were related with greater gizzard shad abundances.
We believe there is no direct mechanism by which
gizzard shad affect age-1 juvenile walleye abundance,
but that abundant gizzard shad larvae and juveniles
can directly affect age-0 walleye abundance
(described above) and thereby indirectly affect age-1
juvenile walleye abundance by affecting the number
of walleye in a cohort at an early stage.
The most important variable in the age-1 juvenile

white bass candidate model set was age-1 juvenile
walleye abundance. The relationship was positive,
indicating that age-1 juvenile white bass abundance
is likely linked to age-1 juvenile walleye abundance;
perhaps both fishes are responding to other factors in
a similar manner. Thus, it is likely that resource con-
ditions (e.g. stable hydrology: Sammons & Bettoli
2000; abundant prey: Michaletz et al. 1987; Beck
et al. 1998) that favour year-class strength of white
bass or walleye may also benefit the other.

Conclusions

In reviewing the candidate model sets among stages
for each species, it was interesting to note how the
variables in each candidate model set changed, or did
not change, as ontogenesis progressed. For walleye,
gizzard shad were present in the candidate model sets
for all three ontogenetic stages we assessed. How-
ever, the relationship between gizzard shad and wall-
eye was both negative and positive, which highlights
the complex interaction between these two species;
potential competitors at one stage, predator and prey
at another. For white bass, there was no unifying var-
iable in all three stage-specific candidate model sets,
although walleye abundance was present in two of
the three white bass candidate model sets. We believe
life-history similarities between these two species
may link their ontogeny in these dynamic ecosys-
tems; resource conditions that benefit one species
likely also benefit the other. For both species, the
variables included in the stage-specific candidate
model sets were most often the variables added to the
models as they became relevant at that ontogenetic
stage; rarely were variables from preceding stages
included in candidate model sets unless they were a
relevant prey item (i.e. larval gizzard shad in the age-
0 juvenile walleye candidate model set) or the abun-
dance of a preceding ontogenetic stage (e.g. age-0
larval white bass abundance in the age-0 juvenile
white bass candidate model set). These results dem-
onstrate the interdependency among early ontogenetic
stages and the complexities involved with sportfish
recruitment.
It is important that we improve our knowledge

about factors that regulate year-class strength of fish,
particularly in unpredictable environments (Baccante

et al. 2011). Comprehensive analyses of factors influ-
encing recruitment to multiple early ontogenetic
stages are seemingly rare in the literature (but see
Ludsin & DeVries 1997; Hoxmeier et al. 2006; Kae-
mingk et al. 2014a), yet we were able to determine
several factors affecting walleye and white bass year-
class strength at multiple ontogenetic stages. This
knowledge will improve our understanding of recruit-
ment dynamics and overall ecology for these fishes,
not only in Great Plains irrigation reservoirs, but also
in other regions, habitat types and for other species
as well. For example, there are numerous studies
dealing with how environmental factors affect recruit-
ment of stream-living salmonids (e.g. Lob�on-Cervi�a
& Rinc�on 2004; Lob�on-Cervi�a 2007) in Europe, but
far fewer for the same species in the North American
parts of their expanded range. Similarly, future stud-
ies on environmental factors affecting striped bass
(Morone saxatilis) or zander (Sander lucioperca)
recruitment (e.g. Shideler & Houde 2014; Heikinhe-
imo et al. 2014) might consider a research approach
like ours from related species.
Additional studies on walleye and white bass

recruitment should seek to assess if the factors we
determined important translate to populations in natu-
ral lakes, flood-control reservoirs and irrigation reser-
voirs throughout a wet–dry cycle (incorporating
floods and droughts). These types of studies are
needed to better understand differences in recruitment
dynamics among systems. Understanding the factors
affecting year-class formation at different ontogenetic
stages is important from a variety of perspectives
(Maceina 1997), including improving the knowledge
of fish ecology and effectively managing sportfish in
irrigation reservoirs and other dynamic ecosystems.

