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In May 1996, inclement weather led to the deaths of thousands of Cliff Swallows 

(Petrochelidon pyrrhonota) in Nebraska. Survivors had larger skeletons, shorter wings and tails, 

and less wing asymmetry than non-survivors. This population was followed for 10 years to study 

1) whether natural selection events result in permanent microevolutionary changes, 2) if 

variation in climate affects the development of morphological traits, and 3) if morphological 

traits vary systematically with age.  

Patterns in morphology exhibited by swallows following the selection event were studied 

by measuring yearling birds. Wing and middle tail lengths decreased, beak length and width 

increased, tarsus length was unchanged, and the amount of wing asymmetry increased. The 

cumulative directional change in wing, tail, and beak length was greater after the selection event 

than during the event. This variation was not explained by phenotypic plasticity resulting from 

better environmental conditions, because conditions were not significantly different before and 

after the event. There was no evidence opposing selection restored skeletal size or wing or tail 

length to that before the selection event. This continued change in morphology may represent the 

population shifting to a different fitness peak in the adaptive landscape.  

The way variation in climatic conditions (and food resources) affects the morphological 

development of juvenile swallows was studied.  In cooler years birds allocated less growth to 

wings and tails than they did in warmer years, while maintaining normal levels of skeletal 

growth and body mass.  Changes in juvenile feather growth in response to rearing conditions 

persisted into the first breeding season.    

The extent morphological traits vary with age across a bird‗s lifetime was examined.  

Juveniles had shorter wings and tails, lower body mass, smaller skeletal size and lower levels of 

fluctuating asymmetry than adults.  Among adult age classes, wing and tail length increased with 

age and wing and tail fluctuating asymmetry decreased with age.  There was no evidence for 



degenerative senescence in swallows, as the decline in fluctuating asymmetry suggests the oldest 

birds maintain high levels of phenotypic performance.  This age-related variation in morphology 

suggests that age should be considered in future analyses of morphological variation in 

passerines. 
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Cliff Swallows 
 

Is it some turn of wind 

that funnels them all down at once, or 

is it their own voices netting 

to bring them in – the roll and churr 

of hundreds searing through river light 

and cliff dust, each to its precise 

mud nest on the face 

none of our own isolate 

groping, wishing need could be sent 

so unerringly to solace. But 

this silk-skein flashing is like heaven 

brought down: not to meet ground 

or water – to enter 

the riven earth and disappear. 

--Debra Nystrom  

 

 

 

 

 

 

 

 

Torn Earth. 2003. Sarabande Books. Louisville, Kentucky 
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INTRODUCTION 

―Natural selection tends only to make each organic being as perfect as, or slightly more perfect 

than, the other inhabitants of the same country with which it comes into competition…Natural 

selection will not produce absolute perfection, nor do we always meet, as far as we can judge, 

with this high standard under nature.‖ 

 

Charles Darwin – The Origin of Species (1859) 

 

 

Natural selection events that affect wild populations vary substantially across time and 

the resulting long-term pattern in the observed phenotypic effects cannot be predicted. These 

phenotypic effects can be morphological or behavioral in nature and the patterns may be 

unidirectional, oscillating, episodic or gradual in form (Grant and Grant 2001). Hence, long-term 

research programs, such as the Nebraska Cliff Swallow study, a small part of which is described 

here, are needed to detect and interpret the consequences of natural selection events and other 

forms of ‗non-uniform evolutionary change‘ (Grant and Grant 2002) in natural populations.  The 

results, analysis and interpretations presented in the following three chapters represent one of the 

first broad-scale, long-term examinations of natural selection in a wild population that 

incorporates a measure of developmental stability (fluctuating asymmetry, a repeated formation 

index; see Appendix) with morphological measures (Brown and Brown 1998, 2000, 2002a, b, 

2003, 2011).  

The following study is divided into three chapters. Chapter 1 addresses whether episodic 

selection events result in permanent microevolutionary changes in natural populations or if they 

are reversed by opposing selection pressures. Specifically, 1) whether the directional selection on 

morphology documented after a selection event has been reversed, 2) whether there is evidence 

of continuing directional selection on any of the morphological traits, 3) whether the 

morphological changes over time are consistent with possible responses to global climate 
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change, and 4) whether the microevolutionary changes documented in the selection event 

resulted in a relatively permanent shift in body size in this population of Cliff Swallows. Chapter 

2 addresses the question of how juvenile Cliff Swallows allocate growth among different 

morphological traits in response to climatically-based annual variation in food availability.  

Chapter 3 addresses questions of age-related changes in individual Cliff Swallows. Specifically, 

1) if morphological traits increase in size early in life or among older age classes and 2) if there 

is evidence for senescence-related decreases in body size and/or fluctuating bilateral asymmetry 

among the oldest individuals.  

Study Background 

Study Animal – Cliff Swallows (Hirundinidae: Petrochelidon pyrrhonota: Viellot, 1817) 

are highly colonial, 20 – 28 gram Neotropical migrant passerine birds. They breed throughout 

much of North America and winter in South America (reported anecdotally to be Paraguay, 

Uruguay, and Argentina) (Brown and Brown 1995). Cliff Swallows exhibit no obvious sexual 

dimorphism and are sexually monochromatic, with males and females essentially identical in all 

plumages (Brown and Brown 1995); within pairs the male may have a larger dark blue patch on 

the lower throat than the female (Brown and Brown 1995; MBB, pers. obs.). They are diurnal, 

aerial insectivores, feeding exclusively on flying insects and can only forage when weather 

conditions allow flying insects to be active. Cliff Swallows begin arriving in the study area 

(southwestern Nebraska) in late April (earliest arrival date is 13 April) and continue to arrive 

throughout the month of May. They build enclosed, gourd-shaped mud nests that are 

approximately 15 – 20 cm in diameter and have entrances that are 5 – 7 cm wide. Individual 

nests in Cliff Swallow colonies are often densely packed and nesting is highly synchronous 

within colonies, but less so between colonies. Nest entrances are, on average, approximately 25 – 
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30 cm apart and nests often share walls. Most nests contain clutches ranging in size from 1 – 6 

eggs; clutches with more than 4 eggs likely are cases of intraspecific brood parasitism or egg 

transfer; extra pair fertilization occurs frequently. Eggs are incubated for approximately 2 weeks. 

Brood sizes generally range from 1 – 4 nestlings per nest (7 is the largest brood reported in the 

study area to date) and most nestlings fledge 23 – 26 days after hatching.  After they leave the 

nest, fledglings congregate in crèches where they are fed and escorted by their parents for 4 – 5 

days. After that time the fledglings are independent of their parents but do remain in the study 

area for several weeks before migration.  During this time they range widely, visiting colonies 

that still have active nests. Nesting is largely complete by the end of July and nesting success 

declines as the season advances. The study animal is described in greater detail in Brown (1998) 

and Brown and Brown (1995, 1996).   

Cliff Swallows have been studied near the University of Nebraska School of Biological 

Sciences‘ Cedar Point Biological Station (41º 13‘ N, 101º 39‘ W) continuously since 1982; data 

collection for the current study took place between 1996 and 2006. The 150 x 50 kilometer study 

area lies along the North and South Platte rivers in southwestern Nebraska and includes parts of 

Keith, Deuel, Garden, and Lincoln counties. Historically, Cliff Swallows built their mud nests on 

the sides of cliffs, but with the advent of human-created structures such as road bridges, box-

shaped road culverts, and the eaves of buildings, most birds in the study area are now placing 

their nests on these sorts of structures. In the study area, this change in nest placement habits 

began when Kingsley Dam was closed in 1940. The construction of the dam and the associated 

irrigation structures and canals provided the birds with an abundance of stable, protected ―cliffs‖. 

There are approximately 170 structures in the study area that have supported nesting colonies 

during the course of the Cliff Swallow study. In any given year, about a third of these structures 
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will not be used by nesting birds. Each colony site tends to be separated from the next nearest by 

1 – 10 kilometers but in a few cases colonies are separated by more than 20 kilometers. The size 

of nesting colonies varies widely within and between years; the mean colony size is 405 nests 

(SE = ± 14, N = 2,209 colonies, 29 years), with some birds nesting solitarily. The study area is 

described in greater detail by Brown and Brown (1996).  

Capture and Banding – Cliff Swallows were captured using mist nets. Mist nets were 

placed across the entrances of culverts or along the sides of bridges; at some bridge sites mist 

nets were dropped down from above, catching birds when they flushed from their nests. During 

the years of this study, Cliff Swallows were mist-netted at 27 – 40 colony sites each year and 

each colony site was mist-netted on 1 – 37 days during each year. The number of netting days at 

a colony site was determined by the number of birds at the colony, the phenology of the colony, 

and a variety of other factors that affected the practicality of netting at a colony site. All birds 

caught in nets were banded with individually numbered, aluminum USGS leg bands upon first 

capture, sexed by the presence of a cloacal protuberance or brood patch, aged on the basis of 

facial plumage patterning, and weighed to the nearest 0.5 gram with a Pesola® scale by placing 

the bird in a soft cloth bag. The netting and banding protocols are described in greater detail by 

Brown and Brown (1996) and Brown (1998). 

