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 Spectator Performer Space (SPS) is a frequently occurring crowd dynamics, 

composed of one or more central performers, and a peripheral crowd of spectators. 

Analysis of videos in this space is often complicated due to occlusion and high density of 

people. Although there are many video analysis approaches, they are targeted for 

individual actors or low-density crowd and hence are not suitable for SPS videos. In this 

work, we present two trajectory-based features: Histogram of Trajectories (HoT) and 

Histogram of Trajectory Clusters (HoTC) to analyze SPS videos. HoT is calculated from 

the distribution of length and orientation of motion trajectories in a video. For HoTC, we 

compute the features derived from the motion trajectory clusters in the videos. So, HoTC 

characterizes different spatial region which may contain different action categories, 

inside a video. We have extended DBSCAN, a well-known clustering algorithm, to 

cluster short trajectories, common in SPS videos.  The derived features are then used to 

classify the SPS videos based on their activities.  In addition to using NaïveBayes and 

support vector machines (SVM), we have experimented with ensemble based classifiers 

and a deep learning approach using the videos directly for training. The efficacy of our 

algorithms is demonstrated using a dataset consisting of 4000 real life videos each from 

spectator and performer spaces. The classification accuracies for spectator videos (HoT: 



 

87%; HoTC: 92%) and performer videos (HoT: 91%; HoTC: 90%) show that our 

approach out-performs the state of the art techniques based on deep learning. 
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Chapter 1  

Introduction 

1.1 Background 

Understanding and interpreting crowd behavior is a much researched area in a 

number disciplines including computer vision, sociology, and psychology [1]. Within 

computer vision research, crowd analysis encompasses a whole spectrum of topics, 

ranging from crowd counting, anomaly detection, and crowd tracking to classification of 

an entire crowd based on its overall action [2]. In addition, there is a body of work on 

crowd analysis, which models and predicts crowd behavior and action based on 

sociological and psychological factors like ambition and interest, motivation to act and 

understanding of the immediate environment [3].  

Automated crowd analysis is challenging due to factors such as high degree of 

occlusion, higher object density and complex interaction between the members of the 

crowd [2]. Additionally, accurate analysis of crowd behavior can also require 

understanding of crowd psychology [3]. For example, a political rally on the street would 

be very different from spectators in an arena or pilgrims in a religious ceremony.  
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Crowds are broadly classified as casual, conventional, expressive and acting [4]. 

However, events and situations may transform one form of crowd to another. For 

example, a peaceful protest rally can turn into a violent mob, based on internal, 

psychological factors like mood and mental state of the crowd or due to socio-political 

factors such as any feeling of distrust towards or oppression from authority. In most 

cases, these transformations have significant associated visual cues, such as the pattern of 

movement and changes in the mood of the crowd. If the visual cues can be extracted 

using computer vision techniques, the crowd behavior and its changes can be 

automatically determined. 

Automated methods for crowd analysis can provide researchers with critical 

information about the crowd including its size and density. These measures are useful in 

several domains including public space design, surveillance, virtual environment design, 

and other real world simulations. Additional information about the features of the crowd 

like direction and speed of movement, and emotional states like anger or excitement will 

be useful in crowd management applications. These complex features can also be used in 

several domains like social media applications, smart hardware and software, and 

security and disaster management. Law enforcement agencies can use anomaly detection 

techniques to discover and prevent unlawful and harmful activities in a crowd. 

1.2 Spectator-Performer Space (SPS)  

In this research, we focus on a class of videos that are characterized by a large 

number of people viewing and/or interacting with a relatively small number of people in 

a spatially structured environment. We define Spectator-Performer Space (SPS) as a 

crowd dynamics composed of one or more central performers, and a peripheral spectator 
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crowd. Examples of such crowd interactions include (a) entertainment space where 

performers such as singers, musicians, and actors perform on a stage, (b) sporting events, 

where the sportsmen and women play in a confined space and (c) civic discourses, where 

a single speaker or a set of speakers occupy a distinct space (stage or podium) from the 

crowd.  In general, performers occupy a central position within the SPS space. In 

contrast, the spectators while an integral part of SPS play a secondary role and behave in 

response to the actions of the performers. 

Spectator-Performer Space is composed of two different types of spaces: 

Spectator Space (SS) and Performer Space (PS) that have fundamentally different 

characteristics as summarized below. These form the basis for their understanding 

including classification. 

 Location: Performers not only play a central role but also occupy a central and 

prominent location within the SPS. The space for the performers is clearly delineated 

and is kept separate from the spectators. While there are many different 

configurations of SPS, two most arrangements are: (a) concentric: the performer 

space is surrounded by the spectator space (e.g. sporting events) and (b) opposite: 

the performers and spectators are facing each other (e.g. political events). The space 

occupied by the performers and spectators are called the performer space (PS) and 

spectator space (SS), respectively.  

 Density: The spectator and performer spaces are also different in their density. 

Usually the performer space is significantly smaller than that of the spectator space.   

The number of spectators on the other hand is generally several orders of magnitude 
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bigger.  Thus, the spectator space is more congested and occluded in comparison to 

the performer space.  

 Motion: The motions of the performers are characterized by alternating periods of 

activity and inactivity. We define period of activity as the time when the performers 

are engaged in what the spectators have gathered to view as the primary 

performance. We define period of inactivity as the time in between the periods of 

primary performance. The motion patterns of the performers are generally confined 

to the PS and are more dynamic.  In contrast, the motion patterns of spectators are 

slower and more diverse in their spatial scope ranging from small movements 

confined the space occupied by the spectator to the large movements in the spectator 

space. A list of primary performance for some of the SPSs is summarized in Table 

1.1.  

Table 1.1: Examples of SPS and their characteristics 

Event Type Performers Spectator-

Performer 

Space (SPS) 

Primary 

Performance 

Performer 

Movements 

Spectator 

Movements 

Performing 

Arts 

Singers and 

Musicians, 

Dancers  

Stadiums or 

Covered 

Halls. 

Singing by the 

Artist/Band 

Complex 

dance moves, 

general 

singing 

movements 

Cheering, 

dancing, 

singing and 

imitating the 

performers 

Sporting Events Players  Sports 

Stadium 

including the 

stands, 

sidelines and 

the field. 

Game period 

when game-

clock is running 

down the game 

is being 

contested. 

Different form 

of plays 

depending on 

the sports like 

kicking, 

dribbling, 

passing etc. 

Cheering, 

Waves, 

Jeering 

Civil/Political 

Discourses 

Political and 

Social leaders 

Arena, 

Stadiums, 

Open field, 

Picket lines, 

Moving 

rallies. 

Speeches, 

Display of civil 

disobedience 

Talking, 

Waving, 

Walking, 

Running 

Cheering, 

Walking 
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While there is now a significant body of literature in automated methods for 

analysis of crowd images/videos, research on this class of videos is scarce. For example, 

Zhan et al [1], provide a comprehensive survey of crowd analysis work, but do not find 

any work that makes this distinction. The majority of work in crowd analysis either 

focuses on a single type of crowd [2,5] or try to be as generic with the type of crowd as 

possible [6]. In this thesis, we will focus on spectator-performer videos and present 

algorithms to delineate the spectator and performer space as well to classify the activities 

of the actors in both the performer space and spectator space.  

1.3 Motivation 

The main goal of our research is to develop techniques to analyze SPS activities. 

Since most of the work in crowd analysis focuses on generic crowds only [2,5,6], they are 

not immediately applicable and efficient for videos in this space. Ultimately, we want to 

come up with effective techniques to classify the various types of activities in SPS better. 

Since many video classification and analysis techniques are computationally expensive, 

we want to develop techniques which are efficient in both time and space. This research 

has many diverse applications including the following: 

 Surveillance: Classification of activity performed by spectators can be useful for 

surveillance and security. For example, the outlier behavior of individuals in a crowd 

may be suspicious and may need closer monitoring. 

 Crowd Management: Spectators have emotional response to the activities of 

performers expressed with actions like cheering, jeering, clapping and singing. 

Identifying the mood of the crowd, will help in the management of the crowd. There 
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are many examples of peaceful crowd turning violent [7]. Determination of the 

emotion of the crowd and the level of its excitement and its changes (e.g. from 

passive to angry) can assist in crowd management.  

 Performance Analysis: In some domains, identifying the periods of activity (and 

inactivity) of the performer(s) can be very helpful in the analysis and subsequent 

improvements and refinements of the performance. This is particularly applicable in 

domains where there are many periods of activity in a performance (e.g. sports). 

Identifying the episodes of inactivity can assist in planning for broadcasting of the 

events and presentation of advertisements.   

1.4 Problem Definition 

 This thesis describes the approaches to classify videos in the Spectator-Performer 

Space. Specifically, we define the following two sub-problems and give a formal problem 

definition in Section 3.1. 

(a) Given a fixed camera video of a crowd watching a football game, classify it 

as Active or Passive. Active refers to the crowd that is actively cheering, 

booing, clapping and actively reacting to the football game. Passive refers to 

the crowd that is not cheering, booing or clapping. 

(b) Given a fixed camera video of a football field, classify it as Play or No-Play. 

Play refers to situation when the football play like running, passing, and 

tackle is being made. No-Play refers to the dead-ball situation when the 

players are not making a football play, and are involved in other activities 

like time-out, players change, discussion and rest.  
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1.5 Overview of the Approach 

Our classification approaches as based on motion trajectories. The actions of the 

performers and spectators are represented as motion trajectories.  They form the basis for 

our algorithms that leverage their spatial and temporal properties for classification. The 

classification techniques are as summarized as follows: 

(a) Motion trajectories: The activities of the performers and spectators serve as the 

basis of different classification tasks.  Specifically, the first order statistical 

features from the trajectories are used.  We specifically examine the length and 

orientation of trajectories and show that they can effectively characterize different 

types of actions.  

(b) Motion trajectories clusters: Actions of performers induce similar reactions from 

individuals from crowd resulting in similar movements. Therefore, we find and 

leverage the cluster trajectories [8]  for classification of videos as well.  

(c) Bag-of-words: We have developed a bag-of-words [9] approach to build the 

feature vector, that is used in conjunction with a number of individual and 

ensemble based classifiers [10].   

(d) Deep learning: We have compared the efficacy of our algorithms with deep 

learning based classifiers, which uses three-dimensional convolution in the deep 

learning architecture. We show that the efficacy of our algorithms are better than 

deep learning based classifier for our dataset, as well as demonstrate the time and 

resource efficiency of our approach over deep learning. 
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1.6 Contributions 

As mentioned before, there is a scarcity of work in the video analysis space that 

deal with performances. Our work attempts to address this. Specific contributions of our 

work include:  

(a) We define a new class of crowd, Spectator-Performer Space (SPS) characterized 

by the spatial dichotomy between the performer(s) and the spectators.  We have 

summarized its properties as well as the fundamental problems in this space.    

(b) We have developed novel algorithms to classify video segments into different 

categories based on the activities of the crowd. The algorithms are based on novel 

trajectory based features based on motion trajectories. The efficacy of the 

algorithms has been demonstrated with a large collection of videos from the 

sports domain.  

(c) We have compared our trajectory based classification technique with deep 

learning classification using three-dimensional convolutional networks.  