Acknowledgements

We thank Robert Kill, Ryan Lueckenhoff, Dustin Martin,
Chris Lewis and many others for assistance with field sam-
pling, Caleb Huber, Brad Newcomb, Brad Eifert and Keith
Hurley for providing gillnet data and Tricia Quon, Zach Sha-
fer, Taylor Dixon, Hannah Hummel and many others for pro-
cessing samples in the laboratory. We also thank Mark Pegg,
Keith Koupal, Rick Holland, Megan Thul and several anony-
mous reviewers for helpful comments on earlier drafts of this
manuscript. This project was funded by Federal Aid in Sport
Fisheries Researchtoration project F-174-R, which was admin-
istered by the Nebraska Game and Parks Commission. Any
use of trade, firm, or product names is for descriptive purposes
only and does not imply endorsement by the U.S. Govern-
ment. The Nebraska Cooperative Fish and Wildlife Research
Unit is jointly supported by a cooperative agreement among
the U.S. Geological Survey, the Nebraska Game and Parks
Commission, the University of Nebraska, the U.S. Fish and
Wildlife Service and the Wildlife Management Institute. This
study was performed under the auspices of the University of

513

Recruitment of walleye and white bass



Nebraska-Lincoln Institutional Animal Care and Use Commit-
tee (protocol # 07-03-013E).

References

Akaike, H. 1987. Factor analysis and AIC. Psychometrika 52:
317–332.

Baccante, D.A., Barton, B.A., Bozek, M.A. & Bruner, J.C.
2011. Future research needs of walleye and sauger. Fisheries
36: 618–619.

Baltz, D.M. & Moyle, P.B. 1982. Life history characteristics of
tule perch (Hysterocarpus traski) populations in contrasting
environments. Environmental Biology of Fishes 7: 229–242.

Bauer, D.L. 2002. White bass population differences in
Nebraska reservoirs with gizzard shad or alewife prey bases.
North American Journal of Fisheries Management 22: 665–
670.

Beck, H.D., Willis, D.W., Unkenholz, D.G. & Stone, C.C.
1997. Relations between environmental variables and age-0
white bass abundance in four Missouri River reservoirs.
Journal of Freshwater Ecology 12: 567–575.

Beck, H.D., Starostka, A.B. & Willis, D.W. 1998. Diet over-
lap of age-0 walleye and white bass in Lake Poinsett, South
Dakota. Journal of Freshwater Ecology 13: 425–431.

Becker, G.C. 1983. Fishes of Wisconsin. Madison, WI: The
University of Wisconsin Press.

Boehlert, G.W. & Mundy, B.C. 1988. Roles of behavioral and
physical factors in larval and juvenile fish recruitment to
estuarine nursery areas. In: Weinstein, M.P., ed. Fish and
shellfish transport through inlets. Bethesda, Maryland:
AAmerican Fisheries Society, Symposium 3, pp. 51–67.

Borkholder, B.D. & Parsons, B.G. 2001. Relationship between
electrofishing catch rates of age-0 walleyes and water tem-
perature in Minnesota lakes. North American Journal of
Fisheries Management 21: 318–325.

Brown, M.L. & Murphy, B.R. 1991. Standard weights (Ws)
for striped bass, white bass, and hybrid striped bass. North
American Journal of Fisheries Management 11: 451–467.

Bulkley, R.V., Spykermann, V.L. & Inmon, L.E. 1976. Food
of the pelagic young of walleyes and five cohabiting fish
species in Clear Lake, Iowa. Transactions of the American
Fisheries Society 105: 77–83.

Chevalier, J.R. 1973. Cannibalism as a factor in first year sur-
vival of walleye in Oneida Lake. Transactions of the Ameri-
can Fisheries Society 102: 739–744.

Chizinski, C.J., Martin, D.M., Huber, C.G. & Pope, K.L.
2014. The influence of a rapid drawdown and prolonged
dewatering on angling pressure, catch and harvest in a
Nebraska reservoir. Great Plains Research 24: 145–152.

Clarke, A. & Johnston, N.M. 1999. Scaling of metabolic rate
with body mass and temperature in teleost fish. Journal of
Animal Ecology 68: 893–905.

Cohen, Y. & Radomski, P. 1993. Water level regulations and
fisheries in Rainy Lake and the Namakan Reservoir. Cana-
dian Journal of Fisheries and Aquatic Sciences 50: 1934–
1945.

Colby, P.J., McNicol, R.E. & Ryder, R.A. 1979. Synopsis of
the biological data on the walleye Stizostedion v. vitreum
(Mitchill 1818). FAO (Food and Agricultural Organization
of the United Nations) Fisheries Synopsis 119.