Colony and Population Size Estimates – The entire study area was surveyed for colony 

site usage and colony size in late June and early July during every year of the study. Colony size 

is defined as the maximum number of active nests at a particular location during one breeding 

season. The use of a single colony size estimate for each colony site for each year is a useful 

metric for comparing different colonies. The protocol for estimating colony size and usage is 

described in greater detail by Brown and Brown (1996). 
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Morphometric Measurements – All measurements in this study were conducted by one 

individual (MBB), consequently no corrections to the data for multiple measurers was required 

(e.g., Price and Grant 1984; Jones 1987; Bryant and Jones 1995; Grant and Grant 1995). This 

same individual (MBB) measured all birds in other Cliff Swallow morphometric studies (e.g., 

Brown and Brown 1998, 2002a, b, 2003, 2011), so the measurements reported here are 

comparable with those in earlier work.  For all birds the following measurements were taken: the 

length of the flattened, closed wing (from the anterior most part of the wrist (carpal) joint to the 

tip of the outermost primary feather or retrice) with a  stoppered wing ruler; the length of the 

middle and two outermost tail feathers or remiges (from their emergence from the follicle at the 

surface of the skin to the distal tip) with a ruler; the length of each tarsus (from the proximate 

end of the tarso-metatarsus to the base of the hallux) with a calipers, and the length and width of 

the exposed culmen (length from the proximate end of the exposed culmen to the beak tip along 

the upper mandible and width of the exposed mandibles at the nares) with calipers. Wing and tail 

feathers that were broken or damaged were not measured for any birds. Likewise, no tarsi or 

culmen were measured if they appeared damaged or malformed in any way.  Wing and tail 

lengths were measured to the nearest whole millimeter and tarsus and culmen lengths were 

measured to the nearest 0.1 millimeter. These measurement limits were chosen because taking 

more precise measures on living Cliff Swallows in the field was impractical.  

1996 Mortality Event – Since Cliff Swallows are obligate aerial insectivores, they are 

particularly affected when cold, rainy weather reduces the availability of aerial insects.  

Mortality due to starvation may result if these conditions last for several (usually four or more) 

days (Anderson 1965; DuBowy and More 1985; Littrell 1992; Brown and Brown 1996, 1998, 

2011). One such event occurred in May 1996.  A six day period of unusually cold and wet 
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weather began on 24 May 1996. During this period, most Cliff Swallows in the study area were 

building nests or incubating eggs. According to National Weather Service records, during this 

period, the average maximum temperature was 11.1º C (123-year average = 24.0º C) and the 

average minimum temperature was 6.4º C (123-year average = 9.0º C). There was measurable 

precipitation on three of the six days, and the average amount of precipitation per day was 1.7 

cm. The six day period of cold rainy weather caused considerable Cliff Swallow mortality, the 

total number of active nests in the study area fell from 29,490 in 1995 to 13,827 in 1996.  

The geographic scope of this mortality event was extensive. There were reliable reports 

of Cliff Swallow mortality ranging from north-central Iowa westward to eastern Wyoming. 

Based on an analysis of weather records, it appears that the mortality event extended north into 

South Dakota and south into northern Kansas (Brown and Brown 1998). The population of Cliff 

Swallows was reduced by at least 53% (Brown and Brown 1998) and more likely by as much as 

73% (Price et al. 2000).  According to records maintained by the United States National Weather 

Service (North Platte, NE reporting station), there has been only one other weather event 

comparable to this one (in 1967) since records began being kept in 1875 (Brown and Brown 

1998).    

The Cliff Swallows that survived this mortality event tended to have shorter wings, 

longer tarsi, longer and wider beaks (culmen), and lower asymmetry than those that did not 

survive. These differences led to a substantial shift toward larger body size and greater symmetry 

in bilateral traits in this population of Cliff Swallows (Brown and Brown 1998, 2011). There was 

also selection for later arrival in the spring (Brown and Brown 2000).  

The Cliff Swallow population that survived this mortality (and selection) event was 

followed for 10 years (1997 – 2006). The current study is based on the measurements of this 
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population of Cliff Swallows. The population that survived the event has been used in studies of 

weather-mediated natural selection on arrival time (Brown and Brown 2000) and  effects of 

ectoparasites on asymmetry (Brown and Brown 2002a); the population that did not survive the 

event has been used in studies of the effects of coloniality on spleen and testis size (Brown and 

Brown 2002b, 2003). 

Statistical Analyses –Repeatabilities (ri) of the morphological measurements were 

estimated using intraclass correlation (Zar 1974; Kuehl 2000; Soper 2009) from a sample of 

1525 birds that were measured twice while alive during the same breeding season (1997 – 2006) 

(1997 = 142 , 1998 =  108, 1999 = 216 , 2000 = 118, 2001 = 95, 2002 = 99, 2003 = 215, 2004 = 

280, 2005 = 148, 2006 = 104). These samples of birds were chosen haphazardly by virtue of the 

repeated measures being done haphazardly (at the time of measurement, the birds‘ identities 

were not referenced by the measurer). Repeatabilities were high and statistically significant (P < 

0.0001). Wing asymmetries were all significantly higher than expected based on measurement 

error. Measures of wing, tail, and tarsus asymmetry all have a relatively high degree of precision 

in this study and do not represent noise in the measurement process. Repeatabilities of the 

morphometric measurements made by this measurer (MBB) in an earlier study (Brown and 

Brown 1998) are given provided below.  

Repeatability of morphological measurements of Cliff Swallows; data taken from 52 

birds measured twice while alive during the same breeding season (1996) and 111 dead birds 

measured twice as specimens are shown below. Missing repeatabilities are due to those 

measurements not being taken on live birds in 1996. All repeatabilities were highly significant (P 

< 0.0001, sequential Bonferroni corrections).  
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Trait             Alive           Dead 

 

Right wing     0.921 ± 0.056    0.955 ± 0.029 

Left wing     0.873 ± 0.085    0.968 ± 0.024 

Middle tail     0.724 ± 0.095    0.943 ± 0.032 

Right outer tail         0.988 ± 0.015 

Left outer tail          0.965 ± 0.025 

Right tarsus          0.910 ± 0.039 

Left tarsus     0.755 ± 0.093    0.938 ± 0.033 

Culmen length     0.657 ± 0.107    0.921 ± 0.038 

Culmen width     0.615 ± 0.111    0.899 ± 0.043 

Wing fluctuating asymmetry   0.771 ± 0.058    0.891 ± 0.020 

Tail fluctuating asymmetry        0.851 ± 0.004 

Tarsus fluctuating asymmetry                              0.682 ± 0.051  

 

In this study, as in Brown and Brown (1998), there was evidence for directional 

asymmetry in wing length measurements. Asymmetry in wing, tail, and tarsus is expressed as the 

unsigned or absolute R – L values (right minus left) of each measurement. Mean signed 

asymmetry for wing length differed significantly from 0 (one-sample t-test, P < 0.001). Mean 

signed asymmetry for all other measurements did not differ significantly from 0 (P > 0.10). This 

directional asymmetry most likely reflects a handedness bias in this particular measurement by 

the measurer (MBB; Brown and Brown 1998). It is not uncommon to find this bias with wing 

measurements taken of living birds (Helm and Albrecht 2000). As suggested by Palmer (1994), 

this directional asymmetry was corrected by calculating the ([mean signed asymmetry] / 2) for 

wing and subtracting these values from the longer average side and adding these values to the 

shorter average side for each observation. The corrected signed and unsigned asymmetry values 

are both presented and analyzed in this study.  

Fumigation – The number and variety of ectoparasites associated with Cliff Swallows is 

substantial and includes fleas (Siphonaptera: Ceratophyllidae-Ceratophyllus celsus celsus), 
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chewing lice (Mallophaga; Amblycera: Menoponidae-Machaerilaemus malleus and Ischnocera: 

Philopteridae-Brueelia longa), plumicolus feather mites (Acari: Astigmata, Avenzoariidae-

Pteronyssoides obscurus), swallow bugs (Hemipters: Cimicidae-Oeciacus vicarious), and soft-

bodied ticks (Acarina: Argasidae-Ornithodoros concanensis) (Brown and Brown 1996; Brown et 

al. 2006). Of these parasites, the hematophagous swallow bug appears to have the greatest 

impact on the general health, survival and reproductive success of the Cliff Swallow (Brown and 

Brown 1986, 1992, 1996, 2006); infestations can reach up to 2600 swallow bugs per nest. In 

order to study the impact of swallow bugs on Cliff Swallows, nests were fumigated in selected 

colonies (every year since 1984) by regularly spraying them with a dilute solution of Dibrom® 

(also known as ‗naled‘; Chevron Chemical Corporation). This acaracide is highly effective in 

killing swallow bugs (Brown and Brown 1986, 1996).  The nest fumigation protocol is described 

in greater detail by Brown and Brown (1996). 
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Number of Cliff Swallows measured during the course of this study. 

