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Efficient use of irrigation is essential to meet food production needs of growing 

global populations while ensuring long-term sustainability of freshwater resources. 

However, lack of on-farm irrigation data constrains understanding of irrigation variation 

and no framework exists to benchmark irrigation use using actual irrigation data. The 

following work investigates variation in irrigation using a database of ca. 1400 maize and 

soybean fields over 9 years in Nebraska and presents a framework to benchmark 

irrigation use using a separate database of ca. 1000 maize and soybean fields in Nebraska 

as proof of concept. “State-of-the-art” crop models estimated yield potential and 

irrigation water requirements for each field-year observation and were compared against 

producer-reported yield and irrigation. 

Precipitation and ETo accounted for >68% of observed year-to-year variation in 

irrigation in maize and soybean fields. Irrigation differed by ca.150 mm between regions 

due to differences in available water holding capacity. Weather and soils explained field-

to-field variation in irrigation; however, the majority of field-to-field variation remained 

unexplained, attributable to producer behavior. Fields with above/below-average 

irrigation remained consistent across all years, suggesting behavioral components of 

irrigation variability. Findings illustrate the difficulty of predicting field-scale irrigation 

due to multiple biophysical and behavioral factors driving irrigation decisions. Increased 



 
 

  

availability of high-quality, on-farm irrigation data is needed to inform decision-making 

related to water resources and irrigated agriculture. 

Benchmarking found that 82% of fields reached ≥70% of yield potential. Nearly 

75% of maize and ca. 40% of soybean fields were irrigated above simulated irrigation 

requirements, indicating room for improvement in irrigation use. Irrigation surplus 

increased with decreasing soil water holding capacity. Fields irrigated using high-level 

technology (e.g. soil water sensors) received 95 mm less irrigation than fields where 

irrigation decisions were not properly informed, with no yield difference between 

scheduling methods. Half of current irrigation volumes could be potentially reduced in 

above- or near-average rainfall years if current irrigation surplus is eliminated, but only 

10% in drought years. The framework developed can be used to benchmark irrigation use 

for crop production at different spatial levels (field, region, state), help prioritize 

extension and research activities, and inform policy and incentive programs.  
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Preface 

 

 As the world seeks solutions to feed an estimated global population of 9.7 billion 

people by 2050, irrigated agricultural land and exploitation of groundwater resources in 

developing countries are expected to increase significantly in the next 30 years with 

projections estimating a 20 Mha increase in irrigated land from 2005 to 2050 

(Alexandratos and Bruinsma, 2012; United Nations; 2015). Global climate change 

models predict altered precipitation patterns worldwide including prolonged and more 

severe droughts in some regions, which could portend increased appropriation of 

groundwater resources with reduced potential for the long-term sustainability of 

groundwater systems (Kumar, 2012; Scanlon et al., 2012). In view of these challenges, it 

is essential to find a balance between producing increasing crop yields while managing 

groundwater resources to ensure long-term sustainability. An important first step of this 

balance is to understand how crop producers use irrigation water: how much irrigation 

water is applied, how irrigation varies over time and space, and how well irrigation water 

is utilized for crop production.  

Lack of high-quality, field-scale irrigation data is one of the greatest limitations 

for studies pertaining to irrigation water usage and its impacts. In the United States, 

irrigation data are reported by the USDA Farm and Ranch Irrigation Survey in the form 

of a statewide average value released every five years 

(https://www.agcensus.usda.gov/Publications/Irrigation_Survey/). Without actual field-

scale data, the variability in irrigation is largely unknown and it is impossible to 

determine how close irrigation amounts are to irrigation requirements. This study makes 

https://www.agcensus.usda.gov/Publications/Irrigation_Survey/
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use of two unique databases containing on-farm irrigation, yield, and management data 

collected from irrigated maize and soybean fields to delve into long-standing questions 

and assumptions about irrigation trends and producer behavior/management related to 

irrigation and how they relate to crop yields. Throughout this study, Nebraska, USA, was 

used as a proof of concept for a new framework to analyze spatial and temporal variation 

in irrigation and benchmark irrigation water use for crop production. 

Irrigated agriculture represents a vital part of Nebraska’s economy and culture. 

Nebraska ranks first nationally in number of irrigated hectares, with ca. 3.4 Mha of 

irrigated land (USDA, 2014). Approximately 10.2 billion m3 of water are pumped from 

groundwater sources annually to irrigate fields across Nebraska, accounting for 94% of 

groundwater withdrawals and 84% of total irrigation water for the state (USGS, 2005). 

Despite intensive use of groundwater for irrigation, the predominant groundwater source 

in Nebraska (the High Plains Aquifer) has experienced relatively minimal groundwater 

depletion (Scanlon et al., 2012). Of Nebraska’s harvested irrigated cropland, ca. 64% and 

25% is maize for grain and soybean, respectively, according to most recent U.S. Census 

of Agriculture estimates from 2012 (USDA-NASS, 2014). About 52% and 48% of total 

maize and soybean harvested area in Nebraska is irrigated and rainfed, respectively, 

based on 2012 estimates (USDA-NASS, 2014). Maize and soybean 5-year average yields 

(2010-2015) in Nebraska are respectively 12.1 and 4.1 Mg ha-1 with irrigation and 7.9 

and 3.0 Mg ha-1 in rainfed conditions, with associated inter-annual coefficient of 

variations (CV) of 5% and 4% for irrigated maize and soybean, respectively, and 27% 

and 25% for rainfed maize and soybean yields, respectively (USDA, 2014). Hence, 

irrigation increases and stabilizes crop production, providing incentives for ethanol 
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plants, feedlot operations, and machinery and irrigation manufacturers to establish in 

Nebraska. A 2003 study by the University of Nebraska – Lincoln Bureau of Business 

Research estimated total economic impact of irrigation to be $3.6 billion USD per year 

under normal precipitation (Lamphear, 2005). Likewise, another study estimated in 2012 

that direct economic losses would be upwards of $7 billion USD if producers in Nebraska 

were unable to irrigate in a year of severe drought, such as 2012 (Parkinson, 2012).  

In Nebraska, a unique system of regional governance oversees the management of 

natural resources data. Within the state, there are 23 Natural Resources Districts (NRDs; 

www.nrdnet.org) with watersheds as boundaries. These districts are charged with 

facilitating programs to conserve water and soil resource quality and quantity, a process 

which involves collecting pertinent data from crop producers within the NRD. Examples 

of such data include field-specific applied irrigation and nitrogen fertilizer data required 

to be reported by producers as part of NRD programs aimed at preventing irrigation 

overuse and nitrate and pesticide contamination of groundwater. Cooperation between the 

NRDs and university researchers has resulted in access to databases,  varying in reporting 

area size, containing a wide range of field-specific agronomic data including crop type, 

sowing date, irrigation system, tillage practice, yield, fertilizer inputs, and irrigation water 

amount. Research presented in this thesis utilized two databases, the first created by 

combining data from multiple NRDs over several years and the second the result of data 

collected via producer surveys created for this study.  

 The two databases showcased in the following chapters contained a large number 

of field-year observations along with detailed data on yield and irrigation, all of which 

allowed a robust analysis of irrigation use and irrigation management practices in 

http://www.nrdnet.org/
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Nebraska. Chapter 1 discusses analysis of a database containing over 1400 maize and 

soybean fields and 9 years of data to identify sources of spatial and temporal variation in 

irrigation. Based on the findings in Chapter 1 about the drivers of variation in irrigation in 

space and time, Chapter 2 presents a comprehensive framework to benchmark and 

improve on-farm irrigation water use to produce crop yield and proof of concept is 

provided with a case of study based on a database containing 1000 maize and soybean 

field-year observations, including three years with contrasting weather. The importance 

of irrigation in Nebraska and the availability of high-quality producer-reported data make 

the state an ideal testing ground for new approaches to benchmark irrigation usage. The 

objectives of this study are to first understand how irrigation varies in time and space, and 

then to use this information to develop a framework to benchmark current irrigation 

water use and identify opportunities to improve current irrigation management practices 

for crop production.   



5 
 

  

Chapter 1 

Understanding the extent and causes of spatial and temporal variation 

in irrigation 

 

Abstract  

Irrigated agriculture accounts for ca. 40% global food production and only uses 

20% of land allocated to crop production. However, there is a large gap of knowledge 

relative to the factors that drive variation in irrigation across year, across region, and 

across fields within the same region and year. Understanding the cause and extent of this 

variation is necessary to predict and estimate future irrigation use across years, develop 

tools to aid irrigation decision making, and identify sources of surplus irrigation and 

opportunities for improvement. This study investigated sources of variation in irrigation 

using a database collected over 9 years from ca. 1400 maize and soybean fields in two 

distinct regions in Nebraska, USA (total of 12,750 field-year observations). The database 

contained field-specific data annual irrigation, which was measured using flow meters 

installed at each irrigation well or estimated by producers. Crop water deficit, calculated 

as the difference between total precipitation and reference evapotranspiration (ETo) 

during the growing season, accounted for >68% of observed year-to-year variation in 

irrigation in both maize and soybean fields. However, irrigation was markedly different 

between the two regions (ca. 150 mm) due to differences in available water holding 

capacity between regions. Precipitation, ETo and soils also explained field-to-field 

variation in irrigation; however, the majority of field-to-field variation remained 

unexplained, suggesting that producer behavior in relation to irrigation scheduling may 

also play an important role. Indeed, our analysis indicated that fields with high irrigation 
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were surrounded by fields with similarly high irrigation, suggesting the presence of a 

“neighbor” effect on irrigation decisions. Likewise, our analysis further pointed to a 

behavioral component since fields with above- or below-average irrigation consistently 

remained so across all years of the study. Our findings indicate that it is difficult to 

predict field-scale irrigation due to the presence of multiple factors driving irrigation 

decisions, including biophysical (crop, precipitation, ETo, and soil) and behavioral 

factors. We argue here that, given the difficulties in predicting irrigation accurately from 

secondary variables, there is an urgent need to increase availability of high-quality, field 

irrigation data. Without accurate irrigation data, future research focusing on the food-

water nexus will continue to rely on coarse, fragmented irrigation data, which will, in 

turn, diminish our capacity to inform decision-making and prioritize research and 

investment in irrigated agriculture and water resources. 

Keywords: irrigation; soybean; maize; on-farm data 

 

 

1. Introduction 

Irrigation is important to agricultural production worldwide, accounting for ca. 

