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The wheat-mite-virus complex is a consistent and significant threat to winter 

wheat production in the western Great Plains. This complex consists of three viruses 

(Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus that are 

transmitted by the wheat curl mite (Aceria tosichella Keifer).  Yield impacts from this 

complex are typically associated with the presence of volunteer wheat that emerges prior 

to harvest as a result of hail occurring during the heading stages of wheat in early 

summer. Historical literature on pre-harvest germination has been primarily focused on 

accelerating breeding programs; however, critical gaps in knowledge exist on pre-harvest 

germination when evaluating risk for the wheat-mite-virus complex.  

A study was designed to evaluate pre-harvest germination potential of winter 

wheat by collecting heads at 7-9 day intervals beginning at the water-ripe stage until 

wheat harvest. In addition, risk categories were established based on the speed of 

germination because field germination will be limited by moisture availability. A second 

study was conducted in the field to evaluate the impact of environmental conditions on 

pre-harvest germination.  Results indicate that risk for pre-harvest germination begins at 

the late milk stage with increasingly greater risk for germination up to harvest. In 

addition, risk for germination is highly dependent on available moisture following hail 

events. 



 

 Historical observations, as well as anecdotal evidence indicate that other hosts 

besides wheat can support WCM during the over-summering period; however, the risk of 

these hosts to fall planted wheat is poorly understood. Greenhouse reproductive studies, a 

field study on mite movement and virus impact, and a weed survey were conducted to 

evaluate the risk potential of over-summering hosts. Results showed that barnyard grass 

is a high-risk over-summering host for the wheat-mite-virus complex; however, its 

frequency is relatively low across the central Great Plains. Green foxtail was 

comparatively a lower risk host, but it was found in higher frequencies in the weed 

survey.  Foxtail millet, another summer annual, showed significant mite movement under 

field conditions; however, virus impact was minimal. In addition, greenhouse studies 

were a good predictor of field potential of all of the over-summering hosts with the 

exception of foxtail millet. The studies presented in this document provide critical 

information to better understanding the over-summering ecology and risk of the wheat-

mite-virus complex. 
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Chapter 1 

Literature Review 
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Introduction 

The wheat-mite-virus complex is one of the primary causes of yield loss in winter 

wheat in the western Great Plains. Kansas disease loss estimates indicate that 

approximately 11 million bushels (2.7%) of wheat was lost due to this complex during 

the 2015 season (Appel et al. 2015). This complex consists of three viruses (wheat streak 

mosaic virus (WSMV), Triticum mosaic virus (TriMV), and wheat mosaic virus 

(WMoV)) that are transmitted solely by the wheat curl mite (WCM; Aceria tosichella 

Keifer).  

Landscape level impacts from this complex are often localized to a few fields and 

primarily attributed to the presence of pre-harvest volunteer wheat.  However, yield 

losses in wheat have been reported in areas with minimal volunteer wheat indicating that 

other grasses may serve as hosts for the wheat-mite-virus complex.  There is a need for 

greater understanding of the factors that allow for pre-harvest wheat establishment. In 

addition, studies are needed to address the risk of other green-bridge hosts as a source for 

mites and virus and to assess their potential to cause yield losses in the fall planted winter 

wheat. 

 

Wheat Curl Mite Classification 

The WCM is a member of the family Eriophyidae, and it occurs throughout the 

world (Oldfield and Proeseler 1996). Within North America, the taxonomic history of the 

principal species of Aceria that occurs on cereals is uncertain (Frost and Ridland 1996). 

North American mites found on wheat were first identified by Keifer in 1938 as the dry 

bulb mite, Aceria tulipae Keifer because of morphological similarities. Keifer believed 

that the mites found on wheat were the same species of mite infesting tulips (A. tulipae). 
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In 1970, Shevtchenko et al. proposed that the specific epithet A. tulipae belonged only to 

mites found on Liliaceae and proposed the name Aceria tritici for mites infesting wheat. 

Prior to this publication, Keifer had described a mite on wheat in Yugoslavia that was 

identical to Aceria tritici as Aceria tosichella (Keifer 1969). Because Keifer’s publication 

preceded Shevtchenko’s publication, the name Aceria tosichella Keifer takes precedence. 

Keifer’s publication resulted in the separation of A. tulipae and A. tosichella into two 

distinct species (Amrine and Stasny 1994). Although the distinction between A. tulipae 

and A. tosichella was made in 1969, it was not adopted into common use until Amrine 

and Stasny (1994) clarified the historical record. In 1971, Newkirk and Keifer removed 

mites from Aceria and reassigned them to Eriophyes, mites in Eriophyes were reassigned 

to Phytoptus, and those in Phytoptus were assigned to a new genus Phytocoptella. 

Several authors objected to this revision. WCM were restored to the genus Aceria in 1989 

(Amrine and Stasny 1994). As a result, since 1969 the wheat curl mites have been 

referred to under multiple species names in the literature including Aceria tulipae, 

Eriophyes tulipae, and Aceria tosichella. 

The complex of viruses the WCM transmits is a major cause of loss in winter 

wheat production in the Great Plains. To reduce economic impact from this complex, 

varieties with resistance to the WCM were developed. The first mite resistant wheat 

variety resulting from a translocation from rye was registered in 1987 and deployed as 

‘TAM 107’ (Porter et al. 1987). TAM 107 in addition to other varieties with the same 

gene for resistance to the WCM was adopted and widely distributed throughout the west-

central Great Plains during the late 1980’s and 1990’s. WCM populations that were 

adapted to TAM 107 were identified in Kansas in the mid-1990’s (Harvey, Martin, and 
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Seifers 1995, Harvey, Martin, Seifers, et al. 1995). To determine the extent of this 

adaptation, Harvey et al. (1999) tested WCM from six distinct geographical locations 

within the Great Plains. Harvey et al. (1999) placed these mites on varieties of wheat with 

different genes for WCM resistance (Harvey and Martin 1992, Thomas and Conner 1986, 

Whelan and Hart 1988, Cox et al. 1999, Sebesta et al. 1994). Results from the study 

indicated that mites collected from different locations varied in their responses to the 

different sources of mite resistance (i.e. biotypes).  

These same populations were tested for their transmission of WMoV (Seifers et 

al. 2002). Three populations (Kansas, South Dakota and Texas) were inefficient 

transmitters of WMoV with transmission rates of 1-6%. Mites in the Montana population 

were shown to be intermediate in their transmission rate (15%). Mites in the Nebraska 

population were the most efficient transmitters at a rate of 64% using 10 mites per test 

plant. The Montana population demonstrated an increased transmission rate (52%) when 

mixed infections of WMoV and WSMV were used.  

 Hein et al. (2012) tested these same populations for genetic differences using 

PCR-RFLP of the mitochondrial cytochrome oxidase subunit I (COI) and cytochrome 

oxidase subunit II (COII) region and ribosomal DNA. Two distinct populations were 

identified; type 1 (Kansas, Montana, South Dakota and Texas) and type 2 (Nebraska). 

The separation between these two types of A. tosichella was comparable to their 

separation with A. tulipae, indicating the extent of the differences between the two types. 

The differences in mite types found within North American mite populations were the 

same as those found in studies conducted on WCM in Australia (Carew et al. 2009). 
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 WSMV is considered to be the most prevalent of these viruses occurring in part of 

North America, Europe, the Middle East, North Africa, and Central, East and Southeast 

Asia (Jones et al. 2005). Annual losses in the Great Plains in North America range from 

1% to 5% with localized outbreaks causing yield losses up to 100% (Christian and Willis 

1993). WMoV and TriMV are often found in combination with WSMV in the field; 

however, little is known about the epidemiology of either virus. Studies have indicated 

that interactions between these viruses can result in increased transmission (WSMV and 

WMoV) (Seifers et al. 2002) or increased yield impacts on wheat (WSMV and TriMV) 

(Tatineni et al. 2010, Byamukama et al. 2012). 

 

Wheat Curl Mite Biology and Ecology 

Wheat curl mites are white in color with a cigar-shaped body and range in length 

from 170-250 microns (Keifer 1939). Their small size makes them difficult to see with 

the naked eye; however, when they accumulate on plants and in mass they can give the 

impression of a powdery mildew infection (Staples and Allington 1956). Wheat plants 

that are heavily infested with WCM often display various degrees of chlorosis. 

Symptomology of mite infestations can be more severe when plants are under drought 

conditions (Staples and Allington 1956).  

The complete life cycle of the WCM requires 7–10 days and includes egg, larva, 

nymph, and adult stages (Staples and Allington 1956). Eggs take approximately 4 days to 

hatch at 25°C. Temperature and humidity are critical to egg hatch. The majority of eggs 

hatch at 25°C with a relative humidity of 100% (Slykhuis 1955). Egg hatch is almost 

completely arrested below 15°C (Slykhuis 1955). Humidity is critical to egg hatch. Very 

few eggs hatched at a humidity of 75%, and no eggs hatched at a relative humidity below 
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50% due to desiccation (Slykhuis 1955). Each immature stage is approximately 36 hours 

in length at 25°C. Between each of the stages there is a quiescent phase where the mites 

remain inactive and appear partially translucent, for about 18 hours (Staples and 

Allington 1956). After an adult emerges, it requires an additional 1-2 day preoviposition 

period.  There are no studies indicating the lifespan of an adult, but it is estimated that 

adults can live for 20-30 days under ideal conditions. WCM can survive without a host 

for approximately 48 hours depending on the temperature and humidity (Wosula et al. 

2015) 

There are some subtle morphological differences between the growth stages of 

WCMs. In the larval stage, seta located just behind the head face forward; whereas in the 

nymphal and adult stages, these setae face towards the posterior end. The external 

reproductive structures only become visible in the adult stage where they appear on the 

dorsal side towards the anterior end.  With the use of a microscope, the genital flap can 

be used to distinguish females from males. In females the genital flap opens towards the 

posterior end of the body whereas in males the flap is less pronounced and opens 

anteriorly (Lindquist et al. 1996).  

WCM have an indirect method of sperm transfer (i.e. no copulation occurs). 

Males deposit spermatophores on the leaf surface and females later locate and pick them 

up (Oldfield 1970). The mites are haplodiploid and produce males via arrhenotokous 

parthenogenesis resulting in haploid males. Fertilized females are capable of producing 

diploid females and haploid males (Helle and Wysoki 1983). When these males emerge 

and reach reproductive maturity, they produce spermatophores to enable fertilization of 

the female. A female can lay approximately 12-20 eggs during its lifetime. It has been 
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estimated that under ideal conditions, the offspring of a single female can result in 3 

million mites in 60 days. Optimum reproduction for WCM occurs between 23-27°C (del 

Rosario and Sill 1965). Reproduction slows at 9°C and stops at 0°C (Staples and 

Allington 1956).  

 

Mite Movement 

Nault and Styer (1969) proposed that significant mite movement occurred only 

when wheat heads and flag leaves were drying out. Greenhouse studies conducted by 

Thomas and Hein (2003) showed no correlation between mite movement and plant 

condition. The study indicated a significant correlation between mite population and mite 

movement. Healthy host plants supported larger mite populations than deteriorating host 

plants. Field studies confirmed that healthier hosts supported larger mite populations and 

as a result, increased mite movement.  

WCM move passively between plants and fields via wind dispersal (Sabelis and 

Bruin 1996). Only adult WCM exhibit dispersal behavior (Nault and Styer 1969). To 

disperse from plants, adults move to the upper margins of the leaf. At this point they hold 

their bodies perpendicular to the leaf surface by adhering themselves to the leaf using 

their caudal sucker. This position raises the mite out of the laminar layer of the leaf 

surface where wind speeds are higher (Sabelis and Bruin 1996). When plants are heavily 

infested, mites crawl on one another forming chains through the attachment of their 

caudal suckers (Nault and Styer 1969). Air movement can stimulate perpendicular 

standing of WCM and the formation of WCM chains. After dispersing from the host it is 

estimated that less than 10% of mites will reach their primary host again (Jeppson et al. 

1975).  
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To avoid desiccation, mites migrate to the inner whorl of a newly emerging leaf 

shortly after landing on a new host. There they feed between the veins of the plant on a 

thin epidermal layer of tissue known as the bulliform cell. These cells are important in the 

unrolling of the leaf as it emerges (Esau 1953). WCM feeding prevents the leaf from 

uncurling, causing subsequent leaves to become trapped. The curled leaf provides an 

ideal environment for mite survival. WCM will continue to feed on the leaves, migrating 

to each newly emerging leaf.  Mites also colonize the wheat head as it emerges. Within 

the wheat head, mites live in secluded sites and feed inside the glumes (Kantack and 

Knutson 1954).  

 

Viruses Transmitted by the Wheat Curl Mite 

Wheat Streak Mosaic Virus 

 Wheat streak mosaic virus (WSMV) was first identified in Nebraska in 1922 as 

‘yellow mosaic’ by Peltier (Staples and Allington 1956). It is the type species of the 

genus Tritimovirus in the family Potyviridae (Stenger et al. 1998). WSMV is a single 

stranded RNA virus with ~9384 nucleotides and is translated as a single polyprotein 

(Choi et al. 2002). WSMV has distinct resident populations in North America and 

Eurasia (Rabenstein et al. 2002).  However, McNeil et al. (1996) identified 32 distinct 

RFLP types in five Nebraska counties. The genetic diversity of these RFLP types was 

greatest among fields rather than between counties. Although the genetic diversity of 

populations changed over time they remained geographically homogeneous. This 

indicates extensive mixing of WSMV isolates.  

Three WSMV strains within North America have been completely sequenced 

(Choi et al. 2001). The Type and Sidney 81 strains of WSMV were isolated from wheat 
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in the Great Plains and share 97.6% of their nucleotide sequence identity. Sidney 81 is 

considered to be the most dominant strain within the Great Plains. In the central 

highlands of Mexico, the El Batàn 3 strain was isolated from wheat (Sánchez-Sánchez et 

al. 2001). It shares only 79% of its nucleotide sequence with the two strains isolated from 

the Great Plains (Choi et al. 2001). All three of these strains are vectored by the WCM 

(Brakke 1958, Choi et al. 1999, Hall et al. 2001, Sánchez-Sánchez et al. 2001). 

WSMV is only transmitted by the wheat curl mite; however, there are some indications 

that the virus can be transmitted via seed at low levels (ca. 0.5% - 1.5%; Jones et al. 

2005). The discovery of WSMV in Australia was hypothesized to occur through the 

introduction of wheat breeding seed from the United States (Dwyer et al. 2007).  

WSMV has a wide host range and can infect many plants within the grass family 

(McNeil et al. 1996). It can infect almost all varieties of wheat (Triticum aestivum L.), 

barley (Hordeum vulgare L.), and oats (Avena sativa L.) (Brakke 1971). Sidney 81 and 

Type strains can be distinguished from one another based on their virulence to the maize 

inbred line SDP2 (Choi et al. 1999). 

Wheat Mosaic Virus 

 Wheat mosaic virus (WMoV) (genus Emaravirus, family Bunyaviridae) was first 

identified in corn in 1993 (Jensen et al. 1996, McGavin et al. 2012). WMoV, formerly 

known as High plains virus, is an octapartite segmented, negative-strand RNA virus 

associated with a 32-kDa protein, double membrane virus-like particles of 80-200 nm in 

diameter (Ahn et al. 1996, Tatineni et al. 2014). The economic losses associated with 

WMoV are unknown, but it has a host range consisting of many economically important 

plants, including wheat and maize (Skare et al. 2006). Field samples that tested positive 
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for WMoV often had WSMV. These co-infections often have higher symptomatic 

expression. WMoV cannot be mechanically transmitted, but it can be transmitted by 

vascular puncture inoculation of corn seeds (Jensen et al. 1996, Louie and Seifers 1996).  

 WMoV exhibits different rates of transmission depending on the mite source. 

Nebraska (Type 2) and Montana (Type 1) mites were able to transmit all five WMoV 

isolates, whereas Kansas (Type 1) mites transmitted only one isolate of WMoV (Seifers 

et al. 2002), albeit poorly. Montana mites that were virulent for both WSMV and WMoV 

exhibited higher rates of transmission than avirulent mites with just WMoV.  

Only a partial host range of WMoV is currently available because WMoV is not 

mechanically transmissible. Cheatgrass, corn, barley, oats, rye, green foxtail, yellow 

foxtail, and wheat are susceptible to WMoV (Seifers et al. 1998).  To cause infection, 

high numbers of WCM had to be transferred to cheatgrass, oats, and rye. WMoV can be 

separated from WSMV and TriMV through mite transmission onto yellow foxtail plants, 

because only WMoV will infect this host (Seifers et al. 1998, Skare et al. 2003). 

Triticum Mosaic Virus 

 Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) was first 

identified in wheat in Kansas in 2006 with symptoms almost identical to WSMV (Seifers 

et al. 2009). Wheat plants infected with TriMV were not geographically localized and 

were often found in combination with WSMV. The wheat curl mite was identified as the 

vector of TriMV with a transmission rate of 1.3% using single mite transfers (Seifers et 

al. 2009). Transmission studies with wheat curl mite populations collected in the Great 

Plains found that ‘Nebraska’ mites transmitted at 40.3% whereas ‘Kansas’ and ‘Montana’ 

were only able to transmit TriMV under high mite populations (McMechan et al. 2014).  
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TriMV has been identified as a single-stranded RNA virus consisting of 10,266 

nucleotides with a polyprotein made up of 3,112 amino acids (Tatineni et al. 2009). It is 

the type member of a new genus Poacevirus sharing 49% of its coat protein with 

Sugarcane streak mosaic virus (SCSMV) (Fellers et al. 2009, Tatineni et al. 2009).  

TriMV shares only 23.2% of its identity with WSMV (Fellers et al. 2009, Tatineni et al. 

2009). Although TriMV has been identified as a mite vectored virus and should belong to 

the genus Tritimovirus, it is significantly divergent enough to be placed in a new genus 

(Fellers et al. 2009, Tatineni et al. 2009). Virion morphology and sequence alignments 

suggest that TriMV did not originate as recombinants or selection from other viral 

populations (Fellers et al. 2009, Tatineni et al. 2009) 

 TriMV has been found in Colorado, Kansas, Nebraska, Oklahoma, South Dakota, 

Texas, and Wyoming (Burrows et al. 2009). A survey of symptomatic plants collected in 

the Great Plains region in 2008 indicated that TriMV was positive in 17% of the samples 

(Burrows et al. 2009). The percentage of positive samples ranged from 57% in Texas to 

0% in Montana and North Dakota. TriMV has been shown to impact wheat through 

reduction in wheat yields and volume weight, but the effect may be cultivar specific 

(Seifers et al. 2011). Tatineni et al. (2010) showed that TriMV is synergistic in co-

infections with WSMV with TriMV exceeding the titer of WSMV late in the infection 

process. Greenhouse studies conducted by Byamukama et al. (2012) demonstrated that 

WSMV and TriMV had a negative impact on yield determinants (biomass, tillers, total 

nitrogen, and total carbon).  It was also shown that these effects were more pronounced 

on the susceptible variety ‘Millennium’ when compared with the resistant variety ‘Mace’.  
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 The host range of TriMV has been evaluated through mechanical inoculation 

(Seifers et al. 2009, Tatineni et al. 2010). Crops susceptible to TriMV were wheat 

(Triticum aestivum L.), barley (Hordeum vulgare L.), oats (Avena sativa L.), rye (Secale 

cereale L.), and triticale (Triticosecale rimpaui Wittm.) while sorghum (Sorghum bicolor 

(L.) and maize (Zea mays L.) were not found to host the virus. Some varieties of barley 

and triticale were susceptible to TriMV but not WSMV. Several grass species were 

susceptible; including jointed goatgrass (Aegilops cylindria Host.), wild oat (Avena fatua 

L.), cheatgrass (Bromus secalinus L.), field brome (Bromus arvensis L.), prairie cupgrass 

(Eriochloa contracta Hitchc.), tapertip cupgrass (Eriochloa acuminate (J. Presl.) Kunth), 

and green foxtail (Setaria viridis L.).  

Virus Transmission 

 WSMV transmission by WCM is non-transovarial and transtadial (Siriwetwiwat 

2006). WCM begin acquiring the virus within 15-20 minutes with a transmission rate of 

<1% (Orlob 1966a). When WCM were given a period of 16 hours for acquisition of 

WSMV, they were able to transmit at a rate of 50%. The acquisition phase was similar to 

the time required for inoculation (Orlob 1966a). WSMV has been detected in the body 

fluids and gut of the WCM (Paliwal and Slykhuis 1967, Slykhuis 1967, Sinha and 

Paliwal 1976).  Large numbers of WSMV particles were found in the midgut that 

remained undegraded for at least 5 days. WSMV particles were also discovered in the 

salivary glands of A. tosichella reared on virus infected plants, but the study couldn’t be 

replicated (Paliwal 1980). These findings provide the strongest evidence to date that 

WSMV is circulated through various body tissues and eventually inoculated through the 

saliva (Paliwal 1980). Although there is evidence for this type of transmission, 

regurgitation cannot be ruled out.  
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Adult WCM must acquire WSMV as an immature in order to transmit the virus 

(Slykhuis 1955, del Rosario and Sill 1965, Orlob 1966a). Orlob (1966) demonstrated that 

adult WCM could acquire WSMV but they were unable to transmit the virus. This was 

determined by mechanically inoculating plants by using macerated WCM that had fed on 

virus infected plants only after reaching the adult stage. WCM transmit in a semi-

persistent manner of transmission because the efficiency of the transmission increases 

with increased feeding time. However, their ability of WCMs to retain WSMV through 

molting is indicative of persistent viruses. Once mites have acquired the virus they can 

continue to transmit it for at least 7 days at room temperature, and up to 61 days when 

kept at 3°C (Slykhuis 1955, del Rosario and Sill 1965, Orlob 1966a).  

 

Impact of Virus Complex and Wheat Curl Mite 

 Wheat plants infected with virus often show a yellow mosaic pattern of parallel 

discontinuous streaks (Wegulo et al. 2008). As the virus progresses, leaves become 

mottled yellow. Late stages of symptoms can often be confused with Barley yellow dwarf 

virus (BYDV). BYDV symptoms usually start at the tip of wheat leaves and expand 

towards the middle and base of the leaf. WSMV infected plants usually remain mottled 

yellow throughout the whole leaf (Wegulo et al. 2008). As WSMV progresses the entire 

leaf will become pale-yellow similar to that of BYDV, but its symptomatic origin is not 

from the leaf tip.  

 The impact of the virus on plant symptomology also depends on the plant stage 

when wheat is infected. Wheat infected early in its development (early tillering stage) can 

become stunted, discolored, and rosetted (Wegulo et al. 2008). Infections that occur after 
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wheat is well tillered are often not as severe. The extent of symptoms in the field can be a 

good indication of the severity and yield loss.   

 WCM feeding causes rolling and trapping of wheat leaves. Leaves infested with 

WCM often remain erect with the edges of the leaves rolled inward towards the mid-rib.  

As new leaves emerge they can become trapped in the lower leaf, forming a loop. 

Trapping of wheat leaves can be a good indication of mite presence in volunteer wheat 

(Wegulo et al. 2008). Leaf trapping can also cause grain heads to become trapped as they 

emerge (Somsen and Sill 1970). 

 The impact of viruses transmitted by WCM depends on the time of infection and 

the density of the mite populations (Wegulo et al. 2008). Wheat plants inoculated with 

viruses early in the fall are at a higher risk for yield loss (Hunger et al. 1992). Warmer 

fall temperatures increase the duration of activity for WCM and may increase their 

secondary spread. Warmer temperatures also increase virus reproduction and titer in 

virus-infected plants causing an increase in damage potential. Wheat plants inoculated 

with WSMV and held at 28°C showed symptoms at 5 days whereas plants held at 15°C 

required 15 days for expression (Sill and Fellows 1953). 

Avirulent or non-viruliferous WCM have been shown in field studies to cause 

yield losses between 1-15% in artificially infested wheat (Harvey et al. 2000). In this 

study, plots were artificially infested with WCM from the greenhouse and averaged an 

estimated 8,821±3,814 mites/head resulting in a 17% yield loss when compared to 

naturally infested plots. Mite populations do not normally reach these levels under natural 

field conditions. A study conducted by Mahmood et al. (1998) indicated that randomly 

selected heads from a wheat field averaged around 1,203 mites/head in 1995 and 487 
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mites/head in 1996 (Mahmood et al. 1998). Samples in the study ranged from 3 to 2,958 

mites/head. An outbreak in 1988 showed that mite populations could get as high as 

18,000 mites/head (Harvey et al. 1990). These events are uncommon and localized, 

indicating that avirulent WCM have a limited capacity to cause significant yield loss in 

wheat.   

 

Alternative Hosts for the Wheat Curl Mite 

 Wheat is considered to be the primary host for the wheat-mite-virus complex; 

however, anecdotal and observational evidence indicates that other over-summering hosts 

may be important for this complex.  Christian and Willis (1993) established five 

characteristics that would be necessary for an over-summering host to have significant 

risk to fall planted winter wheat. First, the host must thrive in significant populations in 

or adjacent to fields of wheat. Second, the host should emerge prior to wheat maturing 

and survive until fall planting of winter wheat. Third, the host should be susceptible to 

one of the viruses within the wheat-mite-virus complex. Fourth, the host must support a 

large enough mite population for movement back to wheat. Lastly, WCM must be able to 

establish back on wheat with potential for secondary spread.  

 A literature review of over-summering hosts indicates that approximately 197 

plant species have been tested for WSMV susceptibility by using mechanical inoculation 

with 91 species testing positive for WSMV and only 30 of those species being tested by 

more than one author (see Appendix).  Mechanical inoculation with WSMV provides a 

good estimation of a potential background source for WSMV in the landscape; however, 

it does not indicate WCM establishment or the ability of WCM to return to fall planted 
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winter wheat. In contrast, field detection of WSMV has been conducted on 44 plant 

species with 18 testing positive for WSMV. 

A review by Navia et al. (2013) reported 87 plant species as hosts for the wheat 

curl mite through field observations or lab experiments. We reviewed the literature on 

WCM and categorized host response to WCM based on Christian and Willis (1993) risk 

assessment characteristics. Approximately 86 plant species have been tested for WCM 

reproduction with the large majority of these studies being conducted as short-term 

(typically 7 days) exposures under controlled conditions using non-quantitative (eg. 

classification data. Determining a list of potential WCM hosts is inherently difficult due 

to the nature of the results, but approximately 71 plant species show at least some level of 

survival of WCM over a short-term period.  These studies were also conducted at the 

early, vegetative stages of plant development.  Research is needed to address the long-

term reproductive capacity of WCM on the reproductive stages of an alternative host to 

gain a more accurate estimation of WCM populations under field conditions. 

Field observations of WCM have been made on approximately 90 plant species 

with 66 species having some level of mite presence. Field collections allow for insight 

into WCM host interaction, natural mite populations, and the potential for mite 

inoculation of virus. Issues arise in these data when interpreting results between studies 

and years as the mite population source and host synchronization with winter wheat can 

vary between regions and years. As an example, Brey et al. (1998) sampled Poa pratensis 

from various locations over three years with 8 - 41% plants being infested by WCM. In 

addition, these studies require verification of species as other eriophyid mites can be 

found on grassy plants (Nault and Styer 1969).  
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Wheat is considered to be the primary host for the WCM with several researchers 

documenting it as a highly satisfactory host for WCM (Slykhuis 1955, 1956, Connin 

1956a, Staples and Allington 1956, Nault and Briones 1968, Harvey et al. 2001).  

Skoracka et al. (2013) was the first to document reduced WCM reproduction on wheat 

when transferring specific sources of mites from other hosts to wheat. WCM transferred 

from wheat to wheat had a population growth rate (PGR) of 50 whereas WCM 

transferred from Elymus repens to wheat had only a PGR of 0.2 – 4 depending on the 

mite source.   

Field collections of volunteer wheat have yielded highly variable results; they 

have primarily been based on incidence rather than host suitability for reproduction. 

Staples and Allington (1956) showed that volunteer wheat emerging one week prior to 

harvest was 100% infested within two weeks of its emergence. In addition, Connin 

(1956) and Gibson (1957) found an abundance of mites on random samples of volunteer 

wheat. In contrast, no WCM were found in volunteer wheat emerging three to four weeks 

after harvest (Staples and Allington 1956). Brey et al. (1998) didn’t find WCM on 

volunteer wheat in two of the three years of the study with a 1% infestation occurring in 

the last year. In addition, Castiglioni and Navia (2010) found only 4 of 13 locations had 

volunteer wheat that was infested with WCM. The differences between these studies are 

likely due to the emergence date of volunteer wheat as indicated by Staples and Allington 

(1956), outlining one of the potential issues with interpreting field data for other potential 

alternative hosts. 