 

1.7 Thesis Outline 

Rest of the thesis is organized as follows.  In Chapter 2, we survey the previous 

work in the field of crowd analysis, and analyze their strengths and shortcomings. We 

also examine several deep learning approaches used for video classification. In Chapter 3, 

we describe the methodology used in our research. Details of feature extraction and 

classification methods that we have used are presented. In Chapter 4, we present 

experimental results along with a discussion of the efficacy of the algorithms. We also 
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compare our results with some of the state of the art systems. Finally, in Chapter 5, we 

conclude with a summary and recommendations for future research in this domain. 
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Chapter 2  

Literature Review 
As mentioned before, there is very little research focused on spectator-performer 

videos. In this chapter, we review the related work more broadly in the domain of crowd 

analysis and video classification. In Section 2.1, we review body of work on crowd 

analysis from the perspectives of computer vision, sociology and psychology. In Section 

2.2, we summarize the research in video classification with focus on trajectory features 

and clustering and deep learning. 

2.1 Crowd Analysis 

Crowd analysis research intersects several broad fields including computer vision, 

sociology and psychology. The body of work on crowd analysis within computer vision 

includes detection of crowds, modeling of crowd behavior [2,11] and motion pattern 

analysis [6,12], anomaly and action detection [11,13], object and pedestrian detection 

[14] and tracking [6]. Our work focuses on spectator-performer crowds characterized by 

a sparse crowd of performers (e.g. sports team in a field or stage performer) and a dense 

crowd of spectators (e.g. people watching from a stadium or a hall). Since the crowd 

specific analysis is novel, we analyze other types of crowd in order to identify approaches 
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that might be useful for our work [5,6,14]. In the next three subsections, we examine 

body of work in three major areas of crowd analysis research: object recognition, density 

measurement and counting, and tracking. 

2.1.1 Object Recognition 

 Object recognition refers to the automatic detection of different types of objects in 

a crowd video or an image. Early work on object detection focused on detection of 

humans in a crowd derived from detection of body parts (face, head, etc.) and generalized 

into detecting pedestrians and the full human body. Most of the detection algorithm used 

some form of supervised learning, by training on features like histogram of gradient [14], 

or motion boundary histogram [15].  

Since crowded scenes invariably have partial occlusion, the complexity associated 

with detecting people becomes more difficult and requires more sophistication. Wang et 

al [16] proposed a mixed HOG-LBP (Histogram of Gradient - Local Binary Pattern) 

approach to handle partial occlusion. They combine a global object detector that scans 

entire frame (or image) for humans, with a localized object detector. The localized object 

detector assigns probability that (a) local area is occluded, and (b) the occlusion hides a 

human.  Several researchers have proposed the use of the bag-of-words [17] which is an 

order independent feature descriptor approach to detect objects in a crowded scene 

[15,16]. If sufficient images are available to derive a comprehensive list of all features, 

i.e. the vocabulary, it is possible to efficiently and accurately represent and identify 

objects with the vocabulary. 
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2.1.2 Density Measurement and Counting 

 Crowd density measurement and counting is critical in modern surveillance 

systems. Many crowd related mishaps in history have occurred in sporting events, 

religious gatherings and mass demonstrations [18] and the ability to automatically 

estimate the count and density of the crowd would assist in its management. 

 Some of the earliest work in crowd density measurement was based on simple 

counting. This included counting the number of human faces/body parts in a scene and 

averaging the over the scene to estimate the crowd density. These methods were less 

accurate due to heavy occlusion in scenes with crowds, which makes counting 

human/people difficult. Polus et al [13] categorize crowd based on the density of a crowd 

into (a) free (b) restricted (c) dense (d) very dense and (e) jammed. This categorization 

and approaches based on this classification scheme look at the crowd density problem 

from global view, i.e. density of the overall crowd only.  The approaches do not consider 

the variability of density in the crowd itself; a crowd can be denser in one region and 

sparse/less dense in another. 

Fradi and Dugelay [5] propose estimating crowd density by measuring pixel level 

data instead of analyzing the whole image (frame) as a whole. Their approach develops 

crowd density maps as probabilistic density functions enabling the calculation of crowd 

density in different regions in the crowd. This density map can then be used in 

conjunction with other surveillance techniques for better crowd understanding.  
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2.1.3 Crowd Tracking 

In general, crowd tracking is used to develop efficient techniques to track 

individual in crowds accurately [6,12]. Ali and Shah [6] propose a framework based on 

scene structure to track and predict pedestrian position. They show that in a structured 

high-density scene, a pedestrian’s motion can be defined as a function of global and local 

forces in that particular scene, i.e. motion of the entire crowd with respect to an external 

reference point and motion of people inside a crowd with respect to one another.  

Rodriguez et al [12] extend the work done by Ali and Shah [6] to include 

unstructured crowd. They propose multiple models to describe crowd scenes with 

multiple dominant motions and leverage global information about a crowd like density 

and structure to determine an energy optimization function. This function is combination 

of a crowd density estimate and the likelihood of finding individuals in different locations 

in a crowd. The optimization process maximizes the probability of finding people in a 

location while minimizing the density estimate of that location. This approach is quite 

useful in crowd tracking even with the heavy occlusion, common in high-density crowds.  

Analyzing the behavior of an entire crowd is a different problem from that of 

tracking a single person in a crowd. Saxena et al [11] propose a crowd modeling 

technique based on the type of crowd being analyzed and suggest using different variants 

of crowd models based on the scenario the crowd depicts. The crowds can be mobs with 

seemingly random behavior, organized and slow rallies or dense hordes of people in 

public spaces like bus or train station. They use KLT tracker [19] to determine significant 

feature points in any frame and then compute crowd motion vectors from those features 
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points. Crowd mobility, speed and direction, calculated and processed from KLT tracker, 

are then used to develop and train tracking models. 

 

2.2 Video Classification 

Video classification refers to automatic classification of action being performed in 

a video. Most video classification research focuses on single actors in videos, e.g. sports 

played in the video games [15,20], or specific acts in movies [14]. There is a limited body 

of work which focuses on classification of the activity of a crowd, or of all the people 

inside the video [6,13]. In the sections below, we summarize several approaches in 

classification of video, for both single actors and crowd videos.  

2.2.1 Trajectory Based Approach 

Trajectory based approaches are very common in video classification as most 

video classification problems deal with some form on motion in the video. Trajectories 

can represent the motion of different objects in a video. In many cases, the motion 

patterns in different categories of video are very different, and can be represented by the 

trajectories of the objects in motion. 

Wang et al [15] propose a set of complex features based on dense sampling of 

trajectories and motion boundary histogram to classify actions performed in a video. 

They train support vector machines (SVMs) with the dense trajectories and motion 

boundary histogram, using a bag-of-words approach [9). This effectively encodes both 

spatial and temporal information in the histogram of words (features) in a particular 

video. Using dense trajectories and bag-of-words approach, the researchers report up to 

89% accuracy in action detection in videos. In particular, the classification with dense 
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trajectory based descriptor perform with 89.8%, 67.5%, 75.4% 87.8% accuracy in KTH, 

YouTube, UCF sports and IXMAS data sets respectively. These results are also better 

than KLT Trajectories, SIFT Trajectories and Dense Cuboids [8]. 

2.2.2 Deep Learning  

Deep learning refers to the approach of using multi-layered non-linear 

architecture in context of machine learning. Deep architectures are used in order to 

effectively model the structural and semantic concepts describing complex objects like 

image, video and audio [21]. In traditional classification approaches, a set of hand-made 

and predefined features is used to describe an object and the features are subsequently 

used to train a classifier.  In deep learning, however, a hierarchy of feature extractors is 

used in several layers to create a pixel-to-classifier architecture. The features are 

automatically determined and are neither predefined nor handpicked. 

 Deep learning has been effectively used in many domains including for image 

understanding and classification with high accuracy [22]. These classification methods 

out-perform other hand crafted feature based classifiers in many different applications 

evaluated with many datasets [2]. The drawbacks of deep-learning classifiers are (a) 

higher time and space requirements and (b) lack of availability of large volume of labeled 

training data. In case of image classification, both of these issues are fast disappearing 

with the availability of huge data sets of images that are already classified in the Internet 

using games and captchas [23]. Video classification is the new frontier in the applications 

of deep learning with many researchers and practitioners in industry implementing and 

testing different deep learning models.  
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Deep learning for image and video recognition uses convolutional neural 

networks (CNN), which are inspired from the visual cortex of cat. A cat’s visual cortex 

contains complex arrangement of cells, and is divided into several smaller regions, where 

each region of the cells processes only a specific portion of the image [23]. Lecun et al 

[24] introduced the concept of CNNs and used them for handwriting recognition.   

 There has been a progression of work, from using the sparsely connected, image-

to-classifier architecture in image classification [23,25] to extending these architectures 

for video classification [20]. Karpathy et al [20] use a multiresolution, foveated 

architecture to extend the concept of CNN from image classification to video 

classification. Tran et al [26] extend 2-dimensional CNN to 3-dimensional CNN for 

video classification. They have used a deep 3-dimensional CNN (C3D) for spatio-

temporal feature learning and test the network on UCF1-101 dataset [27]. The 3D CNN 

better preserves the temporal information of the videos because of 3D convolution and 

3D pooling, thereby improving accuracy over 2D convolution.  

 

2.2.3 Trajectory Clustering 

 In computer vision research, trajectory clustering is a common form of analysis in 

surveillance and anomaly detection [28], tracking [29], pedestrian counting [30] and 

motion prediction [31]. There are several approaches to trajectory clustering including 

density based clustering [32] and partition and group framework [8]. Density based 

clustering is useful to find clusters of spatially close motion trajectories, which is 

important in tracking and route prediction. This is important in the analysis of SPS 

videos, particularly in spectator space as it generally covers a large area, and analyzing 
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trajectories based on spatial distribution may reveal important information about 

spectators in different regions of the video. Partition and group framework enables long 

and complex trajectories to be divided into simpler sub-trajectories. As it is highly 

unlikely that entire trajectories are similar to each other, this helps in finding and 

grouping overlapping sub-trajectories in case entire trajectory are not similar [7]. 

 Liu et al [32] introduced Tra-DBScan, which partitions trajectories into smaller 

sub-trajectories and uses DBSCAN, a well-known density based clustering algorithm, 

with a custom distance measure to form clusters. Lee et al [8] partition longer trajectories 

into smaller sub-trajectories using the minimum description length principle (represent 

the trajectory with the best compression) and group the sub-trajectories into clusters using 

a density based clustering algorithm similar to DBSCAN.   They finally generate 

representative trajectories for each of the clusters by using a sweep line approach 

averaging the coordinates of points in each line in the trajectory that intersects with 

equidistant vertical lines.  

 Our approach to cluster trajectories is similar to both Liu et al and Lee et al, but 

we use parallel and perpendicular distance only, and separate thresholds to determine 

how close the trajectories are to each other. Additionally, we use the clusters to find out 

the actions being represented by the different clusters. 

2.2.4 Other Methods 

Laptev and Lindeberg [33] introduce the concept of Space-Time Interest Points 

(STIP), which extends the Harris corner detector [34] to incorporate time. Instead of just 

measuring high variation in space only, the authors recognize the area in the space-time 

continuum that has highest variation, i.e. finding spatial-temporal corners. There is a 



18 
 

body of work, which uses both STIP/ space-time descriptors, and bag-of-words approach 

to perform action detection and classification in videos [35-37]. 

Hanna et al [38] propose a Hidden Markov Model (HMM) based video 

classification approach, which utilizes color-based features. These features are built by 

calculating the speed of change in color from one frame to next. The training is done by 

employing Baum-Welch algorithm [39] for parameter estimation of HMM.  Unknown 

samples are classifying by first computing the color-based feature and feeding them to 

the model which then calculates the log-likelihoods of the classes. 
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Chapter 3  

Methodology 

 In this chapter, we will present our approach to classify the SPS videos. The two 

proposed trajectory-based features and the algorithms to compute them are described in 

detail. Various preprocessing steps as well as an analysis of the algorithms are also 

presented.  