40% of global food production and 20% of arable land (Molden, 2007; Schultz et al., 

2005). Given the importance of agriculture to produce food for current and future 

populations and the prevalence of water withdrawals exceeding recharge in many 

irrigated areas, there is a need to improve use of freshwater resources for agriculture 

(Godfray et al., 2012; Scanlon et al., 2012; Siebert et al., 2010). However, a dearth of 

actual producer field irrigation data inhibits the scope and reduces the accuracy of many 

studies involving irrigation water use in agriculture.  
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Only a few studies have used reliable, irrigation data from producer fields as the 

basis for their assessments (Grassini et al., 2014b; O’Keefe 2016). However, the vast 

majority of previous studies involving use of irrigation water in agriculture have used 

coarse estimates of irrigation data. Many previous studies have, for example, relied on 

publically available coarse irrigation data. Irrigation databases, including AQUASTAT 

(http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en) and USDA Farm 

and Ranch Irrigation Survey (FRIS, 

http://www.agcensus.usda.gov/Publications/2002/FRIS/fris03.pdf) have been used in 

studies which sought to analyze irrigation on a global or national scale (Mullen et al., 

2009; Siebert et al., 2010). These databases provide coarse irrigation data, typically at 

country or state level, with important gaps relative to geographical and temporal 

coverage. For example, AQUASTAT does not contain data for North America or Europe 

and most-recent records may date back decades. Also, while FRIS provides data for the 

U.S. on a state-level, data on irrigation are only reported every five years. As a result, 

irrigation data may be biased if weather conditions deviated from normal in the year in 

which these data were collected. In other studies, irrigation data have been estimated 

using estimated pumping rates based on publically available groundwater level data 

(Maupin and Barber, 2005; Mcguire, 2007; Scanlon et al., 2012). However, without 

actual irrigation data, it is not possible to quantify the exact contribution of irrigation 

withdrawal on groundwater decline to implement policies for long-term sustainability of 

both agriculture and groundwater resources. Other studies have estimated irrigation 

requirements as a proxy to actual irrigation, with the former estimated on meteorological 

factors or crop and hydrological models (Sharma and Irmak, 2012a; Döll and Siebert, 

http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
http://www.agcensus.usda.gov/Publications/2002/FRIS/fris03.pdf
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2002; Droogers et al., 2010; Phillips et al., 2015; and Rohde et al., 2015). Use of 

estimated irrigation requirements in place of actual irrigation data is problematic for 

several reasons. Overly simplistic estimations of irrigation based solely on weather 

variables sometimes do not account for factors influencing the water balance or irrigation 

water use such as crop type, irrigation system type, and soil properties, make crude 

assumptions relative to these factors, or rely on coarse soil and weather data (e.g., 

monthly weather means). Likewise, this approach ignores producer risk perception and 

associated behavior relative to irrigation scheduling. A common problem of the studies 

listed above is the total lack of validation of their irrigation estimates against measured 

irrigation in producer fields.  

Understanding the sources of spatial and temporal variation in irrigation at field-

level is important to better predict and estimate irrigation use as well as identify sources 

of irrigation surplus and find opportunities for improvement. To our knowledge, no 

previous study has attempted to assess sources of field-to-field variation in irrigation 

across producer fields. In an earlier study in Nebraska, Grassini et al. (2014b) found that 

the majority of variation in irrigation in soybean fields was due to spatial variation (i.e. 

field-to-field) and that variation was consistent across years. However, this previous 

study did not look into the causes for the observed temporal and spatial variation in 

irrigation. Sources of field-to-variation may involve differences in weather across fields 

and years, as well as differences in soil type and topography between fields. But it may 

also involve a behavioral component, specifically, the risk perception by producers and 

how this influences irrigation decisions (Andriyas, 2013).  
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 In the present study, we used a unique database with data on irrigation collected 

from ca. 1,400 maize and soybean fields in Nebraska during 9 years (2005-2013). Our 

objective was to identify sources of spatial and temporal variation in on-farm irrigation, 

including weather, soil properties, crop management, and producer behavior. Our 

hypothesis is that field-specific actual irrigation is determined by multiple, interactive 

factors and, hence, it cannot be estimated precisely with a few biophysical factors. 

 

2. Methods 

2.1 Study area and producer database 

Irrigation data were available for irrigated maize and soybean fields over 9 years 

(2005-2013) in two regions of Nebraska: north-central (NC) and south-central (SC) (Fig. 

1.1). While climate varied drastically across years, it was remarkably similar between 

regions (Table 1.1). However, the two regions varied markedly relative to soil type, with 

dominant soils in the SC region having nearly two times higher available water holding 

capacity (AWHC, 0-1 m) than soils in the NC region. Likewise, while soils were 

remarkably similar across fields in the SC region, soils were highly heterogeneous in the 

NC region. Finally, topography was similar in fields in both NC and SC regions, as 

indicated by the similarity in the average topographic wetness index in the two regions 

(TWI, see description below). 



10 
 

  

 

Figure 1.1 A) Map showing the two study areas in Nebraska (shaded regions) as well as 

meteorological stations (red dots) used for weather interpolation in this study. B) Field 

locations (green squares) in north-central (NC) region. C) Field locations in south-central 

region (SC). 

 

The NRD data included field-scale sown crop, yield, fertilizer inputs, crop 

rotation, irrigation system type, and total irrigation during the crop growing season for 

the 2005-2013 time period. Irrigation was measured using a flow-meter installed at each 

irrigation well, although irrigation was estimated by farmers for some fields in NC region 

based on number of irrigation events and irrigation system flow capacity. Quality control 

was performed to remove fields containing suspicious (e.g., irrigation values exceeding 

system capacity over the growing season) or missing data. With the exception of 

ANOVA for which gravity-irrigated fields were included, this study only considered 

pivot-irrigated fields, which accounted for ca. 75% of fields in SC and all fields in NC. 

Likewise, we focused on maize and soybean fields because these two crops account for 

A

) 

B

) 

C

) 
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89% of total irrigated area in Nebraska (USDA-NASS, 2014). The database contained a 

total of 12,750 field-year observations. Within the 9 years of study (2005-2013), there 

was a wide range of weather conditions, ranging from years with above-average 

precipitation (e.g. 2010) to years with severe drought (e.g. 2012). Availability of 

irrigation data for a wide range of weather, soil, and management conditions presents a 

unique new opportunity to investigate sources of spatial and temporal variation and 

analyze producer behavior in relation to irrigation decisions. 

Field-scale weather and soil property data were retrieved for each individual field-

year. Precipitation and grass-based reference evapotranspiration (ETo) were interpolated 

for each field, using daily weather data from the three weather stations located in closest 

proximity (on average ca. 24 km) to each field, using inverse distance weighting (Yang 

and Torrion, 2014). Weather data were retrieved from 16 Automated Weather Data 

Network (AWDN; http://www.hprcc.unl.edu/awdn.php) and 49 National Weather 

Service (NWS) Cooperative Station Network weather stations. For the purpose of 

interpolating ETo data, only AWDN stations were used due to lack of all meteorological 

variables needed to estimate ETo in the NWS network stations. However, both AWDN 

and NWS stations were used in the interpolation of precipitation data to increase the 

spatial coverage of weather stations relative to field locations. This is crucial because of 

the high spatial variation in precipitation in the western U.S. Corn Belt as reported by 

Hubbard (1984). For each field-year, seasonal precipitation and ETo were calculated for 

each field as the cumulative value for each of these variables from June 1st to August 31st. 

These dates coincide with the beginning and end of the irrigation season in the maize and 

soybean crop producing region in the western U.S. Corn Belt (Grassini et al., 2014a).  

http://www.hprcc.unl.edu/awdn.php
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Available water holding capacity (AWHC) for the 0-1 m soil depth was obtained 

for each field from the Soil Survey Geographic database (SSURGO; 

http://websoilsurvey.nrcs.usda.gov). AWHC is defined as the amount of water between 

soil field capacity and wilting point, in the upper 1 m of soil profile in this case. This 

depth represents the portion of the crop rooting zone that is typically scouted by crop 

producers during the crop growing season to make decisions relative to irrigation 

scheduling. Mean AWHC was calculated for each field by weighting each sub-field soil 

property unit relative to their proportion within each field. SAGA GIS software was used 

to obtain topographic wetness index (TWI) for each field (Table 1.1) (Conrad et al., 

2015; Olaya and Conrad, 2009). Topographic wetness index indicates likelihood of 

surface runoff from/to an area based on slope and surrounding area; depression areas 

have high TWI values while upland areas have low TWI values (Sørensen et al., 2006). 

To summarize, key weather, soil properties and topography were retrieved for each field-

year to understand how these factors may explain field-to-field variation in irrigation.  

 

Table 1.1 Means of topographic wetness index (TWI) and available water holding 

capacity (AWHC) across north-central and south-central fields. Long-term (2005-2013) 

means of seasonal (June 1st – August 31st) precipitation and reference evapotranspiration 

(ETo) are also shown. Coefficients of variation (CV) are shown in parentheses. CVs 

correspond to field-to-field variation for TWI and AWHC and year-to-year variation for 

precipitation and ETo. 

 TWI (unitless)  AWHC (mm)   Precipitation (mm) ETo (mm)  

North-central 7.7 (11%) 104 (34%) 250 (32%) 475 (12%) 

South-central 7.4 (7%) 199 (11%) 252 (36%) 475 (10%) 

 

 

http://websoilsurvey.nrcs.usda.gov/
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2.2 Statistical analysis 

Influence of several biophysical and management factors on spatial and temporal 

variation was evaluated using ANOVA (SAS® software v 9.4, ©2002-2012 SAS 

Institute Inc., Cary, NC, USA). These factors included crop type, previous crop (i.e., the 

crop sown in the same field in the prior year), irrigation system type, TWI, AWHC, 

seasonal precipitation, and seasonal ETo. Significance of irrigation system type was only 

evaluated for SC, as NC fields were all pivot-irrigated. Linear regression analysis was 

used to assess variation in irrigation and its variability in relation with seasonal water 

deficit (seasonal ETo minus seasonal precipitation) and AWHC.  

2.3 Influence of producer behavior on irrigation amounts 

The influence of neighboring producers’ irrigation decisions on an individual 

producer’s field was analyzed by investigating irrigation with distance from individual 

fields. To reduce other sources of field-to-field variation such as soil heterogeneity, only 

SC fields with almost identical AWHC and TWI were analyzed to determine the presence 

of this so-called “neighbor effect”. Irrigation data within SC were found to be 

lognormally distributed, and were subsequently logarithmically transformed to obtain z-

score values. A z-score was calculated for each field by subtracting mean irrigation from 

field irrigation and dividing by standard deviation. For each field, the z-score was 

calculated for all surrounding fields at increasing distance (0.8 to 10.5 km), in 1.6 km 

increments. After the z-score and standard deviation of the z-score were determined, 

fields were grouped by their local (fields within 0.8 km distance) z-score. The mean and 

standard deviations for each group were then back-calculated to obtain average values. 
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This was performed for each year and then averaged across all years included in the study 

period.  