 Harvey et al. (2001) evaluated 29 grass species and found differential survival of 

WCM on rye (Secale cereale L.) depending on the mite source with mites collected from 
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Kansas having some level of reproduction over a 7 day period whereas Nebraska mites 

declined rapidly in the same time period.  These same populations have been found to 

have distinct genetic differences (Hein et al. 2012), virus transmission (Siriwetwiwat 

2006, McMechan et al. 2014, Wosula et al. 2015), and reproductive rates on virus 

infected plants (Siriwetwiwat 2006, McMechan 2012).   

During the 1984 growing season, Shahwan and Hill (1984) tracked 11 fields that 

were severely impacted by WSMV and attempted to correlate disease severity with the 

adjacent fields’ cropping and environmental history. Nine of the eleven fields were 

associated with late season hail resulting in the presence of pre-harvest volunteer wheat. 

One severely damaged wheat field was planted adjacent to corn (Zea mays L.) and the 

other field had been planted adjacent to foxtail millet (Setaria italica (L.) P. Beauv.). The 

study recommended that winter wheat should not be planted within 1 km of corn, foxtail 

millet, or volunteer wheat to avoid significant damage.  Potential severity of WSMV in 

the presence of corn and foxtail millet combined with lack of evidence for volunteer 

wheat in these two fields indicates a need for further investigation of these over-

summering hosts.   

Corn is one of the most documented and tested plants for the wheat-mite-virus 

complex. Mechanical inoculation with WSMV showed that inbred, hybrid, sweet, and 

popcorn lines varied in the their response depending on the variety or hybrid line 

(McKinney 1949, Sill and Connin 1953, Meiners and McKinney 1954, Sill and Agusiobo 

1955, Slykhuis 1955, Finley 1957, McKinney et al. 1966, Nault and Briones 1968). In 

addition, a field study by Gates (1970) showed that mites could transmit WSMV from 

corn to wheat until about two weeks prior to corn harvest. WCM reproductive studies 
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indicate that some inbred corn lines were susceptible (How 1963, Orlob 1966b, Nault and 

Briones 1968) whereas hybrid corn had variable results (How 1963, Connin 1956b, Orlob 

1966b, Nault and Briones 1968). A study by Nault and Styer (1969) documented the 

seasonal population of WCM on two inbred corn lines and found that no mites were 

present until corn was 76 cm tall. Later in the season, Nault and Styer (1969) observed 

that mite colonization of the husks was very successful with the population reaching a 

peak in early to mid September, and mites were last observed on the silks and kernels in 

late September and October. 

Foxtail millet is a common summer annual forage crop grown in the western 

Great Plains. Baltensperger (2002) indicated that foxtail millet ranks second in world 

production of millets; however, its primary limitation in the High Plains of the US is that 

it serves as a carrier for the WCM and WSMV.  The susceptibility of foxtail millet to 

WSMV through mechanical inoculation is unclear with some authors classifying it as 

immune (Slykhuis 1952, 1961, Sill and Connin 1953) or susceptible (Sill and Agusiobo 

1955, Slykhuis 1955, Seifers et al. 1996). Differences in the susceptibility of foxtail 

millet to WSMV could be attributed to the variety tested or the type of WSMV isolate 

used.  Two short term studies have been conducted to determine WCM reproduction on 

foxtail millet with only a few mites being present after 7 days of exposure (Slykhuis 

1955, 1956). To our knowledge, only observational (Shahwan and Hill 1984) and 

anecdotal evidence exists for WSMV and WCM survival on foxtail millet under field 

conditions. 

Numerous grassy weeds have been reported as potential hosts for the wheat-mite-

virus complex. Barnyard grass and green foxtail were chosen for this study because of 
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their over-summering presence, frequency and distribution in the Great Plains.  Barnyard 

grass (Echinochloa crus-galli (L.) P. Beauv.)) is a stout, C4, summer annual weed readily 

invading disturbed sites, and it is commonly found in the western Great Plains (Manidool 

1992). Barnyard grass has been found to be susceptible (Slykhuis 1952, 1955, Somsen 

and Sill 1970) and immune (Sill and Agusiobo 1955, Slykhuis and Bell 1963) to WSMV. 

WCM reproduction studies on barnyard grass showed that few mites were found after 7 

days (Slykhuis 1955, 1956) or it has been classified as a susceptible host for WCM 

(Somsen and Sill 1970). We have found no quantitative evidence of WCM reproduction 

on barnyard grass. Christian and Willis (1993) found that WSMV presence on barnyard 

grass in Kansas ranged from 10% in 1988 to 56% in 1989.  Only one study has 

documented the presence of WCM on barnyard grass under field conditions at a rate of 

2.2% of plants infected by WSMV (Somsen and Sill 1970). 

 Green foxtail (Setaria viridis (L.) P. Beauv.)) is a summer annual weed that is 

typically a poor competitor unless in a dense stand which is commonly observed in the 

Great Plains. Green foxtail is susceptible to WSMV with several studies documenting 

severe chlorosis and stunting following inoculation (Slykhuis 1952, 1955, Finley 1957, 

Slykhuis and Bell 1963, Timian and Lloyd 1969, Somsen and Sill 1970). WCM 

reproductive studies on green foxtail have shown few mites after 7 days (Slykhuis 1955, 

1956).  Staples and Allington (1956) reported that 2 of 11 plants had WCM one month 

after infestation; however, no eggs were recovered. Field observations of WSMV on 

green foxtail show consistent presence of the virus (Staples and Allington 1956, Timian 

and Lloyd 1969). Christian and Willis (1993) found that 20-40% of plants were positive 

for WSMV in 1988 and 1989. Field observations of WCM presence on green foxtail 
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indicate that only a small percentage of plants were infested, but these contained only a 

few mites (Connin 1956a, Staples and Allington 1956, Timian and Lloyd 1969, Somsen 

and Sill 1970).   

 

Management of Wheat Curl Mite and Wheat Virus Complex 

Pre-harvest volunteer wheat is one of the most important components for the 

wheat-mite-virus complex as it acts as a source for mites and virus to survive on between 

harvest in early summer and fall planting of winter wheat.  The emergence of volunteer 

wheat prior to harvest occurs predominantly as a result of hail occurring during wheat 

head development causing grain to be shattered from the wheat head.  With adequate 

moisture these seeds can germinate prior to the crop reaching full maturity allowing 

wheat curl mites to move from maturing wheat to the volunteer wheat.  If this volunteer 

wheat is not controlled, mites will move from it onto newly planted wheat in surrounding 

fields during the fall causing significant yield losses.  

Misunderstanding on the risk of volunteer wheat can occur due to differences in 

the timing of its emergence.  Volunteer wheat emerging after harvest (post-harvest 

volunteer) results in a period without a primary host for the mites to survive on, and thus, 

poses little risk to adjacent fall planted winter wheat fields. In contrast, the importance of 

pre-harvest volunteer wheat as a source for mite and virus reinforces the need for detailed 

information on the pre-harvest period or timeframe during the development stage at 

which winter wheat could germinate.  

 The germinability of wheat seeds prior to harvest has been an important topic in 

winter wheat breeding as a means of accelerating breeding programs and genetics studies 

(Robertson and Curtis 1967). As a result, a large research effort has been made to better 
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understand the germinability of immature winter wheat. Studies identified numerous 

factors such as temperature, drying after collection, handling, variety, and location within 

the wheat head that can influence the ability of winter wheat seed to germinate prior to 

harvest (Nutman 1941, Nosatovsky 1957, Aginyan 1958, Kalinin 1959, Robertson and 

Curtis 1967, Balla 1979).  

In general, without any post collection modifications, winter wheat is capable of 

germinating approximately 9-14 days after pollination with adequate long-term available 

moisture (Nutman 1941, Nosatovsky 1957, Aginyan 1958, Kalinin 1959, Abramova 

1964, Robertson and Curtis 1967, Balla 1979). Temperature is an important component 

in these evaluations as non-ripened wheat seeds appeared dormant at 20-35°C, but 

germinated at 10-15°C (Atterberg 1907, Ching and Foote 1961, George 1967). In 

addition, temperature was found to have a significant affect on the total germination with 

a higher percentage of seeds germinating at 12°C (80%) compared to 20°C (49%) (Balla 

1979). 

 Drying or desiccating immature wheat heads prior to inducing germination can 

significantly reduce the number of days from pollination to first germination as well as 

the percentage of wheat seeds that germinate (Balla 1979). Balla (1979) found that wheat 

was capable of germinating at 6-8 days after pollination with 12 weeks of drying whereas 

wheat was unable to germination until 14 days after pollination without any drying.  

 Post collection handling of immature wheat seeds has been shown to increase 

their germination potential. Removal of the outer-pericarp from unripened wheat seeds 

increased their germination (Wellington 1956a, Gordon 1970, Radley 1979, Mitchell et 

al. 1980). It is hypothesized that the inhibitory effect of the outer-pericarp is due to its 
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mechanical strength (Wellington 1956b) or the restriction of gas exchange between the 

embryo and the environment (Radley 1979).  

 Detailed studies by Wellington (1956a) and Hardesty and Elliott (1956) found 

that seed location within a wheat head could have a significant impact on its germination, 

with limited germination occurring at the base of the head unless desiccated prior to 

germination. This may be in part due to the sequence of pollen shed and fertilization 

within a wheat head. Pollination first occurs in the middle of the head followed by the top 

the head, and lastly the base (Wellington 1956a). Percival (1922) observed similar results 

with a 2-4 day delay in anthesis of basal spiklets. 

 Seed dormancy or pre-harvest tolerance to sprouting has been tightly linked to 

seed color, and as a result, cultivars can vary significantly in tolerance to germination 

prior to harvest.  Wellington (1956a) observed a rapid increase in germination of white 

wheat (88%) at 5-8 weeks after pollination whereas red wheat germinated only at a 7% 

rate.  Nyachiro et al. (2002) tested 10 spring wheat varieties with varying degrees of 

dormancy at varying temperatures and found that low temperatures could break seed 

dormancy in tolerant varieties. Mares (1993) tested eight hard white wheat cultivars that 

varied significantly in their germination at and following harvest. Five hard red winter 

wheat varieties were evaluated for germination of immature kernels by Robertson and 

Curtis (1967) in an article brief; however, the authors indicated that there were no 

differences between the varieties with average germinations occurring within 15 days of 

pollination. Although a significant amount of work has been conducted, there is a lack of 

information on germination of grain in early stages of head development and a 
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comparison of early season germination of grain in varieties based on sprouting tolerance 

scores. 

 

Chemical Control 

Use of acaricides for mite control is limited. Kantack and Knutson (1958) tested 

over 30 different insecticides on wheat curl mites including many systemic insecticides 

but had little control without damaging plant health. The high rate of mite reproduction 

allows populations to respond quickly following an application, if any individuals 

survive. Mite transmission of plant viruses also limits the effectiveness of acaricides 

because viruses transmitted by the mites will continue to cause economic damage even if 

the mites are no longer present. Most importantly, the secluded location of WCM limits 

effective acaricides to those that are systemic within the plant. Harvey et al. (1979)  

tested the efficacy of systemic carbofuran (FMC Corporation, Philadelphia, 

Pennsylvania) and disulfoton (Chemagro, Kansas City Missouri) applied to the soil at 

planting time. Carbofuran controlled mites during the fall, but it lost its efficacy by 

spring. However; it was shown to increase wheat yields. Carbofuran is one of the most 

toxic carbamate pesticides, marketed under the name Furadan. It has been recently 

cancelled due to its high dietary, worker and ecological risks (“Carbofuran Cancellation 

Process | Pesticides | US EPA” 2015).  

 

Cultural Control 

The most effective management tactic for the control of WCM and its virus 

complex is the control of pre-harvest volunteer wheat. Controlling volunteer wheat using 
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herbicides can be an effective management tactic. Herbicides such as paraquat (Zeneca 

Ag Products, Wilmington, Delware) and glyphosate (Monsanto, St. Louis, Missouri) can 

be used to destroy the “green bridge” host, diminishing the ability of mites to survive 

through the summer (Jiang et al. 2005). Paraquat acted rapidly to reduce mite 

populations, with effects occurring within a few days. Glyphosate was slower than 

paraquat, but it may be a better option for producers because of its low toxicity to other 

non-targets (Jiang et al. 2005). Thomas and Hein (2003) indicated that mite movement 

peaked seven days after a high rate glyphosate treatment. Tillage is also an effective 

means of controlling volunteer wheat, but it may be less practical in areas where water is 

limited (Thomas et al. 2004). In dry years, wheat yields in no-tillage systems were 72% 

to 100% higher than fall chisel plowing and conventional tillage, respectively (Bouzza 

1990). Tillage was found to be more effective in controlling mite populations on 

volunteer wheat than glyphosate (Jiang et al. 2005). Controlling perennial and native 

grasses is not warranted because they are not likely to allow mite populations to build up 

in high enough numbers to cause widespread damage (Staples and Allington 1956).  

Another method of managing the wheat curl mite and the viruses it transmits is 

adjusting the planting date of winter wheat. The earlier wheat is planted in the fall the 

more likely it is to become infested with mites (Wegulo et al. 2008). Planting winter 

wheat later reduces the time that mites have to build up and reduces time for virus 

replication. In addition, it reduces the chance for secondary spread of mites within a field. 

Temperature is an important consideration when planting winter wheat. If temperatures 

remain warm in the fall and through the winter the wheat may become infested regardless 

(Staples and Allington 1956). If wheat is planted too late in the fall then yields may be 
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lower due to agronomic concerns. Hunger et al. (1992) found that planting late in the fall 

was the best method to avoid WSMV; however, planting late made the wheat in the 

spring more susceptible to WSMV because of its reduced growth. 

 

Host Plant Resistance 

Host plant resistance has been developed against the WCM and the viruses it 

vectors. Wheat resistance to WCMs has been accomplished through reduced reproduction 

and colonization by the WCM. TAM 107 developed from rye was the first commercial 

wheat variety with resistance to WCM colonization (Sebesta and Wood 1978, Thomas 

and Conner 1986). TAM 107 was released in the late-1980’s and was widely grown 

throughout western Kansas and surrounding states. The variety significantly lowered mite 

populations in wheat spikes and had a lower incidence of WSMV than any other variety 

at the time (Harvey et al. 1998). TAM 107 was critical in preventing WCM build up in 

volunteer wheat. Widespread popularity of TAM 107 resulted in strains of WCM that 

were adapted to the mite resistant wheat varieties (Harvey et al. 1995, Harvey et al. 

1997).  

Host plant resistance has also focused on resistance to WSMV. There are 

currently two known sources of resistance that have been transferred to wheat (Lu et al. 

2011). The Wsm1 gene was transferred from intermediate wheatgrass (Thinopyrum 

intermedium (Host) Barkworth and D. R. Dewey) and confers resistance to WSMV 

(Wells et al. 1973, 1982, Friebe et al. 1991, Gill et al. 1995). The Wsm2 gene, was 

identified in CO960293-2 wheat germplasm and incorporated into ‘RonL’ (Seifers et al. 

2007) and ‘Snowmass’ (Haley et al. 2002). The exact origin of CO960293-2 is unknown 
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because both parents exhibited resistance in greenhouse and growth chamber conditions 

(Haley et al. 2002, Seifers et al. 2006). Both sources of resistance are temperature 

sensitive, becoming ineffective at temperatures above 24°C (Seifers et al. 2006). These 

lines are considered to be valuable sources of resistance in areas where temperatures are 

cool following planting in the fall (Seifers et al. 2006). 

Mace was released in 2007 as a hard red winter wheat variety adapted to rain-fed 

and irrigated wheat in Nebraska and areas in the northern Great Plains (Graybosch et al. 

2009). WSMV resistance in Mace is conditioned by the Wsm1 gene. Divis et al. (2006) 

concluded that there were no negative effects associated with the Wsm1 gene. Graybosch 

et al. (2009) tested Mace for its ability to compete with other wheat varieties. Under virus 

free conditions Mace was comparable to Millennium. Under natural virus conditions 

Mace yielded significantly more than Millennium and twice the yield of a highly 

susceptible variety Tomahawk. Mace is not effective against viruses transmitted by the 

WCM at temperatures above 25°C (Graybosch et al. 2009). Although Mace was released 

for resistance to WSMV, it has also shown resistance to TriMV (Tatineni et al. 2010, 

Byamukama et al. 2012).  

Risk from the wheat-mite-virus complex begins with presence of suitable host 

prior to wheat harvest. In many cases, this suitable host is volunteer wheat as a result of 

pre-harvest hail; however, information is needed on the window time in which 

germination can occur during wheat head development. In addition, information is 

needed on the potential of other secondary hosts to support mites and their relative risk to 

fall planted winter wheat. A better understanding of these risk factors will help producers 
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and consultants prioritize scouting and management to reduce the likelihood of 

significant losses from this disease complex.   
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Long-term Reproductive Capability of the Wheat Curl Mite on Alternative 

Hosts and Reproductive Rates when Returning to Wheat 
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Introduction 

The wheat-mite-virus complex is one of the primary yield limiting diseases in 

winter wheat (Triticum aestivum L.) in the western Great Plains.  In 2015, a survey of 

wheat diseases in Kansas indicated that approximately 11 million bushels of winter wheat 

were lost as a result of this disease complex (Appel et al. 2015).  This complex consists 

of three viruses (Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), 

and Wheat mosaic virus (WMoV)) that are transmitted by the wheat curl mite (WCM; 

Aceria tosichella Keifer).   

In the majority of cases, severe yield losses from this complex are localized to 

areas where volunteer wheat had emerged prior to wheat harvest (pre-harvest volunteer 

wheat) as a result of pre-harvest hail. This allows mites to move directly from the 

maturing wheat crop to the volunteer wheat. Once established, WCM populations can 

build rapidly during the summer months, as long as the volunteer wheat remains viable. 

In the fall, wheat planted in adjacent fields will become infested with WCM moving from 

pre-harvest volunteer wheat. Controlling this pre-harvest volunteer wheat is an essential 

management strategy for the wheat-mite-virus complex; however, situations have 

occurred in the past where significant yield losses due to virus infection occurred, despite 

management tactics that were not conducive for the presence of pre-harvest volunteer 

wheat (Christian and Willis 1993). Yield losses from this complex in the absence of pre-

harvest volunteer wheat indicates a need to better understand the capacity for other 

potential green bridge hosts to support wheat curl mites.  

A review by Navia et al. (2013) reported 87 grass species as hosts for the wheat 

curl mite through field surveys and/or lab reproductive studies. Most reproductive studies 

have determined short-term survival (e.g. 7 days) under controlled conditions, and they 
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have used non-quantitative classification methods (e.g. good/fair/poor, 

resistant/susceptible) to classify host potential. In addition, these studies were conducted 

only at early, vegetative stages of plant development.  Therefore, determining a list of 

potential WCM hosts from historical literature is inherently difficult; however, 

approximately 71 plant species show at least some potential as a WCM host from 

reproductive studies.  

Further confusion of past literature on the host range of WCM originates from 

differences in reproductive ability of distinct mite populations. In the mid-1990’s, Harvey 

et al. (1995, 1999) showed differential survival to several mite-resistant genes in wheat 

for five mite populations collected across the Great Plains from ‘Nebraska’ (NE), 

‘Kansas’ (KS), ‘South Dakota’ (SD), ‘Texas’ (TX), and ‘Montana’ (MT).  These 

populations have been classified into two groups based on distinct genetic differences 

(Type 1: SD, KS, TX, MT and Type 2NE) (Hein et al. 2012). In addition, differences 

between these types have been found for virus transmission (Seifers et al. 2002, 

McMechan et al. 2014, Wosula et al. 2015) and reproductive rates on virus infected 

plants (Siriwetwiwat 2006, McMechan 2012). 

Harvey et al. (2001) tested the short-term (7 day) reproductive capacity of KS 

(Type 1) and NE (Type 2) mites on 28 grass species. Besides the primary host wheat, 

only secondary hosts jointed goatgrass (Aegilops cylindrical Host) and rye (Secale cereal 

L.) were considered hosts for WCM. In addition, only KS (Type 1) mites showed 

reproductive levels high enough to consider rye as a host.  Differential reproduction of 

mites on rye is likely due to the widespread use of a mite-resistant gene from rye in 

winter wheat varieties ‘TAM 107’ and ‘PI 47577’  (Harvey et al. 1995, 1999, 2001). 
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Other hosts, such as green foxtail (Setaria viridis (L.) P. Beauv.), pearl millet (Pennistem 

glaucum (L.) R. Br.), cheatgrass (Bromus tectorum L.), barley (Hordeum vulgare L.), tall 

wheatgrass (Agropyron elongatum (Host.) Beauv.), sandbur (Cenchris pauciflorus Benth) 

sorghum (Sorghum bicolor (L.) Moench), and corn (Zea mays L.) retained mite presence 

after 7 days, but these were not considered hosts because the mean number of WCM was 

not statistically greater than the infestation level (Harvey et al. 2001).   

Skoracka et al. (2013) tested the assumption that the WCM is a single, highly 

polyphagous species in Poland. They identified several genetically distinct (mtDNA) 

lineages of WCM from hosts in Poland, and these populations revealed significant 

differences in capacity for host colonization ranging from highly polyphagous to more 

host-specific. Therefore, evaluating the effective host range for distinct mite populations 

from North America will be critical for accurately determining the host range of the 

WCM.  

Wheat is considered to be the primary host for the WCM (Slykhuis 1955, 1956, 

Connin 1956a, Staples and Allington 1956, Nault and Briones 1968, Harvey et al. 2001). 

Short-term reproductive studies often utilize winter wheat as a positive control when 

comparing other potential hosts for the WCM.  Harvey et al. (2001) infested wheat plants 

with 10 mites and found similar buildup (ca. 40 mites per plant) after 7 days for both 

Kansas (Type 1KS) and Nebraska (Type 2NE) WCM populations. Longer-term 

reproductive studies by Siriwetwiwat (2006) found that WCM increased from 10 to 

approximately 1000 in 21 days.  

During the 1979/80 growing season, Shahwan and Hill (1984) tracked 11 fields 

that were severely impacted by WSMV and attempted to correlate disease severity with 
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the adjacent fields cropping history. One field was planted adjacent to foxtail millet the 

previous fall. Very little is known about the reproductive potential of WCM on foxtail 

millet. Two short term studies to determine WCM reproduction on foxtail millet found no 

WCM buildup after 7 days (Slykhuis 1955, 1956).  

Several summer annual weeds have been listed as potential hosts for the WCM, 

and these weeds are of particular concern because their occurrence overlaps completely 

with the green bridge period.  Barnyard grass is a summer annual weed that readily 

invades disturbed sites, and it is commonly found in the western Great Plains (Manidool 

1992). Non-quantitative WCM reproduction studies on barnyard grass showed limited 

mite presence after 7 days (Slykhuis 1955, 1956). However, Somsen and Sill (1970) 

classified barnyard grass as, “a good host for mites and mosaic [virus] in the greenhouse’. 

However, there is no known evidence of WCM reproduction on barnyard grass in the 

literature.  

 Another summer annual, green foxtail, is typically a poor competitor unless in a 

dense stand, but it is commonly observed in the Great Plains region (Zimdahl 2007). 

WCM reproductive studies on green foxtail have shown few mites after 7 days (Slykhuis 

1955, 1956).  A short-term quantitative study by Harvey et al. (2001) found that 9.4±4.6 

and 0.4±0.5 for Kansas (Type 1KS) and Nebraska (Type 2NE) mites, respectively, were 

present after 7 days indicating that green foxtail is a marginal host at best. Staples and 

Allington (1956) infested green foxtail with up to 16 mites per plant with only a few 

mites present  one month after infestation. Connin (1956) infested seedlings of green 

foxtail with an interdeterminate number of mites and noted that mites were never 

observed more than four days after infestation.  
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 Jointed goatgrass is a winter annual weed introduced into North America through 

contaminated wheat seed (McGregor 1987, Donald and Alex 1991). Due to its temporal 

overlap with winter wheat, it is not considered important as a green bridge host for mites 

or virus. However, jointed goatgrass is genetically related to wheat with both having a D 

chromosome (Maan 1976), and natural crossing between jointed goatgrass and wheat has 

occurred under field conditions (Johnston and Parker 1929). Mite reproductive studies 

indicate that jointed goatgrass is a fair-good (Connin 1956) and susceptible host (Somsen 

and Sill 1970). Harvey et al. (2001) also reported mite counts at 7 days were not 

significantly different that wheat for both Kansas (Type 1) and Nebraska (Type 2) mites.  

 A recent study by Skoracka et al. (2013) found that WCM occurring on different 

hosts in Poland exhibited differential reproductive rates when placed on wheat. Wheat-to-

wheat transfers exhibited mite population growth rates of 50 whereas WCM transferred 

from quackgrass (Elymus repens L. Gould) to wheat had a growth rate of 0.2 – 4, 

depending on the mite source. No potential WCM green bridge hosts in the United States 

have been tested for their ability to return to wheat.  Conducting long-term reproductive 

studies provides an opportunity to evaluate host adaptation when returning to wheat. 

The historical literature on reproductive potential of green-bridge hosts chosen for 

this study is substantial; however, it lacks critical information necessary to properly 

evaluate host potential to support mites under field conditions. Long-term reproductive 

studies that determine survival and reproduction throughout the green bridge period will 

provide insights into the risk potential of these hosts as sources of mites. The objective of 

this study was to evaluate the long-term reproductive potential of four wheat curl mite 

colonies with differing genetic backgrounds on five alternative hosts as well as mite 
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reproductive potential when returning to wheat. The study focuses on five potential hosts: 

winter wheat, foxtail millet (Setaria italic (L.) P. Beauv.), barnyard grass (Echinochloa 

crus-galli (L.) P. Beauv.), green foxtail, and jointed goatgrass. These hosts were chosen 

because they have varied anecdotal and experimental evidence for mite reproduction and 

mite presence under field conditions. 
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Materials and Methods 

 Four WCM populations were used in this study.  Nebraska (Type 2) mites were 

collected and maintained as a lab colony since the mid-1990s. This is the same 

population used to determine differential survival, virus transmission, and host range 

studies in the mid-1990’s through early 2000’s (Harvey et al. 1995, 1999, 2001, Seifers et 

al. 2002, McMechan et al. 2014, Wosula et al. 2015).  Two mite populations designated 

as ‘Type 1’ and ‘Type 2’ were collected from four major wheat-producing counties in 

western Nebraska during the summer of 2011. Naturally infested wheat tillers were 

placed in cone-tainers (Stuewe & Sons, Inc., Tangent, Oregon, USA) with 14-day old 

‘Millennium’ wheat plants  to establish multiple mite colonies. Eggs were transferred 

from established colonies three to four weeks after infestation of tillers. Clonal mite 

populations were established from eggs.  These populations were genetically 

characterized based on polymerase chain reaction and restriction digestion of ribosomal 

internal transcribed spacer region (Hein et al. 2012).  Several clonal populations of each 

of the two types were then merged to form the Type 1 and Type 2 populations. The fourth 

WCM population was collected during the fall of 2014 from foxtail millet plots.  To 

establish this population, 3-5 mites were transferred to wheat plants in each of nine cone-

tianers, and mites were allowed to build up over a period of three weeks. These 

populations were genetically tested as described above and all cones with mites testing as 

Type 1 were combined. This population was designated as Type 1F.  

 All WCM populations were maintained on ‘Millennium’ wheat in 15-cm-

diameter pots with cages.  Cages were made of a 15-cm-diameter plastic cylinder with 

two 8-cm-diameter ventilation holes on opposite sides and the top covered with Nitex® 

screen (225 x 326 mesh) (BioQuip Products Inc. Compoton, CA). These avirulent wheat 
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curl mite populations were kept in separate growth chambers with a 14:10 (L:D) cycle 

maintained at approximately 27°C, and 50 mites were transferred onto new wheat plants 

every two to three weeks.  

Millennium winter wheat, ‘Golden German’ foxtail millet, barnyard grass, green 

foxtail, and jointed goatgrass were seeded in pots and caged immediately after planting. 

Barnyard grass and green foxtail seed was obtained from field sites in east central 

Nebraska. Jointed goatgrass seed was collected in western Nebraska. Hosts were planted 

at different times to synchronize the plant development stage at the time of WCM 

infestation.  Barnyard grass was planted 21 days before infestation, and the remaining 

hosts were planted 10-14 days prior to infestation. To infest plants, infested wheat was 

inspected under a stereo-microscope at 30-40X, and 10 mites were placed onto a black 

insect mounting triangle (10 mm x 4 mm) using a human eyelash attached to a wooden 

dowel. The triangle was then placed in the leaf axil of each of seven test plants within a 

pot. Only adult mites exhibiting normal mite movement were transferred. After 

infestation, pots remained in the lab for a period of 10-15 hours to allow mites to settle on 

the plants. Pots were then transferred to a growth chamber with 14:10 (L:D) cycle 

maintained at 24-27°C.  