Daskalov, G. 1999. Relating fish recruitment to stock biomass
and physical environment in the Black Sea using generalized
additive models. Fisheries Research 41: 1–23.

DeBoer, J.A., Webber, C.M., Dixon, T.A. & Pope, K.L. In
press. The influence of a severe reservoir drawdown on
springtime zooplankton and larval fish assemblages in Red
Willow Reservoir, Nebraska. Journal of Freshwater Ecology
DOI: 10.1080/02705060.2015.1055312

DeBoer, J.A., Fontaine, J.J., Chizinski, C.J. & Pope, K.L.
2015. Masked expression of life-history traits in a highly
variable environment. Great Plains Research 25: 25–38.

DeBoer, J.A., Pope, K.L. & Koupal, K.D. 2013. Environmen-
tal factors regulating the recruitment of walleye Sander vit-
reus and white bass Morone chrysops in irrigation
reservoirs. Ecology of Freshwater Fish 22: 43–54.

Dettmers, J.M. & Stein, R.A. 1992. Food consumption by lar-
val gizzard shad: zooplankton effects and implications for
reservoir communities. Transactions of the American Fisher-
ies Society 121: 494–507.

DeVries, D.R. & Stein, R.A. 1991. Comparison of three zoo-
plankton samplers: a taxon-specific assessment. Journal of
Plankton Research 13: 53–59.

DiCenzo, V.J. & Duval, M.C. 2002. Importance of reservoir
inflow in determining white bass year-class strength in three
Virginia reservoirs. North American Journal of Fisheries
Management 22: 620–626.

Donelson, J.M., McCormick, M.I. & Munday, P.L. 2008.
Parental condition affects early life-history of a coral reef
fish. Journal of Experimental Marine Biology and Ecology
360: 109–116.

Eckmayer, W.J. & Margraf, F.J. 2004. The influence of diet,
consumption and lipid use on recruitment of white bass. Lakes
and Reservoirs: Research and Management 9: 133–141.

Einfalt, L.M. & Wahl, D.H. 1997. Prey selection by juvenile
walleye as influenced by prey morphology and behavior.
Canadian Journal of Fisheries and Aquatic Sciences 54:
2618–2626.

Everhart, W.H., Eipper, A.E. & Youngs, W.D. 1975. Principles
of fishery science. Ithaca, NY: Cornell University Press.

Forney, J.L. 1976. Year-class formation in the walleye (Stizos-
tedion vitreum vitreum) population of Oneida Lake, New
York, 1966-73. Journal of the Fisheries Research Board of
Canada 33: 783–792.

Galarowicz, T.J., Adams, J.A. & Wahl, D.H. 2006. The influ-
ence of prey availability on ontogenetic diet shifts of a juve-
nile piscivore. Canadian Journal of Fisheries and Aquatic
Sciences 63: 1722–1733.

Galinat, G.F., Willis, D.W., Blackwell, B.G. & Hubers, M.J.
2002. Influence of a saugeye (sauger x walleye) introduction
program on the black crappie population in Richmond Lake,
South Dakota. North American Journal of Fisheries Manage-
ment 22: 1416–1424.

Groen, C.L. & Schroeder, T.A. 1978. Effects of water level
management on walleye and other coolwater fishes in Kan-
sas reservoirs. In: Kendall, R.L., ed. Selected coolwater
fishes of North America. Washington, D.C.: American Fish-
eries Society, Special Publication Number 11, pp. 278–283.

Haney, J.F. & Hall, D.J. 1973. Sugar-coated Daphnia: a pres-
ervation technique for Cladocera. Limnology and Oceanog-
raphy 18: 331–333.

514

DeBoer & Pope

http://dx.doi.org/10.1080/02705060.2015.1055312


Hansen, M.J., Bozek, M.A., Newby, J.R., Newman, S.P. &
Staggs, M.D. 1998. Factors affecting recruitment of walleyes
in Escanaba Lake, Wisconsin, 1958-1995. North American
Journal of Fisheries Management 8: 764–774.

Hartman, K.J. & Margraf, F.J. 1992. Effects of prey and pred-
ator abundances on prey consumption and growth of wall-
eyes in western Lake Erie. Transactions of the American
Fisheries Society 121: 245–260.