Year Male Female Total Adults Juveniles 

     1997 1081 924 2005 

 1998 1160 1106 2266 

 1999 1731 1414 3145 

 2000 1932 1432 3364 558 

2001 1621 1249 2870 505 

2002 1856 1428 3284 551 

2003 2394 2044 4438 1017 

2004 3141 2369 5510 607 

2005 2029 1473 3502 1124 

2006 1725 1325 3050 351 

       

Total males = 18,670 

Total females = 14,764 

Total adults = 33,434 

Total Juveniles = 4,713 
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CHAPTER 1. Intense natural selection on morphology of Cliff Swallows a decade 

later: did the population move between adaptive peaks? 1 
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Abstract:  Unusual climatic events often lead to intense natural selection on organisms. Whether 

episodic selection events result in permanent microevolutionary changes or are reversed by 

opposing selection pressures at a later time is rarely known, because most studies do not last long 

enough to witness rare events and document their aftermath. In 1996, unusually cold and wet 

weather in southwestern Nebraska led to the deaths of thousands of Cliff Swallows 

(Petrochelidon pyrrhonota) over a 6-day period. Survivors were skeletally larger, with shorter 

wings and tails, and had less asymmetry in wing length than those that died. We determined 

trajectories of morphological traits in the decade following this event by measuring yearling 

birds each year from 1997 to 2006. Wing and middle tail-feather lengths continued to decrease, 

bill length and width continued to increase, tarsus length was unchanged, and levels of 

asymmetry in wing length increased. Cumulative directional change in wing, tail, and bill length 

was greater in the decade after selection than during the selection event itself. Morphological 

variation could not be explained by phenotypic plasticity resulting from better environmental 

conditions during growth, because weather variables (that influence food supply and 

ectoparasitism) were not significantly different before and after selection. There was no evidence 

that opposing selection restored skeletal size or wing or tail length to that before the selection 

event. The reasons for continued change in morphology in this population are unclear but may 

represent a population shift to a different fitness peak in the adaptive landscape as a consequence 

of the intense selection in 1996.  

 

Key words: body size, Cliff Swallow, episodic selection, fluctuating asymmetry, morphological 

evolution, Petrochelidon pyrrhonota. 
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Intense episodic selection events often provide opportunities for observing significant 

evolutionary change over short time frames (Bumpus 1899, Endler 1986, Grant and Grant 2002, 

Siepielski et al.et al. 2009). Most often, unusual climatic conditions are the drivers for rapid 

selection, but other events, such as epidemics, drastic habitat modification, introduction of new 

predators, or colonization of vacant island habitats, may also cause short-term microevolutionary 

shifts in particular traits (e.g., Hairston and Walton 1986, Grant and Grant 1993, Benkman and 

Miller 1996, Clegg et al. 2008, Mathys and Lockwood 2009, Wilcoxen et al. 2010; reviewed in 

Carroll et al. 2007). However, the extent to which rare selective episodes result in relatively 

permanent microevolutionary change is less well documented. Although many studies have 

measured the intensity of natural selection in the wild (Siepielski et al. 2009), most field studies 

are not conducted over long enough periods to both witness rare selection events and determine 

the long-term trajectories of any trait changes. A notable exception is Grant and Grant‘s (2002) 

30-year study of evolution in body size and bill dimensions of two species of Darwin‘s finches of 

the Galápagos. They documented several periods of intense selection on morphology brought 

about by rare climatic events, and as they followed these populations after selection, 

unpredictable patterns of change were revealed (Grant and Grant 2002). In most cases, intense 

selection during unusual climatic conditions tended to be reversed in the years immediately after 

these events by opposing selection pressures, yet both species showed long-term changes in 

morphology apparently brought about by recurring bouts of directional selection in response to 

environmental changes (Grant and Grant 1989, 1993, 1995, 2002; Price et al. 1984). The 

Darwin‘s finch study suggests that rare selection events can serve as catalysts to the evolution of 

some traits, yet the generality of this conclusion is difficult to evaluate because so few 

comparable long-term studies of natural populations exist. 
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In late May 1996, unusually cold and wet weather extending over a 6-day period resulted 

in the deaths of thousands of Cliff Swallows (Petrochelidon pyrrhonota) in southwestern 

Nebraska, reducing the breeding population by at least half (Brown and Brown 1998). The cold 

and wet weather depressed the abundance of the flying insects that Cliff Swallows feed on to the 

extent that a portion of the population starved to death. The comparison of morphological 

measurements of those that died and birds that survived the event revealed strong selection on 

tarsus, wing and bill length, and bill width; in addition, those with lower levels of fluctuating 

asymmetry in wing length tended to survive. We hypothesized that the skeletally larger birds 

were favored because they had been able to store more fat before the inclement weather 

commenced and that low levels of wing asymmetry may have promoted more efficient foraging 

in cold weather (Brown and Brown 1998). These morphological characteristics were retained in 

the first-generation offspring of the survivors. 

Here, we report how morphology of Cliff Swallows in the Nebraska study area changed 

in the 10 years subsequent to the 1996 selection event. Measuring the same traits of birds known 

to be born in the study area and taking the measurements at identical ages (1 year old) in each 

year over a decade allowed us to investigate long-term changes in morphology. Specifically, we 

asked whether the directional selection on morphology documented in 1996 had been reversed 

by opposing selection pressures in response to potential environmental change in subsequent 

years; whether there is evidence of continuing directional selection on any of the traits, perhaps 

as a result of the population crossing to a different adaptive peak (Feare and Price 1998, Arnold 

et al. 2001); whether the morphological changes over time are consistent with possible responses 

to global climate change (e.g., Van Buskirk et al. 2010, Yom-Tov 2001); and whether the 

microevolutionary changes documented in the episodic selection event resulted in a relatively 
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permanent shift in body size in this population of Cliff Swallows. 

METHODS 

Study site. Cliff Swallows have been studied since 1982 near the Cedar Point Biological Station 

(41°13′N, 101°39′W) in Keith County, southwestern Nebraska, along the North Platte and South 

Platte rivers; the study area also includes portions of Deuel, Garden, and Lincoln counties. Cliff 

Swallows construct gourd-shaped mud nests, often in dense, synchronously breeding colonies. In 

our study area, the birds nest mostly on the sides of bridges, in box-shaped road culverts, or 

underneath overhangs on the sides of cliffs. The study area contains about 170 colony sites, of 

which about a third are not used in a given year. Colony size varies widely; in our study area it 

ranges from 2 to 6,000 nests (mean ± SE = 393 ± 15, n = 1,812 colonies), with some birds 

nesting solitarily. The study site is described in detail in Brown and Brown (1996). 

Measurements. Beginning in 1997 and continuing through 2006, birds were measured 

during the course of a long-term mark–recapture project in which we rotated among 25–40 

colonies in the study area on a regular basis each year, mist netting birds for studies of survival 

and movement (Brown and Brown 2004, 2009; Brown et al. 2007, 2008a, b). At smaller 

colonies, we measured most birds captured on a given occasion; at larger sites, processing time 

allowed us to measure only a subset of those netted. At the latter sites, we generally tried to 

include as many previously banded birds as possible, because more information on those 

individuals was potentially available (e.g., age, prior colony-site use). In the field at the time of 

measurement, however, we knew only a previously marked bird‘s band prefix and thus the 

approximate year it was banded. Birds were sexed by the presence of a cloacal protuberance, 

brood patch, or both. 

M.B.B. measured all birds in all years of the present study and in the 1996 weather event 
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(Brown and Brown 1998), and thus no corrections to the data for multiple measurers were 

necessary. For all birds, the length of each unflattened, closed wing (from the anterior-most part 

of the wrist joint to the tip of the outermost primary) was measured to the nearest 1 mm with a 

stoppered wing ruler; the length of the middle tail feather (from its emergence from the skin to 

the distal-most point) was measured to the nearest 1 mm with a ruler; the length of each tarsus 

(from the proximate end of the tarso-metatarsus to the hallux) was measured to the nearest 0.1 

mm with calipers; and the length and width of the exposed culmen (length from the proximate 

end of the exposed culmen to the bill tip along the upper mandible and width of the exposed 

mandibles at the nostrils) were measured to the nearest 0.1 mm with calipers. Asymmetry in 

wing length was expressed by the unsigned difference between the right and left wing 

measurements (Palmer 1994).  

Repeatabilities of morphometric measurements by M.B.B. are given in Brown and Brown 

(1998); repeatabilities, in general, were high and statistically significant. We also found that 

wing asymmetry was higher than expected given the measuring error, which means that 

asymmetry could be distinguished from random noise (Brown and Brown 1998). We found 

evidence for directional asymmetry in wing measurements, as indicated by signed asymmetry 

values that differed significantly from zero (Brown and Brown 2002). This asymmetry likely 

reflected a handedness bias by the measurer (Brown and Brown 1998, 2002). To correct for 

directional asymmetry (Palmer 1994), we divided the mean signed asymmetry by 2 and 

subtracted the result from the wing measurement of the larger average side and added the latter 

value to the measurement of the smaller average side for each observation. The corrected 

unsigned asymmetry values are those presented and analyzed here. Statistical analyses were 

performed with SAS (SAS Institute 2004). 
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Individuals included in analyses. For the period 1997–2006, our analyses used only birds 

known by banding to have been born in the Nebraska study area the previous summer and that 

were thus 1 year old at the time of measurement. These birds had been banded as nestlings or 

recently fledged juveniles; those measured in 1998 and 1999 included some that were part of a 

cross-fostering experiment the previous year (Brown and Brown 2000) in which 5-day-old 

nestlings were moved between nearby colonies and reared in colonies of different sizes. 

Although many individuals were measured in multiple years, for the present study we used a 

bird‘s measurements only from the season in which it was 1 year old; thus, all measurements 

were from birds of identical life stage, and data from each year were statistically independent. 