One plant was randomly harvested from each pot at 7-day intervals up to 42 days 

after infestation. Sampled plants were cut at soil level, placed in a Zip-lock bag, and 

stored at 4°C. The development stage was recorded for each plant, and mites were 

counted using a stereo microscope (magnification ca. 30-40X).  During this time period, 

reproductive development stages occurred for foxtail millet, green foxtail, and barnyard 

grass. When they occurred at sampling time, heads from these hosts were placed and 
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gently pressed onto high definition tape attached to black cardstock with double sided 

tape (Harvey and Martin 1988). These heads were placed in covered plastic boxes for a 

minimum of one month to allow the heads to dry and mites to abandon the heads. Heads 

were removed from the tape, a grid was placed under the tape, and mites on the tape were 

counted.  Wheat plants were only sampled up to 21 days after infestation because 

extreme population buildup makes accurate population estimation difficult (Siriwetwiwat 

2006).  Due to the number of treatments and time requirements for counting, this 

experiment was divided into three separate studies. Wheat, barnyard grass, green foxtail, 

foxtail millet, and jointed goatrass were used in all studies; however, the number of 

replications and collection days for these treatments varied between studies. Study 1 

compared Type 1 and 2 mites across four runs with 11 replications for all hosts except 

green foxtail and jointed goatgrass with 8 replications. Study 2 consisted of one run of the 

experiment to test Type 1, Type 2, and field collected Type 1F mites with three 

replications for each host. In addition, plants were only collected on day 7, 21, and 35 

after infestation. Study 3 consisted of two separate runs to evaluate Nebraska mites 

designated at ‘Type 2NE’ with seven replications for all treatment combinations except 

for jointed goatgrass with four replications.   

 After 42 days, ten mites were transferred back to wheat from each host with 

adequate mite populations using the same methods as previously described. Four wheat 

plants per pot were infested.  Wheat plants were harvested in the same manner as 

previously described with collections occurring every 7 days up to 21 days after 

infestation for studies 1 and 3. For study 2, plants were only counted at 14-days post-

infestation. 
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 Mite counts were analyzed using a type 1 test for fixed effects in PROC 

GLIMMIX (version 9.22; SAS Institute 2008) with a repeated measures analysis.  

Studentized residuals indicated that the data were not normally distributed.  Variances 

increased geometrically as a function of the mean indicating a negative binomial 

distribution. Due to the negative binomial distribution, the subsequent estimations are 

most appropriate for a mixed model method (Gbur et al. 2012). Data were transformed to 

natural log prior to analysis.  

An analysis of variance was run to determine the significance of main effects and 

interactions. These effects were partitioned over day into linear and quadratic portions to 

determine which fixed effects remained in prediction models. Non-significant effects 

were removed from the model. Models with a significant quadratic effect were evaluated 

for significance for each treatment combination through the solution for fixed effects. 

Non-significant quadratic parameters were removed from treatment combinations. The 

analysis of variance was run again containing only the significant effects. Regression 

equations were obtained from the solution for fixed effects and parameter comparisons 

were made between treatments by using pairwise contrast statements. In a generalized 

linear mixed model, R-squares are understood as undefined. However, the correlation 

between observed values and the values predicted by the regression equations resulting 

from the analysis above were used to estimate the fit of the equations (PROC CORR; 

version 9.22; SAS Institute 2008). 
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Results 

Study 1: Type 1 vs. Type 2 

 An analysis of variance type I test for fixed effects (Table 2.1) indicated that there 

were no significant differences between colonies.  Significant differences occurred 

between hosts with greatest mean mite populations occurring on wheat (4323) followed 

by jointed goatgrass (434), barnyard grass (67), green foxtail (5) and foxtail millet (1). 

The interaction between colony and host was also significant due to greater mean 

populations of Type 1 mites (634; t88 = 1.97; P = 0.0522) compared to Type 2 (296) mites 

on jointed goatgrass. In contrast for barnyard grass, Type 2 (200; t88 = 6.53; P <.0001) 

mites had greater mean mite populations compared to Type 1 (23) mites.  

 An analysis of regression equations showed differences in the intercepts of 

equations (Table 2.2) with Type 1 mites on wheat having a greater intercept when 

compared to barnyard grass and green foxtail whereas no differences occurred for foxtail 

millet. The lack of intercept differences between Type 1 mites on wheat and foxtail millet 

is a result of significant decline in mites on foxtail millet after day 7, resulting in a higher 

intercept (Fig. 2.1).  Jointed goatgrass had a lower intercept that was approaching 

significance when compared to wheat.  For Type 2 mites, similar results occurred 

between wheat and the other alternate hosts with statistically lower intercepts for 

barnyard grass, green foxtail, and foxtail millet. Unlike Type 1, differences occurred 

between the foxtail millet and wheat intercepts for Type 2 mites because of a reduction of 

mite presence on foxtail millet within 7 days of infestation (Fig. 2.2), resulting in a lower 

intercept compared to Type 1 mites on foxtail millet.  No differences in intercepts 

occurred for Type 2 mites when comparing wheat and jointed goatgrass. 

The linear effect (Table 2.1) of day was significant, indicating that mite 
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populations changed over time. There was no significant interaction between day and 

colony because the average response of all hosts did not differ between colonies over 

time.  A significant day by host interaction occurred as a result of high reproductive rates 

for both mite types on wheat, jointed goatgrass and barnyard grass (Table 2.1) whereas a 

lack of reproduction was observed for foxtail millet. The interaction between day, colony, 

and host was also significant due to differences in the reproductive rates for Type 1 and 

Type 2 mites on jointed goatgrass and barnyard grass (Table 2.2).  

Significant positive linear slopes were observed for both mite types across all 

hosts with the exception of foxtail millet, which showed a significant decline for both 

mite types following infestation.  A comparison of linear slopes (Table 2.2) showed the 

relative rate of increase for mites varied considerably between hosts. Type 1 and 2 mites 

reproduced at a greater rate of increase on wheat when compared to green foxtail or 

foxtail millet. In contrast, Type 2 mites had a similar rate of increase on barnyard grass 

when compared to wheat. However, Type 2 mites on barnyard grass exhibited a 

significant negative quadratic effect (t321 = -3.44; P = 0.0004) whereas no significant 

quadratic effect occurred for wheat, making the interpretation of linear parameters less 

apparent. Jointed goatgrass was the only host that had a greater reproductive rate than 

wheat for Type 1 mites.  However, a significant negative quadratic effect was observed 

for Type 1 mites on jointed goatgrass (t321 = -5.76; P <.0001), while no significant 

quadratic effect occurred on wheat (t321 = 0.36; P = 0.7136), making it difficult to 

properly assess differences in linear parameters.  Differences in reproduction between 

wheat and jointed goatgrass are more apparent using day contrast comparisons of 

equations. Contrasts indicate that wheat produced more mites at day 7 (t321 = 22.49; P 
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<.0001) with an increasingly greater mite population over jointed goatgrass as indicated 

by a larger F-value at day 21 (t321 = 74.04; P <.0001).  Significant quadratic effects were 

also observed for Type 1 (t321 = -5.76; P <.0001) and Type 2 (t321 = -3.59; P = 0.0007) 

mites on jointed goatgrass and Type 2 mites on barnyard grass (t321 = -3.44; P = 0.0004). 

No significant quadratics were observed for any other mite type and host combinations. 

Correlations between predicted and observed values ranged from 0.65 to 0.98 for Type 1 

and 0.74 to 0.94 for Type 2 indicating that equations (Table 2.3) were a good 

representation for observed values.   

 

Study 2: Type 1 vs. Type 2 vs. Type 1F  

 An analysis of variance for type I test for fixed effects (Table 2.4) showed 

significant differences between hosts with greatest mean mite populations occurring on 

wheat (1881) followed by jointed goatgrass (818), barnyard grass (141), green foxtail (3), 

and foxtail millet (3).  However, an interaction between mite type and host occurred due 

to a greater mean number of Type 2 (401) mites on barnyard grass, compared to Type 1 

(29) and Type 1F (22). In contrast, similar mean mites occurred on wheat for all colonies 

with 1869, 1906, and 1804 mean mite populations for Type 1, Type 2, and Type 1F, 

respectively. Colonies did not differ from one another due to their differential survival on 

hosts as indicated in the interaction between colony and host. 

 Contrasts comparing intercepts (Table 2.5) of all mite types on wheat showed no 

differences. Within Type 1F (Fig. 3.3), a comparison of wheat with other hosts showed 

significant differences in intercept for green foxtail and barnyard grass whereas no 

differences occurred for jointed goatgrass. Within barnyard grass, Type 1F mites had 
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significantly lower intercepts compared to Type 2 with no differences when compared 

with Type 1.  Intercept comparisons of Type1F to other mite types showed no differences 

in jointed goatgrass or green foxtail whereas Type 2 intercepts were greater than Type 1F 

on barnyard grass. Significant differences occurred between all three types on foxtail 

millet with the greatest intercept occurring for Type 1F, followed by Type 1, and Type 2.   

Linear parameter comparisons showed no differences in day due to a balance 

between reproduction and declining mite numbers across hosts and mite types. Day by 

host interactions were significant due to consistently high rates of reproduction for mite 

colonies on wheat whereas mite populations declined for all colonies on foxtail millet. No 

significant interaction occurred between day, host and colony.  Contrasts comparing 

linear parameters (Table 2.6) for hosts and colonies show that wheat had a greater rate of 

mite increase when compared to any other hosts with the exception of Type 1F mites on 

barnyard grass.  

Quadratic parameters showed a significant interaction between day and host, as 

well as day, host and colony. The three-way interaction was due to a significant negative 

quadratic effect for Type 1 (t59 = -2.30; P =0.0247), Type 2 (t59 = -2.79; P =0.0070) and 

Type1F (t59 = -2.29; P =0.0255) on jointed goatgrass as well as Type 1F on barnyard 

grass (t59 = -2.97; P = 0.0042). Although linear parameters between wheat and barnyard 

grass for Type 1F were not significant, the combination of a lower intercept and a 

significant negative quadratic for barnyard grass resulted in significant differences in 

mites between hosts at day 7 (t1,59 = 5.35; P = 0.0239) and day 21(t1,59 = 19.90; P <.0001). 

All other quadratic parameters for mite type and host combinations were not significant. 

Correlations between the predicted and observed values for Type1F mites ranged from 
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0.70 for green foxtail to 0.98 for barnyard grass indicating solid predictions. 

 

Study 3: Type 2NE  

 An analysis of variance type I test for fixed effects (Table 2.7) showed that the 

effect of host was highly significant with the greatest mean mite populations occurring on 

wheat (2149) followed by jointed goatgrass (1335), barnyardgrass (457), green foxtail 

(6), and foxtail millet (2). Regression equations showed that the intercept parameter 

differed between hosts. Declining mite populations in foxtail millet resulted in a high 

intercept value that was comparable to wheat, jointed goatgrass, and barnyard grass. 

Graphical representation of predicted equations (Fig. 3.4) indicates that green foxtail 

appears to have a different intercept; however, large variation in response over time 

resulted in a lack of significant differences between other hosts. 

Day was also significant indicating that mite populations changed over time. A 

significant interaction occurred between day and host with wheat, jointed goatgrass, and 

barnyard grass showing a significant increase in mite populations over time. In contrast, a 

marginal increase occurred for green foxtail, and mite populations declined on foxtail 

millet. Intercept contrasts (Table 2.8) between hosts showed no significant differences. 

Contrasts comparing linear parameters (Table 2.8) show that wheat had a significantly 

higher linear slope than green foxtail or foxtail millet. Slopes were not significantly 

different when wheat was compared with jointed goatgrass or barynardgrass. The lack of 

differences with wheat likely resulted from the significant quadratic effect for jointed 

goatgrass (t124 = -1.97; P = 0.0567) and barnyardgrass (t124 = -2.34; P = 0.0210). Contrasts 

comparing wheat to jointed goatgrass showed no significant differences at day 7 (F1,124 = 
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1.73; P = 0.1914) whereas mean mite populations were significantly different at day 21 

(F1,124  = 7.67; P = 0.0065) indicating that the combination of these parameters yielded 

significant differences over time. Similar results occurred for barnyardgrass with 

increasing differences with wheat from day 7 (F1,124  = 3.56; P = 0.0615) to day 21 (F1,124  

= 10.24; P = 0.0017). A good correlation was observed between predicted equations 

(Table 2.2) and observed values with the exception of green foxtail at a correlation of 

0.19 due to variations in mite presence over time. 

 

Reestablishment on Wheat 

 WCM were successfully transferred from wheat, jointed goatgrass and barnyard 

grass back to wheat plants for each of the three studies.  No transfers were made from 

foxtail millet or green foxtail due to low mite populations.  An analysis of type I test for 

fixed effects of Study 1: Type 1 and Type 2 mites (Table 2.9) indicated that there were 

significant differences between colonies with more mites occurring for Type 2 (551) than 

Type 1 (393). Differences also occurred between hosts due to significantly lower 

populations on barnyardgrass (353) compared to jointed goatgrass (549) or wheat (519). 

There was no significant interaction between colony and host.   

An analysis of regression equations showed that intercepts (Table 2.10) did not 

differ between colonies and hosts.  However, the linear effect of day was highly 

significant indicating that mite populations changed over time. The interaction between 

day and colony was significant as well as host and day due to lower reproduction on 

jointed goatgrass. However, there was a significant interaction between day, host and 

colony. Linear parameter contrasts (Table 2.10) show that this interaction was due to 
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lower reproductive rates on wheat for Type 1 mites from barnyard grass compared to 

Type 2 mites whereas no differences occurred between mites types from wheat or jointed 

goatgrass. Type 1 mites from barnyard grass produced lower slopes than any other colony 

and host treatment combination (Fig. 2.5). Equations from solutions for fixed effects 

(Table 2.11) showed a strong positive linear relationship of mite populations on wheat 

over time (correlation range 0.95 to 0.97). 

 Mite transfers back to wheat in study 2 were only evaluated at day 14; therefore, a 

Type III fixed effects analysis of variance was used to evaluate treatments.  There were 

no differences between colonies (F2,12 = 1.46; P = 0.2718); however, mite populations 

varied by host (F2,12 = 7.67; P = 0.0525) due to significantly lower mean mite populations 

on barnyardgrass (641; F1,12 = 7.28; P = 0.0194) compared to wheat (806) and jointed 

goatgrass (794). The interaction between colony and host was approaching significance 

(F4,12 = 7.67; P = 0.0953) due to lower mean mite populations on barnyard grass for Type 

1 mites (457) whereas mean mite populations ranged from 727 to 855 for all other mite 

type and host combinations. 

 An analysis of variance type I test for fixed effects for study 3 using the Type 

2NE colony (Table 2.12) showed no significant differences between hosts. Regression 

analysis showed that there was a significant linear effect of sampling day indicating that 

mite populations changed over time. No interactions occurred between hosts and days or 

the quadratic effects of days or host and day. Equations generated from the solution for 

fixed effects show strong positive linear slopes for all treatment combinations (Table 

2.11).  Correlations were strong for all equations ranging from 0.95 to 0.97 indicating a 

good fit between predicted equations and observations. 
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Discussion 

 Wheat consistently showed the greatest potential for mite reproduction across all 

mite types and populations used in this study, further supporting its status as the primary 

host for the wheat curl mite.  For alternative hosts, the linear slope value provided a 

strong estimation of the reproductive potential and suitability of the host for wheat curl 

mites. Quadratic parameters provide additional evidence on the holding capacity and 

potential density of mite populations on alternative hosts, an important characteristic for 

mite spread (Thomas and Hein 2003). In addition, these long-term studies reduce the 

carry-over effects from the previous host (wheat), allowing mites to go through multiple 

generations to gain a better estimation of host suitability for the WCM.   

Jointed goatgrass, a winter annual weed with a life cycle similar to winter wheat, was 

considered a good host for WCM with strong positive linear slopes for both mite types in 

this study. Although linear slopes were positive for both mite types on jointed goatgrass, 

Type 1 mites showed consistently greater reproduction than Type 2 mites.  Harvey et al. 

(2001) previously reported no differences in mite numbers for Kansas (Type 1) mites 

compared Nebraska (Type 2) mites at 7-days after infestation.  In addition, jointed 

goatgrass is significantly different than wheat in its ability support mites and this 

response varies with mite type. In addition, the differential reproductive rates of mite 

types on jointed goatgrass was consistent regardless of source for each mite type, with 

Type 1F mites having similar reproductive rates to Type 1 mites, and Nebraska (Type 2) 

mites having a similar reproductive potential as Type 2 mites. Quadratic effects provide 

an indication that mite populations in jointed goatgrass became saturated and began to 

level off at populations below those for vegetative wheat. Previous research by 

Siriwetwiwat (2006) showed that WCM could exceed 20,000 per plant after 28 days with 
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an initial infestation of 10 mites per plant. Population limitations on jointed goatgrass 

may be due to thinner leaves relative to wheat. 

Barnyard grass was the only summer annual host with a WCM reproductive rate 

similar to jointed goatgrass. Previous literature by Somsen and Sill (1970) had indicated 

that barnyard grass was “susceptible” to mites; however, there was no quantitative 

evidence on WCM reproductive capacity. In addition, Somsen and Sill (1970) gave a 

similar “susceptible” designation to sandbur and green foxtail. Sandbur and green foxtail 

were shown to have little mite presence after 7 days (Harvey et al. 2001) and this study 

provided further evidence that green foxtail is a marginal host for the WCM. The 

differences between barnyard grass and green foxtail clearly shows that previous 

categorical classifications of hosts for WCM are inadequate for determining the risk 

potential of over-summering hosts. The seasonal presence of barnyard grass, its 

susceptibility to wheat streak mosaic (Slykhuis 1952, 1955, Somsen and Sill 1970), and 

its ability to support large populations of mites increases the need to understand its mite-

virus dynamics under field conditions.  

Green foxtail showed a significant but relatively limited positive linear slope for all 

mite types, indicating it was a marginal host for WCM. Harvey et al. (2001) found similar 

results with differing levels of mites at 7 days depending on mite type. We did not detect 

differential survival between mite types on green foxtail. Green foxtail was a highly 

variable host with consistently low populations throughout the sampling period.  Staples 

and Allington (1956) indicated that green foxtail plants infested for one month produced 

few mites and no eggs could be recovered. In contrast, we observed WCM eggs on green 

foxtail through the sampling period (data not shown). The slow mite buildup and 
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presence of mite eggs long after infestation indicates that green foxtail is a suitable host 

for WCM reproduction. It is likely to have a much lower over-summering risk than 

barnyard grass; however, further verification of this relationship in the field is warranted.  

 Mite populations declined on foxtail millet following infestation for all mite types 

and populations. However, mites and eggs were recovered from foxtail millet 35 days 

after infestation, indicating low levels of mite reproduction. Isolations of WCM (Type 

1F) from wheat trap plants in these plots resulted in a significantly greater intercept 

compared to other mite types; however, mite populations still declined following 

infestation. The inability of mites to reproduce on foxtail millet could be to changes in 

growth habit, plant structure, varietal differences, and/or relative humidity under 

controlled conditions. Foxtail millet plants produce numerous tillers under field 

conditions whereas foxtail millet grown in growth chambers rarely produced more than 

one additional tiller.  

  Long-term reproductive studies also provided an opportunity to measure potential 

costs for mite adaptation to alternative hosts. Of all the mite type and host combinations, 

only Type 1 mites originating from barnyard grass back to wheat exhibited a lower 

reproductive rate.  Skoracka et al. (2013) documented similar reductions in population 

growth rates when various A. tosichella genotypes were transferred from different host 

species to wheat. In contrast, this study tested mite types with similar reproductive rates 

on wheat, followed by a temporal period on an alternative host, and their subsequent 

reestablishment on wheat.  

 This study is the first to demonstrate the long-term reproductive potential of 

wheat curl mites on alternative hosts. Long-term studies also allowed for understanding 
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of mite reproduction through reproductive stages of alternative hosts (barnyard grass, 

green foxtail and foxtail millet). Such information is important considering that WCM 

populations on wheat heads can greatly exceed those of vegetative stages of wheat 

(Byamukama et al. 2015). In addition, long-term reproduction on hosts allows for 

adaptation and the potential to observe deleterious effects when returning to wheat.  To 

our knowledge, this is the first study to document the long-term reproductive capacity of 

WCM on alternative hosts, and it provides a frame work for future alternative hosts 

studies for the WCM. In addition, we identified barnyard grass as a significant host for 

Type 2 mites, a finding that was previously unreported. Long-term studies also provided 

a better understanding of green foxtail which supported a relatively low population of 

mites, with some level of reproduction. Mites returning from alternative hosts to wheat 

showed little impact on reproduction with the exception of Type 1 mites from barnyard 

grass.  This study provides a baseline for evaluating alternative hosts for wheat curl 

mites.  Future studies are needed to address the interaction between mites and alternative 

hosts in the presence of virus, as WSMV has been shown to increase mite reproductive 

rates on wheat (Siriwetwiwat 2006).  Given the long-term association between WCM and 

WSMV it is possible that this virus could counteract plant defenses or increase the 

nutritional quality of an over-summering hosts allowing mites to establish or allowing for 

increased reproductive rates on hosts.  
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Tables 

Table 2.1. Analysis of variance type I test for fixed effects on mite reproduction for 

colony, host, and sampling day using 10-mite transfers (Colony = Type 1 and Type 

2; Host = wheat, jointed goatgrass, barnyard grass, green foxtail and foxtail millet; 

Day = 7, 14, 21, 28, 35, and 42).  

Effect Num DF Den DF F-value Pr > F 

colony 1 88 2.72 0.1025 

host 4 88 209.02 <.0001 
colony*host 4 88 12.73 <.0001 

day 1 321 223.04 <.0001 
day*colony 1 321 0.16 0.6933 

day*host 4 321 104.54 <.0001 
day*colony*host 4 321 4.84 0.0008 

day*day 1 321 4.65 0.0318 

day*day*colony 1 321 6.25 0.0129 
day*day*host 4 321 7.23 <.0001 

day*day*colony*host 4 321 2.95 0.0205 
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Table 2.3. Regression equations after natural log-transformation for Type 1, Type 2, 

Type 1F, and Nebraska mite colonies for wheat, jointed goatgrass, barnyard grass, 

green foxtail, and foxtail millet (initial infestation of 10 mites per plant). 

 
WCM Colony Host Equation Correlation n 

Type 1 

Wheat y = 2.5805 + 0.2557x 0.98 30 

Jointed goatgrass y = 1.5345 + 0.3549x - 0.0047x2 0.97 39 

Barnyard grass y = 0.7073 + 0.1080x 0.83 55 

Green foxtail y = 0.7432 + 0.0314x 0.71 39 

Foxtail millet y = 1.9045 - 0.0585x 0.65 57 

Type 2 

Wheat y = 2.7717 + 0.2546x 0.94 30 

Jointed goatgrass y = 2.7863 + 0.2104x - 0.0028x2 0.86 39 

Barnyard grass y = 1.6321 + 0.2337x - 0.0025x2 0.86 56 

Green foxtail y = 0.9597 + 0.0394x 0.74 39 

Foxtail millet y = 0.4557 - 0.0395x 0.77 55 

Type 1F 

Wheat y = 1.9965 + 0.2962x 0.96 9 

Jointed goatgrass y = 2.9104 + 0.1962x - 0.0024x2 0.97 9 

Barnyard grass y = -0.5332 + 0.2683x - 0.0044x2 0.98 9 

Green foxtail y = -0.7994 + 0.0412x 0.70 9 

Foxtail millet y = 2.7104 - 0.0515x 0.86 9 

Type 2NE 

Wheat y = 1.8434 + 0.2773x 0.97 21 

Jointed goatgrass y = 2.5242 + 0.2416x - 0.0026x2 0.87 42 

Barnyard grass y = 1.8434 + 0.2802x - 0.0039x2 0.62 37 

Green foxtail y = 0.5729 + 0.0303x 0.19 42 

Foxtail millet y = 2.1575 - 0.0887x 0.68 24 
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Table 2.4. Analysis of variance type I test for fixed effects on mite reproduction for 

colony, host, and day using 10-mite transfers (Colony = Type 1, Type 2 and Type 

1F; Host = wheat, jointed goatgrass, barnyard grass, green foxtail, and foxtail 

millet; Day = 7, 21, and 35).  

Effect Num DF Den DF F-value Pr > F 

colony 2 30 1.9 0.1672 

host 4 30 168.35 <.0001 

colony*host 8 30 4.95 0.0006 

day 1 53 3.25 0.0771 

day*colony 2 53 1.21 0.3059 

day*host 4 53 123.55 <.0001 

day*colony*host 8 53 1.35 0.2399 

day*day 1 53 0.14 0.7058 

day*day*colony 2 53 0.02 0.9850 

day*day*host 3 53 3.71 0.0169 

day*day*colony*host 6 53 2.23 0.0547 
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Table 2.7. Analysis of variance type I test for fixed effects on Nebraska mites across 

hosts and days using 10-mite transfers (Host = wheat, jointed goatgrass, barnyard 

grass, green foxtail, and foxtail millet; Day = 7, 14, 21, 28, 35, and 42). 

Effect Num DF Den DF F-value Pr > F 

host 4 27 186.78 <.0001 

day 1 124 41.5 <.0001 

day*host 4 124 23.75 <.0001 

day*day 1 124 5.75 0.018 

day*day*host 4 124 1.9 0.1138 
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Table 2.9. Analysis of variance type I test for fixed effects on mites for colony, host 

and day transferred back to wheat using 10-mite transfers (Colony = Type 1 and 

Type 2; Host = wheat, jointed goatgrass, and barnyard grass; Day = 7, 14, 21).  

Effect Num DF Den DF F-value Pr > F 

colony 1 46 8.16 0.0064 

host 2 46 6.25 0.0040 

colony*host 2 46 1.08 0.3479 

day 1 62 3009.32 <.0001 

day*colony 1 62 4.08 0.0477 

day*host 2 62 3.62 0.0327 

day*colony*host 2 62 4.01 0.0230 

day*day 1 62 14.64 0.0003 

day*day*colony 1 62 0.21 0.6455 

day*day*host 2 62 0.51 0.6004 

day*day*colony*host 2 62 1.16 0.3200 
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Table 2.11. Regression equations after natural log-transformation for Type 1 and 2 

mite colonies on wheat after 42-days on wheat, jointed goatgrass, or barnyard grass, 

with initial infestation of 10 mites per wheat plant. 

 
WCM Colony Host Equation Correlation n 

Type 1 

Wheat y = 2.5091 + 0.2582x 0.96 27 

Jointed goatgrass y = 2.2161 + 0.2857x 0.95 18 

Barnyard grass y = 2.6046 + 0.2127x 0.96 14 

Type 2 

Wheat y = 2.6413 + 0.2672x 0.97 24 

Jointed goatgrass y = 2.7863 + 0.2846x 0.97 17 

Barnyard grass y = 2.2736 + 0.2770x  0.96 26 

Type 2NE 

Wheat y = 2.4319 + 0.2996x 0.96 21 

Jointed goatgrass y = 2.3685+ 0.3009x 0.95 21 

Barnyard grass y = 2.2651 + 0.3068x 0.97 18 
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Table 2.12. Analysis of variance type I test for fixed effects of Type 2NE mites 

transferred back to wheat across host and day using 10-mite transfers (Host = 

wheat, jointed goatgrass, or barnyard grass; Day = 7, 14, 21). 

Effect Num DF Den DF F-value Pr > F 

host 2 9 0.47 0.6383 

day 1 42 3445.19 <.0001 

day*host 2 42 0.18 0.8379 

day*day 1 42 0.17 0.6811 

day*day*host 2 42 0.08 0.9210 
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CHAPTER 3 

Establishing Risk of Over-Summering Hosts for the Wheat Curl Mites and its 

Associated Viruses  
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Introduction 

 The wheat-mite-virus complex is one of the primary yield limiting diseases in 

winter wheat (Triticum aestivum L.) in the western Great Plains. This complex consists of 

three viruses (Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and 

Wheat mosaic virus (WMoV)) that are transmitted by the wheat curl mite (WCM; Aceria 

tosichella Keifer). Severe yield losses from this complex are often localized to areas 

where pre-harvest wheat had emerged during the previous year. Controlling pre-harvest 

volunteer wheat is one of the most effective management strategies for this complex; 

however, situations have occurred in the past where significant yield losses due to virus 

infection have occurred despite management tactics that were not conducive for the 

presence of pre-harvest volunteer wheat (Shahwan and Hill 1984, Christian and Willis 

1993). These situations indicate the need to better understand the risk potential for other 

grasses to serve as mite and virus hosts during the critical over-summering period 

between winter wheat harvest and fall planting.  