Understanding if producer irrigation decisions are consistent across years can help 

identify manageable or non-manageable factors influencing irrigation and determine to 

what extent improvement in irrigation usage is possible. This methodology has been 

followed by Lobell et al. (2010) and Farmaha et al. (2016) to detect sources of yield 

variation in relation to management factors. If a producer consistently irrigates more than 

others in the same region, it implies that there is a persistent factor responsible, a non-

manageable factor such as soil type or a manageable factor such as irrigation system type 

or skill. In contrast, if a producer applies more irrigation in one year but a similar or 

smaller amount in another year, relative to the rest of the population of producers within 

the same region, it becomes more difficult to understand the factors driving irrigation 

decisions.  

Because we were interested in analyzing persistence in relation with producer 

behavior and not with soil type or irrigation system type, the analysis was constrained to 

the pivot-irrigated fields in the SC region because soil properties were nearly identical 

among all fields. Following Farmaha et al. (2016), two years (2010 and 2012) were 

chosen in the present study as ranking years to analyze persistence in irrigation amount 

across all other years during the study period. Both years represent extreme weather 

years, with 2010 and 2012 having above- and below-average seasonal precipitation (415 

and 105 mm, respectively). For both 2010 and 2012, fields located in the top and bottom 

quartiles of the irrigation distribution were selected, resulting in four categories: 2010 

high irrigation (HI), 2012 HI, 2010 lower irrigation (LI), and 2012 LI.  
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A relative fraction of irrigation was calculated for each field falling in the HI and LI 

categories in 2010 and 2012 as follows: 

RIF F R

R

I I

I


        (Eq. 1) 

where RIF was relative irrigation fraction, 
FI was field irrigation and 

RI was average 

regional irrigation. Relative fraction of irrigation was then calculated for each of these 

fields in the non-ranking years (2005, 2006, 2007, 2008, 2009, 2011, 2013), and averaged 

across those non-ranking years. A relative irrigation fraction of zero in a non-ranking 

year indicated that average field irrigation was equal to regional irrigation amount in that 

year. A relative irrigation fraction of 0.5, for example, meant that average irrigation for 

fields in that non-ranking year was 50% higher than the regional average irrigation for 

that year. If relative irrigation fraction was consistently above or below zero, it would 

indicate persistent behavior, meaning that the HI producers tend to always apply more 

irrigation than other producers while LI producers tend to always apply less irrigation. In 

contrast, if irrigation fraction approached zero, it indicated that most farmers erratically 

modify their irrigation decisions year after year. As a measure of the degree of 

persistence, percentage of persistence was calculated as: 

Persistence % 100% 
N

R

RIF

RIF
      (Eq. 2) 

where NRIF  was the average relative irrigation fraction in a non-ranking year and RRIF

was the average relative irrigation fraction in a ranking year. Percentage of persistence 

was computed for HI and LI fields. A high persistence value implied that irrigation in 
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ranking and non-ranking years was consistently above or below the regional average 

irrigation across all years and not just in the year in which the fields were ranked.  

 

3. Results 

 

3.1 Explanatory factors driving year-to-year and field-to-field variation in irrigation 

Visual inspection of producer irrigation distributions clearly showed important 

variation in irrigation across regions, year, and crops (Fig. 1.2). Remarkably, field-to-

field variation in irrigation, within the same region-year, was very large as indicated by 

CV values ranging from 18% to 58% across region-years cases. The majority (70%) of 

site-year irrigation distributions shown in Fig. 1.2, deviated from a normal distribution 

(D'Agostino-Pearson test, p<0.01) and most of them were skewed towards high irrigation 

values. In other words, the shape of the irrigation distributions clearly indicated that, 

within a given region-year, a substantial number of fields received irrigation amounts that 

were well above the average irrigation for the same region-year.  



  

 
Figure 1.2 Distributions of producer field seasonal irrigation from 2005-2013 for pivot-irrigated maize and soybean fields in north-

central (NC) and south-central (SC) regions. Long-term (9 year) mean irrigation and year-to-year coefficient of variation are displayed 

for each region and crop. Upper and lower boundaries of boxes indicate 75 th and 25th percentile, respectively. Horizontal line within 

boxes is the median value. Whiskers (error bars) are maximum and minimum values. Asterisks indicate that irrigation distribution 

deviates from the normal distribution (D'Agostino-Pearson test, p<0.01). 

1
7
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Analysis of variation indicated that weather, soil, and crop type explained an 

important portion of the variation in producer irrigation across fields (Table 1.2). 

Precipitation and AWHC appeared to be major sources of variation, explaining 26% and 

51%, respectively, of the observed variation in irrigation across fields after excluding the 

error (p<0.01). Other factors, such as crop type, irrigation system type, and ETo, had a 

significant influence on irrigation (p<0.01), but their explanatory power was smaller 

relative to the aforementioned factors (<15%). Remarkably, more than half (55%) of the 

field-to-field variation in irrigation remained unexplained by the factors accounted for in 

this analysis (Table 1.2).  

Table 1.2 Analysis of factors influencing temporal and spatial variation in producer field 

irrigation.  

*Significant to p<0.001 

a df: degrees of freedom 
b TWI: Topographic wetness index  
c AWHC: Available water holding capacity 
d ETo: Grass-reference evapotranspiration 

†Model % sum of squares (SS) calculated relative to total SS; parameter % calculated relative to model SS 

 

Source 

Temporal  Spatial 

F-value df a 
Sum of 
squares 

% SS† 
 

F-value df a 
Sum of 

squares† 
% SS† 

MODEL 413* 4 32939167 22%  611 8 68515445 45% 

Crop 42* 2 1687444 8%  63* 1 879876 1% 

Prior crop − − − −  2 1 28985 0% 

Irrigation system  − − − −  653* 1 9149452 15% 

TWI b − − − −  3 1 41897 0% 

AWHC c − − − −  2243* 1 31439791 51% 

Precipitation  767* 1 15297782 75%  1169* 1 16389809 26% 

ETo
  d 171* 1 3403535 17%  301* 1 4216767 7% 

ERROR  5986 119397760    5979 83798737  

TOTAL  5990 152336927    5987 152314182  
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While soil AWHC had a greater impact on spatial variation in irrigation than 

precipitation and ETo, precipitation in particular contributed significantly to temporal 

variation in irrigation, accounting for 75% of observed variation in irrigation across years 

(Table 1.2). Variation in regional average irrigation across years was explained by the 

magnitude of seasonal water deficit for both crops (p<0.01, r2>0.68) (Fig. 1.3). Seasonal 

water deficit had more explanatory power relative to rainfall (r2>0.60) and ETo (r2> 0.55) 

alone at explaining year-to-year variation in irrigation. On average, maize fields received 

15% and 5% higher irrigation than soybean fields in SC and NC fields (p<0.01) (Fig. 

1.3). While this difference reflects differences in irrigation requirements between the two 

crops (Sharma and Irmak, 2015b), this difference is probably amplified by producer 

tendency to apply more irrigation in maize fields (see Chapter 2). Crop influence on 

producer irrigation was consistent across years as indicated by the lack of a significant 

crop  year interaction on irrigation (p=0.81). While irrigation amounts do not appear to 

compensate for water deficit in Fig. 1.3, this is because irrigation, when combined with 

initial soil moisture which is not accounted for in these analyses, would likely exceed or 

equal water deficit.  

 



  

 

 

Figure 1.3 Irrigation versus seasonal water deficit (defined as grass referenced evapotranspiration – precipitation, from June 1st to 

August 31st) for south-central (SC) (red triangles) and north-central (NC) (blue circles) regions. Each data point indicates the average 

seasonal irrigation for a region-year. Years with extremely high (2010) and low (2012) seasonal precipitation amounts are indicated. 

2
0
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 Average irrigation in producer fields located in the NC region was consistently 

higher than irrigation in SC fields across the entire range of crop water deficit, with an 

average difference of ca. 170 mm between the two regions (Fig. 1.3). This difference in 

average irrigation is likely attributable to the substantial difference in soil AWHC 

between the two regions (104 versus 199 mm in NC and SC, respectively) and not due to 

weather differences as indicated by the similarity in seasonal precipitation and ETo (Table 

1.1). However, the difference in irrigation between the NC and SC region (150 mm) was 

not directly proportional to the difference in AWHC (95 mm). This pattern was consistent 

irrespective of weather conditions. We speculate that the inequality (1.6 mm irrigation 

increase per mm decrease in AWHC) can be explained by (i) producers applying higher 

seasonal irrigation in NC fields to compensate for lower irrigation efficiency (i.e., how 

much of the applied irrigation water is captured by crops) in fields with low AWHC, (ii) 

greater risk-aversion attitude in producers irrigating coarse-textured soils, (iii) a 

combination of these two factors.
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3.2. Is field-to-field variation in irrigation consistent across years with contrasting 

weather? 

A question is whether field-to-field variation in producer irrigation is similar 

across years or, instead, it changes from year to year due to variation in weather. Our 

analysis indicated that field-to-field irrigation variation (expressed as CV) diminished 

with increasing magnitude of the crop water deficit (Fig. 1.4). In other words, field-to-

field variation in irrigation was largest in the 2010 wet year relative to the 2012 drought 

year (average CVs: 46% versus 25%). This finding suggests that irrigation requirements 

in a drought year are so high that it becomes more unlikely for a producer to apply 

irrigation in excess of crop water requirements, making differences in producer risk 

behavior less relevant. In contrast, in a wet year, satisfying irrigation water requirements 

requires fewer irrigation events (and smaller amounts) and differences among producers 

relative to irrigation scheduling skills and risk perception become more evident. Field-to-

field variation was consistently higher in SC fields relative to NC fields across the entire 

range of crop water deficit (average CVs of 40% and 25%, respectively) (Fig. 1.4).  
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Figure 1.4 Field-to-field variation in producer irrigation (calculated with the coefficient 

of variation, CV) versus seasonal water deficit for fields located in the south-central (red 

triangles) and north-central (blue circles) regions. Seasonal water deficit was calculated 

as the difference between seasonal reference evapotranspiration and seasonal 

precipitation. Each data point indicates the CV for a given region-year. Years with 

extremely high (2010) and low (2012) seasonal precipitation amounts are indicated. 
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3.3 Producer behavior in relation with irrigation water use 

Iterative analysis of irrigation variation with distance from a given field revealed 

that clustering of irrigation existed within fields in the SC region (Fig. 1.5). In other 

words, irrigation decisions made in an individual field also impacted irrigation decision 

in adjacent fields. As distance increased from a field with high irrigation (651-800 mm), 

irrigation remained higher than average, with this trend persisting until a distance of 

about 4 km. Similarly, fields with low irrigation (35-124 mm) were related to lower-than 

average irrigation in surrounding fields, but only to a distance of about 2 km away. 