The number of 1-year-old birds measured varied between 113 and 314 per season, reflecting 

differences in the number of nestlings and juveniles banded, recapture effort, and population size 

in a given year. If a 1-year-old bird was measured multiple times that season, average within-

year values for its respective measurements were used. 

For comparison, we used measurement data from the birds that did or did not survive the 

1996 event, as described in Brown and Brown (1998). The principal difference between the data 

reported in the earlier publication and in these analyses is that here we separated the survivors 

and nonsurvivors from 1996 by sex. Sex had not been determined for the initial analyses (Brown 

and Brown 1998), but subsequently all nonsurviving birds were prepared as skins and dissected, 

so the sexes were known. Briefly, nonsurvivors were dead birds collected on the ground below 

nests or found inside nests on the day after the cold and rainy weather ended, and survivors were 

live birds (at least 1 year old) measured in 1996 in the immediate aftermath of the event. See 

Brown and Brown (1998) for additional details. The trait distributions prior to the 1996 selection 

event were unknown (Price et al. 2000). 
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Weather data.—To evaluate potential weather changes in the study area that could have 

influenced growth and development of nestlings before and after the selection event, we 

compared total June rainfall and average June high temperature in the 10 years prior to the 

selection event (1986–1995), during which time most of the birds that experienced the event  

hatched, with the same measures for the 10 years after the selection event (1996–2005), during 

which time the descendants of the survivors would have hatched. June was used because that is 

when most brood-rearing by Cliff Swallows occurs in the study area and their reproductive traits 

depend heavily on climatic conditions such as temperature and rainfall (Brown and Brown 

1999a, b). Climatological data were taken from a long-term monitoring site in Arthur County, 

Nebraska, about 48 km directly north of the study area (Brown and Brown 1996). This site, part 

of the University of Nebraska‘s Automated Weather Data Network, recorded daily high and low 

temperatures and total precipitation.  

Quantitative changes in traits during selection. As a measure of relative changes in trait 

means during the 1996 selection event versus in the subsequent 10 years, we computed the 

directional change among trait means expressed as a fraction of the before-selection standard 

deviation (SD) using the following formula: (trait mean after selection – trait mean before 

selection)/ trait SD before selection. 

For the 1996 event, we used survivors and nonsurvivors combined as the before-selection 

population and survivors as the after-selection population. For the decade following selection, we 

used the 1996 survivors as the before-selection population and those measured in 2006 as the 

after-selection population.  

RESULTS 

Body-size variation over time. For skeletal measures of body size, the strong differences 
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documented between survivors and nonsurvivors of the 1996 selection event were maintained in 

the 10 years afterward (Fig. 1). Tarsus length remained essentially unchanged in later years, with 

mean values for both sexes mostly within the 95% confidence interval of the 1996 survivors‘ 

tarsus length (Fig. 1A). Mean tarsus length per year did not vary over time in the 1996–2006 

interval for either males (rs = –0.16, P = 0.64, n = 11 years) or females (rs = –0.21, P = 0.53). By 

contrast, both bill length (Fig. 1B) and width (Fig. 1C) continued to increase in the years after the 

kill. Bill length of both sexes by 2003 was well outside the 95% confidence interval for that of 

the 1996 survivors (Fig. 1B), and bill width in males also tended to track to larger values than in 

1996 (Fig. 1C). Bill length in both males (rs = 0.61, P = 0.046) and females (rs = 0.68, P = 0.022) 

increased significantly across the 11 years from 1996 to 2006, as did bill width (rs = 0.72, P = 

0.012 for both sexes). There was no evidence that any of the skeletal measures drifted back 

toward those of the nonsurvivors in 1996 (Fig. 1). 

Wing length showed a continuing decline in the years following the 1996 kill, with yearly 

means for both sexes generally outside the 95% confidence interval for the survivors (Fig. 2A). 

Male mean wing length per year declined significantly after 1996 (rs = –0.87, P = 0.005, n = 11 

years), with females showing the same trend, though it was not significant (rs = –0.55, P = 

0.078). Wing length did not exhibit a directional increase in size toward that of the non-survivors 

from 1996 (Fig. 2A). Length of middle tail feathers showed a less consistent pattern, with some 

yearly values near the 95% confidence interval of the 1996 survivors, but the trend was for 

smaller middle tail feathers and generally away from that of the nonsurvivors (Fig. 2B). Neither 

males (rs = –0.46, P = 0.15, n = 11) nor females (rs = –0.38, P = 0.25) showed a significant 

change in middle tail feather length over the 11-year interval. 

Average wing asymmetry increased in the years after the 1996 event, although by 2006 
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wing asymmetry was still below that of the nonsurvivors (Fig. 3). Both males (rs = 0.82, P = 

0.002, n = 11 years) and females (rs = 0.66, P = 0.026) showed significant yearly increases in 

wing asymmetry with time over the 11-year period. 

Quantitative changes in traits. Wing, middle tail, and bill lengths exhibited greater 

change (and in the same direction) in the subsequent 10 years than during the selection event 

(Table 1). Bill width showed about the same level of change, and tarsus length showed much less 

change in the subsequent period, compared with the selection event (Table 1). Wing asymmetry 

showed opposite patterns of change during the two periods (Table 1). 

Weather before and after selection. Total June rainfall in the years prior to the selection 

event (mean = 6.8 cm year
–1

; range: 3.0–13.9 cm) did not differ significantly from that in the 

years after the selection event (mean = 6.3; range: 2.3–9.9 cm; Wilcoxon test, Z = 0.00, P = 

0.98). Average June high temperature in the years prior to the selection event (mean = 26.3°C 

year
–1

; range: 23.1–30.2°C) did not differ significantly from that in the years after the selection 

event (mean 25.5°C year
–1

; range: 22.9–29.5°C; Wilcoxon test, Z = 0.49, P = 0.62). In 2004, 

however, cold and wet weather in late June resulted in the mean high temperature for the second 

half of the month being at least 6°C colder than that for the comparable period in any other year 

either before or after the selection event. Many nestling Cliff Swallows in the study area, and 

some adults, starved to death during the period 17–20 June 2004, although overall population 

size was unaffected. 

DISCUSSION 

The most striking result of our study is that none of the measures of Cliff Swallow body size 

showed evidence of opposing selection in the years after the unusual climatic event, and the 

patterns of directional selection that occurred during that event have been maintained for most 
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traits. The trend toward evolution of birds of larger skeletal size (especially bill size) with shorter 

wings and tail has continued even in the apparent absence of similar selection events in 

subsequent years. Hypotheses to explain these results include (1) relaxation of opposing 

selection pressure for smaller body size due to recent environmental changes; (2) undetected 

continuing episodic selection events similar to that of 1996; and (3) as a consequence of the 

intense selection in 1996, the population may have crossed to another fitness peak on the 

adaptive landscape, leading to further directional selection on body size. In contrast to what we 

observed for body size, levels of fluctuating asymmetry in wing length moved in the opposite 

direction in the subsequent decade, likely indicating relaxed selection for high levels of 

symmetry in the apparent absence of extreme climatic events. All patterns seemed roughly 

similar between the sexes, with no sex-specific differences in any of the results. 

Body size in Bank Swallows (Riparia riparia) in Great Britain in the 1980s showed 

evidence of oscillating selection, believed to be related in part to climatic conditions. Populations 

crashed in 1983–1984, with smaller birds being favored, presumably because of unusual drought 

conditions on the African wintering grounds (Jones 1987, Bryant and Jones 1995). Larger birds 

have reproductive advantages on the breeding grounds, however, and by 1990 countervailing 

selection for large size had restored the population to a body-size morphology largely 

characteristic of that before the drought (Bryant and Jones 1995). Similar reversals of selection 

were documented for Darwin‘s finches in response to short-term changes in rainfall that affected 

seed availability (Price and Grant 1984; Gibbs and Grant 1987; Grant and Grant 1989, 1995). 

Because we observed little shift in any morphological trait (except wing asymmetry; see below) 

back toward that before the severe weather event, opposing selection based on advantages 

associated with smaller skeletal size and longer wings and tail did not apparently occur in the 
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decade following selection in this Cliff Swallow population. We have not identified any obvious 

ecological or social benefit of small body size per se during the course of our long-term research 

on Cliff Swallow coloniality. Furthermore, the fact that the Nebraska population has retained its 

morphological characteristics in the aftermath of the selection event suggests that there have 

been no environmental changes or episodic disturbances (e.g., drought on the wintering range; 

Bryant and Jones 1995) that favored smaller body size or longer wings and tail during other 

times or stages of the annual life cycle, at least during the past decade. Not finding evidence of 

directional selection for smaller size is not surprising, given the lack of empirical evidence for 

advantages of being small in animals generally (Blanckenhorn 2000). 

Long-term change in body morphology can occur through recurring bouts of directional 

selection, as documented in Darwin‘s finches (Price et al. 1984, Grant and Grant 2002). This 

requires environmental conditions that favor continued directional changes. Climatological 

records (Brown and Brown 1998) show that the 1996 weather event in our study area was one of 

only two such events of this magnitude in southwestern Nebraska since 1875. Cold and rainy 

weather of shorter duration occurs more frequently, which can result in limited Cliff Swallow 

mortality. These events also lead to viability selection for birds of larger skeletal size, lower 

asymmetry, and shorter wings (Brown and Brown 1998). One such selection event occurred in 

June 2004. The extent of mortality that resulted from the severe weather of 2004 was limited, but 

it was second only to the major mortality event of 1996 in severity of mortality. The 2004 event 

was also the latest in the summer that weather-related mortality is known to have occurred in our 

study area. We detected apparent selection for lower wing asymmetry in 2004, with a 

corresponding drop in levels of wing asymmetry among yearlings the following summer (Fig. 3). 