 Previous research indicates that there are approximately 90 reported hosts for the 

wheat curl mite (Amrine and Stasny 1994); however, not all of these hosts pose a risk to 

winter wheat. Christian and Willis (1993) established five characteristics that would be 

necessary for an alternative host to be a significant risk as a source for mites and virus to 

winter wheat. First, the host must thrive in significant populations in or adjacent to fields 

of winter wheat. Second, the host should emerge prior to wheat maturing and survive 

until fall planting of winter wheat. Third, the host should be susceptible to one of the 

viruses within the wheat-mite-virus complex. Fourth, the host must support a large 
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enough mite population to enable significant movement back to wheat. Lastly, WCM 

must be able to re-establish on wheat with potential for secondary spread. 

Historically, the risk assessment of alternative hosts has focused on the presence 

of WSMV through mechanical inoculation, WCM reproduction, and/or the detection of 

mites and virus from field-collected samples.  Wheat is considered the primary host for 

the WCM with several researchers documenting it as a highly satisfactory host for WCM 

(Slykhuis 1955, 1956, Connin 1956a, Staples and Allington 1956, Nault and Briones 

1968, Harvey et al. 2001).  Field collections of volunteer wheat have had highly variable 

results depending on the timing of emergence. Staples and Allington (1956) showed that 

volunteer wheat emerging one week prior to harvest was 100% infested within two weeks 

of emergence. In contrast, no WCM were found in volunteer wheat emerging three to 

four weeks after harvest (Staples and Allington 1956).  

 Harvey et al. (2001) found differential survival of WCM on wheat varieties with 

different genes for mite resistance depending on the mite source with mites collected 

from Kansas having some level of reproduction over a 7 day period whereas Nebraska 

mites declined rapidly in the same time period.  These same populations have been found 

to have distinct genetic differences (Carew et al. 2009, Hein et al. 2012), virus 

transmission (Seifer et al. 2002, McMechan et al. 2014, Wosula et al. 2015), and 

reproductive rates on virus infected plants (Siriwetwiwat 2006). Wheat is susceptible to 

WSMV (Staples and Allington 1956) ,WMoV (Skare et al. 2006), and TriMV (Seifers et 

al. 2009). 

During the 1984 growing season, Shahwan and Hill (1984) tracked 11 fields that 

were severely impacted by WSMV and attempted to correlate disease severity with the 
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adjacent field’s cropping and environmental history. Nine of the eleven fields were 

associated with pre-harvest hail resulting in the presence of volunteer wheat. One 

severely damaged field was planted adjacent to corn (Zea mays L.) and the other field had 

been planted adjacent to foxtail millet (Setaria italica (L.) P. Beauv.). The study 

recommended that winter wheat should not be planted within 1 km of corn, foxtail millet, 

or volunteer wheat to avoid significant damage.  Potential severity of WSMV in the 

presence of corn and foxtail millet in those fields indicates a need for further 

investigation of these over-summering hosts.   

Corn is one of the most tested plants for the wheat-mite-virus complex. 

Mechanical inoculation with WSMV showed that inbred, hybrid, sweet, and popcorn 

lines varied in response (McKinney 1949, Sill and Connin 1953, Meiners and McKinney 

1954, Sill and Agusiobo 1955, Slykhuis 1955, Finley 1957, McKinney et al. 1966, Nault 

and Briones 1968). A field study by Gates (1970) showed that mites could transmit 

WSMV from corn to wheat until about two weeks prior to corn harvest. WCM 

reproductive studies indicate that some inbred corn lines were susceptible (How 1963, 

Orlob 1966, Nault and Briones 1968) whereas hybrid corn had more variable results 

(How 1963, Connin 1956b, Orlob 1966, Nault and Briones 1968). A study by Nault and 

Styer (1969) documented the seasonal population of WCM on two inbred corn lines and 

found that no mites were present until corn was 75 cm tall. Later in the season, Nault and 

Styer (1969) observed that mite colonization of the husks was very successful and peaked 

in early to mid-September, and mites were last observed on the silks and kernels in late 

September and October. 
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Foxtail millet is a common summer annual forage crop grown in the western 

Great Plains. Baltensperger (2002) indicated that foxtail millet ranks second in world 

production of millets; however, its primary limitation in the High Plains of the US is that 

it serves as a carrier for the WCM and WSMV.  The susceptibility of foxtail millet  to 

WSMV through mechanical inoculation is unclear with some authors classifying it as 

immune (Slykhuis 1952, 1961, Sill and Connin 1953) or susceptible (Sill and Agusiobo 

1955, Slykhuis 1955, Seifers et al. 1996). Differences in the susceptibility of foxtail 

millet to WSMV could be attributed to the variety tested or the type of WSMV isolate 

used.  Two short term studies have been conducted to determine WCM reproduction on 

foxtail millet  with only a few mites present after 7 days of exposure (Slykhuis 1955, 

1956). To our knowledge, only observational (Shahwan and Hill 1984) and anecdotal 

evidence exists for WSMV and WCM on foxtail millet under field conditions. 

Numerous grassy weeds have been reported as potential hosts for the wheat-mite-

virus complex. Barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), is a stout, C4, 

summer annual weed that readily invaded disturbed sites, and it is commonly found in the 

western Great Plains (Manidool 1992). Barnyard grass has been found to be susceptible 

(Slykhuis 1952, 1955, Somsen and Sill 1970) and immune (Sill and Agusiobo 1955, 

Slykhuis and Bell 1963) to WSMV. WCM reproduction studies on barnyard grass 

showed that few mites were found after 7 days (Slykhuis 1955, 1956), but it has also been 

classified as a susceptible host for WCM (Somsen and Sill 1970). We have found no 

quantitative evidence of WCM reproduction on barnyard grass. Christian and Willis 

(1993) found that WSMV presence on barnyard grass in Kansas ranged from 10% in 

1988 to 56% in 1989.  Only one study has documented the presence of WCM on 
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barnyard grass under field conditions at a rate of 2.2% plants infested (Somsen and Sill 

1970). 

 Green foxtail (Setaria viridis (L.) P. Beauv.) is a summer annual weed that is 

typically a poor competitor unless in a dense stand which is commonly observed in the 

Great Plains. Green foxtail is susceptible to WSMV with several studies documenting 

severe chlorosis and stunting following inoculation (Slykhuis 1952, 1955, Finley 1957, 

Slykhuis and Bell 1963, Timian and Lloyd 1969, Somsen and Sill 1970). WCM 

reproductive studies on green foxtail have shown few mites after 7 days (Slykhuis 1955, 

1956).  Staples and Allington (1956) reported that only 2 of 11 plants had WCM one 

month after infestation, and no eggs were recovered. Field observations of WSMV on 

green foxtail show consistent presence of the virus (Staples and Allington 1956, Timian 

and Lloyd 1969). Christian and Willis (1993) found 20-40% of plants positive for 

WSMV in 1988 and 1989. Field observations of WCM presence on green foxtail indicate 

that only a small percentage of plants were infested, but these contained only a few mites 

(Connin 1956a, Staples and Allington 1956, Timian and Lloyd 1969, Somsen and Sill 

1970).  

 Historical efforts have provided valuable insight into the potential for some 

alternative hosts to support WCM and virus; however, much more detailed research is 

needed to assess the actual risk of these hosts to fall planted winter wheat. Addressing 

these risks in the field greatly limits the number of hosts that can be evaluated.  For this 

study, we have chosen five hosts (wheat, corn, foxtail millet, barnyard grass, and green 

foxtail that vary in their anecdotal and experimental evidence for risk to fall planted 

winter wheat with regard to the Christian and Willis (1993) criteria. The objectives of this 
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study were to determine the potential for wheat curl mites to survive on these alternative 

hosts during the summer under field conditions and evaluate the impact on fall planted 

winter wheat that these hosts as sources of mites and virus. This is the first study to 

document the season long mite activity for these hosts and the risk from these hosts to 

surrounding fall planted winter wheat.  
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Materials and Methods 

Six over-summering grass hosts were evaluated for risk to fall planted winter 

wheat, including two winter wheat treatments. Winter wheat treatments differed by 

timing of emergence with one wheat treatment emerging prior to the maturation of the 

surrounding winter wheat crop (pre-harvest wheat), and the other planted two weeks after 

harvest (post-harvest wheat). Additional hosts were corn (Cropland 3337), foxtail millet 

(FTM; Golden German Millet), barnyard grass (BYG), and green foxtail (GFT).  All 

treatments were seeded into small plots (ca. 1.5 m by 1.5 m) separated by 4.5 m and 

arranged in a randomized complete block design with six replications.  Corn was planted 

on the 22 and 18 May of 2013 and 2014, respectively.  Pre-harvest wheat, foxtail millet, 

barnyard grass, and green foxtail were planted the last week in May during both years of 

the study.  Plant stand densities of over-summering hosts were taken two to three weeks 

after emergence, and stands for green foxtail and barnyard grass were thinned to 

population densities of 30-50 plants/m2, approximately two weeks after emergence. 

WCM movement was quantified as winter wheat matured each year to determine 

the potential for initial infestation of over-summering hosts. A trap pot was placed on 

each of the four sides of the study area to monitor WCM activity.  Each trap pot consisted 

of three cone-tainers (4 cm in diameter; Steuwe and Sons Inc., Tangent, Oregon, USA), 

and each cone-tainer contained three ‘Millennium’ wheat plants.  Plants were reared 

under artificial lights and covered with plastic cages (5 cm in diameter and 50 cm in 

height) with two to three vents, covered with Nytex® screen for 14 days prior to field 

exposure.  In the field, trap pots consisted of a 4 L bucket buried to a level even with the 

soil surface.  A 30-cm square plywood board was placed over the bucket with a 15-cm-



 

 

 

88 

diameter hole in the center.  A pot (15 cm in diameter; Hummert International, Topeka, 

Kansas, USA) with the bottom cut out was placed through the hole of the plywood board.  

A 15-cm-diameter insert was cut from white wall board (0.090 fiberglass reinforced 

plastic), and four holes (3.2-cm diameter) were drilled at equal distance from one another 

within the insert.  The insert was then placed within the lid 15-cm pot.  The bucket was 

filled with water prior to placement of the trap pots.  Trap pots were exposed in the field 

by placing them into one of the four holes in the insert and removing the cage.  Trap cone 

plants were exposed for seven days, and new plants were exposed weekly from early 

June (2nd-5th) until two weeks after winter wheat harvest.  Each trap pot was covered with 

0.8-cm mesh cone-shaped hardware cloth with the bottom buried below the soil to deter 

herbivores.  Winter wheat development was recorded weekly, and over-summering host 

development stages were recorded at harvest.   

After wheat harvest, trap pots were placed in the center of each plot with three 

cone-tainers per pot.  The fourth hole in the insert was covered to reduce water loss from 

the bucket.  Trap pots were exposed every other week for seven days through mid- to late 

October.  A fourth cone-tainer was added to the trap pots twice during the season to 

evaluate virus presence.  For this sampling, two cones were evaluated for mites and the 

other two for WSMV presence.  Cone-tainers that were evaluated for virus were covered 

with cages in the field and held in the greenhouse for 3-4 weeks. At that time, plants were 

sampled for subsequent double-antibody sandwich enzyme linked immunosorbent assay 

(DAS-ELISA) testing as described in (Byamukama et al. 2014).  To monitor mites on the 

cone-tainer plants, three plants per cone-tainer (9/plot) were cut at soil level, placed in 

Zip-lock bags, and stored at 4°C until mites could be counted under a stereo microscope 
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at 30X-40X. In 2013, mites were collected from trap pots during each of the collection 

dates and placed in vials containing 100% alcohol to determine mite type using PCR-

RFLP as described by Hein et al. (2012). 

To evaluate potential virus spread into surrounding winter wheat, the variety 

‘Pronghorn’ was seeded in 0.3-m row spacing around each plot on 20 Sept., 2013 and 9 

Sept., 2014. In the spring, a SPAD-502 Chlorophyll Meter (SPAD; Konica Minolta 

Sensing Inc., Ramsey, NJ) was used to quantitatively evaluate virus symptomology, and 

ELISA testing was used to determine virus presence.  Each SPAD reading consisted of an 

average of 10 flag leaf readings per row. SPAD readings were taken from each of the six 

rows adjacent to the plot in all four cardinal directions during the early milk stage.  Ten 

flag leaves were sampled for virus assay via ELISA testing from each row directly 

adjacent to each plot in all four cardinal directions as well as rows three and five to the 

east of each plot.  WSMV presence in flag leaves was tested as a composite of the 10 

leaves via ELISA.  ELISA sensitivity for composite samples was verified through known 

ratios (1:9, 3:7, 7:3, 9:1) of WSMV infected to healthy tissue.  

 Mite movement data from trap pots were analyzed by using two response 

variables (proportion of infested wheat plants and average number of mites per plant) to 

determine frequency and abundance of mites on trap plants through PROC GLIMMIX 

(SAS Institute 2008) with repeated measures. Studentized residuals indicated that 

proportion data were not normally distributed, with the response variable limited between 

0 and 1, thus a beta distribution was used in the analysis. For repeated measure analysis, 

covariance models on inference (CS, AR(1), ANTE(1), and UN) were tested to determine 

the model with the lowest Akaike information criterion corrected value.  Analysis of 
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variance of fixed effects was used to determine differences in year, host, and time effects. 

Random effect was replication.  T-tests were used to test for differences between years, 

host, and time.  

SPAD readings were analyzed in PROC GLIMMIX to determine differences 

between hosts (fixed effects) and repeated measures to determine difference for direction 

and row, with replication as a random effect. Covariance models were run in the same 

manner as described for mite movement data.  ELISA absorbance values were divided 

into two separate analyses. The first analysis compared virus impact using absorbance 

values from the row directly adjacent to the plot to test the fixed effects of host, direction, 

and their interaction. The second analysis evaluated ELISA absorbance values with 

distance from the plot using the rows east of the plot (1, 3, and 5) with fixed effects of 

host, row, and their interaction.  T-tests and contrasts were used to determine differences 

between hosts, rows, and directions. Correlation coefficients were used to compare mite 

movement parameters with virus symptoms (SPAD) and virus presence (DAS-ELISA) 

data using PROC CORR (SAS Institute 2008).  Environmental data were obtained from 

the High Plains Regional Climate Center (hprcc.unl.edu; University of Nebraska-

Lincoln). Weather data originated from an established weather station located less than 1 

km from the plot site. 
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Results 

Average mean monthly temperatures and total precipitation (Table 3.1) varied 

between the two years of the study. The largest differences in temperature occurred 

during the month of October with an average temperature of 14.1°C and 19.7°C for 2013 

and 2014, respectively. Total precipitation from September to November was highest in 

2014 (225.0 mm) and lowest in 2013 (106.2 mm). Spring temperatures varied 

considerably for the month of March with highest temperatures in 2015 (15.8°C) 

compared to 2014 (10.5°C). Total precipitation during the spring and summer (March-

August) also varied widely between the two years with 159.5 mm in 2014 to 422.9 mm in 

2015. 

 Border trap pots (Fig. 3.1) showed extensive and significant mite movement into 

the over-summering host study with 99% and 96% trap plants infested as winter wheat 

reached the hard dough stage in 2013 and 2014, respectively.  As a result, pre-harvest 

wheat plots showed severe virus symptoms and leaf curling from mite infestations within 

a week of winter wheat harvest in both years.  Five tillers were taken from each pre-

harvest wheat plot and dissected to determine the number of mites per tiller under a 

stereo microscope.  Pre-harvest wheat tillers averaged 29 (±6) and 132 (±18) mites per 

tiller during 2013 and 2014, respectively.   Due to the high mite infestation levels, pre-

harvest wheat was destroyed just after harvest to prevent mite infestation from these plots 

to other over-summering host plots.  These plots were then designated as “bare” plots for 

the remainder of the season.  

 Over-summering host development stages (Table 3.2) were more mature at wheat 

harvest during the summer of 2014 compared to 2013. The most notable differences 



 

 

 

92 

occurred for corn with V13 (14 leaves) and VT (tassel present) at harvest for 2013 and 

2014, respectively. Only slight differences occurred for the remaining hosts in the study 

with most plants ranging between tillering and jointed at harvest.  

An analysis of mite movement data from trap pots located within each plot 

showed a significant year, host, and time interaction for both the proportion of infested 

mites (F25, 350.1 = 5.47; P<.0001) and average number of mites per trap plant (F25, 345.3 = 

4.85; P<.0001). These interactions were a result differing seasonal values in the 

proportion infested plants and average mites per trap plant each year; therefore, each year 

of the study was analyzed separately. 

ELISA sensitivity for composite samples through known ratios (1:9, 3:7, 7:3, 9:1) 

of WSMV infected to healthy tissue showed that a 10-leaf sample containing a single 

WSMV-infected leaf produced absorbance values 10 times greater than healthy controls. 

These results indicate excellent sensitivity of this sampling process. 

2013-14: Mite activity 

 Proportion of infested plants (Fig. 3.2a) varied between hosts (F5,30 = 21.05; P 

<.0001) with greatest activity occurring from barnyard grass (0.53), followed by foxtail 

millet (0.41), green foxtail (0.17), corn (0.06), post-harvest wheat (0.01) and bare ground 

(0.01). Collection dates also differed (F5,142 =2.06; P = 0.0734) with the proportion of 

infested plants reaching its peak during the first (0.15) and third (0.16) week in 

September but then declining in October.   The interaction between host and collection 

date was not significant (F25,142 = 0.86; P = 0.6561).  

The most important time period for mite movement from summer hosts back to 

winter wheat would be in late Sept. and October. Orthogonal contrasts (Table 3.3) 
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between over-summering hosts (corn, FTM, GFT, and BYG) and wheat plots (post-

harvest wheat and bare plots) indicate greater mite activity for over-summering hosts in 

October week 1 (F1,142 = 9.03; P = 0.0031), but no differences were seen in week 3 (F1,142 

= 3.03; P = 0.0841).  Similar differences occurred when contrasting corn vs. foxtail 

millet, green foxtail, and barnyard grass with corn having less activity during week 1 

(F1,142 = 9.12; P = 0.0030) whereas all hosts showed reduced activity and no differences 

in week 3 (F1,142 = 1.99; P = 0.1603) of October.  Contrasts of foxtail (foxtail millet and 

green foxtail) vs. barnyard grass indicate the barnyard grass had significantly greater mite 

activity than foxtail grasses during week 3 (F1,142 = 16.5; P = 0.0070) of September 

compared to a lack of differences in week 1 (F1,142 = 1.67; P = 0.1979) of October as a 

result of increasing mite activity from foxtail millet. Increased activity from foxtail millet 

compared to green foxtail is evident from the lack of difference in week 3 (F1,142 = 2.71; P 

= 0.1017) of September compared to significant greater activity in foxtail millet during 

week 1 (F1,142 = 12.91; P = 0.0005) of October. Week 3 of October showed no differences 

for any of the possible orthogonal contrasts (Table 3.3) indicating that mite activity had 

declined for the season. 

 Similar results were obtained for average mites per plant (Fig. 3.2b); however, the 

magnitude of these differences varied between the two response variables.  Average 

mites per plant differed between hosts (F5,28.2 = 20.19; P < 0.0001) and collection dates 

(F5,111 = 9.04; P < 0.0001).  Barnyard grass (2.17) had the greatest average number of 

mites per trap plant, followed by foxtail millet (0.85), green foxtail (0.40), corn (0.10), 

bare ground (0.02) and post-harvest wheat (0.01). Collection dates showed average mite 

numbers per trap plant increasing from 0.88 to 1.22 for weeks 1 and 3 of September, 
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respectively.  Average mites per trap plant declined for the last sampling period to 0.07.  

A significant interaction between host and collection date occurred (F25,123.7 = 5.93; P < 

0.0001). This interaction was primarily due to increased mite activity in barnyard grass 

during September (5.02) compared to the average of foxtail millet and green foxtail 

(1.04) in week 3 (Table 3.3; F1,155.9 = 93.07; P<.0001) of September whereas no 

differences occurred between these hosts in week 1 (Table 3.3; F1,155.9 = 0.05; P = 

0.8258) of October.   

 WCM collected from trap pots across the over-summering period and evaluated 

for mite type using PCR varied in the percentage of Type 1 and 2 mites depending on the 

host. Of the 15 mites collected from border pots, 47% were Type 1 and 53% were Type 

2, indicating that comparable level of Type 1 and 2 mites infested the study. Mites 

collected from corn and green foxtail trap pots showed little preference for mite type with 

55% (6/11) and 67% (6/9) being Type 1 and and 45% (5/11) and 33% (3/9) Type 2 for 

green foxtail and corn, respectively. In contrast, the 15 mites collected from barnyard 

grass were 93% (14/15) Type 2. The opposite occurred for foxtail millet with 81% 

(21/25) of mites testing as Type 1. 

Trap pots exposed in the field from 28 August to 4 September and held for virus 

detection showed that only plants from barnyard grass (11/12: 92%) and foxtail millet 

(3/12: 36%) plots were positive for WSMV. A second sample taken in early October 

found that only trap plants from barnyard grass plots tested positive for WSMV (7/12: 

58%). 
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2013-14: Virus impact 

 Relative chlorophyll content or SPAD readings (Fig. 3.3a) were different between 

hosts (F5,25 = 4.81; P = 0.0032) with barnyard grass (45.4; t25 = -2.23; P = 0.0351) having 

significantly lower SPAD values or greater virus symptomology than green foxtail (46.4), 

followed by foxtail millet (47.2), corn (47.3), and post-harvest wheat (47.5). Bare plots 

(48.2; t25 = -2.31; P = 0.0297) had significantly higher SPAD values than green foxtail.  

Direction from host plots was also significant (F3,90 = 2.59; P = 0.0574) with north (47.2), 

east (46.6), and south (46.7) having significantly (F1,90 = 5.49; P = 0.0213) lower SPAD 

values compared to west (47.7) indicating that mite movement and virus spread was not 

equal in all directions from the hosts. Rows were also different (F5,497 = 23.77; P < 

0.0001) with the wheat row directly adjacent to the host plot (Row 1; 45.0) (t587 = -2.21; 

P = 0.0278) having lower SPAD values than row two (45.9). In addition, row two (t587 = -

3.36; P = 0.0008) had lower SPAD values than row three (47.4). No differences occurred 

between rows four (47.7), five (48.3), and six (48.1) indicating that virus impact was 

primarily limited to the first two- to three-rows adjacent to the plot. 

The interaction between host and direction was significant (F15,497 = 1.81; P = 

0.0574).  Contrasts comparing the east to the average of all other directions for each host 

found significant differences for barnyard grass (F1,90 = 21.56; P < 0.0001) whereas no 

differences were found for corn (F1,90 = 0.30; P = 0.5865), foxtail millet (F1,90 = 0.02; P = 

0.8991), green foxtail (F1,90 = 0.28; P = 0.5984), post-harvest wheat (F1,90 = 0.03; P = 

0.8712) or bare (F1,90 = 0.05; P = 0.8156). These differences indicate that barnyard grass 

had significant mite movement and virus spread relative to the other over-summering 

hosts. 
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The host by row interaction was also significant (F25,497 = 23.77; P < 0.0001). 

Contrasts of row one vs. the remaining rows for each host indicated significant 

differences for barnyard grass (F1,497 = 114.77; P < 0.0001), corn (F1,497 =10.17; P = 

0.0015), foxtail millet (F1,497 = 14.52; P = 0.0002), and green foxtail (F1,497 = 10.61; P = 

0.0012) indicating virus impact adjacent to these hosts. In comparison, no differences 

occurred for post-harvest wheat (F1,497 = 0.04; P = 0.8381) and bare (F1,497 = 0.51; P = 

0.4750) indicating a lack of virus impact or gradient from these hosts.  

The interaction of row by direction was also significant (F15,497 = 2.20; P = 

0.0058) with the direction east of the plots being significantly different than the average 

of all other directions between rows one (F1,497 = 4.23; P = 0.0402) and three (F1,497 = 

6.53; P = 0.0109) but no differences occurred for rows two (F1,497 = 0.42; P = 0.5154), 

four (F1,497 = 0.03; P = 0.8673), five (F1,497 = 2.32; P = 0.1280) and six (F1,497 = 1.01; P = 

0.3145). The interaction between host, row, and direction was not significant (F75,497 = 

1.02; P = 0.4427).   

ELISA absorbance values on all rows directly adjacent to the plot differed 

between hosts (F5,25 = 7.91; P = 0.0001) with barnyard grass (0.79; F1,25 = 35.6; P < 

0.0001) having significantly higher absorbance values and greater virus presence than all 

other hosts. Only numerical differences were observed between green foxtail (0.40), corn 

(0.36), foxtail millet (0.31), post-harvest wheat (0.25) and bare (0.21). Direction was also 

significant (F3,71 = 4.56; P = 0.0056) with north (0.52; F1,71 = 10.5; P < 0.0018) having 

greater absorbance values than east (0.28), south (0.34) or west (0.39). Hosts also varied 

by direction (F15,71 = 2.18; P = 0.0149) with barnyard grass having higher absorbance 
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values than all other hosts on the north and west sides but not the south and east sides of 

the plot. 

ELISA absorbance values (Fig. 3.3b) analysis on east rows one, three and five of 

the plots differed by host (F5,25 = 2.56; P = 0.0467) with barnyard grass (0.42) having 

greater virus presence than corn (0.23), foxtail millet (0.22), green foxtail (0.22), post-

harvest wheat (0.26) and bare ground (0.21). These results indicate that mites coming 

from barnyard grass may have greater virus transmission rates than mites from other 

hosts.  There was no difference between rows (F2,38 = 1.88; P = 0.1669), or for the 

interaction between host and row (F10,38 = 0.92; P = 0.5250). 

 

2014-15: Mite activity 

 Proportion of WCM-infested plants (Fig. 3.4a) was different between hosts (F5,30= 

24.13; P <.0001) with greatest activity occurring from barnyard grass (0.65), followed by 

foxtail millet (0.48), green foxtail (0.31), corn (0.09), post-harvest wheat (0.02) and bare 

ground (0.02).  Differences also occurred between collection dates (F5,141 = 2.29; P = 

0.0489) as a result of reduction in activity between week 2 (0.23) and week 4 (0.09) of 

October.  A significant interaction occurred between host and collection date (F25,141 = 

2.98; P < .0001).  Late season interactions were primary due to significantly greater mite 

activity from barnyard grass (0.78) compared to the average of foxtail grasses (0.46) 

during week 2 (F1,141 = 9.25; P = 0.0028) of October whereas no differences occurred 

during week 4 (F1,141 = 2.03; P = 0.1560) of the same month. All other orthogonal 

contrasts (Table 3.3) with the exception of bare ground vs. post-harvest wheat showed 

significant differences for the last three collection dates.  Mites per plant (Fig. 3.4b) were 



 

 

 

98 

fewer in 2013-14 and data were nearly identical in terms of significant main effects and 

orthogonal contrasts (Table 3.3).  

Trap pots exposed to the field from 12 to 19 August and held in a greenhouse for 

virus detection showed WSMV positive samples for barnyard grass (4/9: 44%), corn 

(6/11; 55%), green foxtail (4/5; 80%), post-harvest wheat (0/11; 0%) and bare (0/12; 0%). 

Foxtail millet had only one sample during this period due to a large amount of herbivory. 

The second virus collection occurred from 23 to 30 September with the following results: 

barnyard grass (10/11; 91%), corn (0/12; 0%), foxtail millet (0/11; 0%), green foxtail 

(2/10; 20%), post-harvest wheat (0/12; 0%) and bare ground (0/12; 0%). 

 

2014-15: Virus Impact 

 Relative chlorophyll content or SPAD readings (Fig. 3.5a) showed significant 

differences between hosts (F5,25 = 2.46; P = 0.0602) with barnyard grass (37.6; F1,25 = 

9.33; P = 0.0053) having significantly lower readings than post-harvest wheat (39.4), 

green foxtail (39.7), corn (40.6), foxtail millet (40.7), and bare ground (41.1).  SPAD 

values also differed by direction (F3,90 = 3.47; P = 0.0195) from plots with the north 

(39.6), east (39.6), and south (39.6) having significantly lower SPAD readings (F1,90 = 

10.39; P = 0.0018) than the west (40.6). Rows also differed (F5,598 = 2.64; P = 0.0226) 

with contrasts showing that rows one (39.3) and two (39.4) had lower SPAD values 

(F1,598 = 11.28; P = 0.0008) than rows three (40.1), four (39.9), five (40.4), and six (40.0). 

This indicates that mite movement and virus spread originated from host treatments and 

that hosts were unlikely to cause significant impact on neighboring host plots.  
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The host by row interaction was also significant (F25,598 = 5.96; P < 0.0001). 