Convergence of lines to regional mean irrigation (between 250 and 300 mm) indicated 

disappearance of neighbor effect with distance from a given field. Interestingly, fields 

with high irrigation affected surrounding fields at a greater distance than low irrigation 

fields, suggesting that producers applying large irrigation amounts may influence the 

decisions of neighboring producers to a greater extent relative to the influence of 

producers applying comparatively smaller amounts over neighboring producers.  
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Figure 1.5 Relationship between average irrigation and distance for all fields grouped by 

irrigation in the south-central (SC) region. Analysis was conducted separately for six 

ranges of irrigation (IRR), from low irrigated fields (35-124 mm) to high irrigated fields 

(651-800 mm). Bars indicate ± standard deviation.  

 

Fields in the SC fields with above- (HI category) and below-average (LI category) 

irrigation in ranking years were also the same fields exhibiting respective larger and 

smaller irrigation amounts in the rest of the years. The degree of persistence in SC can be 

seen in Fig. 1.6, wherein the lines of fit for all HI and LI groups do not cross or even 

approach the y=0 line. Fields with above- and below-average irrigation in 2010 had 

irrigation closer to regional average irrigation in non-ranking years (persistence of ca. 

40% for both HI and LI fields) compared to those fields in 2012, for which irrigation was 

more consistently well above- or below-average in all other years (73% and 80% 

persistence, respectively). This illustrates the influence of the ranking year such that 

identifying fields with above- or below-average irrigation in a wet year (e.g. 2010) is not 

as representative of irrigation water use across years with near- or below-average rainfall.  
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Figure 1.6 Relative persistence of producer irrigation in fields in the south-central region. 

Blue and red lines indicate average irrigation for fields that were classified as high 

irrigation (HI) and low irrigation (LI), respectively, according to the producer field 

irrigation distribution in 2010 (solid lines) and 2012 (dashed lines). See Section 2.3 for 

details on calculation of relative persistence. 

 

4. Discussion 

This is the first study to analyze variation of irrigation across different years, 

crops, and soil types using actual irrigation data collected from hundreds of producer 

fields. The interactive influence of multiple factors, including weather, crop type, soil 

properties, and producer behavior in relation to irrigation water use, highlights how 

difficult it is to predict field and regional irrigation based on a few biophysical factors as 

performed by previous studies. For example, our study shows that even at a regional 
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level, average irrigation can vary as much as 200 mm for the same level of seasonal water 

deficit due to differences in soil type. We argue here that, given the difficulties to predict 

irrigation accurately from secondary variables, there is an urgent need to increase 

availability of high-quality, producer field irrigation data. Without accurate irrigation 

data, future research focusing on the food-water nexus will continue to rely on coarse, 

fragmented irrigation data, which will in turn diminish our capacity to inform decision-

making and prioritize research and investment in irrigated agriculture and water resources 

(Appendix explores potential impact of irrigation on groundwater dynamics).  

Weather, crop type, and soil properties influenced producer field irrigation; 

however, these factors only accounted for ca. 50% of observed field-to-field variation in 

producer irrigation. We hypothesize here that most of the remaining variation is 

attributable to producer behavior, specifically, skill and risk perception associated with 

irrigation water use. Consistently with this hypothesis, we found that (i) irrigation 

amounts were higher in the region with sandy soils, even after accounting for differences 

in AWHC between regions, (ii) field-to-field variation increases with decreasing 

magnitude of crop water deficit (i.e., greater field-to-field variation in wet years), (iii) 

there was a significant neighbor effect, and (iv) presence of producers that persistently 

apply greater or lower irrigation relative to the mean average irrigation. 

The neighbor effect illustrated in the present study is consistent with data from the 

2013 USDA Farm and Ranch Irrigation Survey, which reports that 3% of reporting 

producers in Nebraska begin irrigating when their neighbors do so (USDA, 2014). The 

tendency of producers to rely on their neighbor to make irrigation decisions opens a new 

dimension for extension education to develop methods to remove uncertainty that 
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producers have associated with irrigation decisions, specifically, in relation to irrigation 

occurring early and late in the crop growing season. For example, extension educations 

directed towards helping producers recognize key crop developmental stages can help 

improve synchronization between irrigation decisions in relation to crop water 

requirements (Torrion et al., 2014). This study also found a high degree of persistence in 

irrigation amounts over time, which indicates that the factor(s) explaining larger 

irrigation amounts in a group of fields is related with a factor that is persistent over time 

in contrast to other factors that may influence irrigation decisions in a given year but not 

in others (Table 1.3). The implication is that there is substantial opportunity for 

improving irrigation water use (i.e. increasing grain produced per unit of irrigation water) 

if these factors are identified and research and extension can then focus efforts on 

correcting these management practices in a cost-effective way and properly informing 

policy and incentives.  

 

Table 1.3 Conceptual framework categorizing explanatory factors for variation in 

irrigation in producer fields into persistent/non persistent and manageable/non-

manageable.  

Factor Persistent Non-persistent Manageable Non-manageable 

Soil & topography X   X 

Crop type  X X  

Tillage*  X X  

Weather  X  X 

Risk aversion X  X  

Irrigation scheduling method* X  X  

Irrigation system type X  X  

Fuel & grain price*  X  X 
*Possible factor influencing irrigation but not included in the present study 
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Field-to-field variation in irrigation, within the same region-year, typically 

exhibits CVs > 20%. The degree of variation for irrigation reported here is much higher 

than the reported variation for other agricultural inputs such as nitrogen (N) fertilizer 

(CV=17%; Grassini et al., 2011a) Since most of the N fertilizer is applied in a single dose 

in the fall or around sowing, producers have limited ability to adjust N input relative to 

year-specific conditions. Hence, the amount of N fertilizer to be applied depends on 

producer yield goal, which is generally estimated based on average yield during previous 

years. Since irrigated yields typically exhibit small year-to-year and field-to-field 

variation (Grassini et al., 2011a), producer yield goals and N fertilizer rates also vary 

little among fields. In contrast, producers have more flexibility in relation to irrigation 

scheduling and, ultimately, producers’ decisions on irrigation timing and amount will 

depend on their understanding of irrigation requirements in a given year, as determined 

by in-season weather, soil and crop type, and their perception of risk. While the ‘real-

time’ nature of irrigation water use gives producers more flexibility to adjust irrigation 

input in relation to crop water requirements, it also exposes bigger differences in skills 

and risk aversion attitudes among producers, which, ultimately, results in a high degree of 

variation in irrigation amounts, even for the same weather, soil, and crop type.  

Examination of field irrigation distribution indicated that there is an important 

portion of producers (ca. 10-20%) that apply very large irrigation amounts in relation to 

the rest of producer within the same region-year. This observation has implications 

relative to the extension model to be used to improve management of water resources for 

crop production at district, watershed, and state levels. In this case should extension 

education prioritize resources to reduce irrigation inputs in the whole population or, 
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instead, focus on those producers within the upper tail of the field irrigation distribution? 

On the one hand, focusing on fields with highest irrigation offers greater potential payoff 

in terms of irrigation water savings, especially if the source of irrigation surplus can be 

corrected by improving producer irrigation water use skills. On the other hand, these 

fields might be managed by producers with very high risk-aversion attitude, who may be 

more resistant to adopt flexible irrigation decisions based, for example, on crop 

developmental stages or soil water content thresholds. We believe that on-farm data as 

presented in this study, complemented with data relative to the factors that drive producer 

irrigation decisions, can help answer these kinds of questions as well as prioritize 

research and extension activities and inform policy and incentive programs that focus on 

the food-water nexus.  

 

.   
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Chapter 2 

Developing a framework to benchmark irrigation water use for crop 

production 

 

Abstract  

Irrigation is the major use of global freshwater resources and in many areas of the 

world, irrigation withdrawal is greater than recharge, threatening long-term sustainability 

of groundwater resources. Efficient use of freshwater resources is necessary to balance 

food production and use of water resources; however, no framework exists to benchmark 

on-farm irrigation water use relative to crop yield. This study presents a framework to 

benchmark irrigation water use. We provide proof of concept on the utility of this 

framework with a case of study based on an extensive database of ca. 1000 maize and 

soybean fields in Nebraska, USA, including 3 years of contrasting weather conditions. 

The database includes producer field irrigation, yield, and management and associated 

field-specific weather and soil properties. “State-of-the-art” crop models and irrigation 

decision making tools were used to estimate yield potential and irrigation water 

requirements for each field-year observation and these estimates were compared against 

producer-reported yield and irrigation. Field irrigation was upscaled to regional scale to 

estimate potential irrigation water savings for a scenario in which actual irrigation 

matches estimated irrigation crop water requirements in all producer fields. A majority of 

all fields (82%) achieved yields close to yield potential (70% or greater). However ca. 

75% of maize fields and ca. 40% of soybean fields received irrigation amounts well 

above the simulated irrigation requirements, indicating room for improvement in 

irrigation water use. Magnitude of this irrigation surplus (actual irrigation – simulated 
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irrigation requirements) increased with decreasing soil water holding capacity. Irrigation 

scheduling method had a substantial impact on the magnitude of irrigation surplus: 

producer fields where irrigation was scheduled based on soil water sensors or irrigation 

decision tools received, on average, 95 mm less irrigation than fields where irrigation 

decisions were not properly informed, with no yield difference between the two groups of 

fields. Upscaling of potential water saving derived from eliminating current irrigation 

surplus indicated that 50% of current irrigation volume could be reduced in years with 

above- or near-average rainfall, but only 10% in extreme drought years. The framework 

developed in this study can be used to benchmark irrigation water use for crop production 

at different spatial levels (field, region, state), help prioritize extension and research 

activities, and inform policy and incentive programs.  

Keywords: irrigation; water use; soybean; maize; on-farm data; yield 

 

 

1. Introduction 

 Irrigated agriculture accounts for 40% of global food crop production, even when 

it only occupies 20% of global cropland area (Molden, 2007). Water resources will 

become more limited in the future due to effects of climate change and competition for 

freshwater resources for residential and industrial uses, threatening the sustainability of 

irrigated cropping systems (Kumar, 2012; Scanlon et al., 2012). The multitude of studies 

that have looked at irrigation water use for crop production can be roughly be classified 

into two categories: (i) experiments examining the yield response to different levels of 

irrigation water inputs, across different irrigation schedules, fertilizer application, etc. 

(e.g., Kang et al., 2000; Zwart and Bastiaanssen, 2004) and (ii) studies aimed at 
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estimating irrigation crop water requirements at regional and global levels following top-

down approaches (e.g. de Rosnay et al., 2003; Döll and Siebert, 2002; Sharma and Irmak, 

2012b) However, none of these previous studies have attempted to determine the how 

effectively irrigation water is utilized to produce yield in producer fields. Indeed, to date, 

no conceptual framework exists to benchmark on-farm irrigation water use for crop 

production, which could potentially help diagnose current crop and irrigation water use of 

irrigation and identify opportunities for improving irrigation water use at field, 

watershed, and regional levels.  