 

3.1 Problem Definition 

 The problem addressed in this research is to classify SPS videos into specific 

categories of actions. Formally, the problem can be defined as follows: Given a set of n 

distinct videos V= {V1,V2,V3… Vn} that are either all in spectator space or all in 

performer space, and set of m classes C ={ C1, C2,C3… Cm}, train a classification 

function F: V → C to predict class for a new video into one of the m classes.  

 

3.2 Overall Approach 

We have developed two different trajectory based approaches for video 

classification in SPS. These approaches are based on (a) first order properties of the 
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individual trajectories and (b) properties of trajectory clusters. The overview of our 

methodology is presented in Figure 3.1. 

We use optical flow based dense trajectory extraction (described in Section 3.3) to 

obtain the motion trajectories in a video. This is a widely used trajectory extraction 

approach [15]. The extracted trajectories form the basis of two novel approaches to 

generate histogram-based features for classification.  

 Histogram of Trajectories (HoT):  This feature is based on first-order statistics of the 

motion trajectories, which are computed for each video.  Sample features include the 

length and orientation of the motion trajectories, for the entire video. 

 Histogram of Trajectory Clusters (HoTC):  The trajectories are first grouped to 

determine spatio-temporal clusters and then the properties of the clusters are used as 

features.  We have extended DBSCAN to determine the clusters. Sample features 

include the length and orientation of the motion trajectories of the spatio-temporal 

clusters. 

After the features are computed, we train a classifier to map a video to specific 

activity classes. Previous trajectory based approaches use trajectory vectors generated 

from optical flow to train bag-of-words based classifiers after generating a dictionary of 

Extract Trajectories 
(Sampling with Optical 

Flow) 

•Dense sampling to ascertain 
dense trajectories

•Discard single points 
trajectories

Generate Features

•First Order Trajectory 
Feature - Historgram of 
Trajectories (HoT)

•Histogram of Trajectory 
Cluster (HoTC) 

[Density based Trajectory 
Clustering]

Build Classifiers

•Train NaiveBayes, 
Support Vector Machine 
and Ensemble Classifiers

•Test all classifiers and 
cross validate with 10-
folds cross validation

Figure 3.1: High-level description of our video classification process 
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visual-words based on sample videos. [15]. We take a similar approach to build a visual 

dictionary of motion trajectories features like length and orientation and use a bag-of-

words approach to build classifiers for both spectator and performer videos.  

3.3 Trajectory Extraction  

We used the approach proposed by Wang et al [15] to extract the dense 

trajectories from the videos. Feature points are sampled in the first frame of a video, 

based on a sampling density value (W) that represents the number of pixel per sampling 

point. Sampling more densely, i.e. smaller W, results in dense trajectories and vice-versa. 

Since SPS videos have significant occlusion, we set capture trajectory very densely. 

Then, feature points are tracked over successive frames using the optical field 

approach. These points were tracked for the maximum of 15 consecutive frames. Since 

objects in the scene move at different speed and for different durations, the trajectories 

also have variable lengths. Repeating this process for each sample window (feature 

detection and tracking) generates the trajectories in the video. The result of trajectory 

extraction phase is a set of trajectories representing the motion induced in the videos. The 

schematic diagram for trajectory extraction is given in Figure 3.2 and the algorithm in 

Figure 3.3.   

 

 

Dense 
Sampling of 

Feature Points

Tracking of 
Feature Points 

over several 
frames

Combining 
Feature Points 

to form a 
Trajectory

Figure 3.2: Illustration of the process to generate dense trajectories 
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Complexity Analysis:  Since we sample and track feature points from the start of the 

video (first frame) to the end (last frame) in the video, the complexity of this algorithm 

depends on video properties like number of frames and resolution of the video, and 

sampling window. Let us assume that the video dimensions are m×n×p, where the spatial 

resolution is m×n and there are p frames. Also, let the size of the sampling window be W, 

usually a small constant.  

Function Trajectories_Extraction (V, W) 

 

Input:    V = {F1, F2, …, Fn} Video with n number of frames 

 W = Number of pixel in a sampling window 

Output: T= Set of all motion trajectories in the video V. 

 

  1: Begin 

  2:  Initialize T = ϕ // Empty Trajectory Set 

  3:   Initialize P = ϕ // Empty Point Set 

 

  4:  while (V ≠ ϕ) //There is frame Fi in V  

  5:   V = V – {Fi} //Remove the next frame Fi  

  6:        Pnew=Sample_New_Points(Fi) //Sample points in current frame 

                         P=Pnew∪P //Add 𝑃𝑛𝑒𝑤 to the set of all sampled points 

 

  7:   for each 𝑃𝑘 𝑖𝑛 𝑃  
  8:                         tk=Create_NewTrajectory(Pk) /* Creates trajectory with starting 

point 𝑃𝑘 if it doesn’t exist, else returns pre-existing trajectory */ 

             T=tj∪T //Add to return trajectory set 

  9:   end for 

 

10:   for each Pj ∈ P 

11:       ωj=Optical_Flow_Field(Fi, Fi+1)) //Calculate optical flow field 

12:       tj= Track_Points(ωj, Pj) //Track point and add to trajectory 

13:   end for 

 

14:  end while 

15:  return T 

16: end 

 

 
Figure 3.3:Algorithm to generate dense trajectories using dense sampling 
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The maximum number of feature points that can be tracked is based on the sampling 

window and is given by #P=
#pixels

W
=

mn

W
≈mn.  Optical flow computation is 𝑂(𝑚𝑛) for 2D 

images [40]. The optical flow computation and feature detection and tracking is 

performed for all frames in the video (Line 12. In Figure 3.3).   Thus, the overall 

complexity of the algorithm is O(p × mn)=O(mnp).  

The number of feature points in the video binds the space requirements.  Since 

number of feature points in a frame is O(mn) (as explained earlier), the space complexity 

is O(p × mn)=O(mnp). 

 

3.4 Histogram of Trajectories (HoT) 

The first set of features for our classification is based on histogram properties of 

individual trajectories.  Specifically, we examine two key properties of the trajectories –

orientation and length. In this section, we describe them in detail present algorithms to 

compute them. 

3.4.1 Orientation 

In both spectator and performer videos, motion trajectories vary based on the kind 

of action being performed. A player running horizontally through a filed would form 

several horizontal trajectories whereas a spectator making a wave or cheering would form 

a more slanted trajectory. We define trajectory orientation based on the angle at which 

the motion trajectory is, with respect to horizontal axis.  

Trajectory direction is the angle made by the trajectory with the horizontal axis 

(x-axis). For the purpose of our analysis, since we were interested in how vertical or 
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horizontal the trajectories were, we evaluated the direction to be in the range of 0-180°. 

For a trajectory 𝑡, we calculate the angle made by it with the x-axis as 

 θ= arctan (
t.endpoint.y-t.startpoitn.y

t.endpoint.x-t.startpoint.x
) ----------------------------Equation 3.1 

Then, we define the direction of the trajectory as  

Direction(t)= θ , if 0<θ≤180,   ---------------------------- Equation 3.2 

    θ-180, otherwise.   

Since, direction is a continuous variable, we discretize it by further processing. 

We define orientation-bins (∆
θ
), which are the range of orientation with equal width, and 

total number of orientation-bins (g), which is a positive integer greater than or equal to 1 

with the relation, ∆θ ×g=180°. Finally, we define a function Orientation to calculate 

orientation of a trajectory 𝑡  given by 

 Orientation( t)=Ceiling (
Direction(t)

∆θ
) -------------------------Equation 3.3 

Hence, any motion trajectory will have one out of 𝑔 different orientations. The 

illustration of this calculation process g=9 (or ∆θ=20°) is given in Figure 3.4. 

 

 

Figure 3.4: Illustration of the process to calculate orientation of a trajectory 
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3.4.2 Length 

Trajectory length varies across different classes of video due to different factors 

like density, occlusion, and the amount of motion in a scene. Some videos contain scene 

with high of overall motion but only short motion trajectories due to trajectory 

fragmentation, whereas other videos can have longer motion trajectories due to little or 

no occlusion. Length of a trajectory is therefore an important characteristic of video 

scenes. 

We define absolute-length 𝑙𝑒𝑛(𝑡) of a trajectory using the formula given below. 

len(t)= √(t.endpoint.x - t.startpoint.x)
2
+(t.endpoint.y - t.startpoint.y)

2
 --- Equation 3.4 

This is the Euclidean distance between the start and the end-points of the 

trajectory. We also define Maxlen as the maximum possible value of len(ti) ∀ ti ∈T, 

where T is the set of all trajectories in a video. Since absolute-lengths are continuous, we 

define a discrete measure and name it Length-category. We define ∆len as the length-

bin, ℎ as the total number of length-category, with relation ∆len×h=Maxlen .  Finally, we 

define a function to calculate Length-category of a trajectory t as 

 Length(t)=Ceiling ( 
len(t)

∆len
 ) -----------------------------------------Equation 3.5 

Consequently, a motion trajectory can have one out of ℎ different length-category. 

 

3.4.4 Histogram of Trajectory (HoT) 

There are several histograms based features which are used in image and video 

based classification. Histogram of Oriented Gradients (HOG) [14], Histogram of Optical 

Flow (HOF) [41], and Motion Boundary Histogram (MBH) [41] are all features used for 
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video classification [15]. These features are effective in representing different activities in 

a video with individual actors, or videos of lower density. Each of these features are 

effective in visually representing the motion and shapes in videos and images[15]. Since, 

SPS videos are have higher density, these features won’t be effective. However, motion 

trajectory length and orientation vary significantly with different types of activities in 

videos. So, these features are better suited to represent activities in high density videos. 

We therefore build histogram of motion trajectory based on length and orientation of 

those trajectories. For this, we represent all the motion trajectories extracted from a video 

by a 2D feature vector, with 1 dimension each for length and orientation. There are 𝑔 

types of length and ℎ  types of orientation, the total combination of length and orientation 

is g×h. Since, each motion trajectory has a certain length and orientation feature, it can be 

represented by one of the g×h combination of length and orientation. 

We define Histogram of Trajectories (HoT) for a video, as a 2 dimensional vector 

of size k = g×h, where each element Ei,j represents the number of motion trajectories in 

the video, with length feature i and orientation feature j, respectively. We consider the 

entire space of length ×orientation as a visual dictionary of the video classes, with each 

element Ei,j in this space as a word in the visual dictionary. So, HoT represents the 

frequency of occurrence of each word of the dictionary in a video. 

We see the visualization of HoT in Figure 3.5. This corresponds to the bag-of-

words approach used in many image, video and text classification work found in the 

literature. For example, consider that we have a video with 100 trajectories, and 10 of 

those trajectories have length feature p, and orientation feature o. The combination of 

these properties is represented by a word in the visual dictionary, represented by Ep, o. 
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Then, the value of Ep, o is 10, which represents that the video has a feature Ep, o with 10 

magnitudes. HoT for this video is the vector with magnitude for all the features in the 

visual dictionary. This means, if any video has no feature corresponding to an entry in the 

dictionary, then those features have a magnitude of zero. Thus, HoT represents the 

distribution of both length and orientation features of trajectories in a video.  