Other morphological traits seemed unaffected by the 2004 event. Although another drop in wing 
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asymmetry in 2001 (Fig. 3) might suggest another selection event of some kind in 2000, if so, it 

was not cold-weather-related and we did not detect it. The summer of 2000 was unusually dry, 

perhaps exerting selection on asymmetric individuals if drought affected foraging conditions. 

Although drought in 2000 and the cold weather event in 2004 may have produced patterns of 

selection similar to that of 1996, on balance it seems unlikely that directional selection in 

response to unusual environmental events has recurred frequently enough or has been intensive 

enough since the 1996 selection event to account, in general, for the morphological trajectories 

that we observed (Figs. 1 and 2). 

The continued evolution of Cliff Swallow morphology in the same direction as that 

following the 1996 selection event suggests that this population may have crossed to another 

fitness peak in the adaptive landscape (Wright 1931, Arnold et al. 2001, Benkman et al. 2005). 

With the virtual elimination of the smaller and longer-winged birds in 1996 (Brown and Brown 

1998, Price et al. 2000), any ecological or social niche occupied by individuals of this phenotype 

would have been permanently vacated. In addition, and in the absence of appreciable 

immigration from populations not exposed to the 1996 selection event, presumably most of the 

additive genetic variation for small skeletal size and longer wings and tail would have been 

eliminated from the study population, given that avian morphology is highly heritable (Alatalo 

and Lundberg 1986, van Noordwijk et al. 1988, Wiggins 1989, Grant and Grant 1995). 

Consequently, the population may now experience a different fitness function in which larger 

birds with shorter wings continue to be favored. In support of this, we found some evidence that 

at least the distribution of tarsus length may have been bimodal before the selection event (Price 

et al. 2000). With the smaller mode now eliminated, the population as a whole cannot cross the 

adaptive ―valley‖ of intermediate size because larger birds are continually favored over ones that 



26 

 

drift back toward the deleterious intermediate size on the population‘s way to becoming smaller. 

The adaptive landscape model has been criticized, and few empirical studies support it (Coyne et 

al. 1997), but it seems consistent with the patterns reported here. Linking size to fitness measures 

such as annual survival and nesting success would be necessary to better determine the 

applicability of the adaptive landscape concept to Cliff Swallow morphological evolution. 

Why might birds with larger bills and shorter wings continue to be favored in the 

aftermath of the 1996 climatic event and in the absence of continuing episodic selection of this 

nature? One possibility is that avian morphology is responding to global climate change. Studies 

on multiple species from both North America and Europe have documented directional changes 

in morphological measurements over the past 50 years that are interpreted as responses to 

warming global climate (Przybylo et al. 2000, Yom-Tov 2001, Kanuscak et al. 2004, Guillemain 

et al. 2005, Yom-Tov et al. 2006, Monahan 2008, Van Buskirk et al. 2010). For many of these 

species, the trend is for shorter wings, as we documented for Cliff Swallows. The rationale 

offered is that warming climate favors smaller body size, based on Bergmann‘s biogeographic 

rule that animals in colder, more northerly latitudes tend to be larger (Ashton 2002).  

However, for several reasons the climate-change hypothesis seems an unlikely 

explanation for directional change in morphology of Cliff Swallows in particular, and probably 

of birds in general. Although the trend in wing length for Cliff Swallows matched the pattern 

seen in other species, our skeletal measures showed that the Nebraska population increased in 

bill size and did not change in tarsus length (an index of body size), despite exhibiting the 

decline in wing length. Thus, studies that use only wing length (or mass, which in Cliff 

Swallows, at least, varies enormously across a day, a season, and with colony size; Brown and 

Brown 1996) as a surrogate of body size may not reflect a true reduction in skeletal size in some 
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species. In addition, global climate change may lead to an increased frequency of unusually 

severe weather events such as we saw in 1996 (Easterling et al. 2000, Greenough et al. 2001, 

Rosenzweig et al. 2001), and if so, larger (not smaller) body size should be favored to allow 

animals to better endure these unpredictable events (e. g., by retaining more body fat; Ashton 

2002). Finally, there is little evidence for most species that recent changes in morphology (that 

are putatively linked to climate) reflect microevolutionary genetic change, and they more likely 

represent phenotypic plasticity (Gienapp et al. 2008, Teplitsky et al. 2008). 

Developmental plasticity (Cooch et al. 1991, Larsson et al. 1998) could account for these 

patterns (Figs. 1 and 2) if conditions during brood rearing were routinely better in the decade 

after the selection event (1996–2005) than in the decade before (1986–1995). With more food 

available or smaller populations of ectoparasitic swallow bugs (Oeciacus vicarius) in the nests, 

both of which may be influenced by summer rainfall and temperature (Brown and Brown 1999a, 

b), birds may attain larger skeletal size simply as a result of favorable conditions for nestling 

growth. This might also be brought about by higher-quality parents being overrepresented in the 

population after the selection event (see below), which could lead to greater nestling-

provisioning rates. However, we found no evidence that seasonal weather patterns in the study 

area were different before and after the selection event. Thus, phenotypic plasticity during 

growth, at least that attributable to weather-driven environmental conditions, can probably be 

ruled out.  

The gradual increase in wing asymmetry (presumably a deleterious trait) in Cliff 

Swallows following the selection event (Fig. 3) supports studies on other organisms that show 

that fluctuating asymmetry has low heritability (e.g., Palmer and Strobeck 1997, Bryden and 

Heath 2000, Campo et al. 2005); otherwise, we should have seen a trajectory of little change in 
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the population following the intense selection event. The elimination of highly asymmetric 

individuals in this population in 1996 may have reflected simply a culling of low-quality 

individuals, with fluctuating asymmetry being a reliable index of phenotypic quality. With the 

relaxation of the episodic selection event in subsequent years (except in 2004; see above) and the 

population returning by 2001 to a size equal to that before the selection event, individuals of 

lower (non-genetically-based) phenotypic quality presumably increased and led to higher 

average levels of observed fluctuating asymmetry (Fig. 3). 

Morphometric traits in many bird populations clearly are not static and often show 

directional change over time (e.g., Larsson et al. 1998; Nowakowksi 2000, 2002; Acquarone et 

al. 2004; Guillemain et al. 2005; Yom-Tov et al. 2006; Monahan 2008; Van Buskirk et al. 2010). 

There may be no single general explanation for these patterns (e.g., climate change), and 

understanding each species‘ ecology may be necessary to interpret why morphology is so 

temporally variable. However, even in a population as well studied as the Cliff Swallows of 

southwestern Nebraska, the causes of the continuing directional changes in bill size and wing 

length remain unknown. Possibilities (at least for bill size) could include an increase in 

competition for the best nesting sites within colonies, increased competition to settle in colonies 

of particular sizes or to exclude other individuals from settling, better nest defense against 

conspecifics, increased competition (among males) for access to extrapair matings or (for 

females) to place as many parasitic eggs in other nests as possible, or habitat modifications (e.g., 

conversion of native prairie to crops) that have changed the size distribution of the birds‘ insect 

prey. All of these could potentially favor birds with larger bills, but there is no direct evidence 

that these factors have intensified in the study area in the past decade to the extent that we would 

expect an evolutionary response. The 1996 selection event and the subsequent directional 
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changes in morphology may be two relatively independent phenomena; lack of similar data prior 

to 1996 prevents us from knowing this with certainty. Nevertheless, the directional selection that 

occurred in the extreme climatic event has clearly not been reversed in the subsequent decade, 

leading apparently to a relatively permanent microevolutionary change in the morphology of this 

species. Whether opposing selection occurs in discrete bouts at even longer intervals (≥10 years) 

and results in directional change in the other direction can be determined only by continued long-

term study of this population. 
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Table 1-1. Intensity of selection as indicated by change in trait mean, expressed as the fraction of 

the before-selection standard deviation (∆SD), for morphology of Cliff Swallows during an 

intense selection event in 1996 (Brown and Brown 1998), compared with that during the period 

from 1996 to 2006. ∆SD for the 1996 event was calculated using combined survivors and 

nonsurvivors (before selection) and survivors (after selection), and ∆SD for 1996–2006 used 

1996 survivors (before selection) and birds measured in 2006 (after selection). Negative values 

indicate that trait mean decreased in size during the respective selection event; positive values 

indicate that the trait mean increased in size. 
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Trait 1996 selection event 

∆SD 

1996:2006 

∆SD 

 

Male mean wing length 

 

–0.18 

 

–0.82 

Female mean wing length –0.14 –0.46 

Male middle-tail-feather length –0.16 –0.44 

Female middle-tail-feather length –0.16 –0.29 

Male mean tarsus length +0.95 –0.12 

Female mean tarsus length +1.29 –0.04 

Male bill length +0.72 +1.58 

Female bill length +0.98 +2.72 

Male bill width +0.78 +0.64 

Female bill width +1.12 +1.08 

Male wing asymmetry  –0.20 +0.61 

Female wing asymmetry –0.50 +0.46 
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Figure 1-1. Average (A) mean tarsus length, (B) bill length, and (C) bill width for male and 

female Cliff Swallows each year following a 1996 selection event in southwestern Nebraska. 