 Benchmarking is defined as the act of measuring performance relative to an 

expected or target response. It is an established method to evaluate output-input response 

and track progress in many disciplines (Malano et al., 2004). It also provides a gauge of 

current behavior and the means to track long-term changes in behavior, as well as 

effectiveness of new technology or management practices. Within the realm of 

agricultural production, benchmarking and the use of efficiency frontiers are commonly 

used to assess efficient management of inputs. For example, Hochman et al. (2014) 

presented a framework to benchmark the efficiency of numerous cropping systems in 

Australia in which relative output (yield) was analyzed in relation to the relative input 

(nitrogen fertilizer) to create an input-yield production frontier. The concept of 

benchmarking has also been applied to determine the attainable yield given a certain level 

of water supply and diagnose current yields in relation to attainable water-limited 

productivity. For example, Grassini et al. (2011b, 2015) applied boundary functions to 

the relationship between yield and seasonal water supply to determine yield gaps of 

maize and soybean fields in the western U.S. Corn Belt. Stemming from a lack of data, 
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the cause and extent of irrigation surplus have not been accurately quantified and no basis 

exists to identify means to improve irrigation water use based on actual on-farm 

irrigation. A flexible framework, applicable for any crop, management, and location, is 

needed to benchmark irrigation water use. And, no less importantly, a robust spatial 

framework is needed to upscale results at field level to larger spatial scales such as 

district, watershed, state, and country. 

The objective of this study is to develop a framework to benchmark irrigation 

water use for crop production. Subsequently, proof-of-concept is provided by diagnosing 

and identifying opportunities for improvement in irrigation water use in irrigated 

producer fields in Nebraska, a region that accounts for 2.1 Mha and 0.84 Mha of maize 

and soybean production under irrigation, respectively (USDA-NASS, 2014). Finally, 

results from the case study are upscaled from field to region and state following a bottom 

up approach to determine the potential for irrigation water savings without reduction in 

crop production. Having previously explored factors impacting irrigation in previous 

work (Chapter 1), the framework to benchmark irrigation water use here was created with 

the knowledge that specific field-level factors must be accounted for with regard to their 

impact on irrigation requirements for a particular field-year. While benchmarking 

irrigation water use for crop production can be a multifaceted analyses related to 

business, financial, and environmental management, the study presented here focused on 

biophysical aspects of crop irrigation and its broad implications for water use at different 

spatial scales. 
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2. Methods 

The conceptual benchmarking framework presented here is intended to be generic 

and robust such that it can be applied to any cropping system given availability of 

required data. Data inputs are publically available field-scale agricultural data, the source 

of which could be surveyed producer data or data collected from local and governmental 

agencies. The framework utilizes validated crop simulation models to benchmark each 

field relative to its field-specific potential yield and irrigation requirements, defined here 

as crop water demand to achieve potential yield. To accomplish this, the framework 

utilizes validated crop simulation models. Specific input parameters for modeling yield 

potential and irrigation requirements may vary depending on the model being 

implemented, however, yield data and field-scale irrigation data are essential to this 

framework’s process. Previous analysis of the extent and sources of variation in irrigation 

(Chapter 1) illustrated the influence of crop type, weather and soil on irrigation. Based on 

these previous findings, the framework as presented here would ideally utilize crop 

models which could account for the management and biophysical variables found to 

impact irrigation, most importantly field-specific soil texture (correlated to available 

water holding capacity, AWHC) and weather (precipitation, grass-referenced 

evapotranspiration, ETo) (Chapter 1). Major assumptions of the benchmarking framework 

include: field-scale data are quality-controlled and consist of a sufficient number for 

fields for robust statistical analyses, and crop model simulation results have been 

validated with on-farm data or field experiments.  

Relative yield (RY) and relative in-season water supply (RWS) are used to 

evaluate irrigation water use. Relative values are used so that fields across different 



36 

 

  

regions and years can be compared fairly, on the basis of how closely each field’s yield 

and irrigation usage are in relation to its field-specific potential yield and irrigation 

requirements. RY in this framework is calculated as follows: 

RY A

P

Y

Y
      (Eq. 3) 

where RY is relative yield, 
AY is actual, producer reported yield, and 

PY is field-specific 

simulated potential yield. Therefore, a RY of 1.0 indicates that actual yield is equal to the 

simulated yield potential based on field-year specific weather, soil, and management. 

Because field locations may correspond with a wide range of precipitation zones, 

relative irrigation values (i.e. ratio of producer-reported applied irrigation versus 

simulated irrigation requirement) in this framework cannot be compared without skewing 

results in favor of those fields that received comparatively less seasonal rainfall. For 

example, hypothetical Field A received 100 mm of irrigation, was estimated to require 50 

mm, and received 400 mm of seasonal rainfall. Hypothetical Field B, on the other hand, 

received 350 mm of irrigation, had an estimated requirement of 300 mm, and received 

100 mm of seasonal rainfall. Both fields received 50 mm more irrigation than required 

but relative irrigation would be 2.0 for Field A and 1.2 for Field B. Hence, for this 

framework, relative seasonal water supply is calculated for each field as follows: 

RWS A S

R S

I P

I P





     (Eq. 4) 

where RWSis relative in-season water supply, 
AI is actual, producer total irrigation, 

SP is 

total precipitation between sowing and physiological maturity, and 
RI is field-specific 
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simulated irrigation requirement. A RWS of 1.0 indicates the point at which irrigation 

applied is equal to simulated irrigation requirement. The difference between in-season 

water supply (actual minus simulated) is equivalent to irrigation surplus because in-

season rainfall is identical in both terms. Initial soil moisture was not included in Eq. 4 as 

it is accounted for in crop model simulations and is typically near field capacity in most 

region-years.  

A boundary function for the relationship between RY and RWS was fit to the 

data, separately by crop type. The boundary function in this framework represents an 

efficiency frontier to delineate the maximum RY for a given RWS. The breakpoint of the 

model indicates the relative water supply at which yield potential was not responsive to 

further increase in water availability (Fig. 2.1).  

For the purpose of diagnosing irrigation surplus and identifying areas for future 

improvement, fields were grouped into four categories (A, B, C, D) based on their RY 

and RWS (Fig. 2.1). Category A corresponded to fields with RWS above the breakpoint 

and below 1.05, and RY above y, with y representing average regional yield gap (i.e., 

actual water supply close to the simulated in-season water supply and small yield gap). 

Category B fields had the same range of RWS as category A but RYs below y (i.e. 

similar actual and simulated water supply but large gap). Fields with RWS above 1.05 

were denoted as category C or category D fields (i.e., field with an apparent irrigation 

surplus), where category C had RY above y and D, below y. The threshold of 1.05 for 

RWS was chosen for this framework instead of 1.0 (i.e. the point at which irrigation 

applied was equal to simulated irrigation requirement) to allow a margin of one 
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additional irrigation event (ca. 25 mm) before a field would be classified as having 

irrigation surplus.  

 

Figure 2.1 Conceptual diagram showing four management categories: A) near-optimal 

water supply, near potential yield; B) near-optimal water supply, below potential yield; 

C) surplus water supply, near potential yield; and D) surplus water supply, below 

potential yield. Regional yield gap represented by y.  

 

2.1 Description of study area and data sources  

 In the US, Nebraska ranks 3rd and 5th nationally amongst maize and soybean 

producing states, respectively (USDA-NASS, 2015). Both crops are largely irrigated in 

Nebraska, with 59% of maize and 49% of soybean land area irrigated. Between the 1960s 

and 2010s, irrigated maize and soybean areas in Nebraska increased by 3x and ca. 350x 

respectively, with the total irrigated area for both crops summing up to 3.0 Mha (Fig. 

2.2). Given the importance of irrigated agriculture, combined with availability of 
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producer field data and weather and soil databases, Nebraska is prime testing ground for 

applying this novel framework to benchmark irrigation usage.  

Figure 2.2 Trends in irrigated (solid lines) and rainfed (dashed lines) maize (red) and 

soybean (green) harvested area in Nebraska from 1960 to 2015. Inset: irrigated area as a 

percent of total harvested area for maize (red) and soybean (green). Source: USDA-

NASS, 2015. 

 

An original database containing yield, applied inputs, and management 

information from 534 irrigated maize (n=241) and soybean (n=293) fields collected over 

three years (2010-2012) was utilized to benchmark irrigation water use in Nebraska. 

Locations of fields ranged from northeast Nebraska (“region 1”) to east (“region 2”), 

southeast (“region 3”), and south-central Nebraska (“region 4”) (Fig. 2.3).  

Data provided by producers included: crop type, crop yield, total irrigation 

(metered or producer-estimated), fertilizer and pesticide inputs, crop management 
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(sowing date, seeding rate, irrigation system, irrigation scheduling method, tillage, seed 

variety and maturity group), and incidence of biotic and abiotic yield-reducing factors 

such as hail, frost, flooding, etc. Quality control was performed to remove fields 

containing suspicious (e.g., irrigation values exceeding system capacity over the growing 

season, unusual cultivar maturities or sowing dates, etc.) or missing data, resulting in 534 

fields for analysis. While the database included both surface- and pivot-irrigated fields, 

only pivot-irrigated fields were analyzed in this study because surface irrigated fields 

account for a small percentage of irrigated area statewide (< 15%) and this area continues 

to decline over time as surface irrigation systems are converted to more efficient pivot 

systems (USDA, 2014).   

 

Figure 2.3 Map indicating surveyed field locations (black points) in Nebraska. Regions 

overlapping surveyed field areas are shown as: region 1 (purple), region 2 (green), region 

3 (blue), and region 4 (yellow). Inset shows Nebraska’s location within the conterminous 

U.S.  

The study encompassed three years with contrasting weather conditions: 2010 

(above-average precipitation and below-average evapotranspiration), 2011 (near-average 

precipitation and evapotranspiration), and 2012 (below-average precipitation and above-
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average evapotranspiration) (Fig. 2.4). Actual irrigation data exhibited significant 

variation among regions, crops, and years (p<0.01) (Fig. 2.5). Across regions-crops, 

variation in irrigation ranged from 13% to 69% (CV), with mean irrigation ranging from 

118 to 329 mm. Within the same region, average maize irrigation was significantly 

higher than soybean for all regions (p<0.01), corroborating data presented in Chapter 1. 

Figure 2.4 Precipitation and non-water limited crop evapotranspiration (ETc) shown as 

20-day cumulative totals, from day of sowing until 130 days after sowing, for 2010 (red), 

2011 (blue), and 2012 (green), for two locations:  Holdrege, NE (south-central region) 

O’Neill, NE (north-central region). Black line represents long-term (1999-2012) means. 