 

 

Figure 3.5:Example of HoT feature showing the frequency of occurrence of each 

trajectory feature in a video 

 

3.5 Trajectory Clustering and Histogram of Trajectory Clusters (HoTC) 

In addition to features of individual trajectories, different types of movements can 

be characterized by motion trajectory clusters.  Spatial clustering is widely studied in 

literature and a number of algorithms are presented and used in practice.  We have 

developed a variant of density based clustering algorithm, DBSCAN [42], for short 

trajectories, called DBSCAN-ST. DBSCAN is extensively used in density based 

clustering algorithm with noise detection. In SPS, there is a large number of motion 

L1

L3

..

0

5

10

O1 O2 O3 O4 .. Oh

Le
n

gt
h

 C
at

eg
o

ry

N
u

m
b

er
 o

f 
Tr

aj
ec

to
ri

es

Orientation

Histogram of Trajectories (HoT) for a Video 

L1 L2 L3 L4 .. Lg



28 
 

trajectories, throughout the space. The motivation for density based clustering is to find 

out dominant motion patterns in videos and to detect and remove outlier trajectory from 

further analysis. 

In the next section, we will present a novel approach to cluster short trajectory 

based on density. We extend the approach for our clustering algorithm from DBSCAN, 

and use distance measures defined by Lee and Han [8]. We call our algorithm DBSCAN-

ST, as it clusters short trajectories which are common in SPS. In Section 3.5.1, we define 

two distance measure commonly used in measuring similarity between line segments, and 

in Section 3.5.2 we present DBSCAN-ST. 

3.5.1 Trajectory Distance  

 Measuring the distance between line segments is complicated, mostly because 

there is no set definition of distance between lines. There is a body of work in pattern 

recognition with focus on defining robust measure to define distance between line 

segments [43]. We use two of the distance measure which is also used by Lee and Han 

[8] in their trajectory clustering work. 

Perpendicular Distance (P⊥) is the measure of how far away two line segments 

are from one another. Lee and Han [8]  define perpendicular distance between two line 

segments as the normalized mean between the perpendicular distances of end points of 

shorter trajectory on the projection of longer trajectory.   

Parallel Distance (P∥) is defined as the minimum distance between the 

projections of the end points of shorter line segment with end point of longer line 

segment [8].  
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The mathematical expression for perpendicular and parallel distance between two line 

segments is as follows: 

Perpendicular Distance (P⊥)= 
d1⊥

2
+ d2⊥

2

d1⊥+d2⊥
 

Parallel Distance (P∥)=minimum(d1∥, d2∥) 

3.5.2 DBSCAN-ST 

 Density Based Spatial Clustering of Application including Noise for Short 

Trajectories (DBSCAN-ST) is a trajectory clustering algorithm we developed, which 

utilizes approach used in DBSCAN. It uses the distance measures defined in Section 

3.5.1 in order to (a) cluster nearby trajectories together and (b) detect and discard noisy or 

outlier trajectories. However, we approach trajectory clustering with separate threshold 

measure for parallel and perpendicular distance in order to control the cluster formation 

with higher granularity. Separate perpendicular and parallel threshold gives the algorithm 

control on how far away two trajectories can be from each other, and how the length of 

the trajectories can differ from each other.  Finally, as we are dealing with short 

trajectories, we do not partition trajectories and assume them to be straight. Additionally, 

density based clustering is helpful in case of dense and crowded video as there is a lot of 

trajectory fragmentation due to heavy occlusion. This approach enables us to cluster such 

Figure 3.6: Perpendicular and Parallel Distance between two line segments L1 and L2 



30 
 

broken trajectories together. Here we define several key concepts associated with our 

approach.  

 Perpendicular Distance Threshold (Є⊥): Perpendicular Distance Threshold (Є⊥) is 

the maximum perpendicular distance between two trajectories t1 and t2 for them to 

be in the same neighborhood.  

 Parallel Distance Threshold (Є∥): Parallel Distance Threshold (Є∥) is the 

maximum parallel distance between two trajectories t1 and t2 for them to be in the 

same neighborhood.   

 Minimum Number of Trajectories in a Cluster (Nmin): Minimum Number of 

Trajectories in a Cluster (Nmin) refers to the minimum number of trajectories in 

neighborhood, for the trajectories that are not noise. 

 Noise: The trajectories that do not have at least Nmin trajectory in their 

neighborhood are noise.  

 Core Trajectories: The trajectories that have at least Nmin trajectory in their 

neighborhood are called core trajectories. These trajectories are guaranteed to fall 

in a cluster by the end of the clustering process. 

DBSCAN-ST takes four parameters (a) Perpendicular Distance Threshold (Є⊥), 

(b) Parallel Distance Threshold (Є∥), (c) Minimum Number of Trajectories in a Cluster 

(Nmin) and (d) set of all trajectories, and returns the cluster assignment for each trajectory 

and a flag signifying if the trajectory is noise or not, as the output.  

DBSCAN-ST process can be divided into two distinct section: (a) pre-processing 

and distance calculation and (b) clustering. In pre-processing, we calculate the pair wise 
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perpendicular and parallel distance between all trajectories using the algorithm 

Pairwise_Distance presented in Figure 3.9. Pairwise_Distance iterates through each 

unique pair of trajectories, and calls Parallel_Distance and Perpendicular_Distance 

functions to calculate the parallel and perpendicular distance, respectively, between them.  

Then, for clustering, we visit each trajectory (ti) and its neighborhood. We add the 

trajectory to a cluster (Ci) if it has at least Nmin neighbors, marked the trajectory as visited 

and systematically add all the neighbors to Ci. Finally, we continue to process each 

neighbor (Nti) of ti by recursively adding all trajectories which are not visited and have at 

least Nmin neighbors. When there are no more trajectories for current cluster, we pick an 

unexplored trajectory, update the cluster number and repeat the above given process. The 

algorithm for this process is described in Figure 3.10, with supporting algorithms in 

Figure 3.7, 3.8 and 3.9. 

Function Parallel_Distance (Trajectory ti, Trajectory tj) 

 

Input: Two Trajectories ti and tj 

Output: Parallel Distance (di, j∥) between ti and tj   

 

1:  Begin 

2:    Find the length of ti and tj, determine longer (L) and shorter(S)  

  trajectories.  

3:       Project end points of S i.e.ES1and ES2 on L asES1
'  and ES2

' . Let end  

     points for L is EL1and EL2 

4:       Find the distance between EL1and ES1
'  as d1∥ and EL2 and ES2

'  as d2∥ 

5:       Return dij∥=minimum (d1∥ ,d2∥ ) 

6:  End 

 
Figure 3.7: Algorithm to calculate parallel distance between two trajectories 
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Figure 3.9: Algorithm to calculate pairwise perpendicular and parallel distance matrices 

between all trajectories 

 

 

 

Function Perpendicular_Distance (Trajectory ti, Trajectory tj ) 

 

Input: Two Trajectories ti and tj 

Output: Perpendicular Distance (di, j⊥) between ti and tj 

 

1: Begin 

2:  Find the length of ti and tj, determine longer (L) and shorter(S) trajectories. 

3:         Project end points of S i.e.E1and E2 on L as E1
'  and E2

'  

4:         Find the distance between E1and E1
'  as d1⊥ and E2 and E2

'  as d2⊥ 

5:         Return di, j⊥= 
d1⊥

2
+ d2⊥

2

d1⊥+ d2⊥
  

6: End 

Figure 3.8: Algorithm to calculate perpendicular distance between two trajectories 

Function Pairwise_Distance (Trajectory Array T [N]) 

 

Input: Array of all trajectories in a video T = [t1, t2… tN] 

Output: N × N distance matrices d⊥ and d∥ representing pairwise perpendicular and 

parallel distances respectively between all N trajectories.  

 

 1:  Begin 

 2:    D⊥ = [], D∥ = []  

 3:    for i=1 to N  

 4:   for j=1 to N  

 5:    if i==j 

 6:     D⊥ [i] [j] = 0, D∥ [i] [j] = 0 

 7:    else 

 8:     D⊥ [i] [j] = Perpendicular_Distance (ti, tj) 

 9:      D∥ [i] [j] = Parallel_Distance (ti, tj)  

10:    end if 

11:   end for 

12:  end for  

13:  return D⊥, D∥ 

14: End 

  

     



33 
 

 

 

Complexity Analysis: DBSCAN-ST is asymptotically similar to DBSCAN, and hence 

has similar runtime performance. The runtime is dependent on total number of 

trajectories being clustered. The most time consuming operation for this is 

Pairwise_Distance which calculates perpendicular and parallel distance between each 

Function DBSCAN-ST (T[N], Є⊥, Є∥, Nmin) 

 

Input: Array of all trajectories in a video T = [T1, T2… TN] 

Perpendicular Distance Threshold (Є⊥) 

Perpendicular Distance Threshold (Є∥) 

Minimum Number of Trajectories in a Cluster (Nmin) 

        

Output: ClusterAssignment [N] = [Ci, Cj … CM] cluster assignment for each trajectory 

 NoiseFlag [N], where True means corresponding trajectory is a Noise and 

vice-versa 

 1: Begin 

 2:  PWD⊥, PWD∥ = Pairwise_ Distance (T); 

 3: Visited = False [N], NoiseFlag = False [N], CA[N], i=0, CNum= 1 

 4:  while all trajectories are not visited 

 5:    if   Visited[i] == False 

 6:    Visited [i] = True 

 7:   Neighbors = Get_Neighbors(ti, Є⊥, Є∥) 

 8:   if size (Neighbors) < Nmin 

 9:     NoiseFlag [i] = True  

10:    else 

11:    CA[i] = CNum 

12:      for all neighbors[k] of Trajectory T[i]  

13:     CA [k]= CNum 

14:     Visited[k] = True  

15:    end for 

16:   end if 

17:  end if 

18: end while 

19: End     

    

     Figure 3.10: DBSCAN-ST algorithm 
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unique trajectory pair. So, for the number of trajectories N, runtime complexity is given 

by O(N2). 

We can see from the algorithm that, the space requirement for DBSCAN-ST 

completely depends on the pairwise distance between all trajectories, since it requires 2 

different N × N matrices to store parallel and perpendicular distances between all 

trajectory pairs. Hence, the space complexity for DBSCAN-ST is O(N2). 

3.5.3 Histogram of Trajectory Clusters (HoTC) 

Since we use HoT features to represent the activities in entire videos, we extend 

that approach to trajectory clusters as well. As our trajectory clusters are spatially 

divided, we assume that different clusters formed by using DBSCAN-ST on motion 

trajectories can represent different activities. So, clustering makes the classification 

process more granular and improves efficacy in cases where there are more than one 

distinct classes within a video.  

It is plausible that not all spectators in a SPS event are doing the same thing. For 

example, spectators watching sports can be supporters of different teams, in different 

region within spectator space. For video that contain supporters from both team, it is 

essential to evaluate those spectators differently, as they might be expressing opposing 

emotion. Clustering allows us to analyze spectators with more granularity, and detect 

multiple classes of action within a same video.  

Consequently, we process each trajectory cluster separately, by applying the same 

method applied to entire video in the HoT approach. This allows us to form several 

histograms of trajectories for each video, depending on the number of clusters in the 

video. Hence, we call this approach histogram of trajectory clusters. 
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3.6 Classification 

 The last step in our approach is to classify a video into a set of predefined classes.  

We use a machine learning approach for this step.  Many different classifiers are 

proposed in literature and new ones are being presented continuously.  The classifier 

function is trained with HoT and HoTC features, respectively, from training dataset to 

create trained classifiers. These classifiers can then be tested with HoT and HoTC 

features of testing dataset. For our research, we have examined the performance of the 

following classification approaches. 