Birds in 1997–2006 were 1 year old and born in the study area the previous summer. Sample 

sizes (number of birds measured) are shown next to symbols; error bars indicate SE. For 

comparison, survivors and nonsurvivors of the 1996 event (Brown and Brown 1998) are also 

shown, and the dotted line indicates 95% confidence interval for the 1996 survivors. 
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Figure 1-2. Average (A) mean wing length and (B) middle-tail-feather length for male and 

female Cliff Swallows each year following a 1996 selection event in southwestern Nebraska. 

Birds in 1997–2006 were 1 year old and born in the study area the previous summer. Sample 

sizes (number of birds measured) are shown next to symbols; error bars indicate SE. For 

comparison, survivors and nonsurvivors of the 1996 event (Brown and Brown 1998) are also 

shown, and the dotted line indicates 95% confidence interval for the 1996 survivors. 
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Figure 1-3. Average unsigned fluctuating asymmetry in wing length for male and female Cliff 

Swallows each year following a 1996 selection event in southwestern Nebraska. Birds in 1997–

2006 were 1 year old and born in the study area the previous summer. Sample sizes (number of 

birds measured) are shown next to symbols; error bars indicate SE. For comparison, survivors 

and nonsurvivors of the 1996 event (Brown and Brown 1998) are also shown, and the dotted line 

indicates 95% confidence interval for the 1996 survivors. 
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CHAPTER 2. Effects of climatic variables on feather growth, skeletal traits, and body mass 

of juvenile Cliff Swallows (Petrochelidon pyrrhonota) 
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Abstract: We investigated how seasonal variation in climatic variables (summer maximum 

temperature and total precipitation) that influence food availability in turn affect growth of wing, 

tail, and skeletal traits, and body mass in Cliff Swallows (Petrochelidon pyrrhonota), colonial, 

insectivorous birds that regularly experience brief periods of food deprivation during the nesting 

season.  Birds were caught as juveniles soon after fledging and morphometric measurements 

taken; only birds occupying large colonies where the confounding effects of ectoparasites had 

been removed were studied.  Average wing and tail length increased significantly with June 

maximum air temperature only.  No skeletal traits, nor body mass, varied with May maximum 

temperature, and no traits showed a relationship with May or June precipitation.  We conclude 

that only feather growth in Cliff Swallows is sensitive to climatically based natural variation in 

food availability during the summer, with birds in cooler years allocating less growth to wing 

and tail feathers while maintaining normal levels of body mass and skeletal growth.  Because 

adult and juvenile feather lengths were positively correlated, any changes in juvenile feather 

growth in response to rearing conditions apparently persist into a bird‘s first breeding season.    
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Many birds in temperate latitudes experience periods of food deprivation during the 

breeding season, often due to transient periods of inclement weather which reduce food 

abundance or curtail foraging activities.  Reductions in food availability occur regularly for aerial 

insectivorous species that depend exclusively on flying insects that are not active in cold or rainy 

weather (e.g., Löhrl 1971; Murphy 1983, 1985; Blancher and Robertson 1987; Brown and 

Brown 1996, 1998; McCarty and Winkler 1999; Bize et al. 2006).   In response to periods of 

food deprivation, nestling birds might be expected to allocate energy for growth differently 

among skeletal traits, wing and tail feathers, and fat deposition (e.g., Congdon 1990; Ashton and 

Armstrong 2002; Dahdul and Horn 2003; Bize et al. 2006).  The nature of these growth tradeoffs 

among morphological traits seems to vary across species, presumably reflecting differences in 

ecology and life histories (Dow and Gill 1984; Boag 1987; van Heezik 1990; Negro et al. 1994; 

Lepczyk and Karasov 2000; Ashton and Armstrong 2002; Benowitz-Fredericks et al. 2006; Sears 

and Hatch 2008).  

Swallows are aerial insectivores that exhibit relatively long nestling periods and are 

particularly sensitive to periodic disruptions in food availability caused by weather conditions 

(e.g., Stewart 1972a, b; Bryant 1975; Brown 1976, 1997; Hoogland and Sherman 1976; DuBowy 

and Moore 1985; Littrell 1992; Brown and Brown 1996, 1998).  Unusually cold or rainy weather 

leads to widespread mortality of both adult and nestling birds, but less dramatic climatic 

variation can also influence many aspects of these birds‘ reproductive biology, likely through 

daily fluctuations in flying insect abundance (Bryant 1975, 1978; Turner 1983; Brown and 

Brown 1999a, b; McCarty and Winkler 1999).   In this study, we examine how juvenile Cliff 

Swallows (Petrochelidon pyrrhonota) potentially allocate growth among different morphological 

traits in response to climatically-based annual variation in food availability.  These traits in 
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adults were previously shown to be targets of intense natural selection during periods of food 

deprivation (Brown and Brown 1998, 2011).  By understanding the relative priority of skeletal 

and feather growth and body mass deposition during periods of relatively high versus low 

resource (food) availability, we may gain insight into the selective pressures potentially 

promoting long-term change in these trait trajectories (Brown and Brown 2011).   

We make the explicit assumption in this study that annual variation in temperature and 

precipitation affects the flying insect prey upon which Cliff Swallows rely.  Numerous studies 

have shown that flying insect activity varies directly with temperature and inversely with 

precipitation (e.g., Williams 1961; Taylor 1963; Johnson 1969).  We previously demonstrated 

strong relationships between these annual climatic variables and time of laying, clutch size, and 

fledging success, and in all cases the relationships were ones predicted if food availability varied 

systematically with seasonal weather conditions (Brown and Brown 1999a,b).  Summers with 

lower mean temperatures and higher precipitation reflect more days with conditions marginal for 

Cliff Swallow foraging, and thus in those years we assumed less food was available during brood 

rearing.  The design of our study was to examine skeletal variables, feather growth, and body 

mass for juveniles in six different years and relate that to broad measures of climate during each 

season.  We removed the confounding effects on nestling growth of (i) ectoparasites (Brown and 

Brown 1986, 1996) by using only fumigated, parasite-free nests; (ii) colony size (Brown and 

Brown 1996) by using only large colonies; and (iii) annual differences in ambient temperatures 

by studying a species living in an enclosed, mud nest where outside temperature extremes are 

buffered by the insulating properties of the mud nest (Mayhew 1958; Withers 1977). We use 

temperature and precipitation values for May to evaluate whether the foraging conditions female 

swallows experience during egg provisioning and laying affects their investment in egg quality 
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that is subsequently reflected in juvenile morphology. We also use these same variables to 

evaluate whether the foraging conditions the birds experience in June during brood rearing is 

reflected in juvenile morphology. 

METHODS 

Study species. Cliff Swallows (Petrochelidon pyrrhonota) are highly colonial 

Neotropical migrant passerine birds. They breed throughout much of North America and winter 

in southern South America (Brown and Brown 1995). They are diurnal, aerial insectivores and 

only forage when flying insects are active (Brown and Brown 1996, 1998). Juvenile Cliff 

Swallows have distinctive, mottled head and throat plumage, making them easy to distinguish 

from adults (Stoddard and Beecher 1983; Brown and Brown 1995).  Upon fledging, many 

juvenile Cliff Swallows spend several days near their natal colony site, often entering other nests 

in the colony in apparent attempts to steal food from parents of smaller nestlings (Brown and 

Brown 1996).  During this time, they can be easily caught in mist nets placed across the 

entrances of highway culverts or along the side of bridges.  After they become independent of 

their parents, they remain in the study area for several weeks before migration, foraging and 

sometimes visiting colonies that still have active nests.   

Study site. Cliff Swallows have been studied near the University of Nebraska School of 

Biological Sciences‘ Cedar Point Biological Station (41º 13‘ N, 101º 39‘ W) since 1982; data 

collection for this study occurred in June and July, 2001–2006. The study area lies along the 

North and South Platte rivers in southwestern Nebraska and includes parts of Keith, Deuel, 

Garden, and Lincoln counties. Historically, Cliff Swallows built their nests on the sides of cliffs, 

but most birds in the study area now place their nests underneath road bridges or inside box-

shaped highway or railroad culverts. The size of nesting colonies varies within and between 
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years; the mean colony size is 405 nests (SE = ± 14, N = 2209 colonies, 29 years), with some 

colonies as large as 6000 nests and other birds nesting solitarily. The study area is described in 

greater detail by Brown and Brown (1996).  

Capture and banding. Juvenile Cliff Swallows were captured and banded as part of a long 

term mark-recapture project in which we rotated among different colony sites throughout the 

nesting season (Brown and Brown 1996, 2004, 2009).  Mist nets were placed across the 

entrances of culverts or along the sides of bridges to catch birds as they flew through the culverts 

or underneath the bridges.  Juveniles were birds capable of sustained flight that had hatched 

earlier that summer, known by the plumage pattern of the head and throat and their overall much 

duller coloration compared to adults.  We restricted all juveniles in this study to those whose 

wing lengths were greater than 100 mm; this was done to ensure that only individuals that were 

independent of their parents and whose feathers had ceased growing were included in the 

analyses (MBB, CRB, pers. obs.). All juveniles caught in nets were banded with numbered 

USGS leg bands and weighed to the nearest 0.5 gram.  Birds used in this study were caught 

primarily at two main study colonies that were fumigated each season to remove ectoparasites 

(Brown and Brown 1986, 1996); these sites varied from 955 to 1810 active nests in size during 

2001–2006, which for each year at each site constituted a relatively large Cliff Swallow colony. 