Heikinheimo, O., Pekcan-Hekim, Z. & Raitaniemi, J. 2014.
Spawning stock–recruitment relationship in pikeperch San-
der lucioperca (L.) in the Baltic Sea, with temperature as an
environmental effect. Fisheries Research 155: 1–9.

Higley, L.G., Pedigo, L.P. & Ostlie, K.R. 1986. DEGDAY: a
program for calculating degree-days and assumptions behind
the degree-day approach. Environmental Entomology 15:
999–1016.

Hinch, S.G., Collins, N.C. & Harvey, H.H. 1991. Relative
abundance of littoral zone fishes: biotic interactions, abiotic
factors, and post glacial colonization. Ecology 72: 1314–
1324.

Houde, E.D. 1987. Fish early life dynamics and recruitment
variability. American Fisheries Society Symposium 2: 17–29.

Houde, E.D. 2002. Mortality. In: Fuiman, L.A., Werner, R.G.,
eds. Fishery science: the unique contributions of early life
stages. Malden, MA: Blackwell Science, pp. 64–87.

Hoxmeier, R.J.H., Wahl, D.H., Hooe, M.L. & Pierce, C.L.
2004. Growth and survival of larval walleyes in response to
prey availability. Transactions of the American Fisheries
Society 133: 45–54.

Hoxmeier, R.J.H., Wahl, D.H., Brooks, R.C. & Heidinger,
R.C. 2006. Growth and survival of age-0 walleye (Sander
vitreus): interactions among walleye size, prey availability,
predation, and abiotic factors. Canadian Journal of Fisheries
and Aquatic Sciences 63: 2173–2182.

Hurley, K.L. & Duppong-Hurley, K.L. 2005. 2002 licensed
angler survey summarized results. Lincoln, NE: Nebraska
Game and Parks Commission.

Hurst, T.P. & Conover, D.O. 1998. Winter mortality of
young-of-the-year Hudson River striped bass (Morone saxa-
tilis): size-dependent patterns and effects on recruitment.
Canadian Journal of Fisheries and Aquatic Sciences 55:
1122–1130.

Hurvich, C.M. & Tsai, C.-L. 1989. Regression and time series
model selection in small samples. Biometrika 76: 297–307.

Johnson, D.L. & Nielsen, L.A. 1983. Sampling considerations.
In: Nielsen, L.A., Johnson, D.L., eds. Fisheries techniques.
Bethesda, MD: American Fisheries Society, pp. 1–21.

Johnson, T.B. & Evans, D.O. 1991. Behaviour, energetics,
and associated mortality of young-of-the-year white perch
(Morone americana) and yellow perch (Perca flavescens)
under simulated winter conditions. Canadian Journal of
Fisheries and Aquatic Sciences 48: 672–680.

Johnston, T.A. & Leggett, W.C. 2002. Maternal and environ-
mental gradients in the egg size of an iteroparous fish. Ecol-
ogy 83: 1777–1791.

Jonas, J.L. & Wahl, D.H. 1998. Relative importance of direct
and indirect effects of starvation for young walleyes. Trans-
actions of the American Fisheries Society 127: 192–205.

June, F.C. 1977. Reproductive patterns in seventeen species of
warmwater fishes in a Missouri River reservoir. Environ-
mental Biology of Fishes 2: 285–296.

Kaemingk, M.A., Graeb, B.D.S. & Willis, D.W. 2014a. Tem-
perature, hatch date, and prey availability influence age-0
yellow perch growth and survival. Transactions of the
American Fisheries Society 143: 845–855.

Kaemingk, M.A., Stahr, K.J., Jolley, J.C., Holland, R.S. &
Willis, D.W. 2014b. Evidence for bluegill spawning plastic-
ity by disentangling complex factors related to recruitment.
Canadian Journal of Fisheries and Aquatic Sciences 71: 93–
105.

Kalff, J. 2003. Reservoirs. In: Kalff, J., ed. Limnology: inland
water ecosystems. Upper Saddle River, NJ: Prentice-Hall,
Inc., pp. 523–536.

Kelso, J.R.M. 1972. Conversion, maintenance, and assimila-
tion for walleye, Stizostedion vitreum vitreum, as affected by
size, diet, and temperature. Journal of the Fisheries Research
Board of Canada 29: 1181–1192.

Kelso, J.R.M. & Bagenal, T.B. 1977. Percids in unperturbed
ecosystems. Journal of the Fisheries Research Board of Can-
ada 34: 1959–1963.