SoySim model was used to simulate non-water limited ETc using regional-average 

sowing date and maturity group.



  

Figure 2.5 Annual irrigation from 2010-2012 for pivot-irrigated maize and soybean fields in regions 1-4. Mean irrigation for the 3 

years and year-to-year coefficient of variation are displayed for each region and crop. Upper and lower boundaries of boxes indicate 

75th and 25th percentile, respectively. Horizontal line within boxes is the median value. Whiskers (error bars) are maximum and 

minimum values. 

4
2
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2.2 Estimation of field-scale irrigation requirements and yield potential 

 

Three separate crop models were used to estimate yield potential and irrigation 

water requirements: Hybrid-Maize (Yang et al., 2013, 2004), SoySim (Setiyono et al., 

2010), and SoyWater (http://hprcc-agron0.unl.edu/soywater/). Previous studies have 

evaluated these models relative to their ability to reproduce yield and water requirements 

(Grassini et al., 2009; Setiyono et al., 2010; and Torrion et al., 2011. Both Hybrid-Maize 

and SoySim models simulate crop yield potential, assuming no limitations by nutrient 

and water supply and no incidence of weeds, insect pests, and pathogens. 

Irrigation requirements estimated using Hybrid-Maize and SoyWater reflect the 

best possible irrigation schedule to avoid crop water stress and minimize total irrigation 

amount. Soil water dynamics are simulated in Hybrid-Maize and SoyWater using a 

“tipping bucket mechanism” in which water in excess of AWHC is assumed to be lost by 

percolation to the soil layer below the crop rooting profile. Both models simulate soil 

water balance based on estimated crop water requirement, precipitation, and AWHC in 

the prior day, accounting for losses from soil evaporation and crop transpiration. In 

SoyWater, irrigation is triggered when soil water content ≤ 65% AWHC while in Hybrid-

Maize model, irrigation is triggered when crop water uptake does not meet potential crop 

evapotranspiration. Results were almost identical when the two approaches to trigger 

irrigation were used separately for estimating irrigation water requirements (<2% 

difference). As this study uses model estimations, it is important to recognize that there 

are uncertainties associated with model simulations stemming from errors in parameters 

and spatial variability of soil and weather, however, the validated models used in this 
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study represent the most robust means to estimate irrigation water requirements and 

potential yield for the given data.  

Yield potential and irrigation requirement were simulated for each field-year case 

using field-specific input variables, including daily weather data (precipitation, maximum 

and minimum temperature, solar radiation, wind speed, relative humidity, reference 

evapotranspiration [ETo]), crop management (sowing date, cultivar maturity, and plant 

density) and soil and terrain properties (soil depth, texture, bulk density, soil surface 

residue cover, and field slope). Field-scale estimates of precipitation and reference 

evapotranspiration (ETo), as well as additional daily weather variables including 

maximum and minimum temperature, solar radiation, wind speed, and relative humidity, 

were interpolated for each field using inverse distance weighting of daily weather data 

from the three nearest weather stations (Yang and Torrion, 2014; Franke and Nielson, 

1980). Soil water content was set at 50% of soil AWHC at the at the start of the fallow 

period, which occurred approximately 8 months before sowing and right after harvest of 

prior crop. Following this approach, the models simulated soil water recharge during the 

non-growing season. Rooting depth was set at 1.5 m for all fields, except for some fields 

in the region where soil texture was sandy (sand content>90%) below 1.2 m depth, for 

which soil depth used for the simulations of yield potential and irrigation requirements 

was 1.2 m. Percentage of soil residue cover was estimated for each field based on 

reported tillage practice following Shelton et. al 2005.  
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2.3 Efficiency frontier to benchmark irrigation water use in maize and soybean irrigated 

fields in Nebraska 

 

Following calculation of RY and RWS, a small number of fields (7%) with 

RY>1.0 were constrained such that RY = 1.0. Causes for fields with RY>1.0 include 

incorrect yield reporting by producers, model error, or incorrect inputs of specific model 

parameters. Actual yields for maize fields ranged from 3.1-17.6 Mg ha-1, averaging 13.2 

Mg ha-1, while soybean field actual yields ranged from 1.3-5.7 Mg ha-1, with average 

yield of 4.3 Mg ha-1. Actual irrigation ranged from 0-711 mm with average of 223 mm 

for maize fields, and 0-706 mm with average irrigation of 187 mm for soybean fields. A 

quadratic-plateau model was used to derive a boundary function for the relationship 

between RY and RWS, for maize and soybean, separately. It was determined that 

additional data points were necessary to properly fit the boundary function to the maize 

data; hence, 28 fields were chosen (seven per region of the study area: regions 1-4), 

representing a range of management variables, soil types, and precipitation regimes. For 

each field, 10 different deficit irrigation regimes (0 to 75% of full irrigation requirements 

at 5 % increments) were simulated to estimate irrigation and corresponding yield 

potentials. Simulation of deficit irrigation regimes was conducted by first simulating full 

irrigation for each of the 28 fields given field-specific weather, management, and soil, 

and reducing the irrigation amounts progressively for each simulated treatment. Resulting 

280 simulated irrigation-yield observations were combined with the 534 actual 

observations and a boundary function was fitted for the pooled data. Quadratic-plateau 

was used as it provided the best fit for the maize subset data (r2 =0.99) and soybean data 

(r2=0.98). The simulated observations were not used for any subsequent analysis. 
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2.4 Analysis and diagnosis of irrigation water use and irrigation surplus 

 A threshold of 0.80 for RY was used in this proof of concept of the benchmarking 

framework to distinguish between fields with large and small yield gaps (i.e., difference 

between potential and actual yield) based on the average yield gap reported for irrigated 

maize and soybean in the U.S. Corn Belt (Grassini et al., 2011b, 2015). For the purpose 

of analysis, fields that exhibited RWS <0.75 were excluded because potential yield was 

no longer obtainable below this water supply. For maize fields, RWS at the breakpoint 

was 0.85 while breakpoint for soybean fields was 0.78 for maize and soybean, 

respectively. These breakpoints represent the RWS at which yield potential does not 

respond to further increase in water supply and were utilized to create the low RWS 

boundary for field categories A and B. As noted in section 2.1, upper range of RWS for 

categories A and B (also the lowest RWS for categories C and D) was established as 1.05 

to allow a margin of one additional irrigation event relative to irrigation requirements. 

Explanatory factors that can reveal differences in irrigation surplus among fields were 

investigated by comparing management and soil properties between categories A and B 

versus C and D (i.e., fields with surplus water supply versus those with near-optimal 

water supply). Analysis of explanatory factors for gaps between actual and potential yield 

was beyond the scope of the study and this kind of analysis has been reported by previous 

studies (Grassini et al., 2011b, 2015). For our analysis of factors explaining field-to-field 

variation in magnitude of irrigation surplus, fields with extremely low yields or irrigation 

amounts due to un-manageable factors such as flooding, hail, or frost were excluded. 

Two-tail Student’s t-tests were used to evaluate differences in means between categories 

AB and CD for factors including relative maturity, AWHC, plant density, sowing date, 
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nitrogen fertilizer rate, etc. Wilcoxon test was used when distributions deviated from 

normality (p<0.05, Kolmogorov–Smirnov test). Tukey comparison test was utilized to 

determine significant differences between categories being compared (e.g. between 

AWHC groups).  

Soil properties, including available water holding capacity (AWHC) and 

topographic wetness index (TWI) were also included in this analysis. TWI was derived 

for each field using SAGA software (Conrad et al., 2015; Olaya and Conrad, 2009). 

Topographic wetness index indicates likelihood of surface runoff from/to an area based 

on slope and surrounding area; depression areas have high TWI values while upland 

areas have low TWI values (Sørensen et al., 2006). Soil available water capacity 

(AWHC) for the upper 1 m of soil was derived for each field from the Soil Survey 

Geographic database (SSURGO, http://websoilsurvey.nrcs.usda.gov). Chi-square (χ2) 

tests were used to detect differences between fields in CD versus AB for categorical 

variables such as frequency of irrigation scheduling method, tillage, prior rotation, etc. 

For this analysis, irrigation scheduling methods were grouped into three irrigation 

scheduling categories: (A) soil water sensors or computer software (22% of fields), (B) 

examination of soil samples (“feel the soil”, 64% of fields), and (C) visual inspection of 

the crop, fixed schedule, or follow neighbor’s schedule (14% of fields). These three 

irrigation scheduling methods range from high-level technological approaches (A) to very 

little technology (C). Irrigation surplus (defined as the difference between actual 

irrigation and irrigation requirement) was compared between the three scheduling 

methods. Tillage practice was likewise grouped into three categories: (A) no-till fields 
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(56% of fields), (B) reduced-till (i.e. ridge and strip till) fields (17% of fields), and (C) 

disk-till (27% of fields).  

2.5 Upscaling potential water savings from field to region 

Following the analysis of irrigation water use, this study sought to determine what 

potential irrigation water savings would be on a regional scale if every field in the study 

with a RWS > 1.05 had instead been irrigated to avoid irrigation surplus, that is, a RWS 

of 1.0. A spatial framework was needed to upscale field-level data findings to the 

regional level. For this purpose, Technology Extrapolation Domains (TEDs) were utilized 

(Rattalino-Edreira et al., in preparation). A TED is defined as a spatial unit within which 

soil and climate can be assumed to be relatively homogenous. A TED consists of a 

specific combination of annual growing degree days, aridity index, temperature, and 

seasonal and total available water holding capacity within the rootable soil depth. Four 

TEDs, numbered regions 1-4, covered most of the area where the fields were located 

(Fig. 2.3). These four TEDs accounted for 43% and 52% of irrigated maize and soybean 

area in Nebraska, respectively (USDA-NASS 2014). 

Actual annual volume of irrigation applied within each region-crop-year 

combination (m3 yr-1) was calculated as follows: 

 A AV ijijk ijkI A      (Eq. 5)  

where V AV ijk
was actual volume of irrigated water applied for a given crop (i) region (j), 

and year (k), AijkI was the average producer irrigation for a given crop (i), region (j), and 

year (k), and ijA was the harvested area covered by i crop in j region. Annual irrigation 



49 

 

  

water volume was re-calculated for each region-crop-year combination for a scenario in 

which all fields with relative RWS ≥ 1.05 would reduce their RWS to 1.0, reflecting 

adoption of best irrigation scheduling methods and technologies. The adjusted volume 

was calculated as follows: 

 ADJ ADJV ijk ijk ijI A      (Eq. 6)  

where
ADJijkI was the average irrigation for a scenario with RWS <1.0 across all producer 

fields for a given crop (i), region (j), and year (k). The difference between the two annual 

irrigation water volume estimates (actual versus scenario) represents the potential 

irrigation water savings for each crop-region-year case. Total water saving on annual 

basis were calculated by summing the estimated water savings in the four regions.   