 Support Vector Machines (SVM): SVM is a classifier that is defined by a 

separating hyperplane [44]. Some of the most widely used video classification 

algorithms use non-linear support vector machine (SVM) for video classification 

as SVM can handle data with higher dimensionality, and is less prone to exhibit 

multiple local minima and over-fitting. SVM is also found to be a better classifier 

for video data, when the videos are highly occluded or contain high level of 

variation in illumination [45]. 

 NaïveBayes Classifier: NaïveBayes is a simple, probabilistic classifier based on 

the assumption that all features are independent of one another [46]. We expect 

the different classes of SPS videos to have significantly different motion 

trajectory orientation and length based on the activities in those classes. So we test 

classification with NaïveBayes as strong variability in motion trajectories based 

on classes of videos could result in classifier with high efficacy. 

 Ensemble based classifiers: We also use majority voting, which is an ensemble 

based approach, with four different classifiers i.e. NaïveBayes, BayesNet, SVM 
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and J48 decision tree. This approach assign class to a video based on majority 

vote i.e. all four classifier classify the video into different classes, and the video is 

assigned class with the highest votes. In some cases, ensemble based 

classification has shown to improve classification efficacy when individual 

classifiers perform weakly [47]. 

 Deep Learning: Deep learning neural networks are special type of machine 

learning networks, containing convolutional layers, and deep architecture [48]. In 

video and image classification, deep learning based architecture is used to build 

holistic classification models which takes raw video or images as input dataset 

and create a classification model directly based on those input. We use deep 

learning based classifier which is proposed by Tran et al [26], to classify our 

videos into different classes. 

 With the design of our research, once our features (HoT and HoTC) are built, any 

classifier model can be trained with those features, and used to classify videos. Those 

features are independent of any classification model, and thus can be used on any new 

classification technique. 

   



37 
 

Chapter 4  

Implementation and Result 

In this chapter, we evaluate the performance of algorithms and a comparison of 

HoT and HoTC on a set of real life SPS videos. First, we discuss about the dataset used in 

our research, including the segmentation and labelling process. Second, we will present 

the length and orientation analysis of the motion trajectory of all categories of video in 

our dataset. Third, we will also discuss the results from several experiments, to classify 

SPS video using HoT, HoTC and deep learning. And finally, we discuss the outcome of 

all the classification experiments. 

4.1 Dataset  

We created the dataset for our research from four surveillance videos of different 

college football games played by the UNL football team at home, during 2015-2016 

season. These videos were all captured using a fixed camera and fixed zoom, with 

specifications described in Table 4.1. Snapshots of these videos are given in Figure 4.1 

and Figure 4.2, respectively. 

Table 4.1:Game video details 

Video-id Duration Resolution Frame Per Second 

Day Game 1 4.5 hours 1920 by 960 25 

Day Game 2 4 hours 1920 by 960 25 

Night Game 1 5 hours 1920 by 960 25 

Night Game 2 4 hours 1920 by 960 25 
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Figure 4.1: An image from a fixed camera surveillance video for a night game 

 

 

Figure 4.2: An image of a fixed camera surveillance video for a day game 
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4.1.1 Performer Spectator Segmentation 

We segmented the videos spatially into performer and spectator spaces manually.  

Since the camera was fixed and had a fixed zoom, it was accomplished with relative ease.  

In the general case, the space can be segmented dynamically using properties of 

spectators and performers as described in Section 1.2. At the end of this step, we had 4 

videos each for the spectator space and performer space. The stadium region represented 

the spectator space and play field region is considered as the performer space. Snapshots 

from both categories of video are presented in Figure 4.3 and Figure 4.4, respectively. 

Space that is neither spectator nor performer is removed from further analysis.  

 

 

Figure 4.3: Snapshot of Spectator Video 

 

 

Figure 4.4: Snapshot of Performer Video 

 

4.1.2 Temporal Segmentation 

We then divided the four videos into smaller segments to build a dataset for 

training and evaluation.  For simplicity, we divided each video into a fixed length of 5 
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seconds.  Ideally, we would have liked to segment the video corresponding to episodes of 

activity.  However, this is a complex process in the general case, because the behavior of 

crowd is non-deterministic. The challenges in fixed length segmentation are: (a) single 

event may be broken into multiple segments, (b) a single segment may have multiple 

activities.    

 

4.1.3 Activity Classes and Ground Truth Development 

We found spectator crowds to be very dynamic and show a wide range of 

emotion, as they are observing some form of performance or involved in religious or 

political gathering. Spectator emotion and response evolved based on the activities of the 

performers/players. This behavior can be observed commonly spectators from many 

other SPS videos. For example, sports spectators get excited or dejected based on how 

their teams perform, and these emotions and response evolve continuously. Musical 

concert spectators are show high level of excitement for performance of popular songs by 

performers.  Sometimes, sports spectators turn unruly or violent during the course of the 

game if the results do not go well. It is apparent from observing all kinds of spectator 

crowds that excitement is an important aspect of a crowd behavior. We, therefore, define 

three classes of behavior for our classification.  

 Active: Spectators were excited or happy for majority of the time. 

 Passive: Spectators were not showing any overt excitement and were 

generally calm for majority of the time. 

 Mixed: Spectators were active or passive for roughly equal amount of 

time.  
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Performers, on the other hand, either do their primary performance, or are in a 

resting state. This characteristic is common for performers throughout the entire SPS. For 

example, musical performers often take short amount of rest in between their musical 

performances, sportspersons take short to long period of rest during a game. Although the 

length of rest period varies, performers are perpetually in one of these two states.  

Therefore, for the performer video, we define the following classes: 

 Play: A play was being made for the majority duration.  

 No-play: No play was being made for the majority duration. 

 Mixed: Roughly equal time of play and no-play period.  

 

In total, 3500 spectator videos generated from four different games were manually 

classified as active, passive or mixed. Similarly, 3500 performer videos classified as play, 

no-play or mixed. This gave us a significant amount of data for our experimentation.  We 

selected 1000 videos for each activity class, from each category for our experimental 

analysis.  So, we had 1000 each for play, no-play and mixed classes of performer video 

and 1000 each for active, passive and mixed classes of spectator videos. 

 

4.2 Hardware and Software Configuration 

Since we present the comparison of our classification technique with deep 

learning, all of our experiments were done in the same system. We used a computer 

system with 60 GB of memory, 8 processor cores running Ubuntu Cloud 14.04 LTS 

operating system. 
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We used C3D, which is a Caffe [49] based deep learning library developed by 

Facebook research for deep learning based video classification. This is because we found 

C3D to be the best deep learning based video classifier library available today [26]. It is 

important to note that Caffe is an open source deep learning library, built on C/C++ and 

consequently faster in terms of instruction execution than other environment like Matlab. 

For Histogram of Trajectories (HoT) and Histogram of Trajectory Clusters (HoTC), we 

use a combination of C++ and Matlab. Trajectory extraction for both HoT and HoTC was 

implemented in C++ whereas, pre-processing, quantization, training and testing were 

done on Matlab.  

4.3 Analysis of Spectator and Performer Videos  

In Section 3.4.1 and 3.4.2, we defined the length and orientation properties of 

trajectories, respectively, derived from SPS videos. We now present the analysis of 

spectator and performer videos with respect to length and orientation in Section 4.3.1 and 

Section 4.3.2, respectively. 

 

4.3.1 Spectator Space  

 As discussed in Section 4.1 spectator videos are classified into three categories: 

active, passive and mixed. Each of these categories of videos have different motion 

trajectories property with respect to length and orientation, which are presented next.  

Before that, we provide analysis to compute the length and orientation features, 

which were presented in section 3.4.1 and 3.4.2, respectively. For orientation feature, we 

choose the number of orientation-category (𝑔) as 9, based on HOG [14]. Then, we 
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calculate the direction of the orientation using Equation 3.2. and calculate the orientation 

using Equation 3.3. The 9 orientation possible from this equation are given in Table 4.2. 

Table 4.2: Orientation Value mapping to corresponding trajectory direction 

Orientation Range of Angle 

(Degrees) Direction 

(degrees) 1 0-20 

2 20-40 

3 40-60 

4 60-80 

5 80-100 

6 100-120 

7 120-140 

8 140-160 

9 160-180 

 

Similarly, the length for a trajectory is computed using Equation 3.3 in Section 

3.4.2. Then, using Equation 3.4, we divide the trajectories into three classes based on 

their length. Table 4.3 shows the distribution of trajectory lengths. We choose the number 

of length-category ℎ as 3. Finally, based on the distribution given in Table 4.3, we divide 

the trajectories into three classes: short (0-2], medium (2-4], and long (>4). 

Table 4.3: Average trajectory length distribution for spectator videos, 1 from each 

category 

 Average Number of Trajectories 

<1 7298 

1-2 6831 

2-3 9996 

3-4 9786 

4-5 7832 

>5 9716 

 

 After we have both length and orientation features, we analyze the all three 

categories of spectator videos in terms on those two features. Next, we provide those 

analyses. 
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Active: Active spectators are generally excited about the performance due to various 

reason: the team they support could be winning, or the artist they are watching could be 

giving an amazing performance and we see these excitements in their motion. They are 

animated, and this shows in their movement, as they cheer and applause in expressively. 

We observe that active crowd have more vertical motion than horizontal from Figure 4.5. 

From Figure 4.6, we observe that long and medium trajectories are more common than 

short trajectories.  

  

Figure 4.5: Trajectory distribution with respect to orientation in active spectator videos 

 

Figure 4.6: Trajectory distribution with respect to length of active spectator video 

 

Passive: Passive spectators are not happy or excited about the performance, and this 

effects the amount and type of motion trajectories they generate. Overall, passive 

spectators have less number of trajectories, with more horizontal motion than vertical. 

They are not involved in activities such as cheering and waving, which reduces the 
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overall number of trajectories. The horizontal trajectories of passive spectators can be 

attributed to their movement out their seats in order to go out of the stadium for breaks, 

half time etc. Some of the vertical trajectories are because of the limited amount of 

cheering from the spectators as well as their movements in the vertical aisles. In Figure 

4.7, the trajectory orientation distribution for passive spectators is presented.  

 

Figure 4.7: Trajectory distribution with respect to orientation in passive spectator videos 

 

In terms of length, both active and passive videos have similar trajectories, with 

higher number of longer trajectories than longer trajectory. Although the relative 

distribution of trajectory length is similar, it is important to note that the overall number 

of trajectory are higher in active video than in passive video. We see from Figure 4.8 that 

passive spectator video has shorter motion trajectories than longer motion trajectories.  
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Figure 4.8: Trajectory distribution with respect to Length of passive spectator video 

 
Mixed: Similarly, mixed performers have about average trajectory distribution in both 

length and orientation compared to Active and Passive performer video. This is because 

mixed videos contain roughly equal amount of active and passive region and duration. 

The trajectory distribution statistics is presented in Figure 4.9 and Figure 4.10. 

 

Figure 4.9: Trajectory distribution with respect to orientation in mixed spectator videos 

 

Figure 4.10: Trajectory distribution with respect to length of mixed spectator video 
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4.3.2 Performer Space  

 The orientation and length feature for performer space is calculated exactly same 

as the spectator space. We choose same 9 orientations as spectator videos whereas for 

trajectories, we choose 3 length category, similar to spectator videos, based on Table 4.4, 

which are: short (0-5], medium (5-10], and long (>10).   

After we have both length and orientation features, we analyze the all three 

categories of spectator videos, play, no play and mixed, in terms on those two features. 

Next, we provide those analyses.  