Kock, T.J., Congleton, J.L. & Anders, P.J. 2006. Effects of
sediment cover on survival and development of white stur-
geon embryos. North American Journal of Fisheries Man-
agement 26: 134–141.

Lisle, T. 1989. Sediment transport and resulting deposition in
spawning gravels, north coastal California. Water Resources
Research 25: 1303–1319.

Lob�on-Cervi�a, J. & Rinc�on, P.A. 2004. Environmental deter-
minants of recruitment and their influence on the population
dynamics of stream-living brown trout Salmo trutta. Oikos
105: 641–646.

Lob�on-Cervi�a, J. 2007. Numerical changes in stream-resident
brown trout (Salmo trutta): uncovering the roles of density-
dependent and density-independent factors across space and
time. Canadian Journal of Fisheries and Aquatic Sciences
64: 1429–1447.

Ludsin, S.A. & DeVries, D.R. 1997. First-year recruitment of
largemouth bass: the inter-dependency of early life stages.
Ecological Applications 7: 1024–1038.

Maceina, M.J. 1997. Simple application of using residuals
from catch-curve regressions to assess year-class strength in
fish. Fisheries Research 32: 115–121.

Madenjian, C.P., Tyson, J.T., Knight, R.L., Kershner, M.W.
& Hansen, M.J. 1996. First-year growth, recruitment, and
maturity of walleyes in western Lake Erie. Transactions of
the American Fisheries Society 125: 821–830.

Madon, S.P. & Culver, D.A. 1993. Bioenergetics model for
larval and juvenile walleyes: an in situ approach with experi-
mental ponds. Transactions of the American Fisheries Soci-
ety 122: 797–813.

Martin, D.B., Mengel, L.J., Novotny, J.F. & Walburg, C.H.
1981. Spring and summer water levels in a Missouri
river reservoir: effects on age-0 fish and zooplankton.
Transactions of the American Fisheries Society 110:
370–381.

Michaletz, P.H., Unkenholz, D.G. & Stone, C.C. 1987. Prey
size selectivity and food partitioning among zooplanktivo-
rous age-0 fishes in Lake Francis Case, South Dakota.
American Midland Naturalist 117: 126–138.

Michaletz, P.H. 1997. Influence of abundance and size of age-
0 gizzard shad on predator diets, diet overlap, and growth.

515

Recruitment of walleye and white bass



Transactions of the American Fisheries Society 126: 101–
111.

Miller, R.R. 1960. Systematics and biology of the gizzard
shad (Dorosoma cepedianum) and related fishes. U.S. Fish
and Wildlife Service Fishery Bulletin 173: 371–392.

Mion, J.B., Stein, R.A. & Marschall, E.A. 1998. River dis-
charge drives survival of larval walleye. Ecological Applica-
tions 8: 88–103.

Murphy, B.R., Brown, M.L. & Springer, T.A. 1990. Evalua-
tion of the relative weight (Wr) index, with new applications
to walleye. North American Journal of Fisheries Manage-
ment 10: 85–97.

Murray, K. & Conner, M.M. 2009. Methods to quantify vari-
able importance: implications for the analysis of noisy eco-
logical data. Ecology 90: 348–355.

Neill, W.H., Miller, J.H., Van Der Veer, H.K. & Winemiller,
K.O. 1994. Ecophysiology of marine fish recruitment: a con-
ceptual framework for understanding interannual variability.
Netherlands Journal of Sea Research 32: 135–152.

Olds, B.P., Peterson, B.C., Koupal, K.D., Farnsworth-Hoback,
K.M., Schoenebeck, C.W. & Hoback, W.W. 2011. Water
quality parameters of a Nebraska reservoir differ between
drought and normal conditions. Lake and Reservoir Manage-
ment 27: 229–234.

Olson, N.W., Guy, C.S. & Koupal, K.D. 2007. Interactions
among three top-level predators in a polymictic Great Plains
reservoir. North American Journal of Fisheries Management
27: 268–278.

Pflieger, W.L. 1997. The fishes of Missouri, revised edn. Jef-
ferson City, MO: Missouri Department of Conservation.

Phelps, Q.E., Ward, M.J. & Willis, D.W. 2011. White bass
population demographics in a northwestern South Dakota
reservoir. Journal of Freshwater Ecology 26: 249–254.