 

3. Results 

 

3.1 Diagnosis of on-farm irrigation water use and surplus 

The fitted boundary function for maize fields was RY= -0.51+2.4x-0.77x2 when 

RWS < 0.85, and RY = 1.0 if x ≥0.85. Soybean boundary function was defined as RY= -

0.91+4.3x-2.4x2 when RWS<0.78, and RY = 1 if RWS ≥ 0.78 (Fig. 2.6). Reaching yield 

potential was possible for soybean fields at lower seasonal water supplies than maize 

(Fig. 2.6). The breakpoint below which potential yield was unattainable was 0.78 RWS 

for soybean fields and 0.85 RWS for maize fields. Breakpoints below a RWS of 1.0 

indicated that there was potential to reduce irrigation while achieving high yield. 

There was large variation in RY and RWS across fields, with RY ranging from 

0.6 to 1 (maize) and 0.45 to 1 (soybean) (Fig. 2.6) and RWS ranging from 0.58 to 1.9 
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(maize) and 0.32 to 1.9 (soybean). Interestingly, while soybean fields generally had lower 

average RWS (i.e., smaller irrigation surplus) relative to maize field (0.98 versus 1.14, 

p<0.01), average RY was lower for soybean than for maize (0.82 versus 0.84, p<0.05), 

indicating a larger yield gap in soybean than in maize. Indeed, the majority of maize 

fields (73%) fell into categories C and D (irrigation surplus), while 41% of the soybean 

fields exhibited irrigation surplus. In contrast, ca. 60% of maize fields achieved at least 

80% of potential yield (categories A and C) while less than half of soybean fields fell into 

these categories. Remarkably, approximately a quarter of the total fields (26%) reached 

RY > 0.8 with RWS between 0.95 and 1.05 (category A), indicating that achieving yields 

near yield potential and irrigating without exceeding irrigation requirements are not 

conflicting goals in high-yield irrigated maize and soybean fields.  



  

 

 

Figure 2.6 Relative yield (RY) versus seasonal water supply (RWS) for producer irrigated maize (left) and soybean (right) fields. 

Each data point represents a field-year case. Efficiency frontiers are shown in red separately for maize (RY= -0.51+2.4x-0.77x2 when 

RWS < 0.85; RY = 1 if x ≥0.85) and soybean (RY= -0.91+4.3x-2.4x2 if RWS<0.78; RY = 1 if RWS ≥ 0.78). A small number of fields 

(7%) with RY>1.0 were constrained to RY = 1.0. Causes for RY>1.0 include incorrect yield reporting by producers, model error, or 

incorrect inputs of specific model parameters. 

5
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3.2 Factors contributing to irrigation surplus 

Variation in precipitation and ETo across year-region influences magnitude of 

irrigation surplus (Fig. 2.7). About 79% and 64% of total maize and soybean fields, 

respectively, exhibited irrigation surplus in 2010 and 2011. In contrast, in the drought 

year (2012), only a small proportion of all fields (30%) exhibited irrigation surplus and, 

indeed, there was a large proportion of fields (68%) receiving irrigation amounts below 

irrigation requirements.  

Magnitude of irrigation surplus was influenced by soil type, with increasing 

irrigation surplus as soil water holding capacity decreased (p<0.01, Table 2.1, Fig. 2.8). 

When analyzed using AWHC classes, Tukey comparison indicated significant difference 

in irrigation surplus between the AWHC groups (p<0.01) with the exception of the 

comparison between fields with AWHC of 50-100 mm and 100-150 mm, for which 

irrigation surplus was not significantly different (p=0.21). Remarkably, the 90th percentile 

increased from 569 mm, 471 mm, and 381 mm when moving from low to high AWHC 

field classes, while the 10th percentile exhibited smaller differences amongst AWHC 

classes and remained below zero (i.e., irrigation below crop water requirement) (Fig. 2.8). 

The latter may reflect a sub-population of fields where pumping capacity could not meet 

field irrigation capacity irrespective of soil type and weather conditions.  



  

 

 
 

Figure 2.7 Estimated irrigation surplus across producer fields sown with maize (upper panel) and soybean (bottom panel) in each 

region-year. Fields were ranked from highest to lowest irrigation surplus. Regions 2 and 3 were pooled as irrigation surplus profiles 

were nearly identical between those regions. 5
3
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Figure 2.8 Irrigation surplus, defined as reported irrigation minus model minus 

determined irrigation requirement, and available water holding capacity (AWHC) in the 

upper 1 m of soil. Upper and lower boundaries of boxes indicate 75th and 25th percentile, 

respectively. There was no difference between maize and soybean distributions within 

AWHC classes (p<0.01); hence, maize and soybean data within each AWHC category 

were pooled. Horizontal line within boxes is the median value. Whiskers (error bars) are 

maximum and minimum values.  

 

RWS was significantly different between categories C/D and A/B, with an 

average difference of 0.3 RWS between the two categories (Table 2.1). This shows that 

fields in C/D were irrigated well above irrigation requirements since a RWS of 1.05 

represents one additional irrigation event above requirements and average RWS for C/D 

fields was 1.2 (Table 2.1). Statistical analysis indicated that AWHC and irrigation 

scheduling method had a significant impact on irrigation surplus. Fields in management 

categories C and D, i.e. those categories with irrigation surplus versus those without 
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surplus, had an average AWHC of 160 mm while categories without irrigation surplus (A 

and B) had an average AWHC of 180 mm (Table 2.1). Irrigation scheduling method was 

also found to significantly affect irrigation surplus.  

Table 2.1 Analysis of factors influencing magnitude of irrigation surplus in producer 

irrigated maize and soybean fields.  

Factors & statistical analysis Crop 
Mean 

P-Value 
Category C/D Category A/B 

t-test         

Relative in-season water supply Pooled  1.2 0.9 <0.01* 

Sowing date (DOY)a 
Maize 115 118 0.07 

Soybean 127 128 <0.01* 

Planting date (DOY)a 
Maize 115 118 0.07 

Soybean 127 128 <0.01* 

Plant population (x1000, seeds/ha) 
Maize 78 78 0.88 

Soybean 418 412 0.26 

Slope (%) 
Maize 2.9 2.5 0.35 

Soybean 2.8 2.8 0.99 

AWHC, 0-1m (mm)b Pooled  160 180 <0.01* 

χ2     

Irrigation scheduling method Pooled     <0.01 

Tillage Pooled   <0.01 

Prior crop Maize   0.17 
*Indicates p-value as a result of Wilcoxon test 
a DOY: day of year 
b AWHC: available water holding capacity for upper 1 m of soil 
  

Irrigation scheduling method significantly impacted magnitude of irrigation 

surplus in both maize and soybean fields (p<0.01) (Table 2.1, Fig. 2.9). Average 

irrigation surplus in fields in irrigation scheduling category A (8 mm), where irrigation 

was scheduled based on best available cost-effective technologies, was not statistically 

different from zero (p=0.21), indicating that near-optimal synchronization of irrigation 

inputs and crop water requirements is possible when irrigation decisions are guided by 

tools that take into account real-time weather and soil water content. In contrast, 

irrigation surplus was much higher in fields in irrigation scheduling category C (103 
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mm), where irrigation was scheduled based on more rudimentary methods such as crop 

visual inspection and fixed calendar dates (p<0.001). The difference in irrigation surplus 

between irrigation scheduling categories A and C is equivalent to four irrigation events of 

approximately 25 mm each. Irrigation surplus was 35% smaller in fields where irrigation 

was scheduled based ‘soil feeling’ (irrigation scheduling category B) compared to fields 

in irrigation scheduling category C (p=0.04) but still larger than irrigation surplus in 

irrigation scheduling category A fields. A striking finding was that yield did not differ 

between fields using different types of irrigation scheduling methods (p=0.54), with RY 

averaging 0.86 across irrigation scheduling method classes (Fig. 2.9). The fact that only 

22% of the total fields fall within irrigation scheduling category A highlights the large 

room that is available for saving irrigation water, without hurting current crop yields. 

 
 
Figure 2.9 Average irrigation surplus (left) and relative yield (right) for irrigated maize 

and soybean fields (n=339) where irrigation is scheduled based on different irrigation 

scheduling methods: (A) computer software or soil water sensors, (B) soil sample probe, 

and (C) crop visual inspection, fixed schedule, neighbor, etc. Values inside bars indicate 

percentage of total fields falling in each scheduling method category. There was no 

difference between maize and soybean distributions within irrigation scheduling method 

(p<0.01); thus, maize and soybean data within each scheduling method category were 

pooled. 
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3.3 Potential regional irrigation water savings 

 

If irrigation in maize and soybean fields exhibiting irrigation surplus supply (i.e., 

categories C and D in Fig. 2.6) would have been optimally managed such that actual 

irrigation matched simulated irrigation water requirements, 50% of the irrigation volume 

applied in 2010 and 2011 could have been saved. These water savings are equivalent to 

515 and 516 million m3 in 2010 and 2011, respectively, for the area contained within the 

four regions (Fig. 2.10). In contrast, in the drought year (2012), only 10% of irrigation 

water would have been saved (equivalent to 290 million m3 across the four regions). 

Hence, irrigation water savings are likely to be greater in years with above- or near-

average precipitation. While reduction of yield gap would result in increased irrigation to 

reach potential yield in fields currently with deficit irrigation, the additional volume of 

water from those few fields would be negligible in comparison with the volume of 

irrigation water saved by reduction irrigation in fields with irrigation surplus. Fields in 

southeast Nebraska (region 3) accounted for the largest percentage of irrigation water 

savings in all years (ca. 50%) because, although field-scale irrigation surplus is not the 

largest in this region (Fig. 2.10), it accounts for the largest portion of irrigated cropland 

area amongst the four regions. In contrast, while irrigation surplus is the largest in region 

1, this region accounts for a relatively smaller fraction of cropland area, accounting for 

ca. 25% of estimated regional water irrigation savings. To summarize, there is substantial 

room for saving irrigation water in years with precipitation near or above average without 

negative impact on crop yields. 
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Figure 2.10 Potential irrigation water saving in each year (2010, 2011, and 2012) in 

regions 1 (purple), 2 (green), 3 (blue), and 4 (yellow). Total volume of potential water 

saving, calculated as the sum across the four regions in the same year, is indicated above 

each bar.  

 

4. Discussion  

This study presented a novel framework to diagnose on-farm irrigation water use, 

identify opportunities for improvement, and assess potential water saving and crop 

production increases for different scenarios. Although Nebraska was used as a proof of 

concept, the framework is conceptually robust, generic, and can be applied in other 

irrigated cropping systems of the world. And while this framework requires field-specific 

data on yield, irrigation, and management, we expect that availability of this information 

will increase due to increased pressure to develop agricultural datasets worldwide to 

address growing environmental concerns over water quality and quantity.  
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The combination of a solid conceptual framework to assess irrigation water use in 

producer fields, together with a robust spatial framework to upscale findings from field to 

region, provides a novel approach to assess potential water savings at different spatial 

scales, prioritize research and extension, and better inform policy and incentive programs. 