Table 4.4: Average trajectory length distribution for performer videos, 1 from each 

category 

Length Range (units) Number of Trajectories 

0-1 1048 

1-2 1191 

2-3 898 

3-4 1296 

4-5 772 

5-6 1166 

6-7 1416 

7-8 9000 

8-9 998 

9-10 1036 

10-11 1011 

11-12 929 

12-13 932 

13-14 980 

14-15 772 

>15 630 

 

 

Play: In play videos, we expect the players to run horizontally, for both offense and 

defense. Although there can be several types of play, and not all plays horizontal, 

majority of the movement must be horizontal. This is presented in the trajectory 
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distribution graph in Figure 4.11. We see that the number of trajectories slowly decrease 

as the orientation becomes more vertical i.e. increases from 0 towards 90 and increases 

again when the orientation becomes horizontal i.e. increases from 90 towards 180. In 

addition, we see from the same figure that for play videos, more trajectories are 

horizontal (0 to 45 and 135 to 180) than vertical (45 to 135 degrees). 

  

Figure 4.11: Trajectory Distribution with respect to orientation in play performer video 

In addition, from Figure 4.12 we see that the trajectory distribution with respect to 

length also changes as the trajectory length decreases. The number of trajectories are 

higher in long than in medium and higher in medium than in short trajectories i.e. there 

are higher number of longer trajectories than shorter trajectories. 

 

Figure 4.12: Trajectory distribution with respect to length of play performer video 
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No Play: For no play video, we expect to see more vertical movement between the 

sidelines and the field. We expect the players to run towards the sidelines for timeouts, 

offense-defense switch, and rest, which results in a more vertical motion than horizontal. 

This trend is apparent from Figure 4.13 as we can see maximum trajectories in the 100◦-

120◦ bucket, and higher number of vertical trajectories than horizontal trajectories.  

 

 

Figure 4.13: Trajectory distribution with respect to orientation in no play performer 

video 

 

Moreover, with respect to length of the trajectory, we observed that there are high 

number of short trajectories than long trajectories. This is also an expected observation, 

as no play video generally will have high number of short movements from field to the 

sidelines and low number of longer movement by the players. This is observed in Figure 

4.14, where we see that the number of short trajectories is more than 3 times the number 

of long trajectories. 
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Figure 4.14: Trajectory distribution with respect to length of no play performer video 

 

 Mixed: Similarly, for performer video of mixed category, we see a uniform distribution 

of trajectories with respect to orientation. We can see from Figure 4.15 that, overall, the 

distribution of trajectories is uniform for all orientation. This differentiates mixed videos 

from both play and no play video. This distribution is also expected as mixed video 

contain mixture of play and no play situation, and so the trajectory distribution averages 

between that of play and no play videos. 

 

 
Figure 4.15: Trajectory Distribution with respect to orientation in mixed performer video 
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Figure 4.16: Trajectory distribution with respect to length of mixed performer video 

 

4.4 Comparison of Video Classes 

 We perform statistical test on the trajectory distribution between spectator and 

performer videos as well as videos of all categories in both space. We present the result 

of spectator-performer comparison in Section 4.4.1 and comparison between different 

categories in each space in Section 4.4.2. 
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4.4.2 Action Categories in Spectator and Performer Space  

We performed variance analysis (with 95% confidence) to evaluate if the 

difference in distribution of motion trajectories between active, passive and mixed classes 

of spectator videos were statistically significant or not. Part of the result from these tests 

are given here whereas detailed results from this test are given in Table A.1.1 through 

A.1.4 in the appendix. As discussed previously, the three classes of videos have different 

values for length and orientation. The length and orientation distribution between active, 

passive and mixed videos were statistically significantly different from one another in 

almost all category of length and orientation. We can see part of the result in Table 4.5 

and Table 4.6. 

 

Table 4.5: Result of variance analysis on active vs passive vs mixed spectator videos 

trajectory distribution with respect to length. #active, #passive and #mixed are number of 

trajectories in active, passive and mixed video respectively of length corresponding to the 

value given in their respective rows. Confidence: 95% 

Length Alternative Hypothesis Significance 

Long #active > #passive Yes 

Medium #active > #passive Yes 

Short #passive > #active Yes 

Long #active > #mixed Yes 

Medium #active > #mixed Yes 

Short #mixed > #active Yes 

Long #mixed > #passive Not Statistically Significant 

Medium #mixed > #passive Yes 

Short #mixed > #passive Yes 
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Table 4.6: Result of variance analysis on active vs passive spectator videos trajectory 

distribution with respect to orientation. #active and #passive are number of trajectories 

in active and passive video respectively of orientation corresponding to the value given in 

their respective rows. Confidence:95% 

Orientation Alternative Hypothesis Significance 

0-20 #active > #passive Yes 

20-40 #active > #passive Yes 

40-60 #active > #passive Yes 

60-80 #active > #passive Yes 

80-100 #active > #passive Not Statistically Significant 

100-120 #active > #passive Not Statistically Significant 

120-140 #active > #passive Yes 

140-160 #active > #passive Yes 

160-180 #active > #passive Yes 

 

Similarly, we performed variance analysis (with 95% confidence) to evaluate if 

the difference in distribution of motion trajectories between play, no play and mixed 

classes of performer videos were statistically significant or not. We present part of the 

result in Table 4.7 and Table 4.8, with all other results in Appendix A, in Table A.2.1 to 

A.2.4. We see from Table 4.7 and Table 4.8 that motion trajectories of play, no play and 

mixed spectator videos are different from one another with statistical significance in most 

cases. 

Table 4.7: Result of variance analysis on play vs no play vs mixed performer videos 

trajectory distribution with respect to length. #play, #no play and #mixed are number of 

trajectories in play, no play and mixed video respectively of length corresponding to the 

length parameter given in their respective rows. Confidence:95%. 

Length Alternative Hypothesis Significance 

Long #play > #no play Yes 

Medium #play > #no play Yes 

Short #no play > #play Yes 

Long #play > #mixed Yes 

Medium #play > #mixed Yes 

Short #mixed > #play Yes 

Long #mixed > #no-play Not Statistically Significant 

Medium #mixed > #no-play Yes 

Short #mixed > #no-play Yes 
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Table 4.8: Result of variance analysis on play vs no play performer videos trajectory 

distribution with respect to orientation. #play and #no play are number of trajectories in 

play and no play video respectively of orientation corresponding to the value given in 

their respective rows. Confidence: 95% 

Orientation Alternative Hypothesis Significance 

0-20 #play > #no play Yes 

20-40 #play > #no play Yes 

40-60 #play > #no play Yes 

60-80 #play > #no play Yes 

80-100 #no play > #play Yes 

100-120 #play > #no play Not Statistically Significant 

120-140 #play > #no play Yes 

140-160 #play > #no play Yes 

160-180 #play > #no play Yes 

 

4.5 Efficacy Comparison of Different Video Classification Techniques  

 In a preliminary evaluation of classifiers, we trained using a subset (100 from 

each class) of videos with a large number of classifiers including SVM, Random Forest, 

J48 Decision Trees, NaïveBayes and BayesNet.  The motivation was to determine the 

best classifier for detailed experiments and comparison of the two kinds of features 

proposed in our research. Table 4.9 shows the performance of the top three approaches. 

We performed preliminary experiments on spectator and performer videos, using HoT 

and HoTC, to compare the efficacy of the classification techniques, and determine the 

best classifier for comprehensive experimentations. We ran the classification on 100 

videos each from spectator and performer spaces for HoT, and evaluated the 

classification accuracy, using (a) SVM, (b) NaïveBayes (c) Majority Voting Ensemble 

Classifier (using NaïveBayes, SVM, J48 and BayesNet). The comparison on this 

accuracy is presented in Table 5 below.  Based on this experiment, we selected that Naïve 

Bayes approach for rest of the experiments. 
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Table 4.9: Comparison of efficacy of different classifiers 

Classifiers Spectator Performer 

Features HoT HoTC HoT HoTC 

NaïveBayes 84.18% 84.33% 88.33% 87.46% 

SVM 80.33% 82.56% 85.67% 83.67% 

Majority Voting  81.67% 80.23% 78.53% 81.79% 

 

We see from Table 4.6 that, in both spaces, NaïveBayes out performs other 

classification techniques. We attribute this to the strong differences in HoT and HoTC 

features between the different categories of videos in spectator and performer spaces. For 

our comprehensive experiments and comparison with deep learning based classification, 

we used NaïveBayes classifier. 

4.6 Classification in Spectator Space 

 We trained a NaïveBayes classifier with 1500 fixed camera spectator videos, and 

tested the classifier with another 1500 video. The NaïveBayes classifier yielded 85.2% 

correct classification; the confusion matrix for this experiment as shown in Table 4.10. 

Table 4.10: Confusion matrix - NaïveBayes classification for spectator video 

 Active Passive Mixed Class 

Precision Active 426 32 42 85.2% 

Passive 51 433 16 86.6% 

Mixed 60 21 419 73.25% 

Class Recall 79.93% 89.09% 87.84%  

  

One of the reason for incorrect classification of videos was the inherent bias of a 

single observer in ground truth generation. As those videos were manually classified as 

one of the three categories by a single observer, the class of the videos are subjective to 

the observers’ opinion.  
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 In addition, we also ran 10-folds cross validation, with the entire 3000 video 

dataset i.e. we created 10 partition of the data set, used 9 partitions to train, and 1 

partition to test, for 10 times, each with different set of training and testing partitions. We 

present the cross-validated result below in Table 4.11, which has the average accuracy of 

87.7%.  We also observe from Table 4.11 that the prediction efficacy of our classifier is 

consistent throughout the 10-folds cross validation. Hence, the HoT features that we use 

to classify has the capability to train effective classifier and it trains classifier models 

independent to the training set.  

Table 4.11: Cross validation result for spectator video classification, correct prediction 

shaded with green 

Iteration # 
Active Passive Mixed 

Active Passive Mixed Active Passive Mixed Active Passive Mixed 

1 77 3 4 6 78 4 12 9 107 

2 89 2 5 4 81 4 10 7 98 

3 98 6 5 8 86 9 4 8 76 

4 90 4 4 9 92 5 3 6 87 

5 77 2 4 10 99 11 8 4 85 

6 90 8 2 11 93 1 4 5 86 

7 105 9 5 3 71 6 8 5 89 

8 91 2 5 12 78 11 14 4 83 

9 89 2 6 9 92 2 7 11 82 

10 99 11 6 5 94 7 10 8 60 

 

4.7 Classification in Performer Space 

 Again, we trained a classifier of spectator video into active, passive and mixed 

classes NaïveBayes classifier with 1500 fixed camera performer videos, and tested with 

another 1500 videos. Finally, we validated the result with 10-folds cross validation. The 

classifier performed with 89.6% accuracy, which is better than classification of spectator 

videos. We present the confusion matrix for this classification in Table 4.12. 
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Table 4.12: Confusion matrix - NaïveBayes classification for performer video 

 Play No Play Mixed Class 

Precision Play 448 14 38 89.6% 

No Play 30 458 12 91.6% 

Mixed 40 25 435 87% 

Class Recall 84.84% 92.15% 89.69%  

 

We present a snapshot of both correctly classified and misclassified performer 

videos in Figure 4.17 and Figure 4.18, respectively. Similar to spectator videos, some 

misclassification can be attributed to the inherent bias in the manual classification of the 

testing data set by the observer. 

 

Figure 4.17:Snapshot of video correctly classified as no play. The players are moving in 

position to make a play. 

 

Figure 4.18: Snapshot of video misclassified as play. The video had equal amount of play 

and no play situation 

We also ran 10-folds cross validation, with the entire 3000 video dataset. We 

present the cross-validated result Table 4.13, which has the average accuracy of 91.0%. 