Contrasts comparing rows one, two and three to rows four, five and six for each host 

showed significant differences for barnyard grass (F1,598 = 91.21; P < 0.0001) and corn 

(F1,598 = 6.45; P = 0.0133) whereas no differences occurred for foxtail millet (F1,598 = 

0.58; P = 0.4467), green foxtail (F1,598 = 0.42; P = 0.5172), post-harvest wheat (F1,598 = 

0.01; P = 0.9122) or bare ground (F1,598 = 1.59; P = 0.2083).  Interactions of host by 

direction (F15,90 = 1.11; P = 0.3572), row by direction (F15,598 = 1.27; P = 0.2186) and 

host, row, and direction (F75,598 = 0.89; P = 0.7258) were not significant. 

 ELISA absorbance values for WSMV on rows directly adjacent to the plot 

differed between hosts (F5,25 = 6.75; P = 0.0004) with barnyard grass (0.68; F1,25 = 25.12; 

P < 0.0001) having greater absorbance values than all other hosts. In addition, foxtail 

millet (0.41; F1,25 = 7.75; P = 0.0101) had greater values than post-harvest wheat (0.16) 

and bare ground (0.12). No differences occurred between corn (F1,25 = 1.45; P = 0.2392) 

or green foxtail (F1,25 = 3.00; P = 0.0956) when compared with post-harvest wheat and 

bare ground. ELISA absorbance values also varied by direction (F3,90 = 5.25; P = 0.0022) 

with the east (0.46; F1,90 = 10.86; P = 0.0014) having greater absorbance values than 

north (0.34), west (0.28), and south (0.19). The interaction between host and direction 

was not significant (F15,90 = 1.26; P = 0.2437). 

 ELISA values for east rows one, three and five (Fig. 3.5b) differed between hosts 

(F5,25 = 7.78; P = 0.0002) with barnyard grass (0.94; F1,25 =31.37; P < 0.0001) having 

higher absorbance values compared to corn (0.41), foxtail millet (0.37), green foxtail 

(0.40), post-harvest wheat (0.15) and bare ground (0.11). Corn (F1,25 = 4.77; P = 0.0386) 

and green foxtail (F1,25 = 4.20; P = 0.0510) had significantly greater absorbance values 
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and foxtail millet (F1,25 = 3.37; P = 0.0784) was approaching significance when compared 

to the average of post-harvest wheat and bare ground plots. Rows were approaching 

significance (F2,60 = 2.41; P = 0.0982) with row one (0.45) having numerically but not 

significantly (F1,60 = 2.41; P = 0.0861) higher absorbance than rows three (0.32) and five 

(0.40). The interaction between host and row was not significant (F10,60 = 1.42; P = 

0.1919). 

 

Mite Movement and Virus Impact Correlations 

 To evaluate the relationship between mite movement and virus impact, we 

correlated mite movement parameters (proportion of plants infested and average number 

of mites per plant) with virus symptomology (SPAD values) and presence (ELISA 

absorbance) for each year of the study (2013-14 and 2014-15) (Table 3.4).  Mite 

movement parameters were further divided into two categories based on season long mite 

movement and movement occurring after falling planting of wheat (after Sept. 15). Virus 

symptomology (SPAD) and virus presence (ELISA) were divided into three categories to 

evaluate correlations with different spatial relationships around the plots and included:1) 

average of the row directly adjacent to the plot in each cardinal direction (row 1, 2) 

average of the rows sampled for ELISA east of the plot (east rows 1, 3, and 5), and 3) all 

rows sampled for ELISA (row 1 in all directions, plus rows 3 and 5 to the east of the 

plot).  

 In 2013-14, the average number of mites per plant across the entire season 

provided the strongest correlation with virus symptomology and presence. A strong 

negative correlation was found with SPAD at -0.64, -0.58, -0.63 and a similar positive 
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correlations was obtained for ELISA with 0.63, 0.52, 0.68 for row one, east rows and all 

rows parameter, respectively. A poor relationship was found for mite movement 

parameters of the post planting period with a range of -0.17 to -0.19 and 0.10 to 0.12) 

across all spatial parameters for virus symptomology and presence, respectively. The 

proportion of plants infested with mites showed a slightly lower but similar correlation to 

the average number of mites for whole season movement when compared with SPAD 

values ranging from -0.50 to -0.53. ELISA absorbance values with the proportion of 

plants infested for the whole season were similar for row 1 (0.51) and all rows (0.53); 

however, correlation values were reduced for east rows (0.32). Correlations were lower 

for all virus impact parameters when compared to mite movement data from the post 

planting period.  

 In 2014-15, the strength of correlations varied considerably when comparing 

SPAD and ELISA. In general, stronger correlations were found between the proportion of 

infested plants and ELISA absorbance readings ranging from 0.58-0.65. Similar 

correlations were found between the average number of mites per plant and ELISA 

readings for row one (0.61), east rows (0.58), and all rows (0.64). SPAD correlations with 

mite movement parameters were lower than those for ELISA parameters. Correlations 

with post planting data were lower than those for entire season data; however, these 

values were not as variable as those in 2013-14.   
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Discussion 

Consistent and significant mite movement occurred from neighboring winter 

wheat fields to the study site during both years (Fig. 3.1).  Peak mite movement coincided 

with the soft- and hard-dough stages of winter wheat and then declined rapidly after 

harvest.  Over-summering hosts, with the exception of post-harvest wheat, were at 

various stages of vegetative development (Table 3.2) during the peak mite movement 

period providing substantial opportunity for mites to infest and become established on 

over-summering hosts. The relative pressure of mites on over-summering hosts is 

supported by the high frequency and large population of mites found on pre-harvest 

wheat within a week of harvest. Extensive infestation of pre-harvest wheat necessitated 

its destruction to eliminate its potential to infest other host plots. After destroying pre-

harvest wheat, plots were designated as ‘bare ground’ plots, and they provided a measure 

of background mite activity for the remainder of the season. Trap pots in bare ground 

plots had minimal mite presence in both years, indicating that there was no significant 

background or interplot movement of mites. Thus, mite spread and virus impact within 

and around an individual plot would be representative for that host. 

Mite activity and virus impact from over-summering hosts varied between the two 

study years, primarily as a result of continued mite movement during the fall of 2014. 

Similar environmental conditions were reported each fall, with the exception of warmer 

temperatures during October 2014.  Warm temperatures may have allowed for continued 

growth of over-summering hosts and reproduction of mites leading to an extended period 

of mite movement. Virus impact on fall planted wheat was greater in 2014 when 

compared with 2013 and was likely a result of an earlier planting date and warmer 
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temperatures during the 2014 season. In 2013, heavy rains during early-September 

delayed planting with wheat emerging during early-October. 

 Of the over-summering hosts evaluated, barnyard grass provided the greatest mite 

movement (Fig. 3.3a,b; 3.5a,b), virus symptomology (Fig. 3.4a, 3.6a), and virus presence 

(Fig. 3.4b, 3.6b) during both years of the study.  The potential risk of barnyard grass as a 

source of mites and virus was not anticipated based on historical literature.  Somsen and 

Sill (1970) indicated that only 2.2% of barnyard grass plants surveyed were found to be 

infested with WCM. The reduced mite presence they saw could be due to a lack of mite 

pressure in the areas surveyed or differences in timing of emergence of barnyard grass 

relative to winter wheat harvest. Christian and Willis (1993) documented greater potential 

for barnyard grass with WSMV infection rates ranging from 10% in 1988 to 56% in 

1989.  However, high WSMV infection rates on barnyard grass indicates that mites have 

fed on the host and that the plants are susceptible to virus, but it does not indicate mite 

presence or potential for mite movement back to wheat in the fall.  The high risk of mite 

and virus presence in barnyard grass in this field study and the conflicting data from 

previous research, indicates the value of conducting field studies to evaluate the risk 

characteristics stated in Christian and Willis (1993). 

 Foxtail millet showed consistent and significant mite movement during both years 

of the study with increasing mite activity during the fall of 2014. Virus presence on trap 

pots was less consistent with only one collection period with 36% WSMV positive trap 

plants.  Low virus presence in trap pots corresponded with limited virus presence around 

the plots. WSMV was detected via ELISA on the surrounding wheat plants, but 

absorbance values were not greater than those for post-harvest wheat or bare ground plots 
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in either season. The lack of virus spread from foxtail millet may be a related to the 

differential susceptibility of foxtail millet varieties to WSMV as reported by Slykhuis 

1952, 1955, 1961, Sill and Connin 1953, Sill and Agusiobo 1955, Seifers et al. 1996). 

This study provides the first field based evidence of mite movement and virus spread 

from foxtail millet, adding critical supporting evidence for previous anecdotal and field 

based observations (Shahwan and Hill 1984). Historical inconsistences of virus impact 

around foxtail millet fields may correspond to the timing of foxtail millet harvest or its 

ability to support WSMV. The presence and importance of foxtail millet in the western 

Great Plains region indicates the need for additional studies to better understand the 

relationship between timing of foxtail millet harvest, differences in virus susceptibility of 

current varieties, and its status relative to the emergence of fall planted winter wheat.  

 Green foxtail showed a low but significant level of mite activity throughout the 

summer with 19 and 32% of trap plants infested with mites in 2013 and 2014, 

respectively. Mite presence corresponded with virus symptomology (Fig. 3.3a) and 

presence (Fig. 3.3b), but virus presence was limited to the first row in 2013. In 2014, 

virus symptomology (Fig. 3.5a) and presence (Fig. 3.5b) spanned multiple rows. An 

earlier planting date and warmer fall temperatures in 2014 likely contributed to increased 

virus presence. Previous literature has shown a consistent but low number of WCM on 

green foxtail plants under field conditions; however, its potential impact on winter wheat 

was unknown. The literature contains several potential over-summering hosts with low 

levels of mite activity indicating a need for such hosts to be evaluated in a similar manner 

to properly estimate their risk to wheat.   
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 Corn had relatively low levels of mite activity during the over-summering period 

for both seasons with peak mite activity occurring during mid- to late September. Nault 

and Styer (1969) documented the presence of mites on corn after the V8 leaf stage. 

During both years, corn development was beyond the V8 stage at wheat harvest, 

increasing the potential to be become infested.  Mite activity from corn was generally 

lower than anticipated. This could be due to structural differences of corn compared to 

other over-summering hosts in this study. Mites are generally found within the husks and 

ears of corn during the latter half of the season (Nault and Styer 1969). Corn ear height, 

reduced vegetation density in the lower canopy, and small plot size may have limited the 

mite activity in the lower part of the canopy where the trap pots were located.  Higher 

mite activity in the canopy is further supported by the distribution of virus presence 

around the plots with greater virus damage at row five than row one during the spring of 

2015.  Future studies should consider placing additional trap pots at intervals away from 

the corn plots to provide an estimation of differences in mite activity based on trap pot 

location for structurally taller hosts. Virus impact around plots in combination with 

historical literature indicates caution when planting winter wheat next to corn that has not 

been harvested. 

 Correlations between mite movement and virus symptoms (SPAD) or virus 

presence (ELISA) varied considerably between the two years of the study.  The greatest 

and most consistent correlations across both years of the study occurred when the average 

number of mites per plant across the whole season was combined with ELISA 

absorbance values for all rows.  In 2013-14, the average number of mites per plant had a 

better correlation with virus impact due to the large number of mites per trap plant from 
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the trap pots and virus impact from barnyard grass. The differences between SPAD and 

ELISA were relatively small for either of the mite movement parameters when using 

whole season mite movement data. 

 Poor correlations in 2013-14 occurred when mite movement was limited to the 

post-planting date. This likely resulted from delayed planting and emergence of the 

winter wheat and a reduction in mite activity from over-summering hosts for the last 

sample period. In contrast, correlations for mite movement after planting provided a good 

correlation for SPAD and ELISA during 2014-15 with the highest correlations occurring 

for ELISA absorbance values; however, these correlations were lower than the full 

season correlations. A reduction in correlations for SPAD readings during 2014 could be 

due to the timing of SPAD reading or the presence of other chlorophyll limiting diseases 

or abiotic factors in the field study.  

 The results from this study demonstrate the ability of barnyard grass, green 

foxtail, and foxtail millet to support mites under field conditions and cause significant 

virus impact to fall planted winter wheat. Establishing plots and allowing for natural 

infestation of mites and virus allowed for better representation of natural infestation 

potential of over-summering hosts. Monitoring mite movement into the study area 

provides an indication of the extent and timing of mite movement with synchrony of 

over-summering host stage of development.  In addition, monitoring movement from 

each host provided an understanding of the temporal ability of an over-summering host to 

support mites, and provided additional information on its risk potential during the fall 

period. Virus impact around host plots was fundamental to understanding risk as foxtail 

millet supported a large number of mites but showed reduced virus impact relative to 
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barnyard grass. The combination of mite movement and virus impact provides the most 

complete picture of over-summering host risk as source of mites and virus to fall planted 

winter wheat.  

 Conducting over-summering host studies under field conditions provided an 

opportunity to evaluate mite type differences between hosts. Our results indicate that mite 

types varied by host; as a result, future studies should consider mite types when 

conducting field or greenhouse experiments.  Our results may provide some resolve in the 

differences in mite survival reported in previous studies.   

 The ability of barnyard grass and green foxtail to support mites and cause damage 

to fall planted wheat indicates a need for a better understanding of the distribution and 

frequency of these hosts in the western Great Plains. Such information would also 

provide an understanding of other potential hosts that may be important the wheat-mite-

virus complex.  
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Table 3.2.  Development stage of hosts (pre-harvest and post-harvest wheat, 

barnyard grass, green foxtail, foxtail millet, and corn) at harvest and fall planting of 

winter wheat for 2013 and 2014.  

Host 
Wheat Harvest Fall Planting 

2013 2014 2013 2014 

Pre-harvest wheat Z29+ Z29+ - - 

Post-harvest wheat - - Z24 Z28 

Corn V13 VT/R1 R6 R5.25 

Foxtail millet Z32 Z32 Z59 Z59 

Barnyard grass Z29 Z31 Z57-59 Z55-59 

Green foxtail Z26 Z28 Z57-59 Z59 

*Z = Zadoks scale used to assess plant development for pre-harvest, post-harvest, foxtail millet, barnyard grass, and green foxtail. 

Corn staged according to leaf collar method (Abendroth et al. 2011). 
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Figure 3.2. Proportion of infested trap plants (a) and average number of wheat 

per trap plant (b) for 2013-14 season from one week after wheat harvest until 

late October for six hosts (barnyard grass, corn, foxtail millet, green foxtail 

post-harvest wheat, and pre-harvest wheat / bare).  

 

 

  

(a) 

(b) 
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Figure 3.3. Virus symptomology (SPAD: relative chlorophyll content) and 

presence (WSMV ELISA absorbance) for wheat surrounding the over-

summering plots (spring 2014). 

 

  

(a) 

(b) 
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Figure 3.4. Logit of infested trap plants (a) and average number of wheat per 

trap plant (b) for 2014-15 season from one week after wheat harvest until late 

October for six hosts (barnyard grass, corn, foxtail millet, green foxtail post-

harvest wheat, and pre-harvest wheat / bare). 
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Figure 3.5. Virus symptomology (SPAD: relative chlorophyll content) and 

presence (WSMV ELISA absorbance) for wheat surrounding the 

oversummering host plots (spring 2015). 
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CHAPTER 4 

Window of Risk for Germination of Pre-Harvest Volunteer   

during the Heading Stages of Winter Wheat  
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Introduction 

 The wheat-mite-virus complex is one of the primary yield limiting diseases in 

wheat in the western Great Plains. Kansas disease loss estimates indicate that 

approximately 11 million bushels (2.7%) of wheat was lost as a result of this complex 

during the 2015 season (Appel et al. 2015). This complex consists of three viruses (Wheat 

streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus 

(WMoV)) that are transmitted by the wheat curl mite (WCM) (Aceria tosichella Keifer).  

Landscape level impacts from this complex are not equally distributed throughout the 

Great Plains.  Yield impacts are usually localized to a few fields and are primarily 

attributed to the presence of pre-harvest volunteer wheat.  

 Risk of pre-harvest volunteer wheat as a source of mites and virus requires a 

sequence of events beginning prior to winter wheat maturing in early summer. Risk 

begins with wheat seeds being dislodged from wheat heads usually as a result of 

hailstorms occurring during the heading stages of winter wheat. Hailstorms are often 

accompanied by rain, resulting in adequate moisture to germinate the dislodged seeds. 

Volunteer wheat germinating prior to winter wheat maturing (pre-harvest volunteer 

wheat) allows mites to move directly from the maturing wheat crop to the volunteer 

wheat. Once established, WCM populations can build rapidly during the summer months, 

as long as the volunteer wheat remains viable. Wheat planted in adjacent fields will 

gradually become infested with WCM from pre-harvest volunteer wheat. The timing of 

the mite infestation and virus inoculation, presence of resistant varieties, and prevailing 

environmental conditions will determine the yield impact on winter wheat.  



 

 

 

122 

The risk potential for volunteer wheat to serve as a source of mites and virus 

depends on the timing of its emergence. This is due to the limited off-plant survival of the 

WCM of only less than 1-2 days under warm temperatures and low humidity conditions 

(Wosula et al. 2015).  As a result, volunteer wheat emerging after harvest results in a 

break in the green bridge period without a viable host for WCM. This break reduces the 

potential for mites to infest volunteer wheat and dramatically reduces the risk potential to 

fall planted wheat. 

The importance of the pre-harvest volunteer wheat in the epidemiology and 

impact of the wheat-mite-virus complex reinforces the need for detailed information on 

the winter wheat head development stage at which winter wheat could germinate. Such 

information is critical for determining the window of time where hail events could result 

in germination of pre-harvest volunteer wheat. Information on the window for 

germination can help concentrate grower and consultant efforts in scouting and 

evaluating potential high-risk fields. 

 The germination of immature wheat prior to crop maturity has been an important 

topic in winter wheat breeding as a means of accelerating breeding programs and genetics 

studies (Robertson and Curtis 1967). Researchers have identified numerous factors that 

can influence the ability of winter wheat seed to germinate prior to harvest, such as 

temperature, drying after collection, handling, variety, and location within the wheat head 

(Nutman 1941, Nosatovsky 1957, Aginyan 1958, Kalinin 1959, Robertson and Curtis 

1967, Balla 1979).  

Without post collection modifications, winter wheat is capable of germinating 

approximately 9-14 days after pollination with adequate long-term available moisture 
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(Nutman 1941, Nosatovsky 1957, Aginyan 1958, Kalinin 1959, Abramova 1964, 

Robertson and Curtis 1967, Balla 1979). Temperature is an important component in these 

evaluations as non-ripened wheat seeds appear dormant at 20-35°C whereas germination 

can occur at 10-15°C (Atterberg 1907, Ching and Foote 1961, George 1967). In addition, 

temperature was found to have a significant effect on the total germination with a higher 

percentage of seeds germinating at 12°C (80%) compared to 20°C (49%) (Balla 1979). 

 Drying or desiccating immature wheat heads prior to inducing germination can 

significantly reduce the number of days from pollination necessary for germination, as 

well as the percentage of wheat seeds that germinate (Balla 1979). Balla (1979) found 

that wheat was capable of germinating at 6-8 days after pollination with 12 weeks of 

drying. In contrast, wheat was unable to germinate until 14 days after pollination without 

drying (Balla 1979).  

 Post collection handling of immature wheat seeds has been shown to increase its 

germination potential. Removal of the outer-pericarp from unripened wheat seeds 

increased their germination (Wellington 1956a, Gordon 1970, Radley 1979, Mitchell et 

al. 1980). It is hypothesized that the inhibitory effect of the outer-pericarp is due to its 

mechanical strength (Wellington 1956b) or the restriction of gas exchange with the 

embryo (Radley 1979).  

 Detailed studies by Wellington (1956a) and Hardesty and Elliott (1956) found 

that seed location within a wheat head could have a significant impact on its germination 

with limited germination occurring at the base of the head unless desiccated prior to 

germination. This may be in part due to the sequence of fertilization within a wheat head.  

This first occurs for seeds in the middle of the head followed by those at the top, and 
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lastly, the seeds located at the base of the wheat head are fertilized (Wellington 1956a). 

Percival (1922) observed similar results with a 2-4 day delay in anthesis of the basal 

spikelet. 

 Seed dormancy or pre-harvest tolerance to sprouting has been tightly linked to 

seed color, and as a result, cultivars vary significantly in tolerance to germination prior to 

harvest.  Wellington (1956a) observed a rapid increase in germination of white wheat 

(88%) at 5-8 weeks whereas red wheat was only 7% germinated.  Nyachiro et al. (2002) 

tested 10 spring wheat varieties with varying degrees of dormancy at different 

temperatures and found that low temperatures could break seed dormancy in tolerant 

varieties. Mares (1993) found that eight hard white wheat cultivars varied significantly in 

their germination at and following harvest. Five hard red winter wheat varieties were 

evaluated for germination of immature kernels by Robertson and Curtis (1967); however, 

the authors indicated that there were no differences between the varieties with average 

germinations occurring within 15 days of pollination with green wheat. Although a 

significant amount of work has been conducted on pre-harvest germination there is a lack 

of information on germination of early stages of head development on current wheat 

varieties without drying and a comparison of early season germination of varieties based 

on sprouting tolerance scores. 

 A recent study by Graybosch et al. (2013), evaluated genetic markers for 

prediction of pre-harvest sprouting in winter wheat. Commercially available hard red 

winter wheat varieties showed a wide variation in sprouting tolerance with the greatest 

tolerance occurring in ‘Camelot’ and lowest tolerances occurring in ‘Pronghorn’.  An 

analysis of marker alleles across several wheat varieties revealed that QPhs. pseru-2B1 
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provided a significant contribution to pre-harvest tolerance in the white winter wheat ‘Rio 

Blanco’ (Graybosch et al. 2013). The identification of genes for pre-harvest tolerance 

tosprouting and screening methods for selecting sprout-tolerant wheat varieties provides 

an opportunity to determine whether or not these characteristics could be important for 

pre-harvest germination of wheat following natural hail events. 

 Wheat germination research has been primarily focused on early season harvest of 

winter wheat to shorten breeding cycles and not as a means of determining risk for pre-

harvest volunteer development. The goal of this study was to evaluate the germination of 

winter wheat from varieties with varying degrees of pre-harvest sprouting, establish a 

first germination date based on thresholds for each variety, and determine a window of 

risk for the development of  highly risky volunteer wheat. Unlike previous studies, this 

research was done over a number of seasons to gain an understanding of the impact of the 

crop growth environment on germination, and determine if variety could be used as a 

means of reducing the potential for pre-harvest volunteer wheat. Previous studies have 

only documented the number of days since anthesis and not the stage of wheat 

development at first germination. Days after anthesis is an accurate description under 

controlled conditions; however, the head development of wheat will progress at different 

rates under field conditions due to temperature and moisture availability. Such 

information is critical for producers and consultants to evaluate the risk for this serious 

disease under field conditions.  
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Materials and Methods 

Germination for Wheat Head Collections 

Wheat heads were collected from fields over three separate growing seasons at 

two locations per season in conjunction with the Winter Wheat State Variety Trials 

conducted by the University of Nebraska-Lincoln. The 2011-12 and 2013-14 samples 

were collected from Cheyenne and Deuel County, Nebraska. The 2012-13 samples were 

collected from Cheyenne and Kimball County. Two wheat varieties were chosen based 

on their tolerance to pre-harvest sprouting, ‘Pronghorn’ (susceptible) and ‘Camelot’ 

(resistant) (Graybosch et al. 2013). These varieties were grown in a randomized complete 

block design with five replications. Each plot consisted of 6, 6-m rows with 0.3-m 

spacing between rows. Plots were sampled every 7-9 days beginning at the water-ripe 

stage until harvest with 5-8 collections occurring during each season. Three wheat heads 

were randomly selected from the far right row of each plot. Wheat heads were staged 

based on a seed selected from the middle of each wheat head. After staging, wheat heads 

were each placed in separate clear plastic clamshell food containers (10 x 10-cm) to 

evaluate germination. Awns were cut back to the glumes on each head and seeds were 

separated from the rachis. Seeds were spread across the soil surface and sprayed with 12 

mL of water. Containers were sealed and held at 18 – 24°C and germination was 

evaluated every three days up to 21 days. The numbers of seeds per head were counted 

during the final sample for each variety to determine the total seeds available for 

germination.  

Risk of volunteer wheat germination was evaluated in four separate analyses, to 

evaluate variety germination characteristics, risk groups, time-to-event for first 
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germination, and pre-harvest germination regressions. Germination variety characteristics 

were determined by analyzing the germination potential of sprouting tolerant and 

susceptible wheat varieties at each stage of head development with access to continuous 

moisture. The second analysis was to determine three risk groups with differing levels of 

potential access to moisture as an indication of likelihood that germination could occur in 

the field. The third analysis utilized the risk groups and a 1% germination threshold to 

determine the window of risk for germination prior to harvest. The last analysis focused 

on the relationship between germination and pre-harvest date through regression 

equations. Prior to the analyses, germination counts were converted to proportion of 

germination. Studentized residuals indicated that proportion data were not normally 

distributed, with the response variable limited between 0 and 1, thus a beta distribution 

was used in the analysis.   

 

Variety Germination Characteristics 

Germination characteristics between wheat varieties and stages were analyzed 

with a type I test for fixed effects by using PROC GLIMMIX (version 9.22; SAS Institute 

2009). These fixed effects were partitioned over sampling day into linear and quadratic 

portions to determine fixed effects in prediction models. Non-significant effects were 

removed from the model. Significant quadratic effects were further analyzed in the 

solution for fixed effects and individual treatments were removed from equations if they 

were non-significant. Equation parameters were obtained from the solution for fixed 

effects. Correlations between observed values and the values predicted by the regression 

equations were used to estimate the fit of the equations (PROC CORR; version 9.22; SAS 
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Institute 2008). Contrasts were used to compare intercept, linear, and quadratic 

parameters between equations. 

 

Risk Groups 

An analysis was undertaken to compare germination potential across varieties for 

various days of incubation in clamshell containers by treating day as a categorical 

variable. Available moisture is one of the primary constraints to germination of immature 

wheat seeds under field conditions; therefore, limited time to germination in clamshell 

containers would represent a greater likelihood of germination under field conditions. 

Risk groups of 6, 9 and 12 days were chosen based on differences between days and a 

minimum threshold for germination. Day 6 germination in clamshell containers 

represented limited access to moisture under field conditions whereas days 9 and 12 

represented increasing greater access to moisture following a hail event. These risk 

groups were used in the time-to-event analysis and pre-harvest germination regressions to 

evaluate the risk of volunteer wheat establishment with varying levels of available 

moisture following a hail event. 

 

Time-to-Event 

A time-to-event analysis was run to determine the earliest pre-harvest date at 

which germination could occur using a 1% germination threshold for each risk group 

(Day 6, Day 9, and Day 12). Prior to the analysis a germination was averaged across the 

three heads within each plot. Germination values exceeding a threshold of 1% were given 

the corresponding pre-harvest date when the threshold was exceeded.  Studentized 
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residuals indicated that the response variable of pre-harvest date was normally 

distributed.  An analysis of variance type III test using PROC GLIMMIX (version 9.22; 

SAS Institute 2008) with an F-test was done to determine significant effects for variety 

and risk groups. Differences within risk groups and varieties were determined through t-

tests. Random effects were years and locations.  

 

Pre-harvest Germination Regressions 

A regression analysis was used to determine germination from the time of first 

germination to harvest. This analysis was done using the same methods as the variety 

characteristics regression analysis to test the fixed effects of variety and risk group. These 

variables were partitioned over pre-harvest dates into linear and quadratic effects. 

Equations were obtained from the solutions for fixed effects after non-significant 

parameters were removed. Correlations were used to determine fit of equations and 

contrasts were run to determine differences in parameters.   
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Results 

 The seasonal growth and development of winter wheat varied significantly 

between years, primarily as a result of extreme drought conditions during the 2011-12 

growing season.  The water ripe (Zadoks 71) stage for winter wheat occurred on 24 May 

2012, 10 June 2013, and 12 June 2014. In addition, the developmental time between 

water ripe and harvest was 35, 40, and 42 days for 2012, 2013, and 2014, respectively. 

This variation in maturity and development of wheat was primarily due to low 

precipitation combined with high temperatures in 2012 (19.5mm, 30.1°C) during the 

head development period compared to 2013 (60.1mm, 26.5°C) and 2014 (76.7mm, 

25.9°C).  

 

Variety Germination Characteristics 

 An analysis of year, variety, and days in germination containers showed no 

interaction for year by variety (F2,325 = 0.39; P = 0.6789), or year for the linear (F2,325 = 

0.03; P = 0.9682), or year for the quadratic (F2,325 = 0.39; P = 0.8691); therefore, years 

were combined for the analysis.  

 An analysis of variety and stage (Table 4.1) showed a significant interaction 

between stage and variety with increasing greater germination for Pronghorn compared to 

Camelot through hard dough and a reduction in both varieties at the harvest ripe stage. 