Pierce, R.J. 1977. Life history and ecological energetics of the
gizzard shad (Dorosoma cepedianum) in Acton Lake, Ohio.
Oxford, OH: Doctoral dissertation, Miami University.

Pope, K.L., Flammang, M.K. & Willis, D.W. 1996. Influence
at size of stocking on survival of saugeye in a northern-lati-
tude impoundment. Journal of Freshwater Ecology 11: 447–
450.

Pope, K.L., Willis, D.W. & Lucchesi, D.O. 1997. Influence of
temperature and precipitation on age-0 white bass abundance
in two South Dakota natural lakes. Journal of Freshwater
Ecology 12: 599–605.

Pratt, T.C. & Fox, M.G. 2002. Influence of predation risk on
the overwinter mortality and energetic relationships of
young-of-year walleyes. Transactions of the American Fish-
eries Society 131: 885–898.

Quist, M.C., Guy, C.S. & Bernot, R.J. 2002. Ecology of larval
white bass in a large Kansas reservoir. North American
Journal of Fisheries Management 22: 637–642.

Quist, M.C., Guy, C.S. & Stephen, J.L. 2003. Recruitment
dynamics of walleyes (Stizostedion vitreum) in Kansas reser-
voirs: generalities with natural systems and effects of a cen-
trarchid predator. Canadian Journal of Fisheries and Aquatic
Sciences 60: 830–839.

Quist, M.C., Guy, C.S., Bernot, R.J. & Stephen, J.L. 2004.
Factors related to growth and survival of larval walleyes:
implications for recruitment in a southern Great Plains reser-
voir. Fisheries Research 67: 215–225.

Royall, R.M. 1997. Statistical evidence: a likelihood para-
digm. New York: Chapman and Hall.

Ruelle, R. 1971. Factors influencing growth of white bass in
Lewis and Clark Lake. In: Hall, G.E., ed. Reservoir fisheries
and limnology. Bethesda, MD: American Fisheries Society,
Special Publication 8, pp. 411–423.

Sammons, S.M. & Bettoli, P.W. 1998. Larval sampling as a
fisheries management tool: early detection of year-class
strength. North American Journal of Fisheries Management
18: 137–143.

Sammons, S.M. & Bettoli, P.W. 2000. Population dynamics
of a reservoir sport fish community in response to hydrol-
ogy. North American Journal of Fisheries Management 20:
791–800.

Sammons, S.M., Dorsey, L.G., Bettoli, P.W. & Fiss, F.C.
1999. Effects of reservoir hydrology on reproduction by
largemouth bass and spotted bass in Normandy Reservoir,
Tennessee. North American Journal of Fisheries Manage-
ment 19: 78–88.

Schaeffer, J.S. & Margraf, F.J. 1987. Predation on fish eggs
by white perch (Morone americana) in western Lake Erie.
Environmental Biology of Fishes 18: 77–80.

Schoenebeck, C.W. & Hansen, M.J. 2005. Electrofishing
catchability of walleyes, largemouth bass, smallmouth bass,
northern pike, and muskellunge in Wisconsin lakes. North
American Journal of Fisheries Management 25: 1341–1352.

Schultz, R.D., Guy, C.S. & Robinson, D.A. Jr 2002. Compar-
ative influences of gizzard shad catch rates and reservoir
hydrology on recruitment of white bass in Kansas reservoirs.
North American Journal of Fisheries Management 22: 671–
676.

Shideler, A.C. & Houde, E.D. 2014. Spatio-temporal variabil-
ity in larval-stage feeding and nutritional sources as factors
influencing Striped Bass (Morone saxatilis) recruitment
success. Estuaries and Coasts 37: 561–575.

Smith, S.H. 1954. Method of producing plastic impressions of
fish scales without using heat. Progressive Fish Culturist 16:
75–78.

Sogard, S.M. 1997. Size-selective mortality in the juvenile
stage of teleost fishes: a review. Bulletin of Marine Science
60: 1129–1157.

Steinhart, G.B., Marschall, E.A. & Stein, R.A. 2004. Round
goby predation on smallmouth bass offspring in nests during
simulated catch-and-release angling. Transactions of the
American Fisheries Society 133: 121–131.

Stone, C. 1996. South Dakota angler use and preference sur-
vey; supplement 2: data breakdown by management region
and fisheries program areas. South Dakota Department of
Game, Fish, and Parks, Fisheries Division Report 96-2,
Pierre.