Similar to the spectator space, we observe that the 10-folds cross validation has consistent 

classification efficacy through each iteration, showing that HoT is an effective feature to 

train classification model, independent of the training dataset. 



58 
 

Table 4.13 Cross validation result for spectator video classification, correct prediction 

shaded with green.: 

Iteration # 
Play No Play Mixed 

Play No Play Mixed Play No Play Mixed Play No Play Mixed 

1 100 4 2 7 91 1 4 5 86 

2 92 4 2 2 96 3 3 6 92 

3 103 5 2 6 88 3 6 9 78 

4 88 5 8 3 87 5 4 12 88 

5 83 2 4 1 96 1 6 8 99 

6 85 5 3 2 98 3 4 2 98 

7 96 2 2 11 88 6 2 5 88 

8 90 6 2 2 89 12 3 4 92 

9 92 3 5 6 90 7 4 5 88 

10 95 6 4 3 88 5 8 4 87 

 

4.8 Motion Trajectory Clustering Results 

 We implement trajectory clustering in both spectator and performer space in order 

to classify spatio-temporal clusters in both classes into different action categories. Before 

the training any classification model, we run preliminary experiments on both spectator 

and performer videos to determine the clustering parameters. 

 

4.8.1 Parameter Selection  

 There were separate clustering experiments in spectator and performer space. For 

both spaces, we analyzed different values for clustering parameters before choosing 

parameters, which provided us with visually coherent clusters i.e. clusters having 

trajectory in spatially coherent areas, as well as highest number of clusters and lowest 

number of discarded trajectories. From Table 4.14, we observe that configuration with 

Є⊥=10, Є∥=10 and Nmin=10, gives the highest number of clusters with least noise and 

which are visually coherent. So we chose these parameters for spectator space clustering. 
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Similarly, from Table 4.15, we choose that configuration with Є⊥=10, Є∥=10 and Nmin=5 

as it has highest number of clusters with least noise in performer space. We choose these 

parameters for the classification experiments with HoTC. 

Table 4.14: Analysis of input parameters for DBSCAN-ST in spectator video 

Є⊥ Є∥ Nmin #Clusters Clusters visually 

coherent 

% of Noise 

1 1 30 0 NA 100% 

1 10 30 0 NA 100% 

5 10 30 0 NA 100% 

10 1 30 0 NA 100% 

10 5 30 2 No 42% 

10 10 30 3 Yes 35% 

1 1 20 0 NA 100% 

1 10 20 0 NA 100% 

5 10 20 6 Yes 26% 

10 1 20 0 NA 100% 

10 5 20 3 No 40% 

10 10 20 7 Yes 20% 

1 1 10 0 NA 100% 

1 10 10 0 NA 100% 

5 10 10 8 No 25% 

10 1 10 1 No 35% 

10 5 10 6 No 28% 

10 10 10 11 Yes 18% 

1 1 5 0 NA 100% 

1 10 5 0 NA 100% 

5 10 5 9 Yes 26% 

10 1 5 0 NA 100% 

10 5 5 7 No 30% 

10 10 5 9 Yes 28% 
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Table 4.15: Analysis of input parameters for DBSCAN-ST in performer video 

Є⊥ Є∥ Nmin #Clusters 
Clusters visually 

coherent 

% of Noise 

1 1 30 0 NA 100% 

1 10 30 0 NA 100% 

5 10 30 0 NA 100% 

10 1 30 0 NA 100% 

10 5 30 0 NA 100% 

10 10 30 1 Yes 52% 

1 1 20 0 NA 100% 

1 10 20 0 NA 100% 

5 10 20 0 NA 100% 

10 1 20 0 NA 100% 

10 5 20 0 NA 100% 

10 10 20 2 Yes 45% 

1 1 10 0 NA 100% 

1 10 10 0 NA 100% 

5 10 10 0 NA 100% 

10 1 10 0 NA 100% 

10 5 10 0 NA 100% 

10 10 10 2 Yes 37% 

1 1 5 0 NA 100% 

1 10 5 0 NA 100% 

5 10 5 1 Yes 45% 

10 1 5 0 NA 100% 

10 5 5 2 Yes 31% 

10 10 5 2 Yes 25% 

 

4.8.2 Clustering and Classification in Spectator Space 

In spectator space, there were regions in the video where the spectators were 

excited and other regions where the spectators were passive and unexcited. We used 

DBSCAN-ST to implement clustering on the trajectories inside the video to find and 

classify those regions as active, passive or mixed. An illustration of clusters in spectator 

video is presented in Figure 4.19. 



61 
 

 

Figure 4.19: Clusters in spectator video of active class 

 

   

Table 4.16: Clustering result on active, passive and mixed spectator videos 

Video 

Category 
# Videos # Clusters 

# Active Cluster/# 

verified 

# Passive Cluster/ 

# verified 

# Mixed Cluster/ 

# verified 

Active 35 326 305 290 15 12 6 4 

Passive 35 255 17 13 228 218 10 8 

Mixed 30 248 89 80 99 93 60 50 

 

 We can see from Table 4.16 that there are different regions in single video that are 

active, passive or mixed. Although, the majority of clusters in video are of same class for 

active and passive video, we observe that mixed cluster has equal number of active, 

passive and mixed regions.   

 We can verify that the cluster classification improves accuracy over video 

classification, as the overall accuracy of prediction on the clusters increased by 87.5% to 

92.5%. This is a significant improvement, and is helped by the fact that clusters provide a 

finer representation of activity in the spectator space as spectator space are very large and 

diverse.  
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4.8.3 Clustering and Classification in Performer Space 

In performer space, there were regions in the video were the groups of players 

were concentrated and regions where there were lone players and official, who were not 

involved in the action. We clustered the performer videos to find regions where players in 

order to optimize our classification, and give a more fine-grained classification of our 

dataset. We expect that classifying clusters instead of the entire video is more accurate as 

DBSCAN-ST finds region in the videos that are significant as well as remove region with 

noise. We see some example of clustering in performer space in Figure 4.20 and Figure 

4.21.  

 

Figure 4.20: Trajectory clustering in performer video of play class 

 

 
 

Figure 4.21: Trajectory clustering in performer video of no play class 

 

We used the same process used in spectator space to build and test the classifier 

for performer clusters. The result from those experiments are presented in Table 4.17.  



63 
 

Table 4.17: Clustering result on play, no play and mixed performer videos 

Video Category 
# 

Videos 

# 

Clusters 

# Play Cluster/  

# verified  

# No Play Cluster/  

# verified 

# Mixed Cluster/  

# verified 

Play 35 48 42 40 5 2 1 1 

No Play 35 58 3 2 52 45 3 1 

Mixed 30 54 18 15 21 18 25 22 

 

 The overall accuracy of prediction for performer videos was 91.25%. There are 

several implications of the results in Table 4.17. First, by comparing the number of 

clusters in Table 4.16 we see that there are fewer numbers of clusters in performer space. 

This is because, for our dataset, the movement players either start or end in same region. 

This allows most trajectories to be in the same cluster by the DBSCAN-ST clustering. 

Second, our clustering algorithm removes noise or unrelated trajectories from the dataset, 

which we can be observed from the marginal improvement in the accuracy of clusters 

classification. 

 

4.9 Classification with Deep Learning 

 We use deep 3-dimensional convolutional networks (C3D) developed by Tran el 

al [26] to train a video classifier for both spectator and performer videos. In Section 4.9.1 

and 4.9.2, we describe C3D architecture and classification experiments on spectator and 

performer videos, respectively. Finally, in Section 4.9.3, we present the comparison of 

classification efficacy between C3D, HoT and HoTC and their runtime.  

 

4.9.1 C3D Architecture 

C3D is a holistic classification technique that learns spatio-temporal features from 

videos to build a linear classifier. Its composed of the following types of layers. 
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 Convolutional: This is the most computational layer in the deep learning 

architecture. It consists of a set of spatially small learnable filters which 

convolve through the entire space of video frame, as well through all the 

frames in the video. In C3D, it produces a 3-dimensional activation map, 

as it is a 3-dimensional convolution layer. 

 Pooling: This is a dimension-reducing layer, which is inserted between 

convolutional layers to reduce the outputs from convolutional layer by 

different polling strategy like max-pooling, average-pooling or norm-

pooing. 

 Fully Connected: This layer is exactly same as any normal neural network 

layer as it contains connection to all output from the previous layers.  

It is a deep learning network with 16 different layers of which eight are 

convolutional layers, five are max-pooling layers and two fully connected layers. The 

output of this deep network is a 4096-dimension video descriptor which is then used by a 

SVM to make a prediction. The network diagram for C3D feature generation is given in 

Figure 4.22 below. This feature can then be used to train SVMs to get the classification of 

a video. SVM is also included inside the C3D architecture, making this a holistic process, 

with video as an input and a class as an output. 
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Figure 4.22: C3D network architecture 

4.9.2 Classification Results 

 We trained a C3D classifier with 1500 spectator videos, and tested the classifier 

with another 1500 videos. The overall performance of C3D was 67.13% accurate with 

roughly uniform incorrect prediction for all 3 classes. Table 4.18 is the confusion matrix 

for this experiment. We see that the class precision is highest for active class but it also 

had the least true positive rate i.e. most active videos were classified as active, and high 

number of other videos were also classified as active. 

Table 4.18 Confusion matrix – C3D classification for spectator video 

 Active Passive Mixed Class Precision 

Active 340 88 72 68.00% 

Passive 96 324 80 64.80% 

Mixed 92 65 343 64.60% 

Class Recall 64.39% 67.92% 69.29%  

  

Similarly, we train another C3D classification model with 1500 performer video, 500 

from each of play, no play and mixed category. The overall classification accuracy was 

69.93%. In table 4.19, we have the confusion matrix for this experiment. We see that 

positive classification for all three categories were within 8 percentage points from one 
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another with highest class precision for mixed category. The recall value (true positive 

rate) was similar for no play and mixed videos whereas lower for play videos. C3D 

classified higher number of other videos erroneously as play video. 

Table 4.19: Confusion matrix – C3D classification for performer video 

 Play No Play Mixed Class 

Precision Play 348 77 75 69.60% 

No Play 99 326 75 65.20% 

Mixed 82 53 365 73.00% 

Class Recall 65.78% 71.49% 70.8 

7% 

 

 

4.9.3 Efficacy and Runtime Comparison with HoT and HoTC 

We compared the efficacy of deep learning based C3D classifier [26] with both 

our classification approaches, i.e. HoT and HoTC using a NaïveBayes classifier. We 

observed that both HoT and HoTC were more accurate in their predictions. From Table 

4.20, we see that HoT and HoTC are consistently better in classification of both spectator 

and performer videos by 18-22 %. Similarly, from Table 4.21 and Table 4.22, we see that 

class wise accuracy of HoT and HoTC are better than C3D for both spectator and 

performer space.  