Some comparisons in this study also used birds banded as nestlings or juveniles in the study area 

and re-caught and measured as breeding adults during their first nesting season the next summer; 

data collection for these birds is described fully in Brown and Brown (2011). 

Morphometric measurements – All measurements of wing, tail, and skeletal traits in this 

study were conducted by one individual (MBB), and consequently no corrections to the data for 

multiple measurers was required (e.g., Price and Grant 1984; Bryant and Jones 1995; Grant and 
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Grant 1995). The following measurements were taken: the length of the flattened, closed wing; 

the length of the middle and two outermost tail feathers; the length of each tarsus; and the length 

and width of the exposed culmen. Wing and tail feathers that were damaged were not measured; 

likewise, no tarsi or culmen were measured if they appeared damaged or malformed.  Wing and 

tail lengths were measured to the nearest whole millimeter with a stoppered wing ruler and tarsus 

and culmen lengths were measured to the nearest 0.1 millimeter with calipers (see Brown and 

Brown 1998, 2011). We measured the entire length of the birds‘ wing and tail feathers, because 

we were interested in a cumulative measure of how foraging conditions varied over the entire 

nestling period.   

Fumigation. To remove the deleterious effects of blood-feeding swallow bugs 

(Hemiptera: Cimicidae: Oeciacus vicarius) on Cliff Swallow growth and development, nests in 

the colonies used in this study were fumigated by regularly spraying them with a dilute solution 

of Dibrom® (naled; Chevron Chemical Corporation).  The nest fumigation protocol is described 

in greater detail by Brown and Brown (1986, 1996). 

Weather.  Weather data (May and June maximum daily air temperature and May and 

June daily precipitation) was acquired from the University of Nebraska High Plains Regional 

Climate Center‘s Kingsley Dam station located near the center of the study area 

(http://www.hprcc.unl.edu, ID: 254455; 41°21‘ N, 101°67‘ W, elevation 1011 meters). Using the 

daily data, we calculated the mean maximum air temperature (± 1SE) and the total precipitation 

for the months of May and June during each year of the study. We chose maximum air 

temperature and precipitation because previous studies have suggested that these weather 

variables have the greatest effect on the availability of the flying insects that Cliff Swallows 

depend on (Williams 1961; Taylor 1963; Johnson 1969) and that consequently are most likely to 
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affect the growth and development of nestling birds and the nutritional condition of females 

when they are provisioning and laying eggs (Bryant 1975, 1978, 1979; Turner 1983; Dow and 

Gill 1984; Murphy 1985; Blancher and Robertson 1987; Grubb et al. 1991; McCarty 2001).  The 

months of May and June were used in our index of seasonal conditions because most Cliff 

Swallow eggs are laid in May and most brood rearing occurs during June (Brown and Brown 

1996). 

Statistical analyses. Repeatabilities (ri) of the morphological measurements were 

estimated using intraclass correlation (Zar 1974; Kuehl 2000; Soper 2009) from a sample of 

1525 birds that were measured twice while alive during the same breeding season. 

Repeatabilities for all traits were high and statistically significant (P < 0.0001; Brown and Brown 

1998).  

Fluctuating asymmetry in wing and tail was defined as the difference in measurements 

between the right and left sides, and asymmetry in both traits was significantly higher than 

expected based on measurement error. In this study, as in Brown and Brown (1998, 2011), there 

was evidence for directional asymmetry in wing length measurements. Mean signed asymmetry 

for wing length differed significantly from 0 (one-sample t-test, P < 0.001). This directional 

asymmetry likely reflects a handedness bias by the measurer (Brown and Brown 1998). We 

corrected for directional asymmetry by calculating ([mean signed asymmetry] / 2) for wing and 

subtracting these values from the longer average side and adding these values to the shorter 

average side for each observation (Palmer 1994). The corrected unsigned asymmetry values are 

presented in this study.  

Spearman correlations were used to evaluate the relationship between temperature, 

precipitation, and morphological measurements and between juvenile and adult morphological 
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measurements. We used mean annual values for the morphological measurements in the 

analyses. Statistical analyses were performed with SAS (SAS Institute 2004), GraphPad Prism 

(GraphPad 2000), and Soper Calculators (Soper 2009).  

RESULTS 

During the six years of the study the mean May maximum air temperature varied between 

21.7°C and 25.9°C and the mean June maximum air temperature varied between 25.5°C and 

33.1°C (Fig. 1). The total precipitation for May varied between 2.6 cm and 5.4 cm (2001, 5.0 

cm; 2002, 2.6 cm; 2003, 5.4 cm; 2004, 4.8 cm; 2005, 4.1 cm; 2006, 2.7 cm. The total 

precipitation for June varied between 2.1 cm and 10.4 cm (2001, 2.3 cm; 2002, 6.7 cm; 2003, 5.0 

cm; 2004, 6.7 cm; 2005, 10.4 cm; 2006, 9.0 cm. There was no correlation between mean 

maximum air temperature and total precipitation (May rs = 0.4857, P = 0.3556, N = 6; June rs = 

0.2571, P = 0.6583, N = 6); thus, warm years were not drier or wetter than cool years.  

Of the nine morphological traits measured in this study, only wing length (rs = 0.9429, P 

= 0.0048, N = 6) and outer tail length (rs = 0.8286, P = 0.0416, N = 6) of juvenile Cliff Swallows 

were correlated with the June maximum air temperature (Table 1a); both traits increased in size 

with air temperature (Fig. 1a, b).  None of the nine morphological traits were correlated with 

May maximum air temperature (Table 1b). For wing, there was about a 2-mm average difference 

between the coldest and warmest summers; the magnitude of the average change in tail length 

was small (< 1 mm; Fig. 1a, b).  There was no association between mean maximum air 

temperature and any measure of skeletal traits, body mass, or fluctuating asymmetry (Table 1a).   

There was no association between total May or June precipitation and any measure of feather 

length, skeletal traits, body mass, or fluctuating asymmetry (Table 1b). Using the standard error 

of the May and June mean maximum temperature as our descriptor of seasonal temperature 
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variability, there was no association between temperature variation and any measure of feather 

length, skeletal traits, body mass, or fluctuating asymmetry (Table 1c). 

Because of the significant relationships between wing and tail length and June 

temperature, we examined for these variables the likelihood that juvenile-based variation in these 

feather lengths was maintained for birds during their first breeding season.  For 417 birds 

measured at both life stages, there was a significant positive relationship between both wing and 

tail length as juveniles and those traits as breeding adults the next summer (Fig. 2a, b). 

DISCUSSION 

 Our results suggest that only feather growth in nestling Cliff Swallows is sensitive to 

climatically based natural variation in food availability during a summer, with birds in cooler 

years allocating less growth to wing and tail feathers while maintaining relatively normal levels 

of body mass and skeletal growth that were apparently unaffected by changes in resource 

availability.  Reductions in juvenile feather growth in response to rearing conditions appeared to 

persist into a bird‘s first breeding season, despite an intervening molt that occurs on the 

wintering grounds (November – January; Brown and Brown 1995), because adult and juvenile 

feather lengths were positively correlated.  While rainfall can have drastic effects on 

insectivorous birds such as Cliff Swallows by curtailing or entirely preventing foraging during 

rainy days (and also by altering prey abundance), we found no indication that juvenile 

morphology was related in any way to the extent of rainfall during the six summers of this study.  

However, this may have partly reflected the fact that these years overlapped extensively with a 

multi-year drought in the western Great Plains, and there may not have been enough natural 

variation in rainfall during this time to detect rainfall-related effects. 
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 While some bird species exhibit reductions in skeletal traits such as tarsus or culmen 

during food deprivation (e.g., Rodway 1997; Bize et al. 2006; Sears and Hatch 2008), in most 

species skeletal measures seem the least sensitive to nutritional deficits (e.g., Dow and Gill 1984; 

Boag 1987; van Heezik 1990; Negro et al. 1994; Lepczyk and Karasov 2000; Dahdul and Horn 

2003).  Cliff Swallows conformed to this pattern, with no indication that skeletal growth in any 

way varied with seasonal climatic variables.  Body mass also showed no relationship with 

presumed measures of food availability, in contrast to some species including other swallows 

(Boag 1987; Quinney et al. 1986; Ashton and Armstrong 2002; Benowitz-Fredericks et al. 2006).  

It appears that nestlings can prioritize body mass gain at the potential expense of growth of other 

traits during times of nutritional deficits, perhaps in part by exhibiting accelerated mass gain 

immediately following the food deprivation (McCarty and Winkler 1999; Lepczyk and Karasov 

2000; Bize et al. 2006).   Allocation to fat deposition might be especially important in aerial 

insectivores such as Cliff Swallows that experience frequent short-term fluctuations in food 

availability.  Even in a relatively unusual summer such as 2004 in which June temperatures were 

well below seasonal norms (Brown and Brown 2011), juvenile body mass was unaffected.  