While the potential water savings estimated here may not be entirely possible because not 

all of the sources of irrigation surplus can be fully eliminated (e.g., a precipitation event 

right after irrigation), the framework presented in this study allows estimation of the 

overall room for saving irrigation without penalties in crop yields. Potential end users of 

such a framework include water resource managers, policy makers, and governmental 

agencies, which could utilize the framework to forecast future water demand, identify 

areas prone to future water scarcity based on current water use and available freshwater 

resources, and implement water-use allocations to conserve water resources while 

minimizing impact to crop yield in times of drought. 

The concept of managing farm inputs to reduce surplus in order to minimize the 

environmental footprint while maintaining or increasing crop yield is not new in 

agriculture (Broadbent and Carlton, 1978) and only recently this concept has been 

rediscovered and used to assess N losses in crop systems (Grassini et al., 2012, van 

Groenigen et al., 2010). The present study is the first to apply the ‘surplus’ concept to 

irrigation inputs in producer fields. N fertilizer recommendations, for example, are based 

on crop N requirements roughly calculated on expected end-of-season yield and most 

fertilizer is applied early in the season in one or few doses. In contrast, irrigation can, in 

principle, be synchronized to perfectly match water inputs with crop water requirements 

throughout the growing season depending upon the real-time weather conditions. We 
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argue here that, given appropriate knowledge and technologies to track soil water status 

and flexible irrigation equipment that allow delivering water right on time and in the right 

amount, reducing current irrigation surplus represents “low-hanging fruit” to increase 

farm net profit relative to the fine tuning of other aspects of crop and management which 

is sometimes difficult due to increasing risk or costs. 

In the framework example using Nebraska, results can help answer questions such 

as: how and where should $1 million USD allocated to save irrigation water in Nebraska 

be spent to get the greatest return on investment? In this example, region 1 (northeast 

Nebraska) has greatest potential to improve irrigation water use per field due to the 

influence of sandy soils and risk on irrigation but region 3 (southeast Nebraska) 

represents a higher percentage of irrigated cropland. If the goal is to reduce the volume of 

water used state-wide for irrigation, extension educators would focus on region 3 and 

may use financial incentives (e.g. cost sharing for investment in new irrigation scheduling 

technology) to encourage water-saving practices. However, if the goal is to reduce water 

use on the most intensely irrigated fields or in areas with highest potential for 

contaminant leaching due to irrigation, the sandy soils in region 1 would be the focus of 

extension education. The incentives and outreach approach for water saving in region 1 

would likely be different than region 3, instead focusing on managing risk by improving 

irrigation technology and providing evidence of fields in the region which achieved high 

yields with better technology.  

The finding of greater irrigation surplus in soils with low AWHC confirms the 

findings in Chapter 1 that risk aversion toward irrigating on coarser texture soils leads 

producers to apply large water inputs relative to crop water requirements. Previous 
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studies have indicated that producers in high-risk systems (identified as regions with 

sandy soil) tend to adopt new irrigation water saving technologies more readily 

(Koundouri et al., 2006). However, increasing use of technology by itself is not always 

effective without skill gap assessment, and incentives are needed to accelerate the 

adoption of new irrigation practices and technologies (Levidow et al., 2014). The 

framework presented here can be used to incentivize producers to adopt new technologies 

by illustrating, using examples from actual producer fields rather than field experiments, 

that it is possible to change irrigation technology without decreasing yield. Better still, 

the framework has potential for producers to benchmark their own fields, not only 

relative to their fields’ potential yields and irrigation requirements but also to compare 

their yield and irrigation to that of producers in the same region with similar soils and 

weather. Effectiveness of extension outreach can then be monitored over time by using 

the framework to track changes in technology usage and irrigation practices from year to 

year.  
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Summary and concluding remarks 

 

 Analysis of on-farm irrigation data complemented with field-specific weather, 

soil, and management data revealed that variation in irrigation over time and space 

strongly depends on field-specific properties. Producers respond to their field conditions 

and attempt to make irrigation decisions accordingly. However, use of a robust and 

transferrable framework to benchmark irrigation water use revealed that many fields 

received surplus irrigation in Nebraska. Potential exists to reduce surplus irrigation usage 

without decreasing maize and soybean yield. Key f of the study include:  

 Field specific soil and weather accounted for field-to-field variation in irrigation. 

 Across two independent databases, irrigation was disproportionally higher in 

coarse-textured soils. 

 In homogeneous, fine-textured soils, producers in the highest and lowest irrigation 

categories consistently irrigated higher and lower than average across 9 years of 

study. 

 ~70% of maize fields and 40% of soybean fields in a three year benchmarking 

analysis in Nebraska were irrigated in surplus of model simulated irrigation 

requirements. 

 Potential exists to reduce surplus irrigation without yield loss through better, more 

advanced irrigation scheduling techniques and through educational efforts 

targeting producers with coarse-textured soils. 
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 50% of current irrigation volume in near or above-average rainfall years 

represents surplus irrigation relative to irrigation requirements, and could 

potentially be reduced without decreasing yield. In drought years, relatively little 

room exists for improvement in terms of reducing irrigation surplus. 

Future research is needed to fully understand the impact of neighbor behavior on 

the irrigation habits of individual producers. While certain factors related to surplus 

irrigation are manageable, further research is required to determine what degree of risk is 

manageable when irrigating on coarse-textured soils. The framework presented in this 

study provides a utility to support future research on irrigation water use, specifically 

with regard to tracking implementation and effectiveness of new irrigation technologies, 

management practices, and efforts by cooperative educational extension services.  
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Appendix 

 
Groundwater level dynamics in northeastern and south-central 

Nebraska 

 

In an attempt to contextualize irrigation data with groundwater (GW) levels and 

analyze impacts of irrigation on groundwater level dynamics, publically available 

groundwater data were analyzed for the 9 years (2005-2013) of study (Chapter 1). Data 

were obtained from USGS (U.S. Geological Society) online groundwater well data, with 

data collected on a daily or bi-annual basis by the USGS or Nebraska NRDs. Well data 

for 12 groundwater wells in south-central (SC) Nebraska and 30 wells in 

northeastern/north-central (NC) Nebraska were analyzed for changes in groundwater 

level over the growing season using linear regression. Well locations were within the 

boundaries of the maize and soybean fields used in the study of spatial and temporal 

variation in irrigation. Partial motivation for choosing field locations in SC and NC was 

an attempt to limit complication of groundwater analysis due to surface-water and 

groundwater interactions. Field areas in these regions are relatively isolated from these 

interactions.  

Due to the paucity of wells with daily groundwater level measurements, a single 

spring and autumn data point was used to capture groundwater level both before and after 

the irrigation season, with the exception of figures A1 and A2, for which all available 

data were included for each well. The data of spring measurements varied between wells, 

being taken in late April or early May, while autumn measurements were typically in late 

October or early November. Although data were available for a higher number of fields 
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in NC, significant data gaps existed for these wells. With the exception of two 

groundwater wells in NC, all wells in that region had a gap in groundwater level data for 

two or more years, with most wells lacking data from 2010 to 2012. No measurements 

were taken in those years by the NRD responsible for the majority of wells in NC as the 

NRD had no well measurement technician employed during those years. Because 2010 

and 2012 were exceptional years in terms of precipitation, 2010 being an above-average 

year for rainfall and 2012 being a year of extreme drought, the lack of data for these years 

hindered the scope of the groundwater analysis in the northeast.  

The objective of groundwater analysis was to determine to what extent 

groundwater levels change during the growing season due to irrigation and whether that 

change persists through the non-growing season. Results were incomplete and therefore 

included as supplemental findings in this appendix. 

Main findings were as follows: 

 Groundwater level trends were similar over the nine years of the study between 

the SC and NC regions of Nebraska (Fig. A1 and Fig. A2). For each well, 

groundwater level peaked at the spring measurement and fell to their lowest at the 

autumn measurement, following the irrigation season. This seems to imply that 

irrigation withdrawals are at least partly to blame for the drop in groundwater 

level over the growing season. Entering spring 2012 for both regions, 

groundwater levels in wells with sufficient data indicated that levels were at an 

eight year high from 2005. However, the decline during the 2012 growing season 

was extreme, resulting in drops of 1.5 meters in some wells from spring of 2012 

to autumn of that year. While groundwater levels recovered between autumn of 
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2012 to spring of 2013, they were not able to recover to spring 2012 levels, 

indicating a carry-over effect of severe weather events on groundwater dynamics. 

 
Fig. A1 Time series showing the deviation of groundwater level in each well from the 

well-specific 9-year mean groundwater level in the SC region of Nebraska. Each line 

represents an individual groundwater well. Negative deviation indicates below-average 

groundwater level while positive deviation values indicate above-average levels. Peaks in 

the series corresponded to spring measurements (April/May) while troughs generally 

corresponded to autumn measurements (October/November).  
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Fig. A2 Time series showing the deviation of groundwater level in each well from the 

well-specific 9-year mean groundwater level in NC. Each line represents an individual 

groundwater well. Negative deviation indicates below-average groundwater level while 

positive deviation values indicate above-average levels. Peaks in the series corresponded 

to spring measurements (April/May) while troughs generally corresponded to autumn 

measurements (October/November). Gap between April 2009 and April 2012 was due to 

a lack of water level monitoring personnel at the NRD managing many of the wells in the 

northeast. Wells with data between those dates were largely monitored/measured by 

USGS.  

 

 Average groundwater well level declined during the crop season as average 

irrigation increased for both regions and across all years, with the exception of the 

wet year 2010 in which average groundwater level in NC increased (Fig. A1). The 

slope of decline across years was two times greater in NC than in SC, possibly 
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due to differences in aquifer media. The greatest amount of groundwater level 

decline occurred in the drought year (2012), which relates to large irrigation 

withdrawals in that year (Chapter 1).  

 
Fig. A3 Average groundwater (GW) level decline over the growing season as a 

function of average irrigation in NC (red triangles) and SC (blue circles) 

Nebraska. Negative groundwater decline indicates an increase in groundwater 

level. Data points represent region-year averages.  

 

 Groundwater level increases during the fallow period/non-growing season (i.e. 

autumn following growing season until next planting) exceeded or were nearly 

equal to seasonal groundwater level decline in all years for both regions with the 

exception of the drought year (Fig. A2).  
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Fig. A4 Average seasonal groundwater level decline relative to groundwater level 

increase following the growing season for wells in SC (red triangles) and NC 

(blue circles).  
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