  

Table 4.20: Classification accuracy between Deep Learning, HoT and HoTC on SPS 

videos 

Space Deep Learning - C3D HoT HoTC 

Spectator 67.13% 87.5% 92.5% 

Performer 69.93% 91.0% 91.25% 
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Table 4.21: Confusion matrix for classification in spectator space using HoT, HoTC and 

Deep Learning (C3D) 

 Active Passive Mixed Class Accuracy 

Active 
426 

383 

340 

32 

12 

88 

42 

3 

72 

85.6% 

98.7% 

64.6% 

Passive 
51 

19 

96 

433 

313 

324 

16 

1 

80 

86.6% 

93.9% 

64.8% 

Mixed 
60 

9 

92 

21 

17 

65 

419 

62 

343 

83.2% 

70.4% 

64.6% 

Class Recall 
79.9% 

93.1% 

64.3% 

89.1% 

91.5% 

67.9% 

87.8% 

93.9% 

69.2% 

 

 

Table 4.22: Confusion matrix for classification in performer space using HoT, HoTC and 

Deep Learning (C3D) 

 Active Passive Mixed Class Accuracy 

Active 
448 

57 

348 

14 

13 

77 

38 

2 

75 

89.6% 

91.9% 

69.6% 

Passive 
30 

4 

99 

458 

55 

326 

12 

3 

75 

91.6% 

88.7% 

65.2% 

Mixed 
40 

2 

82 

25 

10 

53 

435 

24 

365 

87.0% 

66.6% 

73.0% 

Class Recall 
84.8% 

90.4% 

65.7% 

92.1% 

75.3% 

71.4% 

89.6% 

82.7% 

70.8% 
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Even though the performance of our feature-based classification was better than 

C3D, we do not have enough data to understand this uncharacteristic performance of 

C3D. This is due to two reasons – first, lack of enough training and testing data for deep 

learning based experimentations and second, prohibitively slow convergence of C3D on 

our dataset. We leave the exploration of these results as future work. 

We compare C3D [20] which is a deep learning based method with our approach 

of video classification in terms of efficacy and performance. Since deep learning based 

methods have highest classification efficacy in video classification on standard datasets 

like Hollywood and UCF-Sports, we chose deep learning based methods to make these 

comparisons. 

 The runtime requirements of deep learning based methods are well document in 

literature [26, 27]. Since deep learning based classifiers require comparatively high 

amount of runtime, we also compare the time required to train all models (deep learning, 

HoT and HOTC NaïveBayes) in our experimental setup. We observed that HoT and 

HoTC required between 8-13 times less C3D. We see in Table 4.21 that the runtime of 

HoTC is longer than HoT as HoTC requires DBSCAN-ST clustering. This was expected 

as the runtime complexity of our algorithms were at most 2nd degree polynomial whereas 

the runtime complexity of C3D is exponential on the number of layers present in C3D 

[26]. 

Table 4.23 Experiment runtime between Deep Learning, HoT and HoTC on SPS videos 

Space Deep Learning C3D (hours) HoT (hours) HoTC (hours) 

Spectator 348 32 39 

Performer 336 24 25 
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4.10 Discussion of Result 

Based on the observations from Section 4.3 and Section 4.4, we establish the 

properties of spectator and performer space with respect to their motion trajectories, as 

well as how significantly they differ from one another. We explored the motion trajectory 

features in both spaces and observed that spectator space has more motion trajectory 

because of two reasons: (a) it contains more people, and (b) high density of people causes 

trajectory fragmentation. 

 We also studied the properties of several action categories of spectator and 

performer videos and conclude that those action categories induce distinctly different 

motion trajectories. We see that the active videos have more vertical trajectories whereas 

passive videos have horizontal trajectories in spectator space. Similarly, in performer 

space, we find that play videos have more horizontal and longer trajectories than passive 

video. 

 The results from Section 4.6, 4.7 and 4.8 show that HoT and HoTC based features 

are highly effective in classifying performer and spectator videos into different action 

categories. We see that spectator videos contain multiple classes of activities within the 

same video. So, it is effective to use density based clustering and group related 

trajectories together and classify the clusters instead of the entire video, to prevent from 

different region in the video with different classes of activities being classified into same 

class.  

 Also, for performer videos, HoTC does not make as significant improvement in 

classification. This is because most performer videos contain only one cluster per video 
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as most performers perform actions together and have very low probability of doing 

entirely different things at the same time.  

 

Finally, from Section 4.9, we see that the classification efficacy of HoT and 

HoTC based classifier outperforms even state of art deep learning classification models 

(C3D). Also, the runtime of our classification techniques are significantly lower than that 

of C3D.  
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Chapter 5  

Summary and Future Work  

5.1 Summary 

 In this thesis, we defined a new class of videos, called Spectator Performer Space 

(SPS) and analyzed its properties in terms of density, size, behavior and complexity. We 

have developed approaches to classify the videos based on the activities of the performers 

and spectators. We proposed a set of novel features based on individual motion 

trajectories as well as trajectory clusters that are used for classification. We have 

extended a well-known density based clustering algorithm suitable for clustering short 

trajectories, common in SPS domain.  

 The algorithms were evaluated using a large dataset of sports videos. The results 

show trajectory length and orientation are very effective in accurately characterizing both 

spectator and performer videos. The properties of trajectory clusters were also effective 

in classifying the videos based on their activities.  

5.2 Direction of Future Research 

 We have defined a new class of videos in this research and provided solutions to 

some fundamental problems. There are several avenues for extending this work along 

several different directions.  
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Extending trajectories from short, straight lines to more complex curves will 

enable the representation of complex trajectories more accurately. Similarly, using a 

continuous representation for orientation of trajectories, instead of a discrete one would 

lead to greater accuracy. Additionally, we can extend the trajectory extraction and 

characterization process to include videos from multiple angles. This would require us to 

be able to identify same trajectories in different videos but provide a more comprehensive 

representation of motion trajectory in the video. 

Velocity and acceleration are also important feature to characterize the motion of 

objects in a scene. These two features can help identify the rate of change in crowd 

behavior i.e. how quickly are the spectators changing from active to passive and vice 

versa. Our feature set of trajectory length and orientation can include velocity and 

acceleration to make it more complete. 

Similarly, we can extend this work to implement processes to automatically 

segment video segments, both temporally and spatially, into different action regions. As 

larger spaces can have multiple action over time and space, automatic segmentation of 

videos along time and space is highly desirable. 

Additionally, we have only focused on the emotion of the crowd at a coarse 

resolution. Analyzing the crowd emotions in greater details and classifying them would 

also be beneficial in many applications. Identification of outliers in both the spectator and 

performer spaces would also be useful.  

 Also, a more comprehensive evaluation of the approaches with a larger number of 

videos from diverse domains would be a useful exercise.  Larger collection of videos will 
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also be critical to improving the performance of the deep-learning approach. 

Segmentation of the videos accurately into activity based episodes will also be helpful in 

this context. 
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Appendix A  
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A.1 Analysis of trajectory distribution between different classes of spectator videos. 
 

Table A.1.1: Variance analysis on active vs passive vs mixed spectator videos trajectory distribution with 

respect to length. #active, #passive and #mixed are number of trajectories in active, passive and mixed 

video respectively of length corresponding to the length parameter given in their respective rows. 

Length Alternative Hypothesis Significance 

Long #active > #passive Yes 

Medium #active > #passive Yes 

Short #passive > #active Yes 

Long #active > #mixed Yes 

Medium #active > #mixed Yes 

Short #mixed > #active Yes 

Long #mixed > #passive Not Statistically Significant 

Medium #mixed > #passive Yes 

Short #mixed > #passive Yes 

 

 
Table A.1.2: Variance analysis on active vs passive spectator videos trajectory distribution with respect to 

orientation. #active and #passive are number of trajectories in active and passive video respectively of 

orientation corresponding to the value given in their respective rows. 

Orientation Alternative Hypothesis Significance 

0-20 #active > #passive Yes 

20-40 #active > #passive Yes 

40-60 #active > #passive Yes 

60-80 #active > #passive Yes 

80-100 #active > #passive Not Statistically Significant 

100-120 #active > #passive Not Statistically Significant 

120-140 #active > #passive Yes 

140-160 #active > #passive Yes 

160-180 #active > #passive Yes 

 
Table A.1.3: Variance analysis on active vs passive spectator videos trajectory distribution with respect to 

orientation. #mixed and #passive are number of trajectories in mixed and passive video respectively of 

orientation corresponding to the value given in their respective rows. 

Orientation Alternative Hypothesis Significance 

0-20 #mixed > #passive Yes 

20-40 # mixed > #passive Yes 

40-60 # mixed > #passive Yes 

60-80 # mixed > #passive Not Statistically Significant 

80-100 # mixed > #passive Not Statistically Significant 

100-120 # mixed > #passive Not Statistically Significant 

120-140 # mixed > #passive Not Statistically Significant 

140-160 # mixed > #passive Yes 

160-180 # mixed > #passive Yes 
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Table A.1.4: Result of variance analysis on active vs passive spectator videos trajectory distribution with 

respect to orientation. #active and #mixed are number of trajectories in active and mixed video respectively 

of orientation corresponding to the value given in their respective rows. 

Orientation Alternative Hypothesis Significance 

0-20 #active > # mixed Yes 

20-40 #mixed > # active Yes 

40-60 #active > # mixed Yes 

60-80 #active > # mixed Not Statistically Significant 

80-100 #mixed > # active Yes 

100-120 #active > # mixed Yes 

120-140 #active > # mixed Not Statistically Significant 

140-160 #mixed > # active Yes 

160-180 #active > # mixed Yes 
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A.2 Analysis of trajectory distribution between different classes of performer videos. 
 

Table A.2.1: Result of variance analysis on play vs no play vs mixed performer videos trajectory distribution 

with respect to length. #play, #no play and #mixed are number of trajectories in play, no play and mixed 

video respectively of length corresponding to the length parameter given in their respective rows 

Length Alternative Hypothesis Significance 

Long #play > #no play Yes 

Medium #play > #no play Yes 

Short #no play > #play Yes 

Long #mixed > #no-play Not Statistically Significant 

Medium #mixed > #no-play Yes 

Short #mixed > #no-play Yes 

Long #play > #mixed Yes 

Medium #play > #mixed Yes 

Short #mixed > #play Yes 
 

Table A.2.2: Result of variance analysis on play vs no play performer videos trajectory distribution with 

respect to orientation. #play and #no play are number of trajectories in play and no play video respectively 

of orientation corresponding to the value given in their respective rows. 

Orientation Alternative Hypothesis Significance 

0-20 #play > #no play Yes 

20-40 #play > #no play Yes 

40-60 #play > #no play Yes 

60-80 #play > #no play Yes 

80-100 #no play > #play Yes 

100-120 #play > #no play Not Statistically Significant 

120-140 #play > #no play Yes 

140-160 #play > #no play Yes 

160-180 #play > #no play Yes 

  
Table A.2.3: Result of variance analysis on mixed vs no play performer videos trajectory distribution with 

respect to orientation. #mixed and #no play are number of trajectories in mixed and no play video 

respectively of orientation corresponding to the value given in their respective rows. 

Orientation Alternative Hypothesis Significance 

0-20 #mixed > #no play Yes 

20-40 #mixed > #no play Yes 

40-60 #mixed > #no play Yes 

60-80 #mixed > #no play Yes 

80-100 #no play > #mixed Yes 

100-120 #mixed > #no play Yes 

120-140 #mixed > #no play Not Statistically Significant 

140-160 #mixed > #no play Yes 

160-180 #mixed > #no play Yes 
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Table A.2.4: Result of variance analysis on play vs mixed performer videos trajectory distribution with 

respect to orientation. #play and #mixed are number of trajectories in play and mixed video respectively of 

orientation corresponding to the value given in their respective rows. 

Orientation Alternative Hypothesis Significance 

0-20 #play > #mixed Yes 

20-40 #play > #mixed Yes 

40-60 #play > #mixed Yes 

60-80 #play > #mixed Yes 

80-100 #play > #mixed Not Statistically Significant 

100-120 #play > #mixed Not Statistically Significant 

120-140 #play > #mixed Yes 

140-160 #play > #mixed Yes 

160-180 #play > #mixed Yes 
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