Strauss, R.E. 1979. Reliability estimates for Ivlev’s electivity
index, the forage ratio, and a proposed linear index of food
selection. Transactions of the American Fisheries Society
108: 344–353.

Sullivan, C.L., Schoenebeck, C.W., Koupal, K.D., Hoback,
W.W. & Peterson, B.C. 2011. Patterns of age-0 gizzard shad
abundances and food habits in a Nebraska irrigation reser-
voir. Prairie Naturalist 43: 110–116.

Sullivan, C.L., Koupal, K.D., Hoback, W.W., Peterson, B.C.
& Schoenebeck, C.W. 2012. Food habits and abundance of

516

DeBoer & Pope



larval freshwater drum in a South Central Nebraska irriga-
tion reservoir. Journal of Freshwater Ecology 27: 111–121.

Sutton, T.M. & Ney, J.J. 2001. Size-dependent mechanisms
influencing first-year growth and winter survival of stocked
striped bass in a Virginia mainstream reservoir. Transactions
of the American Fisheries Society 130: 1–17.

United States Bureau of Reclamation (USBR). 2013. Nebraska
Lakes and Reservoirs. Available at: http://www.usbr.gov/gp/la
kes_reservoirs/nebraska_lakes.htm. Accessed 28 March 2013.

Uphoff, C.S., Schoenebeck, C.W., Hoback, W.W., Koupal,
K.D. & Pope, K.L. 2013. Degree-day accumulation influ-
ences annual variability in growth of age-0 walleye. Fisher-
ies Research 147: 394–398.

VanDeHey, J.A., Willis, D.W., Harris, J.M. & Blackwell,
B.G. 2014. Effects of gizzard shad introductions on walleye
and yellow perch populations in prairie glacial lakes. Fisher-
ies Research 150: 49–59.

Venturelli, P.A., Murphy, C.A., Shuter, B.J., Johnston, T.A.,
van Coeverden de Groot, P.J., Boag, P.T., Casselman, J.M.,
Montgomerie, R., Wiegand, M.D. & Leggett, W.C. 2010.
Maternal influences on population dynamics: evidence from
an exploited freshwater fish. Ecology 91: 2003–2012.

Walburg, C.H. 1972. Some factors associated with fluctuation
in year-class strength of sauger, Lewis and Clark Lake,
South Dakota. Transactions of the American Fisheries Soci-
ety 101: 311–316.

Watson, S., McCauley, E., Hardisty, E., Hargersheimer, E.
& Dixon, J. 1996. Chrysophyte blooms in oligotrophic
Glenmore Reservoir (Calgary, Canada). Beih Nova Hedwi-
gia 114: 193–217.

Wege, G.J. & Anderson, R.O. 1978. Relative weight (Wr): a
new index of condition for largemouth bass. In: Novinger,
G.D. & Dillard, J.G., eds. New approaches to the manage-
ment of small impoundments. Bethesda, MD: American
Fisheries Society, North Central Division, Special Publica-
tion 5, pp. 79–91.

Wilde, G.R. & Muoneke, M.I. 2001. Climate-related and mor-
phoedaphic correlates of growth in white bass. Journal of
Fish Biology 58: 453–461.

Willis, D.W. 1987. Use of gill-net data to provide a recruit-
ment index for walleyes. North American Journal of Fisher-
ies Management 7: 591–592.

Willis, D.W., Paukert, C.P. & Blackwell, B.G. 2002. Biol-
ogy of white bass in Eastern South Dakota glacial lakes.
North American Journal of Fisheries Management 22:
627–636.

Yu, D.J., Anderies, J.M., Lee, D. & Perez, I. 2014. Transfor-
mation of resource management institutions under globaliza-
tion: the case of songgye community forests in South Korea.
Ecology and Society 19: 2.

517

Recruitment of walleye and white bass

http://www.usbr.gov/gp/lakes_reservoirs/nebraska_lakes.htm
http://www.usbr.gov/gp/lakes_reservoirs/nebraska_lakes.htm

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2016

	Factors influencing recruitment of walleye and white bass to three distinct early ontogenetic stages
	Jason A. DeBoer
	Kevin L. Pope

	REV_ISS_WEB_eff_12229_25-4 504..517