Germination first occurred in Pronghorn in the early milk stage at 0.6%. Increasing 

germination was observed in Camelot and Pronghorn in the middle milk (0.5%, 1.1%), 

late milk (0.6%, 2.5%) stages, early dough (0.9%, 9.6%), soft dough (1.2%, 13.0%), hard 
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dough (2.5%, 21.1%), respectively. Germination declined to 1.8% for Camelot and 

12.4% for Pronghorn at the harvest ripe stage.  

 For regression comparisons between variety and stages across days in germination 

containers, both linear and quadratic parameters had a significant interaction with variety 

and stage (Table 4.1). Quadratic parameter evaluation for individual treatment 

combinations showed that only soft dough, hard dough, and harvest ripe had a significant 

quadratic effect for Camelot whereas Pronghorn quadratic parameters were significant 

from the late milk through harvest ripe stages (Table 4.2; Fig. 4.1, 4.2). Regression 

equations for varieties and stages were a good fit of observed values with correlations 

ranging from 0.73 to 0.99 for Pronghorn and 0.70 to 0.98 for Camelot (Table 4.2). 

Pairwise contrasts comparing Camelot and Pronghorn at each development stage 

showed a greater intercept (Table 4.3) for Pronghorn at late milk, soft dough, and hard 

dough compared to Camelot at the same stages. In addition, linear parameter contrasts 

(Table 4.4) showed greater slopes for Pronghorn compared to Camelot at middle milk 

and late milk. Quadratic parameters (Table 4.5) showed no differences between varieties 

at the same stage of development, indicating similar onsets of dormancy near wheat 

harvest. However, for Pronghorn the quadratic parameter for late milk was significantly 

higher than for the remaining stages, and the quadratic parameter for hard dough was 

significantly lower than for the remaining stages (Table 4.5). Parameter comparisons 

between varieties for the harvest ripe stage showed no difference for intercepts, linear, or 

quadratic parameters. However, the combination of these parameters resulted in 

significant differences between varieties for the harvest ripe stage at day 12 (F1,342 = 6.74; 

P = 0.0097) with increasing differences through day 21 (F1,342 = 34.78; P <.0001). 
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Establishing Risk Groups 

To establish risk groups for pre-harvest germination, we assumed that more rapid 

germination or fewer days to germination would represent a greater likelihood of 

germination under field conditions, and this would result in greater risk potential for 

volunteer wheat development following a hail storm. Overall, germination increased 

across the days held in containers, and for both varieties and growth stages, the 

treatments that germinated earliest also increased to the greatest levels of germination by 

21 days (Fig. 4.1, 4.2).  The effect of days was highly significant (F6,70 = 27.66; P 

<.0001) with germination increasing from 0.7% at day 3 to 18.0% at day 21. The low 

proportion of germination at day 3 was less than 0.5% for most stages; therefore, it was 

considered too low to utilize as a risk category. A comparison of day 3 and 6 (1.7%) 

showed that germination was approaching significance (t70 = -1.83; P = 0.0722). As a 

result, day 6 was chosen as the highest risk category because it represented the earliest 

germination to occur at significant levels. Day 9 germination (3.9%) was significantly 

greater (t70 = -2.32; P = 0.0232) than day 6, and it was categorized as medium risk.  

Lastly, day 12 (7.7%) was greater (t70 = -2.77; P = 0.0071) than day 9. The time to 

germination at day 12 represents greater requirements for available moisture following a 

natural hail event under field conditions. The risk categories (Day 6, 9, 12) from this 

analysis were used to generate different risk potentials for germination in subsequent 

analyses. 
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Time-to-Event Analysis 

  Window of risk for germination prior to harvest was evaluated using a 1% 

threshold for each of the risk groups (day 6, 9 and 12) established in the previous 

analysis.  An evaluation of the days before harvest for initial germination in the 

germination containers was done using an analysis of variance type III test (Table 4.6) to 

test the fixed effects variety, risk group, and year. Results showed no significant 

difference between years for pre-harvest germination date; however, differences occurred 

between varieties with first germination occurring at 21 and 11.5 days prior to harvest for 

Pronghorn and Camelot, respectively. In addition, risk groups were different from one 

another with day 12 germination (21.6 days) occurring earlier (t16 = 3.36; P = 0.0040) 

than day 9 (-15.5 days), which occurred earlier (t16 = 4.85; P = 0.0002) than day 6 (-11.3 

days). No interactions occurred between risk group, year, variety or the three-way 

combination.  The lack of interaction between variety and risk group was due to a similar 

reduction in the number of days prior harvest (Fig. 4.4) from low to high risk for each 

variety. 

 

Pre-harvest Germination Regressions 

A regression analysis was conducted to determine the relationship between 

germination and pre-harvest date following first germination. An analysis of year, 

variety, risk group, and pre-harvest day showed a significant year by pre-harvest 

interaction (F2,160 = 3.13; P = 0.0465) as a result of increasing germination in 2011-12 

(Fig. 4) and a decline in germination prior to harvest in 2012-13 and 2013-14 (Fig. 4.5) 

due to pre-harvest dormancy. This interaction combined with the abnormal weather 
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conditions resulted in a separate analysis for the 2011-12 growing season for pre-harvest 

germination equations. 

2011-12 season: An analysis of variance type I test for fixed effects (Table 4.7) 

showed significant main effects (variety, risk group), but there was a significant 

interaction between variety and risk group. This interaction occurred due to a significant 

increase in germination between risk groups for Pronghorn with the day 6 germination 

(1.9%; t29 = -3.95; P = 0.0005) having greater germination compared to day 9 (6.5%), and 

day 9 having greater germination that the day 12 germination (25.2%%; t29 = -9.06; 

P<.0001) risk group. In contrast, day 6 (0.6%; t29 = -1.50; P=0.1448) and day 9 (1.9%; t29 

= -9.06; P=0.3591) risk groups were not significantly different from day 12 (1.3%) risk 

group for Camelot.   

Linear effects also showed a significant interaction with variety and risk group 

(Table 4.7) as a result of greater slope values for Camelot compared to Pronghorn for day 

6 germination whereas Pronghorn had greater slopes for day 9 germination. Quadratic 

effects were not significant for the interaction between variety and risk group; however, 

the solutions for fixed effects (Table 8) showed a significant quadratic effect for both 

varieties for the day 12 germination group. Equations (Table 8) were a good predictor of 

observed values with correlations ranging from 0.87 to 0.99 for across all varieties and 

risk groups. 

Intercept comparisons (Table 4.9) are a reflection of differences in germination at 

wheat harvest. These contrasts showed that Pronghorn had greater germination than 

Camelot for each risk group comparison. Within variety, risk group comparisons of 

intercepts were only significant when comparing day 9 and 12 germination, with greater 
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values for day 9 germination as a result of a significant quadratic effect for the low risk 

group. Linear contrasts (Table 4.9) showed greater slopes for Pronghorn compared to 

Camelot in the high-risk group. No differences in slopes occurred for the other risk 

groups when comparing varieties.  Within Camelot, significant differences occurred 

between day 6 and day 9 risk groups with a greater slope value (Table 4.9) for the day 9 

risk group. For Pronghorn, differences in slopes occurred between all risk groups with 

greatest slope values occurring for the day 12 risk group, followed by day 9 and day 12 

risk groups. Graphical representation of these equations shows that the combination of 

parameters can make linear slopes difficult to interpret. The combination of these 

parameters showed that day 6 germination (Fig. 4.4) increased from <0.5% at 25 days to 

25.2% for Pronghorn prior to harvest. Increasing germination also occurred for day 9 and 

12 groups; however, these increases were lessened by greater germination at 25 days 

before harvest.   

2012-13/ 2013-14 Season: An analysis of variance type I test for fixed effects 

(Table 4.10) for the 2012-13 and 2013-14 showed differences between varieties and risk 

groups; however, there was no interaction between these main effects. Although there 

was no interaction, there was a significant increase in germination between risk groups 

for Pronghorn at 2.6%, 8.3%, and 16.9% for day 6, 9, and 12, respectively. In contrast, 

Camelot germination did not differ between risk groups at 0.7%, 1.1%, and 1.9%. 

Although the interaction term was not significant, its p-value suggest an impact on the 

regression model and was retained in the regression equation.  

Intercept contrast comparisons (Table 4.11) showed no significant differences 

between risk groups for Camelot whereas all risk groups differed in their intercepts for 
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Pronghorn. Contrasts between varieties within the same risk group showed significant 

differences for day 6 germination with greater intercept values for Pronghorn. Linear 

contrasts (Table 4.11) were only significant for Pronghorn between high and low risk 

groups; however, low and medium risk comparisons were approaching significance with 

greater linear parameter for day 12 compared to day 9 risk group. Linear contrasts are 

inherently difficult to interpret due to the strong quadratic effects that occurred. Quadratic 

contrasts (Table 4.11) were very similar between risk groups within Camelot whereas 

significant differences occurred between risk groups for Pronghorn as a result of a 

reduction in dormancy from high risk to medium and low risk groups (Fig. 4.5). 

Correlations were lower in 2012-13/2013-14 compared to 2011/12; however, they were a 

good fit of the observed data ranging from 0.64 to 0.95. 
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Discussion 

 Regardless of the differences in environmental conditions between years 

‘Pronghorn’ consistently exhibited greater germination than ‘Camelot’ with access to 

continuous moisture by wheat development stage (Fig. 4.1, 4.2) and in the days prior to 

wheat harvest (Fig. 4.4, 4.5).  In addition, the pre-harvest date for first germination (Fig. 

4.3) shows that the window of risk for pre-harvest germination began 28 days prior to 

harvest for Pronghorn whereas risk window for Camelot occurred only 15 days prior to 

harvest.  

The response and characteristics of pre-harvest germination of susceptible and 

tolerant wheat varieties used in this study corresponded with pre-harvest sprouting 

tolerance scores established by Graybosch et al. (2013). Selection of wheat lines by plant 

breeders and the increased perception by growers to proactively manage risk for pre-

harvest germination could reduce the potential for the presence of pre-harvest wheat as a 

potential source for the wheat-mite-virus complex.  In addition, the similarities between 

sprouting tolerance and pre-harvest germination implies that sprouting tolerance scores 

could be used as a means of selecting varieties for a reduced window of risk for pre-

harvest germination. It’s important to note that this study was conducted under controlled 

conditions, and likely provides the greatest potential window for pre-harvest germination. 

Previous research by Biddulph et al. (2005) showed that pre-harvest dormancy or 

tolerance of wheat was strongly influenced by environmental conditions such as 

temperature and rainfall. Results from previous studies imply a need for field studies to 

better understand and validate the role of these varieties and their window of risk for pre-

harvest germination. 
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 The earliest germination by winter wheat occurred at the early milk stage; 

however, this was only observed for Pronghorn with long-term (15-days) access to 

moisture. In contrast, the first germination for Camelot did not occur until the middle 

milk stage. The occurrence of first germination in this study relates well to previous 

studies that showed germination occurring approximately 9-14 days after pollination with 

adequate long-term available moisture (Nutman 1941, Nosatovsky 1957, Aginyan 1958, 

Kalinin 1959, Abramova 1964, Robertson and Curtis 1967, Balla 1979). However, this 

study documents the development stage of wheat that corresponds with first germination 

as well as the potential for wheat varieties with high tolerance scores to delay the 

development stage at which first germination occurs.  

Germination peaked for both wheat varieties at the hard dough stage, indicating 

that this stage provides the greatest potential for establishment of pre-harvest volunteer 

wheat. For Camelot (Fig. 4.1), hard dough was the only development stage to achieve 1% 

germination after 6 days on moist soil.  In contrast, predicted equations for Pronghorn per 

wheat development stage (Fig. 4.2) showed that germination exceeded 1% after 6 days on 

soil at the early dough stage and continued through the harvest ripe stage. Such 

differences indicate significantly greater potential for pre-harvest germination for 

Pronghorn. 

The methods for wheat head staging and post-collection handling used in this 

study are important for interpreting results. Seeds selected from the middle of wheat 

heads represent the most developed portion of the head (Wellington 1956a, Hardesty and 

Elliott 1956), reinforcing the connection between wheat stage and germination.  This 

method was critical for determining the earliest stage for germination, as the wheat 
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development stages designated in this study reflect the most developed seeds within the 

wheat head.  In addition, previous literature indicates that our methods of post-collection 

handling and seed preparation methods may have increased the potential for germination 

of immature wheat kernels.  The process of mechanically separating seeds from the rachis 

prior to placing them on soil surface could have potentially damaged the outer-pericarp, 

increasing the potential for early season germination (Wellington 1956a, Gordon 1970, 

Radley 1979, Mitchell et al. 1980).  Damage to the outer-pericarp of wheat seeds in this 

study is uncertain; however, it is possible that mechanical separation of seeds in this 

study is similar to the damage incurred during natural hail events as a result of hailstones 

dislodging seeds from wheat heads.  Previous studies also implied that seeds appear 

dormant at temperatures above 20°C (Atterberg 1907, Ching and Foote 1961, George 

1967). Clamshell containers for germination were held between 18 and 24°C, indicating 

that pre-harvest germination potentials for these wheat varieties are likely conservative 

based on historical data. In addition, the proportion of germination obtained in this study 

exceeded those from previous studies, implying a shift towards increased tolerance to 

higher temperatures for pre-harvest germination of wheat varieties.  Further studies are 

needed to compare historical and current wheat varieties to further determine these 

factors. 

 Regression equations following first germination through wheat harvest varied 

between years. During the drought of the 2011-12 season, both wheat varieties exhibited 

increasing rates of germination through harvest for high and medium risk groups.  

In contrast, 2012-13/2013-14 data showed the onset of dormancy as indicated by 

significant quadratic parameters for all risk groups with high-risk in Camelot showing a 
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significant reduction in the window of germination prior to harvest. Previous studies by 

Mares (1993) and Biddulph et al. (2005) show that the influence of rainfall and 

temperature on sprouting tolerance is not well understood and results vary between 

studies. Our results provide supporting evidence for Mares’ (1993) research, indicating 

that reduced rainfall and/or increased temperature resulted in minimal pre-harvest 

tolerance to sprouting. The differences with Biddulph et al. (2005) could be due to the 

removal of wheat heads from hot-dry conditions to sealed containers with continuous 

moisture for an extended period.  The potential impact of environmental factors 

demonstrates the need for additional understanding of this relationship.  

A comparison of the time-to-event analysis and the days to harvest regression 

equations shows differences in the window of risk for pre-harvest germination using a 

1% threshold. Differences between these analyses are a reflection of the fit of the 

equation to observed values for regressions whereas the time-to-event analysis was 

triggered by individual observations exceeding the 1% threshold within the data set. 

Regression equations for both years, with the exception of the high risk group for 

Camelot in 2012-13/2013-14 show that germination consistently exceeded the 1% 

threshold following first germination. This indicates that after first germination the 

likelihood of germination remains high through the rest of the wheat head development 

until harvest with the exception of day 6 germination declining below 1% for Camelot 

prior to harvest in 2012-13 and 2013-14 (Fig. 5).  

 The results from the study demonstrate the potential window of risk for pre-

harvest germination of wheat.  This is the first study to draw a link between pre-harvest 

sprouting tolerance scores and pre-harvest germination following grain shatter that could 
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result in volunteer wheat. Understanding this relationship increased the value of pre-

harvest sprouting scores as a measure for evaluating varieties to reduce pre-harvest 

germination of wheat. Wheat head collections over three seasons also provided additional 

information on the role of environmental conditions and their influence on germination.  

Regardless of these variations, we found no differences between years for pre-harvest 

date at which first germination occurs (Fig. 4.3), indicating that it remains relatively 

stable across the wide range of conditions observed in this study. In addition, first 

germination data show that the pre-harvest date for germination is strongly influenced by 

wheat variety. The large differences in the window of risk for germination between pre-

harvest susceptible Pronghorn and tolerant Camelot implies that producers may be able to 

use variety to establish the likelihood of establishment of pre-harvest volunteer, and thus, 

elevated risk for virus disease the following year.  Previous studies as well as this study 

show a strong influence by environmental conditions on regression equations following 

first germination.  This study provides strong evidence that consultants and growers 

should prioritize scouting for pre-harvest germination in wheat fields hailed during the 

late milk stage. In addition, fields hailed within three weeks of harvest (early dough) have 

a greater likelihood of germinating with less available moisture. Lastly, fields hailed at 

soft dough or within 15 days of harvest provide the greatest potential for pre-harvest 

germination. These risk windows for germination varied by variety, providing a potential 

for proactive management of pre-harvest germination. 
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Tables 

Table 4.1. Analysis of variance type I test for fixed effects for varieties (Camelot and 

Pronghorn), wheat stages (water ripe, early milk, middle milk, late milk early 

dough, soft dough, hard dough, ripe) and days (3 – 21) in containers with access to 

continuous moisture. 

Effect Num DF Den DF F-value P-value 

variety 1 45 73.08 <.0001 

stage 7 45 28.61 <.0001 
variety*stage 7 45 3.82 0.0025 
day 1 334 349.12 <.0001 
day*variety 1 334 29.66 <.0001 
day*stage 7 334 11.41 <.0001 
day*variety*stage 7 334 5.59 <.0001 
day*day 1 334 15.97 <.0001 
day*day*variety 1 334 0.77 0.3808 
day*day*stage 7 334 1.65 0.1215 
day*day*variety*stage 7 334 1.62 0.1291 
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Table 4.6. Analysis of variance type III test for fixed effects of year, variety and risk 

group. (year = 2011-12, 2012-13, and 2013-14, variety = Camelot and Pronghorn, 

risk group = high (day 6), medium (day 9), low (day 12)). 

Effect Num DF Den DF F-value P-value 

year 2 3 0.47 0.6646 

variety 1 16 93.42 <.0001 

year*variety 2 16 2.62 0.104 

risk group 2 16 34.47 <.0001 

risk group*year 4 16 1.32 0.3065 

risk group*variety 2 16 1.31 0.2961 

risk group*year*variety 4 16 0.32 0.8595 
 

 



 

 

 

150 

Table 4.7. Analysis of variance type I test for fixed effects on variety, risk group and 

preharvest date for 2011-12 season. (Variety = Camelot and Pronghorn, Risk group 

= high (day 6), medium (day 9), low (day 12), preharvest date = -25 – 0). 

Effect Num DF Den DF F-value P-value 

variety 1 6 50.09 0.0004 

risk group 2 6 18.95 0.0026 

variety*risk group 2 6 4.06 0.0769 

preharvest 1 24 75.25 <.0001 

preharvest*variety 1 24 0.36 0.5558 

preharvest*risk group 2 24 0.45 0.641 

preharvest*variety* risk group 2 24 5.90 0.0083 

preharvest*preharvest 1 24 0.52 0.4795 

preharvest*preharvest*variety 1 24 0.00 0.9849 

preharvest*preharvest* risk group 2 24 4.20 0.0273 

preharvest*preharvest*variety* risk group 2 24 0.71 0.5027 
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Table 4.10. Analysis of variance type I test for fixed effects on year, variety and 

preharvest date for 2012-13 and 2013-14 seasons. (Variety = Camelot and 

Pronghorn, Risk group = high (day 6), medium (day 9), low (day 12), preharvest 

date = -30 – 0). 

Effect Num DF Den DF F-value P-value 

variety 1 18 39.33 <.0001 

risk group 2 18 7.82 0.0036 

variety*risk group 2 18 0.94 0.4108 

preharvest 1 54 4.59 0.0368 

preharvest*variety 1 54 0 0.9765 

preharvest*risk group 2 54 0.36 0.6975 

preharvest*variety* risk group 2 54 0.28 0.7577 

preharvest*preharvest 1 54 17.83 <.0001 

preharvest*preharvest*variety 1 54 0 0.9566 

preharvest*preharvest* risk group 2 54 0.69 0.5053 

preharvest*preharvest*variety* risk group 2 54 0.77 0.4668 
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CHAPTER 5 

Effects of simulated hail on pre-harvest germination of winter wheat under field 

conditions  
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Introduction 

 The wheat-mite-virus complex is a consistent and significant threat to wheat 

production in the western Great Plains.  This complex consists of three viruses (Wheat 

streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus 

(WMoV)) that are transmitted by the wheat curl mite (WCM) (Aceria tosichella Keifer).  

Average annual losses have been estimated at 1.4% over the past decade (Appel et al. 

2015). However, these yield losses are not uniformly distributed across the western Great 

Plains, with localized yield losses of up to 100%.  Areas with significant yield losses 

from this complex are typically associated with the presence of volunteer wheat emerging 

prior to wheat harvest. 

 A sequence of events must occur for volunteer wheat to pose a significant threat 

to fall planted winter wheat.  Risk typically begins with hailstorms occurring during 

heading of wheat that dislodge seeds from wheat heads.  In many cases, severe storms are 

accompanied with significant rain that enhances germination of the dislodged seeds.  

Once the volunteer wheat is established, mites are able to infest the volunteer wheat from 

the maturing wheat crop, and mite populations build rapidly during the summer months, 

as long as the volunteer wheat remains viable. Wheat crops planted in adjacent fields 

during the fall will gradually become infested with WCM from the infested pre-harvest 

volunteer wheat. The timing of mite infestation and virus inoculation, presence of 

resistant varieties, and prevailing environmental conditions will determine the yield 

impact on winter wheat.  To reduce risk, producers must control volunteer wheat at least 

14 days prior to fall planting (Wegulo et al. 2008). 
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The risk of volunteer wheat as a source of mites and virus is highly dependent on 

the timing of its emergence and mite movement off of wheat heads. Wheat head 

collections from water ripe to harvest show a consistent increase in mite populations with 

populations peaking in the hard dough stage (see Chapter 6). Mite movement is 

dependent on mite population densities on wheat plants, indicating that wheat 

germinating prior to harvest will become infested with mites. In contrast, wheat emerging 

one week after harvest has significantly lower risk due to the limited off-plant survival of 

the WCM.  Wosula et al. (2015) found that WCM could survive for only 1-2 days under 

low humidity conditions, indicating that mites must find a viable host prior to winter 

wheat harvest. 

Pre-harvest wheat is a critical component for the epidemiology of the wheat-mite-

virus complex, and its presence possesses the greatest threat to fall planted winter wheat.  

This reinforces the need for detailed information on the window of time during wheat 

head development when pre-harvest germination can occur. The understanding and 

identification of this risk period would allow producers and consultants to concentrate 

scouting efforts to identify and manage those fields with the greatest risk for subsequent 

disease development. In addition, such information could contribute to risk models by 

taking into account the likelihood of developing pre-harvest volunteer based on the 

timing of hail occurrence and the stage of wheat development. 

Previous research has identified several abiotic factors that are fundamental for 

determining the germination of immature wheat seeds. Temperature is an important 

component for non-ripened wheat seeds which can appear dormant at 20-35°C whereas 

these same wheat stages are capable of germinating at 10-15°C (Atterberg 1907, Ching 
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and Foote 1961, George 1967).  Gosling et al. (1981) found that wheat harvested 18 days 

after flowering was unable to germinate at 20°C; however, germination readily occurred 

for the same wheat collection when held at 10°C to 18°C.  In contrast, wheat collected 25 

days after flowering readily germinated at 20°C, indicating that less developed wheat 

seeds are more negatively impacted by higher temperatures (Gosling et al. 1981).  In 

addition, temperature has been found to have a significant effect on the total germination 

with a higher percentage of seeds germinating at 12°C (80%) compared to 20°C (49%) 

(Balla 1979).  Research has also shown that the environmental conditions during wheat 

head development can affect dormancy (Mares 1993). Wheat plants held at a maximum 

temperature of 26°C during head development exhibited greater dormancy than those 

exposed to 34°C (Mares 1993). In addition, other studies have found that rainfall during 

head development was also a major contributor to dormancy (Biddulph et al. 2005).  

Such findings indicate that our understanding of the impact of environmental conditions 

on germination at harvest or during head development are not well understood. 

Drying or desiccating immature wheat heads prior to inducing germination can 

significantly reduce the number of days from pollination necessary for germination as 

well as the percentage of wheat seeds that germinate (Balla 1979).  Balla (1979) found 

that wheat was capable of germinating at 6-8 days after pollination with 12-weeks of 

drying. In contrast, wheat was unable to germination until 14 days after pollination 

without any drying (Balla 1979). 

A recent paper Graybosch et al. (2013) evaluated hard red and white wheats for 

pre-harvest sprouting and found that current commercial wheat varieties vary greatly in 
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their pre-harvest sprouting tolerance.  Hard red winter wheat variety ‘Camelot’ showed 

the greatest mean tolerance score for pre-harvest sprouting whereas ‘Pronghorn’, a wheat 

of the same market class showed a very low sprouting tolerance  (Graybosch et al. 2013).  

These wheat varieties were evaluated for sprouting by collecting wheat heads at harvest; 

therefore, studies are needed to address their relevance to germination tolerance prior to 

harvest.  Such studies would provide an indication of the potential to utilize wheat 

varieties to reduce the likelihood of pre-harvest wheat establishment.   

Previous studies on germination are primarily focused on early season harvest of 

winter wheat to accelerate breeding programs or to reduce the likelihood of sprouting 

after wheat has ripened.  The differential response of wheat varieties to sprouting 

provides an indication that such mechanisms could be useful for reducing pre-harvest 

establishment of volunteer wheat. The objective of this study was to evaluate sprouting 

tolerant and susceptible varieties for their differences in pre-harvest germination under 

field conditions at different stages of head development. In addition, drying conditions 

were altered by placing cages over plots to determine the potential role of temperature 

and relative humidity on pre-harvest germination.  Such studies will provide an indication 

of the window of time during wheat head development when germination could occur 

and the environmental factors that influence pre-harvest germination and volunteer wheat 

establishment.  
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Materials and Methods  

Simulated hail studies were conducted over two years at the High Plains 

Agricultural Lab near Sidney, NE. In 2013, hail was applied to pre-harvest sprouting 

tolerant, Camelot and susceptible Pronghorn (Graybosch et al. 2013) wheat varieties in a 

randomized complete block design with six replications. Three split-plot treatments 

consisted of timing of hail application with hail applied at early dough (Zadoks 83), soft 

dough (Zadoks 85), and hard dough (Zadoks 87) stages. The split-split-plot treatments 

were uncaged and caged (2m x 2m x 2m) metal frames covered with an Amber lumite 

screen (20x20 mesh) to represent rapid and slow drying conditions, respectively. 

Approximately 19 mm of water was applied using a garden hose and handheld sprinkler 

to each plot within a few hours of the hail application. Cages were placed over plots one 

day after the hail treatment and removed seven days later.  In 2014, the study was 

conducted using only Pronghorn wheat with four hail dates applied at middle milk 

(Zadoks 75), early dough, soft dough, and hard dough stages in a randomized complete 

block design with eight replications. Water was applied at 0, 2, and 4 days after the hail 

application with approximately 25.4 mm for each application. Data loggers (HOBO U23 

Pro v2; Onset Computer Corporation, Bourne, MA) were used to measure temperature 

and relative humidity within the plots from the day before to 7 days after each hail 

application for all treatments in two randomly selected reps in 2013 and four randomly 

selected reps in 2014 to evaluate differences in environmental conditions between 

varieties, hail dates, as well as caged and uncaged treatments.  

Wheat heads were counted in 0.3 m of wheat row at six random locations within 

each plot prior to hail applications. Five heads were collected from each plot to estimate 
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the total number of seeds per row foot.  Leaf area index readings were taken using an LAI 

2000 Plant Canopy Analyzer (Licor Inc., Lincoln, NE) at five locations within each plot 

just prior to the hail event and one day after the hail treatment to provide an estimation of 

hail damage.  

 Hail treatments were applied with a hail simulator attached to and powered by a 

tractor. For each plot, five 9-kg ice bags were placed in a hopper at the top of the machine 

and fed into a vertical feeder housing containing a rotating horizontal cylinder with 

spikes that crushed the ice into 1-3 cm pieces. Powered by a hydraulic air seeder fan, ice 

was propelled from the machine through a 20-cm diameter hose at approximately 170 

km/h at the hose opening. The hose was directed toward the wheat and across the entire 

plot in a continuous motion at a 45-degree angle to provide uniform damage within a 

plot. Eighteen locations were marked within each plot prior to the hail application. Six of 

these locations were randomly selected for germination counts taken at 7, 14, and 21 days 

after hail was applied.  Five volunteer wheat plants were sampled from each plot during 

mid-August and inspected under a stereo microscope at 30X-40X for mites.  

 Leaf area index data was averaged per plot and analyzed using a type III test for 

fixed effects (PROC GLIMMIX; SAS Institute Inc., Cary, NC, Version 9.3) to determine 

the impact of hail application with fixed effects of hail date, variety, and pre/post LAI 

values. LAI readings were analyzed with repeated measures. Random effects were 

replication, hail date, and variety. Temperature and relative humidity were averaged per 

plot over the 7 days following the hail application to evaluate the fixed effects of hail 

date, variety, and cage using a Type III test for fixed effects (PROC GLIMMIX; SAS 
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Institute Inc., Cary, NC, Version 9.3). Random effects were replication, hail date, variety, 

and cage depending on the fixed effect being tested. 

Germination count data were averaged across the six locations within each plot, 

and percent germination was obtained by dividing the count data by the average number 

of seeds per row foot determined from the head sampling data taken prior to the hail 

event. Non-normal proportional germination data were corrected using a beta 

distribution. An analysis of variance type I test for fixed effects (PROC GLIMMIX) was 

used to determine differences between hail date, variety, and cage. These effects were 

partitioned over days into linear and quadratic portions to determine fixed effects for 

prediction models.  Non-significant effects were removed from the model.  Quadratic 

parameters were evaluated for each treatment combination to determine significance from 

zero, non-significant quadratic treatment combinations were removed from the model.  A 

final model was run containing only the significant effects.  

Regression equations were obtained from the solution for fixed effects. 

Correlations between observed and predicted values from regression equations were used 

to evaluate fit (PROC CORR; SAS Institute Inc., Cary, NC, version 9.3). Parameters in 

equations were evaluated using contrasts to compare intercept, linear, and quadratic 

components.  Environmental data were obtained from the High Plains Regional Climate 

Center (hprcc.unl.edu; University of Nebraska-Lincoln). Weather data originated from an 

established weather station located less than 2 km from the plot site. 

Mite count data were analyzed using a type III test for fixed effects in PROC 

GLIMMIX to determine differences in variety, hail date, and cage. Random effect was 
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replications.  Proportion of infested seedlings per plot was adjusted using a beta 

distribution. Differences within treatments were evaluated using t-tests.  
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Results 

 Hail damage, post-water application, environmental conditions, and treatment 

combinations varied between seasons; therefore, each year of the study was analyzed 

separately.  Greater damage occurred from the hail applications during the 2014 season 

due to increased hydraulic power for the tractor that was used. In addition, post-watering 

applications in 2014 were made after cages were placed over plots allowing for reduced 

water loss and increased water availability for immature wheat seeds. 

 

Hail Study 2013 

 Leaf area index (LAI) readings varied by hail date (F2,10 = 9.86; P = 0.0043) with 

the highest readings occurring for the early dough (1.91) and soft dough (1.84) stages 

whereas significantly (F1,10 = 10.85; P = 0.0081) lower LAI readings occurred during the 

hard dough (1.45) stage. Differences also occurred between readings taken before and 

after the hail application (F1,28 = 203.58; P <.0001) with lower values for post hail 

readings (1.45) compared to pre-hail readings (1.98), indicating significant structural 

damage to wheat as a result of the hail application.  However, a significant interaction 

occurred between hail date and timing of LAI readings (F2,28 = 26.18; P <.0001) due to a 

large reduction (t28 = 4.56; P <.0001) in LAI from 2.30 to 1.39 in early dough for pre- 

and post-hail readings whereas a smaller, albeit significant reduction (t28 = 3.92; P = 

0.0002) occurred for soft dough from 1.99 to 1.71.  No significant differences occurred 

between varieties (F1,15 = 2.81; P = 0.1145), or their interaction with hail date (F2,15 = 

1.19; P = 0.3307), timing of LAI reading (F1,28 = 0.11; P = 0.7474), or the three-way 

interaction (F2,28 = 0.10; P = 0.9013).   
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 One of the temperature and humidity monitors failed to collect data following the 

first hail application, and it was removed from the data set. Temperatures varied 

following each hail application (F2,2 = 104.43; P = 0.0036) with 7-day average 

temperatures of 20.9°C, 23.6°C, and 25.2°C after early dough, soft dough, and hard 

dough applications, respectively. Differences also occurred between cages (F1,4 = 127.62; 

P <.0001) with lower temperatures in caged (22.4°C) plots compared to uncaged (24.1°C) 

plots. No differences occurred between varieties (F1,3 = 0.10; P = 0.7693) or their 

interaction with hail date (F2,3 = 0.48; P=0.6593). In addition, cages showed no 

interactions with hail date, variety or for the three-way interaction. Similar differences 

were found for the relative humidity data with differences between hail dates (F2,2 = 

106.75; P = 0.0093) as a result of greater average humidity in early dough (75.3%), 

followed by hard dough (65.0%) and soft dough wheat (61.0%). Differences also 

occurred between cages (F1,4 = 18.70; P = 0.0124) with greater humidity in caged 

(68.8%) plots compared to uncaged (65.3%) plots. No differences in humidity occurred 

for variety or its interaction with other treatments. 

 Regardless of the differences in environmental conditions between caged and 

uncaged plots, we found no differences in germination between caged and uncaged plots 

(F1,40 = 0.84; P = 0.3670) or their interaction with variety (F1,40 = 1.08; P = 0.3078), hail 

date (F2,120 = 0.33; P = 0.6783), or the three-way interaction (F4,120 = 0.57; P = 0.5726).  

 An analysis of germination following hail application using type I test for fixed 

effects (Table 5.1) showed that germination varied by variety with Pronghorn (0.1%) 

having greater germination compared to Camelot (0.01%). Differences also occurred 

between hail dates with hard dough (0.2%) having greater germination (t20 = 6.71; P 
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<.0001) than soft dough (0.01%). Wheat hailed at the soft dough stage was similar (t20 = 

0.23; P = 0.8183) to wheat at early dough (0.01%). However, a significant interaction 

occurred between variety and hail date with similar germination between varieties during 

the soft dough stage (t20 = 1.38; P = 0.1842) whereas Pronghorn (1.5%) had greater 

germination (t20 = 6.36; P <.0001) than Camelot (0.02%) when hailed at the hard dough 

stage (Fig. 5.1). Germination also varied by day with a numerical increase in germination 

between day 7 (0.01%) through 14 (0.02%) and a significant increase (t60 = 4.17; P 

<.0001) by day 21 (0.1%). The day by hail date interaction was also significant due to 

similar germination between day 7 and 14 for soft dough (t60 = 0.11; P = 0.9101) stages 

whereas hard dough showed a significant increase (t60 = 10.57; P <.0001) from 0.06% at 

day 14 to 6.8% at day 21. 

Contrasts comparing varieties, hail dates and days (Table 5.2) showed that 

Pronghorn hailed at the hard dough stage had greater germination than all other hail dates 

and evaluation days. In addition, Camelot had greater germination when hailed at the 

hard dough stage for day 21 evaluations when compared to early or soft dough stages in 

Pronghorn. These differences were primarily due to heavy rains 13 days after the final 

hail application. 

 

Hail Study 2014 

 Leaf area index readings varied by hail date (F3,21 = 15.43; P <.0001) with middle 

milk (1.56) and early dough (1.44) having greater readings (F1,21 = 43.94; P<.0001) than 

soft dough (1.15) and hard dough (1.13).  Greater differences were observed between 

readings taken before and after the hail application (F1,28 = 618.51; P <.0001) with a 
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significant reduction in LAI values for post-hail (0.70) compared to pre-hail (1.94) 

readings. No significant interaction occurred between hail date and timing of readings 

(F3,28 = 1.88; P = 0.1566) 

 Average 7-day temperature varied between hail dates (F3,9 = 154.95; P <.0001) 

with increasing temperatures from middle milk (19.2°C) through early dough (20.1°C), 

and soft dough (24.6°C) stages. In contrast, temperatures declined significantly for the 

hail application occurring during the hard dough stage (21.1°C).  Cages also varied in 

temperature (F1,12 = 92.12; P <.0001) with lower temperatures for caged plots (20.4°C) 

compared to uncaged plots (22.2°C).  Differences in average humidity also occurred 

across hail dates (F3,9 = 58.07; P <.0001) with the highest humidity occurring in hard 

dough (85.2%) followed by early dough (77.2%), middle milk (77.1%) and soft dough 

(71.1%).  Average humidity also varied by cage with uncaged plots (76.5%) having lower 

humidity than caged plots (78.7%).  There was no significant interaction between hail 

date and cage for temperature (F3,12 = 1.48; P = 0.2699) or relative humidity (F3,12 = 1.48; 

P = 0.8438).  

 An analysis of germination following hail applications showed no differences 

between caged and uncage plots (F1,28 = 3.17; P =0.0857), or their interaction with hail 

date (F3,28 = 2.18; P =0.1125), day (F2,112 = 0.03; P =0.9749), or the three-way interaction 

(F6,112 = 1.02; P =0.4166). Therefore, cages were averaged prior to the analysis.  

 An analysis of germination following hail application using type I test for fixed 

effects showed that germination varied by hail date (F3,21 = 50.24; P<.0001) with greatest 

germination occurring in wheat hailed at the hard dough stage (7.1%), followed by soft 
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dough (1.7%) and early dough (0.9%). Wheat hailed at early dough had greater 

germination (t21= 2.21; P = 0.0380) when compared to middle milk (0.0%) which showed 

no germination over the 21 days of evaluation, indicating that significant germination 

occurred when wheat was hailed at the early dough stage. The interaction between hail 

date and day was also significant (F6,56 = 4.89; P = 0.0004) due, in part to a significant 

increase (t56= 5.93; P<.0001) in germination for hard dough (Fig. 5.2) between day 14 

and 21 whereas wheat hailed at the soft dough stage declined (t56= 2.81; P = 0.0068) over 

the same period. Contrasts comparing hail dates and days (Table 5.3) showed that soft 

dough and hard dough had significantly greater germination than when hailed at the 

middle milk stage. In addition, a comparison of soft dough and hard dough at the same 

evaluation date showed that germination at hard dough was greater than at soft dough for 

all dates. Evaluation dates within the hard dough stage showed a significant increase in 

germination with each evaluation date. In contrast, no differences occurred between dates 

within the early dough stage. Mean germinations across hail dates exceed 0.1% for all 

hail dates and days with the exception of day 7 for early dough and all evaluation days 

for middle milk. 
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Discussion 

 Regardless of the variation in environmental conditions between seasons, the 

greatest potential for pre-harvest germination and resulting volunteer wheat occurred 

when wheat was hailed at the hard dough stage.  Wheat varieties with differing sprouting 

tolerance scores (Graybosch et al. 2013) exhibited similar differences in their potential 

for pre-harvest germination with sprouting-susceptible Pronghorn exhibiting a greater 

rate of germination compared to sprouting-tolerant Camelot. In addition, Pronghorn 

exhibited low levels of germination at the early and soft dough stages (Table 5.2, 5.4) 

during both years of the study whereas no germination occurred within 21 days of the 

hail event for Camelot at either of these stages.  The differences between these varieties 

have significant implications for the management of pre-harvest volunteer to reduce risk 

to fall planted wheat.  However, studies are needed to address the differences in 

susceptible and tolerant varieties over a range of temperature and rainfall conditions to 

assess the durability sprouting tolerant varieties.   

The earliest applications of hail occurred at the middle milk stage with no 

detectable germination within 21 days of hail.  Instead, wheat hailed at this stage 

exhibited a strong tendency for the development of secondary tillers. An extension 

publication by Staples et al. (n.d.) supports our finding, indicating that early hailed wheat 

can produce secondary tillers; however, the exact stage was not stated. The risk of 

secondary tillered wheat as a result of hail storms during the early stages of wheat 

heading poses little to no threat to fall planted wheat as it matures prior to fall planting.  It 

is possible that secondary tillered wheat could act as a source of post-harvest wheat; 

however, studies are needed to address this. 
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Early and soft dough stage wheat was strongly impacted by available moisture.  In 

2013, a single application of water was made after early and soft dough treatments, and 

this resulted in very low levels of germination (Fig. 5.1). However, multiple water 

applications on the same variety and wheat stages in 2014 resulted in a greater proportion 

of germinated seeds within 21 days (Fig. 5.2).  In 2013, a large rain event that occurred 

on 24 July resulted in a rapid increase in germination for hard dough stage wheat. It is 

possible that germination could have occurred for other hail dates; however, the heavy 

rains during 2013 occurred after their final evaluation dates for wheat hailed at early and 

soft dough.  

Plant collections on 16 August 2013 showed that volunteer wheat had germinated 

in early and soft dough stage wheat.  The presence of mites on this volunteer wheat 

indicates that it had emerged prior to harvest.  The ability of this wheat to germinate long 

after a hail event is supported by previous literature. Balla (1979) found that wheat 

removed from the plant within 6-8 days of pollination was able to germinate if heads 

were held under dry conditions for three months and then wetted.  In this study, wheat 

was hailed at early dough which corresponds with 23-26 days after pollination.  It is 

possible that more mature wheat seeds would require less drying time to allow for 

germination.  This result shows the importance of heavy rains to induce germination of 

wheat hailed during the earlier stages of head development. As a result, producers and 

consultants should scout hailed fields for the presence of volunteer wheat within a week 

of harvest to determine the risk potential to adjacent fields that are to be planted to wheat 

in the fall.  
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 Volunteer wheat present prior to harvest is likely to be infested with mites as 

indicated by trap pots collected at weekly intervals through wheat heading (see Chapter 

3) and mite populations in wheat heads with peak populations at hard dough (see Chapter 

6). The low mite infestation levels across all hail dates in this study (9-23% infested 

plants) would pose a significant threat to wheat, as mite populations can build and spread 

rapidly. Producers should control pre-harvest volunteer wheat at least 14 days prior to fall 

planting, to avoid significant economic losses from this complex.   

Temperature data obtained from this study indicate that immature wheat seeds 

were likely under considerable stress based on temperature studies in previous literature. 

Several studies have indicated that wheat can appear dormant at 20-35°C (Atterberg 

1907, Ching and Foote 1961, George 1967).  Our results show that average temperatures 

were between 19 and 25°C. However, these temperatures were based on a 7-day average 

temperature and don’t account for fluctuations over the course of an individual day, with 

temperatures ranging between 14°C and 36°C.  The impact of fluctuating temperatures on 

germination is not well understood as historical studies on germination have held 

temperatures relatively constant.  In addition, temperatures taken from HOBO data 

loggers don’t reflect micro environments at the soil level or areas shaded by residue.  

The methods used in this study provide a realistic representation of natural hail 

events in wheat fields.  The application of ice with high winds allowed for destruction of 

the wheat canopy, as indicated by a 27% and 64% in reduction in LAI values between 

pre- and post-hail readings for 2013 and 2014, respectively.  This alteration allows for the 

inclusion of changes in microclimates at the soil surface as a result of vegetation being 

broken and laid between rows.  In many cases, germinated wheat was confined to the 
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area around the original wheat row, allowing seeds to fall into cracks in the soil. These 

secluded locations allowed for a longer contact with water from subsequent artificial and 

natural rainfall events.  In addition, we observed increasing germination between rows 

where large amounts of plant biomass accumulated likely due to increased shading of 

immature wheat seeds by wheat stalks.  

 The study demonstrates the potential for wheat to germinate between the early 

and hard dough stages. In addition, it demonstrates the differences in germination 

between sprouting tolerant (Camelot) and susceptible wheat (Pronghorn), validating 

sprouting tolerance as a potential management strategy for managing volunteer wheat. 

Rainfall and beneficial microclimate were critical components for the germination of 

immature wheat, indicating that producers and consultants should scout low-lying areas 

of hail damaged fields for first signs of germination. Scouting of low-lying areas is 

primarily a function of greater biomass to shade the soil surface and a potential site for 

accumulation of water following hail, increasing the likelihood of wetter conditions at the 

soil surface over a long period of time.  Both years of this study showed low levels of 

germination for early dough stage wheat, increasing the importance of determining how 

the population densities of volunteer wheat contribute to mite spread and virus impact in 

adjacent wheat fields. In addition, the potential for wheat to germinate well after a hail 

event increases the importance that producers and consultants scout fields at harvest for 

the presence of volunteer wheat just prior to harvest to determine risk.  
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Tables 

Table 5.1. Analysis of variance type I test for fixed effects for variety (Camelot and 

Pronghorn), hail date (early dough, soft dough and hard dough) and days (7, 14, 

and 21) sampled for germination after hail application for the 2013 season. 

Effect Num DF Den DF F-value P-value 

variety 1 5 17.23 0.0089 

hail date 2 20 34.75 <.0001 

variety*hail date 2 20 6.82 0.0055 

day 2 60 14.85 <.0001 

day*variety 2 60 0.46 0.6343 

day*hail date 4 60 18.02 <.0001 

day*variety*hail date 4 60 0.51 0.7255 
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Chapter 6  

Impact of Rainfall, Population Density and Direct Infestation of Seedlings by Wheat 

Curl Mites during the Heading Stages of Winter Wheat 
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Introduction 

Wheat is a staple food crop worldwide, and it is a core component of many dryland 

cropping systems in the western Great Plains of North America. The wheat-mite-virus complex 

is a consistent and significant threat to wheat production in this region. During the 2015 season, 

Kansas estimated yield losses of approximately 11 million bushels (2.7%) across the state from 

this disease complex (Appel et al. 2015). This complex consists of three viruses (wheat streak 

mosaic virus (WSMV), Triticum mosaic virus (TriMV) and wheat mosaic virus (WMoV)) that 

are transmitted to wheat by the wheat curl mite (WCM: Aceria tosichella Keifer).  

Yield impacts from this disease complex are not equally distributed throughout the Great 

Plains region, with significant yield losses concentrated to localized areas where volunteer wheat 

has emerged prior to wheat harvest (pre-harvest volunteer). The occurrence of pre-harvest 

volunteer wheat is often associated with severe hail storms occurring during the heading stages 

of winter wheat.  Hail dislodges immature seeds from wheat heads, and these seeds germinate in 

the presence of adequate moisture. As the wheat crop matures, mites move via wind from 

maturing wheat fields to the newly germinated volunteer wheat. Once the volunteer wheat is 

infested, mite populations can build rapidly throughout the summer months. In the fall, mites 

disperse from the volunteer wheat to adjacent newly planted wheat fields, and they transmit 

viruses to the wheat, causing significant yield losses.  

The potential for mite infestation and virus impact on fall-planted winter wheat is 

strongly linked to the presence of viable hosts for mites prior to wheat harvest.  This temporal 

overlap in hosts is important for the epidemiology of the wheat-mite-virus complex due to the 

limited off-plant survival of WCM.  According to Wosula et al. (2015), the maximum time 

period for mite survival without a host is 7 days at 10°C and 95% humidity.  Lowering the 
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humidity to 2% reduced the survival to two days (Wosula et al. 2015). In addition, increasing 

temperatures to 30°C reduced survival to 30 and 6 hours for high and low humidity, respectively 

(Wosula et al. 2015). In western Nebraska, average July temperatures over the last 30 years are 

typically around 23°C with maximum temperatures around 30°C (High Plains Regional Climate 

Center – University of Nebraska).  Limited off plant survival increases the importance of 

understanding the characteristics of mite build up on wheat heads and their ability to transition to 

a suitable over-summering host. 

Previous studies have documented the abundance and presence of wheat curl mites on 

wheat heads at the soft and hard dough stages of head development.  Mahmood et al. (1998) 

found that randomly selected wheat heads from fields in western Nebraska averaged 1,203 

mites/head in 1995 and 487 mites/head in 1996 (Mahmood et al. 1998). Mite populations varied 

significantly between wheat fields with averages ranging from 23 to 1,872 mites/head  

(Mahmood et al. 1998).  Byamukama et al. (2015) collected wheat heads from fields from three 

distinct regions across Nebraska and found greater mite populations in the Panhandle (380 

mites/head) compared to west-central (200 mites/head) and southeast (50 mites/head) during the 

2011 growing season.  In 2012, greater mite numbers were observed across all regions of the 

state ranging from 800 to 1,200 mites per head; however, no significant differences were found 

across the three regions (Byamukama et al. 2015).  Both of these studies documented wide 

fluctuations in the mean number of mites between years across a broad geographic region, 

indicating that certain environmental factors may be important for determining mite population 

densities on wheat heads. The relative increase in average number of mites per wheat head across 

Nebraska between the 2011 and 2012 seasons coincided with widespread drought in 2012, 

indicating that variations in the frequency or abundance of rainfall during heading stages could 
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be an important factor for determining mite population densities on wheat heads. In addition, the 

gradient in rainfall patterns across Nebraska indicate that greater mite populations may be 

present under drier climates. Observations on the correlation between rainfall and mite 

populations are confounded by an increasing number of wheat acres over this same geographic 

region. In addition, the variation in precipitation patterns on specific fields makes interpretations 

of rainfall impacts difficult, indicating the need for specific studies to evaluate the impact of 

rainfall on mite populations in headed wheat. To our knowledge, no studies have been conducted 

to evaluate the impact of rainfall on mite populations during the vegetative or reproductive stages 

of winter wheat.  

 Mite population densities have been found to be an important component for determining 

mite movement. A study by Thomas and Hein (2003) found a strong relationship between 

increasing mite population densities on wheat plants and mite movement off of wheat plants. 

Other studies have documented a flush of mites following glyphosate application during 

vegetative stages of wheat development (Brey 1998).  For reproductive stages of wheat, mite 

movement has been correlated with the senescence of flag leaves and wheat heads (Nault and 

Styer 1969).  

 Previous research has documented the prevalence and density of mite populations on 

maturing wheat heads; however, these studies have been conducted during the soft/hard dough 

stage of wheat. No information is currently available on the the seasonal dynamics of mite 

populations on wheat heads. The goal of this study was to evaluate mite population densities at 

different stages of wheat head development to determine the wheat stages wheat curl mites are 

most abundant and the relative increase in mite populations across those development stages. In 

addition, a study was designed to evaluate the potential for mites to infest germinated wheat 
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directly from infested grain under isolated conditions. This would provide additional information 

on alternative methods of mite infestation of pre-harvest wheat. The final portion of this study 

was to determine the impact of rainfall on mite populations during the heading stages of wheat.  
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Materials and Methods 

Mite Population in Wheat Heads 

Wheat heads were collected from fields over three separate growing seasons at two 

locations per season in conjunction with the Winter Wheat State Variety Trials conducted by the 

University of Nebraska-Lincoln. The 2011-12 and 2013-14 samples were collected from 

Cheyenne and Deuel County, Nebraska. The 2012-13 samples were collected from Cheyenne 

and Kimball County. Four wheat varieties (Pronghorn, Mace, Millennium, and Camelot) were 

sampled during the 2011-12 and 2012-13 growing seasons whereas only two varieties 

(Pronghorn and Camelot) were sampled in 2013-14.  Wheat varieties were grown in a 

randomized complete block design with five replications. Each plot consisted of 6, 6-m rows 

with a 0.3 m spacing between rows. Plots were sampled every 7-9 days beginning at the water 

ripe stage until harvest with 5-8 collections occurring during each season. For each sample, five 

wheat heads were randomly selected from the far right row of each plot. Wheat heads were cut 1-

2 cm below the lowest spikelet and placed in Ziploc bags on ice. Heads were individually staged 

based on a seed selected from the middle of each wheat head. After staging, two of the five heads 

were placed on high definition tape that was secured to black cardstock (7-cm by 29-cm) with 

double sided tape to determine WCM population per head (Harvey and Martin 1988, 

Byamukama et al. 2015).  Awns of wheat heads were firmly pressed against the tape to ensure 

contact with wheat head. Wheat heads were placed in plastic shoe boxes and covered with lids to 

prevent air movement around the heads for a period of 6 weeks before counting. Mite counts 

were made by using a stereomicroscope at 30X-40X magnification. Total heads collected varied 

between seasons with 400, 440, and 260 heads counted during 2012, 2013, and 2014.  
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For the remaining three wheat heads, the awns of each head were clipped back to the 

glumes, seeds were mechanically separated and spread into individual clear plastic clamshell 

containers containing 30 grams of sterilized greenhouse soil. The soil surface was sprayed with 

12 ml of distilled water and sealed. Containers were held at 18-24°C and five randomly selected 

plants were harvested from germinated containers at 21-days to determine mite presence. Mite 

presence was evaluated under a stereo-microscope at 30-40X. A total of 600, 660, and 390 heads 

were placed on soil for germination during the 2012, 2013, and 2014 season.  

 

Rainfall Study 

A simulated rainfall machine as designed by Meyers and Harman (1979) was used to 

apply rain during the heading stages of winter wheat to evaluate the impact of rainfall on mite 

populations. This study was conducted over two years (2013, 2014) in commercial wheat 

production fields planted to ‘Settler CL’ at the University of Nebraska’s High Plains Agricultural 

Lab near Sidney, Nebraska. The study consisted of four artificial rainfall applications (no rain, 

early application, late application, and both early and late application) in a randomized complete 

block design with six replications. Each plot consisted of four wheat rows with a 0.3 m row 

spacing and row lengths of 2.4 m.  

Wheat plants were artificially infested with mites 3 weeks prior to the first rainfall 

application during each season to increase mite numbers and the frequency of infested heads.  In 

2013, half of the replications were infested with mites from a field with pre-harvest volunteer 

wheat. Volunteer wheat plants were cut at soil level and inspected at 30X-40X magnification 

under stereomicroscope for mites.  Plants were cut into 2-4 cm leaf sections containing 30-40 

mites per leaf piece. An individual leaf section was attached to each of 15 randomly selected 
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wheat heads in the center two rows of each plot at wheat flowering.  Metal paper clips were used 

to attach infested leaves and tags were placed on the stems of each infested head.  In 2014, mites 

were reared on ‘Millennium’ wheat in pots under greenhouse conditions for four weeks prior to 

field infestation. Individual wheat plants contained in excess of thousands of mites per plant at 

the time of field infestation.  To infest field plots, individual wheat plants from pots were cut at 

the soil level and placed on the top of wheat plants in the field during the boot stage. The middle 

two rows of each plot were infested by laying the infested wheat end-to-end, covering 

approximately 1 m per row.  

A rainfall simulator, electrically powered and controlled by a gas generator was used to 

apply rainfall treatments. A gas powered Honda WB20XT water pump provided water pressure 

through a 15.8-mm garden hose at 41 kpa and a height of 3 m from the soil surface as suggested 

by Meyer and Harmon (1979). Aluminum catch pans on either side of the application area 

collected excess water and distributed it away from the study site. Teejet nozzles (80150) passed 

between catch pans in approximately 0.5 s passes with the duration of time spent in each catch 

pan determining the rainfall rate per hour. The machine was calibrated to apply 19 mm of rain in 

8 min per rainfall treatment during the 2013 season and 25 mm of rain in 11 minutes per rainfall 

treatment during the 2014 season.  Wheat head collections occurred prior to and following 

rainfall applications to measure the impact of rainfall on mite populations with a total 30 heads 

per rainfall treatment (5/plot) for each of four collections per season. Heads were kept at 4°C 

until they could be placed on high definition tape as described previously. 

Mite count data from the rainfall study were analyzed using PROC GLIMMIX (SAS 

Institute 2008) with repeated measures to test the fixed effects of rainfall application, collection 

date, and infestation method. Random effects were collection date and replication. Mite counts 



 

 

 

192 

from wheat heads were averaged for each treatment plot prior to analysis.  Variances increased 

geometrically as a function of the mean indicating a negative binomial distribution. Covariance 

models on inference (CS, AR(1), ANTE(1), and UN) were tested to determine the model with 

the lowest Akaike information criterion corrected value, and degrees of freedom were adjusted 

using Kenward and Rogers methods to reduce test statistics biases. Environmental data were 

obtained from the High Plains Regional Climate Center (hprcc.unl.edu; University of Nebraska-

Lincoln). Weather data originated from an established weather station located less than 2 km 

from the plot site. 

Winter wheat variety trial mite count data were analyzed as described for the rainfall 

study by using the average number of wheat curl mites per plot for each stage of head 

development. No differences occurred between varieties; therefore, varieties were averaged prior 

to the analysis.  Fixed effects were wheat development stage and site nested within year. Years 

and sites were not analyzed separately because not all sites were represented during each year of 

the study.  Random effects were replications. Least significant mean differences were used to 

determine differences within and between main effects. Proportion of infested wheat heads was 

also reported to determine the frequency of infested heads in wheat fields for each development 

stage and site year combination.  The direct infestation of germinated seedlings was reported as a 

percentage of total plants evaluated. No statistical analysis was conducted on this data due to the 

low frequency of infested plants. 
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Results 

Mite Populations in Wheat Heads 

 The number of wheat curl mites per wheat head (Fig. 6.1) varied for each site year 

combination (F5,94 = 15.15; P <.0001) with the greatest average occurring in Deuel County 

during 2012 (590) and 2014 (218) followed by Kimball County (94) in 2013.  Average number 

of mites per head was lowest in Cheyenne County at 20, 48, and 55 mites/head for 2012, 2013, 

and 2014, respectively. Mite numbers also varied by wheat development stage (F7,408 = 21.74; P 

<.0001) with the average number of mites per head increasing from water ripe (1) through early 

milk (8), middle milk (12), late milk (39), early dough (267), soft dough (269), and hard dough 

(548) stages. Mite populations declined significantly (t408 = 5.62; P <.0001) between the hard 

dough and harvest ripe (135) stage. A significant interaction occurred between site year and 

stage (F35,408 = 6.68; P <.0001) due to the greater increase in mite populations at the hard dough 

stage for Deuel County during 2012 (1819) and 2014 (730) compared to Cheyenne County 

during 2012 (89), 2013 (212), and 2014 (231) or Kimball County in 2013 (403). In contrast, mite 

populations were less than 100 mites per head for all counties and years with the exception of 

Deuel County during 2012 at 1010 mites/head. 

The proportion of wheat heads (Fig. 6.2) infested with mites at peak infestation reached 

100% for every site year with the exception of Cheyenne County during 2014 (84% infested). In 

addition, the proportion of infested wheat heads was in excess of 40% for both Deuel County in 

2012 and 2014 during the water ripe stage. 
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Mite Infestation of Seedlings 

Of the 4037 plants evaluated, 61 plants were found to be infested with WCM, 

demonstrating that mites were able to directly infest germinated wheat seedlings from infested 

grains under controlled conditions. Seedling infestation from infested grain varied by site year 

and wheat development stage (Table 6.1). Mites were found on seedlings in four of the six site 

years with the greatest percentage of mites occurring in Deuel County during 2012 (47/921: 5%) 

and 2014 (7/398: 2%).  In Cheyenne County, only 3 and 7 plants were found to be infested 

during 2012 and 2013, respectively.  Of the seven stages of head development, mites were first 

observed during the early dough stage (8/1163: 1%), with increasing levels of infestation for soft 

(20/889: 2%) and hard (31/467: 7%) dough stages. Only 2 of 727 plants were found to be 

infested with mites during the harvest ripe stage.  

 

Rainfall Study 

Mite infestation method, natural rainfall, as well as application timing and amount of rain 

applied varied between the two years of the study; therefore, each year was analyzed separately.  

In 2013, limited natural rainfall occurred (Fig. 6.3a) during wheat heading with the exception of 

45 mm of rain on 22 June. More frequent rainfall occurred during the 2014 season (Fig. 6.3b) 

following the early rainfall application date with 9 of the 10 days after the application having 

some level precipitation. However, the natural rainfall events during this 10-day period were low 

(2 – 15 mm).  For the late season application in 2014, only 2 of the 9 days following the 2nd 

rainfall application had precipitation with rainfall of less than 5 mm on either day. 

 An analysis of variance for the fixed effect of infestation method during the 2013 season 

showed no significant interactions with rainfall treatments (F3,17.7 = 0.10; P = 0.9564), therefore 
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infestation methods were combined for the analysis.  In 2013, mite populations on wheat heads 

(Fig. 6.4a) varied by collection date (F3,20 = 18.86; P <.0001) with increasing mite populations 

for collection one (1.5), two (16.2), and three (65).  Mite populations declined in the final 

collection (13.6) period.  Rainfall applications showed differences in mite populations (F3,18 = 

6.50; P = 0.0036); however, these differences were not consistent with simulated rainfall 

treatments.  The greatest number of mites across all collection dates occurred with early (51) and 

late (39) rainfall applications followed by no rainfall (29) and the combination rainfall 

application (22).  The interaction between rainfall application and collection date was not 

significant (F9,25.3 = 1.73; P = 0.1333). 

Artificial infestation of wheat heads during the 2014 season (Fig. 6.4b) resulted in 

extensive mite populations on wheat heads with some in excess of 16,000 mites/head.  Mite 

populations on wheat heads varied by collection period (F3,20 = 46.04; P <.0001) with increasing 

mite populations from collection one (463), two (1063), and three (6054). Mite populations 

declined significantly (t20 = 2.53; P = 0.0200) between collection dates three and four (4484).  

No differences were observed between rainfall applications (F3,18.1 = 0.72; P = 0.5502) or for the 

interaction between rainfall application and collection date (F9,25.4 = 0.73; P = 0.6819). 
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Discussion 

 Mite populations on wheat heads (Fig. 6.1) collected from winter wheat variety trials in 

the western Panhandle of Nebraska varied considerably between site years.  This variation and 

the average number of mites per wheat head were consistent with results reported by Mahmood 

et al. (1998) and Byamukama et al. (2015).  Regardless of the variation between site years, this 

study demonstrated a consistent and significant increase in mite populations as wheat heads 

advanced through development stages.   

Early season head collections from the water ripe through the late milk stages showed 

relatively low levels of mite populations. However, the proportion of infested plants at the water 

ripe stage (Fig. 6.2) varied considerably between locations at 0 and 50%, indicating a greater 

frequency of infested wheat heads in some fields soon after head emergence. During 2012 and 

2014, we received and validated reports of significant yield loss from the wheat-mite-virus 

complex in Deuel County within a 15 km radius of the field site, indicating the potentail for a 

low level of mite infestation during the fall.  Mite populations at the Deuel county sites were the 

highest recorded for the study; however, these populations did not conincide with a significant 

virus impact. Yield data from the winter wheat variety trials during 2012 show that virus 

resistant ‘Mace’ (1550 kg/ha) had lower grain yields than commercially susceptible ‘Camelot’ 

(2020 kg/ha), indicating a lack of significant pressure fromt wheat-mite-virus complex (Regassa 

et al. 2012). Mace was not present in 2014; however, yields for Camelot were at 3030 kg/ha, 

indicating virus pressure was minimal (Regassa et al. 2014). In addition, no virus sympotms 

were observed in these variety trials. 

 The results from this study demonstrate that not all wheat heads are infested with mites 

during the early stages of head development. This could be due to the inability to detect low mite 
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populations in wheat heads through the sticky tape method.  The rapid and continued increase in 

the proportion of infested heads further supports the notion that low populations of mites were 

present within wheat heads.  With the exception of Cheyenne County in 2013, all other site years 

reached 100% infestation level, indicating that all wheat fields are likely to become infested with 

mites in the weeks prior to wheat harvest. Under the most conservative levels, average mite 

populations of 50 mites/head would result in mite populations of 269 million per hectare 

assuming 164 heads per meter of wheat row.  These large mite populations conicide with 

significant mite activity from wheat fields (see Chapter 3), reinforcing the concept by Thomas 

and Hein (2003) that mite movement is strongly linked with mite population densities on wheat 

heads. In addition, Nault and Styer (1969) reported increasing mite movement from wheat fields 

with peak activity near harvest, as a result of declining host suitability. 

 Greater mite populations on wheat heads also corresponded with direct infestation of 

germinated volunteer wheat seedlings under controlled conditions.  This had not been previously 

documented.  Direct mite infestation of wheat seedlings first occurred during the early dough 

stage with an increasing number of infested plants through the soft and hard dough stages with a 

rapid decline at the harvest ripe stage. Controlled conditions likely increased mite survival due to 

the maintenance of adequate moisture for seedling germination. Such conditions are not 

impossible under field conditions as hail damage typically destroys wheat stands, increasing the 

potential for dense vegetation next to the soil surface. Situations with lower humidity levels are 

likely to decrease direct infestation of newly germinated wheat, due to a reduced survival period 

for mites (Wosula et al. 2015). This is apparent from the diminishing ability of mites to survive 

on harvest ripe wheat as reflected in the decline in mite populations from wheat heads that were 

placed on high definition tape. Greater infestation of mites in hard dough compared to harvest 
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ripe indicates that mites continue to feed on seeds until germination occurs. This is based on the 

assumption that as wheat approaches harvest seeds dry down rapidly and become unsuitable for 

mite feeding.  Rainfall applications had no consistent impact on mite populations during either 

year of the study. The rainfall simulator used in this study was designed to produce raindrops of 

similar size and energy to those coming from natural rain events. The reproducibility of natural 

events increases the likelihood that rain during wheat heading has little impact on mite 

populations.  A lack of impact on mite populations could be due to the physical structure of 

wheat heads, precluding rain drops from collecting within the glumes of the wheat head where 

mites are typically found.  In the case of 2014, high mite populations may have been reduced but 

only minimally, allowing mites to rebound rapidly due to their high reproductive rates following 

rainfall application. Similar studies are needed to address the impact of rainfall on mite 

populations during the earlier, vegetative stages of wheat development when the mites are not 

protected within the heads.  

 The results from this study demonstrate the seasonal buildup of mite populations with 

peak populations occuring during the soft and hard dough stages of winter wheat. The ability of 

mites to directly infest germinated wheat from infested grain under controlled conditions was 

demonstrated; however, this was limited to late stages of wheat development (early dough 

through hard dough) resulting in low levels of infestation for all these late stages. Mite 

infestation of seedlings was also associated with high populations on wheat heads with Deuel 

County accounting for 54 of the 61 plants with direct seedling infestation. Our results show a 

lack of impact from rain applied during the heading stages of wheat, likely as a result of mites 

being protected from the direct impact of rain drops.  The importance of mite population 
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densities for mite movement indicates a need for further research, especially regarding the role of 

rainfall on mite populations in the vegetative stages of wheat development. 
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Figures 

Figure 6.1. Average number of wheat curl mites per head during different heading 

stages of wheat (water ripe, early milk, middle milk, late milk, early dough, soft dough, 

hard dough, ripe) across site years (2012 Deuel, 2012 Cheyenne, 2013 Cheyenne, 2013 

Kimball, 2014 Cheyenne, and 2014 Deuel). 
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Figure 6.2. Proportion of mite infested wheat heads during different heading stages of 

wheat (water ripe, early milk, middle milk, late milk, early dough, soft dough, hard 

dough, ripe) across years (2012, 2013, 2014) and locations (Cheyenne, Deuel, and 

Kimball Counties).  
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Figure 6.4. Natural log of WCM populations on wheat heads across rainfall 

applications (No rain, early, late, and combined) and collection periods for simulated 

rainfall study during the 2013 (a) and 2014 (b) seasons. 
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Chapter 7 

Frequency and Density of Weeds in Winter Wheat Stubble Fields 

in the central High Plains  
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Introduction 

 Historically, weed surveys in winter wheat fields have been used to investigate 

the performance of herbicides (Wicks et al. 2003), estimate weed control problems (Loux 

and Berry 1991), or evaluate changes in weed species composition or their abundance 

with varying management practices (Wicks et al. 2000).  In some cases, weeds can 

support arthropods and plant pathogens, increasing their potential to cause economic 

losses in agricultural crops that share the same pest/pathogen host range.  Risk 

assessments of weedy hosts are primarily based on their ability to support arthropods or 

diseases, as well as their distribution, frequency and temporal occurrence in regions 

where susceptible crops are grown. 

 The wheat-mite-virus complex is one of the primary yield limiting diseases in the 

central High Plains of North America. This complex consists of three viruses (Wheat 

streak mosaic virus (WSMV), Wheat mosaic virus (WMoV), and Triticum mosaic virus 

(TriMV)) that are transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer).  

Yield losses from this complex are typically associated with the presence of volunteer 

wheat that emerges prior to wheat harvest, usually as a result of hailstorms during wheat 

heading.  However, historical evidence and observations indicate that other secondary 

hosts, such as summer annual grasses, could be important for the over-summering 

survival of mites and virus leading to the subsequent impact of this complex on fall 

planted winter wheat (Christian and Willis 1993). 

 Unlike most eriophyid mites, the WCM has a broad host range, occurring on 

approximately 90 different grass species (Amrine and Stasny 1994, Navia et al. 2013).  In 

part, this wide host range is due to a build-up in mite populations on wheat heads 
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(Byamukama et al. 2015) that later emigrate from wheat fields around harvest.  In 

addition, WCM move randomly with wind currents as they are not capable of directed 

movement after leaving a host plant. The combination of these two factors results in 

WCM being introduced to a wide range of plant species as wheat nears maturity. Suitable 

host plants are critical for the over-summering survival of mites as they cannot survive 

for more than a few days without a host (Wosula et al. 2015). Several studies have been 

conducted to determine host suitability for WCM and the viruses they transmit through 

field observations, short-term reproductive studies, and mechanical inoculations (see 

Appendix A).  In Chapter 2 and 3, we identified the long-term reproductive potential of 

WCM on barnyard grass and green foxtail, and validated their risk as a source of mites 

and virus to fall planted winter wheat under field conditions. Barnyard grass 

(Echinochloa crus-galli (L.) Beauv.) showed high reproductive rates for WCM under 

greenhouse conditions and significant virus impact on fall planted winter wheat when 

compared with other hosts. In contrast, green foxtail showed low levels of reproduction 

and some virus spread under field conditions. Given the difference in risk potential of 

these potential over-summering hosts, it is important to understand the frequency and 

density of these hosts, and identify additional potential mite and virus hosts.  The 

objective of this study was to survey weed presence in winter wheat stubble across winter 

wheat growing areas in western Nebraska, northwest Kansas, and northeast Colorado.   
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Materials and Methods 

 Winter wheat fields were surveyed during early to mid-August over two years 

across 18 counties in the Panhandle and southwestern Nebraska, northwestern Kansas, 

and northeastern Colorado (Fig. 7.1). This geographic region was chosen based on 

changes in crop rotations and management options that occur across the study area to 

gain a better understanding of weed species and abundance in this region.  

In 2013, three fields were sampled per county with ten locations within each field 

whereas six fields were sampled per county with five locations per field in 2014. 

CropScape, a product of the United States Department of Agriculture – National 

Agricultural Statistics Service, was used to identify regions where winter wheat was 

grown.  GPS waypoints were selected throughout these wheat-growing regions and 

random numbers were generated to determine stops in each county to survey fields for 

weeds.   

Within a field, survey locations were taken at 30-40 meter intervals with samples 

beginning at approximately ten meters from the field edge. A 1-m2 frame made of 

polyvinyl tube with ½ and ¼ meter dividers was used to evaluate weed species and 

population densities at each location within a field. To determine population density for a 

given weed species, plant counts were made at ¼, ½, and 1-m2 areas, depending the on 

the number of plants counted per unit area. If plant counts exceeded 50 plants per ¼ or ½ 

m2 areas, then the number of plants was recorded as well as the unit area at which the 

evaluation was made. Weeds with less than 50 plants per ½ meter were evaluated across 

a 1-m2 area.  
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The frequency of each weed species was reported as a percentage of total fields 

evaluated. Weed densities were calculated by converting all counts to a per m2 area basis 

and then averaging the mean number of plants per m2 for each field. 
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Results 

 Volunteer wheat (Triticum aestivum L.) had the highest occurrence (Table 7.1) in winter 

wheat stubble at 68.6% and 48.6% occurrence in fields and densities of 40.8 and 40.5 plants/m2. 

Averages densities for volunteer wheat were similar between years, however, individual wheat 

stubble fields ranged between 0.6 and 212 plants/m2.  In nearly all cases, the volunteer wheat had 

originated as a result of a direct loss of seed during the harvesting process and later germinated 

with post-harvest rains.  This assumption was based on the lack of hail damage in the area, 

distribution of germinated wheat in the field, and absence of significant WCM or virus pressure 

on volunteer wheat at the time of the survey. 

Of the summer annual grasses identified, stinkgrass (Eragrostis cilianensis (All.) E. 

Mosher) was most frequently found with presence in 70.6% and 42.9% of fields during 2013 and 

2014, respectively. Stinkgrass occurrence in wheat stubble was similar to volunteer wheat; 

however, its densities (20.0 and 14.7 plants/m2) were lower than volunteer wheat.  Green foxtail 

and witchgrass (Panicum capillare L.) were also present in more than 30% of wheat stubble 

fields for either species over the two years of the survey. All other grass species had relatively 

low frequencies with barnyard grass found in 9.8% and 6.7% of fields with a wide range in 

population densities from 26.6 to 4.3 plants/m2 in 2013 and 2014, respectively. The highest 

densities of barnyard grass were found during 2013 at 112 plant/m2 with peak numbers occurring 

within the low-lying areas. 

The remaining grass species identified in this survey were found in less than 4% of fields 

during either year of the survey. Of these grasses, longspine sandspur (Cenchrus longispinus 

(Hack.) Fern) had the highest population density with 32.1 plants/m2. In most cases, fields with 

longspine sandspur had relatively low population densities with the exception of a single field in 
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Garden County in Nebraska with populations densities of 49.6 plants per m2 across the five 

locations evaluated.  

Even though no broadleaf plants have been found to host wheat curl mites, broadleaf 

plants (Table 7.1) were also evaluated for their frequency and density in these wheat fields. The 

most frequent plants seen were kochia, Russian thistle, and Amaranthus spp. (redroot pigweed, 

tumble pigweed, and tall waterhemp). In general, densities of broadleaf species were lower than 

those of grasses, with average densities less than 12 plants/m2.  
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Discussion 

 The frequency and density of grass hosts found in this survey provides critical 

information on the risk potential of previously identified over-summering hosts for the wheat-

mite-virus complex. Barnyard grass, a high risk host (see Chapter 2, 3) for WCM and virus was 

relatively infrequent in winter wheat stubble; however, high population densities (max. 112 

plants/m2) of this host were found in some low-lying areas. In contrast, green foxtail a 

comparatively lower risk host was frequently found in winter wheat stubble; however, its 

population densities were relatively low at 8.6 and 7.5 plants/m2. These results provide a 

potential explanation for the ability of high-risk hosts such as barnyard grass to evade detection 

in previous studies (Christian and Willis 1993). Stinkgrass and witchgrass were present in more 

than 40% of fields during each year the survey was conducted. WCM reproductive studies on 

stinkgrass indicate that it is a poor host for WCM with few mites present (Slykhuis 1955, 1956, 

Connin 1956, Staples and Allington 1956); however, some studies have indicated that it is 

susceptible to WCM with 28.8% of plants infested under field conditions (Somsen and Sill 

1970). Reproductive studies on witchgrass show no mites present 7 days after infestation 

(Slykhuis 1955, Connin 1956, Harvey et al. 2001) with only 1.4% of plants infested with mites 

under field conditions (Somsen and Sill 1970). 

 Wicks et al. (2003) conducted the most recent survey of weeds in winter wheat fields in 

western and southern Nebraska. A comparison of the two studies shows that green foxtail, 

stinkgrass, and witchgrass had consistently high frequencies in both surveys. Difference in host 

frequencies occurred for volunteer wheat which was found in only 6% of fields in 1998 whereas 

68.6% and 48.6% of fields had volunteer wheat during 2013 and 2014, respectively in this study. 

In addition, barnyard grass was found in 27% of wheat stubble fields in 1998 compared to 9.8% 
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and 6.7% of fields over the two years of this study. Differences between weed surveys are not 

uncommon as Wicks et al. (2003) reported a 54 and 42% increase in the occurrence of longspine 

sandspur and stinkgrass, respectively, when compared to surveys conducted in 1980-81 (Buhler 

et al. 1985). In addition, a 16 and 37% increase in longspine sandspur and stinkgrass, 

respectively, was found by Wicks et al. (2003) compared to a survey conducted in 1986 (Wicks 

et al. 1989). The differences between the current study and the previous surveys could be a result 

of the methods used to evaluate fields for weeds. Wicks et al. (2003) evaluated a 1.5-m area, 

approximately 50 meters from the field edge for weed population density whereas the frequency 

of weeds was reported based on an evaluation of plants found in a 0.8 hectare area around the 

sample site. Such methods would have allowed for the detection of less frequent hosts that may 

have evaded the methods used in this study. 

 This study provides important parameters for evaluating the risk potential of hosts, such 

as barnyard grass and green foxtail, that were previously characterized as sources of mites and 

virus. In addition, this survey will help prioritize the selection of plants for future host range 

studies. A comparison of historical data indicates a need to conduct these surveys at regular 

intervals, as they provide a baseline of information for risk assessment and impact of weeds in 

agricultural crops. 
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Tables 

Table 7.1. Frequency of weeds in winter wheat stubble across 52 fields in 2013 and 105 

fields in 2014 in the Panhandle and southwestern Nebraska, northwestern Kansas, and 

northeastern Colorado during early- to mid-August. 

Common Name Latin Name Code 2013 2014 
Grasses 

Volunteer Wheat Triticum aestivum L. TRAE 68.6% 48.6% 
Stinkgrass Eragrostis cilianensis (All.) E. Mosher ERACN 70.6% 42.9% 
Green Foxtail Setaria viridis (L.) Beauv. SETVI 52.9% 32.4% 
Witchgrass Panicum capillare L. PANCA 39.2% 41.0% 
Barnyard grass Echinochloa crus-galli (L.) Beauv. ECHCG 9.8% 6.7% 
Large crabgrass Digitaria sanguinalus (L.) Scop. DIGSA 3.9% 0.0% 
Longspine Sandbur Cenchrus longispinus (Hack.) Fern CCHPA 2.0% 1.9% 
Corn Zea mays L.  ZEAMX 2.0% 1.9% 
Yellow Foxtail Setaria pumila (Poir.) & Shult. SETLU 0.0% 1.9% 
Proso Millet Panicum miliaceum L. PAMI2 2.0% 0.0% 
Volunteer Oats Avena fatua L. AVESA 0.0% 1.0% 

Broadleaf 
Kochia Kochia scoparia (L.) Schrad KCHSC 58.8% 41.0% 
Russian Thistle Salsola tragus L. SATR12 49.0% 46.7% 
Pigweed/Waterhemp Amaranthus spp. . 64.7% 27.6% 
Buffalobur  Solanum rostratum Dun. SOLCU 39.2% 19.0% 
Common Lambsquarters Chenopodium album L. CHEAL 27.5% 15.2% 
Carpetweed Mullugo verticillata L. MOLVE 19.6% 20.0% 
Common Purslane Portulaca oleraceaL. POROL 9.8% 18.1% 
Puncturevine Tribulus terrestris L. TRBTE 15.7% 2.8% 
Wild Buckwheat Polygonum convolvulus L. POLCO 15.7% 1.9% 
Common Sunflower Helianthus annuus L. HELAN 5.9% 0.0% 
Prickly Lettuce Lactuca serriola L. LACSE 0.0% 3.8% 
Horseweed Conyza canadensis (L.) Cronq. ERICA 0.0% 2.8% 
Venice Mallow Hibiscus trionum L. HIBTR 0.0% 1.9% 
Velvet Leaf Abutilon theophrasti Medik. ABUTH 0.0% 0.9% 
Common Ragweed Ambrosia artemisiifolia L. AMBEL 0.0% 0.9% 
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Table 7.2. Density of weeds in winter wheat stubble across 52 fields in 2013 and 105 fields 

in 2014 in the Panhandle and southwestern Nebraska, northwestern Kansas, and 

northeastern Colorado during early- to mid-August. 

Common Name Scientific Name 2013 2014 

Grasses 
Volunteer Wheat Triticum aestivum L. 40.8 ± 6.4 40.5 ± 9.2 
Stinkgrass Eragrostis cilianensis (All.) E. Mosher 20.0 ± 4.8 14.7 ± 3.1 
Green Foxtail Setaria viridis (L.) Beauv. 8.6 ± 1.8 7.5 ± 2.5 
Witchgrass Panicum capillare L. 3.6 ± 1.0 7.6 ± 1.5 
Barnyard grass Echinochloa crus-galli (L.) Beauv. 48.9 ± 40.8 4.3 ± 1.1 
Large crabgrass Digitaria sanguinalus (L.) Scop. 2.3 ± 4.1  -  
Longspine Sandbur Cenchrus longispinus (Hack.) Fern 1.0 

  32.1 ± 29.1 
Corn Zea mays L.  0.2 

  
0.2 ± 0.2 

Yellow Foxtail Setaria pumila (Poir.) & Shult.  -  6.7   
Proso Millet Panicum miliaceum L. 8.3 

  
 -  

Volunteer Oats Avena fatua L.  -  0.6   

Broadleaf 
Kochia Kochia scoparia (L.) Schrad 2.1 ± 0.3 3.2 ± 0.8 
Russian Thistle Salsola tragus L. 2.1 ± 0.5 3.2 ± 0.4 
Pigweed/Waterhemp Amaranthus spp.	 6.8 ± 1.9 3.3 ± 0.6 
Buffalobur  Solanum rostratum Dun. 2.0 ± 0.5 1.6 ± 0.2 
Common Lambsquarters Chenopodium album L. 1.9 ± 0.6 1.7 ± 0.3 
Carpetweed Mullugo verticillata L. 2.4 ± 0.6 3.2 ± 0.6 
Common Purslane Portulaca oleraceaL. 6.6 ± 5.4 4.8 ± 1.3 
Puncturevine Tribulus terrestris L.	 11.9 ± 7.8 2.3 ± 0.8 
Wild Buckwheat Polygonum convolvulus L. 2.2 ± 0.8 2.2 ± 0.8 
Common Sunflower Helianthus annuus L. 3.1 ± 1.2  -  
Prickly Lettuce Lactuca serriola L. 

 
- 

 
4.3 ± 1.3 

Horseweed Conyza canadensis (L.) Cronq. 
 

- 
 

1.3 ± 0.3 
Venice Mallow Hibiscus trionum L.  -  3.0 ± 0.6 
Velvet Leaf Abutilon theophrasti Medik.  -  1.0  - 
Common Ragweed Ambrosia artemisiifolia L. 

 
-  2.0   - 
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Figures 

Figure 7.1. County map for Nebraska, Kansas, and Colorado with area highlighted 

where winter wheat fields were surveyed for weed frequency and density during the 

fall of 2013 and 2014. (3 fields per county in 2013; 6 fields per county in 2014). 
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Appendix 

Appendix A. Literature on hosts tested for the wheat streak mosaic virus and the wheat 
curl mite. 
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Appendix B. 2012-13 data for establishing risk of over-summering hosts for the wheat-
virus complex. 

 Extreme drought occurred during the 2012-13 season leading to lack of germination and 

establishment of barnyardgrass and green foxtail during the spring of 2012.  Pre-harvest wheat 

had poor establishment leading to repeated supplemental plantings within plots from May 22nd 

through June 30th.  Foxtail millet established from single planting on May 22nd. Corn was planted 

on May 10th.  

 WCM movement into plots (Figure 1) peaked one month earlier in 2012 compared to 

2013 and 2014 with activity peaking at 72.9%, approximately one week before harvest. Mite 

activity from plots are represented as proportion of plants infested (Figure 2a) and average 

number of mites (Figure 2b).  Virus symptomology (Figure 4) (SPAD; relative chlorophyll) and 

virus presence (Figure 5; WSMV ELISA) show spring impact from host plots. 

 

Figure 1. WCM movement into the study area as an average of percent of trap plants 

infested across four locations at each cardinal direction from the study for each year (2012, 

2013 and 2014 season). 
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Figure 2. Proportion of infested trap plants (a) and average number of wheat per trap 

plant (b) for 2012-13 season from one week after wheat harvest until late October for 

six hosts (corn, foxtail millet, green foxtail, wheat (artificially infested).  
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Figure 3. Virus symptomology (a) (SPAD: relative chlorophyll content) and presence 

(b) (WSMV ELISA absorbance) for wheat surrounding the over-summering plots 

(spring 2013).  
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Appendix C. SAS-Code for Regression and Proportion Data Analysis  

*ANOVA for evaluation of main effects and interactions; 
 
proc glimmix data=reproductivestudy; 
class colony host rep run; 
model adult=colony|host|day|day/ solution htype=1 dist=negbin; 
random run*colony*host*rep; 
nloptions maxiter=1000; 
run; 
 
*Remove non-significant effects from model through solution for fixed 
effects; 
*Rerun model containing only significant effects; 
*Add “noint” to obtain intercepts for equations; 
 
proc glimmix data=reproductivestudy; 
class colony host rep run; 
model adult=colony*host day(colony*host) day*day(colony*host)/ noint solution 
htype=1 dist=negbin; 
random run*colony*host*rep; 
nloptions maxiter=1000; 
run; 
 
*Evaluate individual quadratic effects for significance and remove individual 
treatment combination if not significant from zero; 
*q=1 for significant quadratic, q=0 for non-significant quadratic; 
*Add q to model to knockout quadratic effect;  
 
title 'Type 1 vs. 2 Analysis'; 
proc glimmix data=reproductivesortOnlyType; 
if colony ="Type1" and host="BYD" then q=0; 
if colony ="Type1" and host="GF" then q=0; 
if colony ="Type1" and host="FM" then q=0; 
if colony ="Type1" and host="JG" then q=1; 
if colony ="Type1" and host="W" then q=0; 
if colony ="Type2" and host="BYD" then q=1; 
if colony ="Type2" and host="GF" then q=0; 
if colony ="Type2" and host="FM" then q=0; 
if colony ="Type2" and host="JG" then q=1; 
if colony ="Type2" and host="W" then q=0; 
class colony host rep run; 
model adult=colony*host day day(colony*host) day*day*q(colony*host)/ noint 
solution htype=1 dist=negbin; 
random run*colony*host*rep; 
output out=yhats1 pred(ilink)=p; *output predicted values from model; 
run; 
 
*Correlation between observed and predicted values;  
 
proc print data=yhats1; run; 
proc corr data=yhats1; 
by colony host; 
var adult p; 
run; 
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