 Cliff Swallows are similar to a variety of other species in which wing growth in particular 

is compromised under stressful rearing conditions (e.g., Murphy 1985; Quinney et al. 1986; 

Grubb 1989; Johnston 1993; Negro et al. 1994; McCarty and Winkler 1999; Lepczyk and 

Karasov 2000; Benowitz-Fredericks 2006; Bize et al. 2006).  Juvenile wings decreased by as 

much as 2 mm, on average, between relatively warm and cool summers, which was a reduction 

equivalent to or greater than that seen in intense episodic survival selection on wing length in 

adult Cliff Swallows (Brown and Brown 1998, 2011).  The long-term consequences of shorter 

wings for juveniles (that are apparently maintained into adulthood) are unclear; analyses are 
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currently underway to determine whether juvenile wing length is associated with annual survival.  

Developmental strategies that sacrifice wing growth in favor of skeletal traits and/or body mass 

may reflect, in general, the phenotypic plasticity of feather growth and may also result from 

reduced amounts of protein, antioxidants, calcium, and other nutrients in the diet (Perrins 1976; 

Johnston 1993; Saino et al. 2002a, b; de Ayala et al. 2006; Gill 2007) during stressful conditions. 

Greater phenotypic plasticity of wing and tail length in birds such as Cliff Swallows may 

be because most skeletal development takes place inside the egg during incubation; after 

hatching the skeleton increases in size and later ossifies, but all the components are present at 

hatching.  Final skeletal size may depend more upon the female‘s nutritional state at the time the 

egg is provisioned and laid (Hamburger and Hamilton 1951; Deeming and Ferguson 1991; Stark 

1998; Gill 2007) than upon foraging conditions after hatching.  Nearly all feather development 

occurs outside the egg after hatching in altricial birds (Hamburger and Hamilton 1951; Deeming 

and Ferguson 1991; Stark 1998; Gill 2007). The epidermal and dermal tissues that form the 

feather follicles are present but not active until after hatching, so feather growth might be 

expected to be more sensitive to environmental or nutritional conditions. 

That we did not see a relationship between foraging conditions during egg-laying and subsequent 

juvenile morphology suggests that foraging conditions during brood rearing are more important 

determinants of juvenile morphology than is egg provisioning.  

 Another possibility to explain the observed reduction in wing and tail lengths of juvenile 

Cliff Swallows during periods of low food availability is viability selection against birds with 

longer wings, perhaps occurring after fledging.  Adults with smaller wings and tails were favored 

during intense selection during periods of food deprivation brought about by unusually cold 

weather in late spring (Brown and Brown 1998), and the same trajectory toward smaller wings 
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and tail has occurred in the generations since selection (Brown and Brown 2011).  In what way 

birds with shorter wings and tails may survive better during periods of resource scarcity is 

unclear, but may involve advantages associated with maneuverability that increase the potential 

prey-size breadth.  The survival advantages associated with larger skeletal size for adult Cliff 

Swallows in times of food shortage (Brown and Brown 1998) were not apparent for juveniles, 

however, and the trend in all cases was in the direction opposite that we would predict based on 

the patterns of morphological selection in adults (Table 2a).  For this reason, viability selection 

on juveniles after fledging is probably less likely to explain the reduction in wing and tail lengths 

than is redirection of energy during nestling growth in colder summers.  Nevertheless, this study 

adds to the general conclusion that wing and tail length in Cliff Swallows is subject to rapid 

changes in response to climatically related events (Brown and Brown 1998, 2011).  An analysis, 

comparable to this one, of adult feather length and the relationship between temperature and 

precipitation the birds experienced the previous summer would help address this issue.  

This study is unique in that we were able to control for several of the variables that can 

affect the growth and development of nestling birds, including temperature inside the nests, 

presence of blood-feeding ectoparasites in the nests, and foraging efficiency of parent birds due 

to social foraging opportunities.  For example, the enclosed, mud nests of Cliff Swallows buffer 

ambient temperature extremes (Mayhew 1958; Withers 1977) and reduce fluctuations in 

microclimate inside the nest.  In addition, nests in swallow colonies are often closely packed 

together, which may also help moderate temperatures inside the nest by providing greater 

insulation.  Thus, effects of ambient temperature specifically on feather follicle development 

(Zuberbier and Grubb 1992) or generally on the energetic demands of chicks, which might be 
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severe especially in cases of altricial birds nesting in open, exposed nests, were ameliorated for 

Cliff Swallows and unlikely to have affected our results. 

 In cooler years, the amount of energy expended by adult swallows foraging for 

themselves and their nest-bound chicks might be greater than in warmer years and expressed in 

reduced chick provisioning and juvenile morphology and survival. For example, in the unusually 

cool summer of 1996 in which substantial adult mortality occurred in May (Brown and Brown 

1998), juvenile survival was markedly lower than in other years. This suggests adult swallows 

that were food- and temperature-stressed early in the season did not invest as much in their 

offspring, resulting in the juveniles‘ lower survival (Brown and Brown 2004). During the course 

of this study (2001 – 2006), the birds did not experience such extreme conditions early in the 

season, so the energetic effects on adults during egg provisioning, egg laying, and brood rearing 

was minimized. We used strictly fumigated colonies in this study to remove the confounding 

effects of hematophagous swallow bugs, the principal Cliff Swallow nest ectoparasite.  When 

infestations are severe, these insects can reduce nestling body mass, lead to lower blood 

hemoglobin, hematocrit and erythrocytes, and cause increased nestling mortality (Brown and 

Brown 1986, 1996, 2002; Chapman and George 1991). The juveniles at our fumigated colonies 

were not exposed to the physiological stress caused by the bugs. Previous work on juvenile Cliff 

Swallows showed that ectoparasitism by swallow bugs led to the birds‘ exhibiting higher levels 

of feather asymmetry (Brown and Brown 2002); developmentally, this effect is likely mediated 

by stress hormones (corticosterone; Raouf et al. 2006). Because  we saw no effect of either 

temperature or precipitation on juvenile asymmetry in this study (Table 2a, b), it appears that in 

the absence of bugs, even normal fluctuations in food availability are not sufficiently stressful to 

lead to elevated levels of fluctuating asymmetry during nestling growth.   
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Colonial bird species often exhibit wide variation in the size of a colony that forms at a 

given site (Brown and Brown 2001).  In Cliff Swallows, colony size can both positively and 

negatively affect nestling growth: opportunities to transfer information about food locations may 

enhance nestling growth (e.g., body mass) in medium to large colonies, competition for food can 

increase the likelihood of nestling starvation in larger broods at the largest colonies, and colonies 

of different sizes may be settled by birds of different phenotypic characteristics (Brown and 

Brown 1996).  These potential effects on nestling growth and survival were controlled in this 

study by restricting our comparison to juveniles that were all captured at colonies of roughly 

similar size.  Since these birds were raised in large colonies without ectoparasites, they were 

subject to less physiological stress (as measured by corticosterone levels; Raouf et al. 2006).  

Possibly, growth tradeoffs in response to changes in resource availability would be different for 

birds raised under more stressful conditions that included ectoparasitism or variation in colony 

size (with its associated variation in parental foraging success; Brown and Brown 1996). 
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Table 2-1a-c. Spearman correlation coefficients and associated P values for nine morphological 

traits of juvenile Cliff Swallows in relation to three indices of the climatic conditions (mean daily 

maximum temperature, total monthly precipitation and variance in maximum temperature) the 

birds experienced during egg laying and pre- and early post-fledging development (N = 6 years).  
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(a) 

Trait 

Mean May  Maximum 

Temperature  Total May Precipitation 

   Wing Length  -0.3143, P = 0.5639   -0.5429, P = 0.2972 

Tail Length  -0.0857, P = 0.9194  -0.4286, P = 0.4194  

Middle Tail Length   0.1429, P = 0.8028  -0.3143, P = 0.5639  

Tarsus Length  -0.6429, P = 0.1670    0.4286, P = 0.4194  

Culmen Length   0.0286, P = 0.9999  -0.2000, P = 0.7139  

Culmen Width  -0.1429, P = 0.8028   0.3143, P = 0.5639  

Wing  FA  -0.2561, P = 0.6583    0.0857, P = 0.9194  

Tail FA  -0.3714, P = 0.4972  -0.1429, P = 0.8028  

Tarsus FA   0.7143, P = 0.1361  -0.5429, P = 0.2972 

Body Mass        0.1429, P = 0.8028   0.2000, P = 0.7139  

   

 

 

 

(b) 

Trait 
Mean June  Maximum 

Temperature 

Total June 

Precipitation 

   Wing Length  0.9429, P = 0.0048**     0.0286, P = 0.9572 

Tail Length  0.8286, P = 0.0167*    0.1429, P = 0.7872  

Middle Tail Length  0.6000, P = 0.2080   -0.2000, P = 0.7040 

Tarsus Length  0.2571, P = 0.6228    -0.6000, P = 0.2080  

Culmen Length  0.1429, P = 0.7872    0.5429, P = 0.2657  

Culmen Width  0.0857, P = 0.8717   -0.1429, P = 0.7872  

Wing FA  0.2000, P = 0.7040     0.2571, P = 0.6228  

Tail FA  0.5429, P = 0.2657    0.2857, P = 0.9572  

Tarsus FA -0.0857, P = 0.9194    0.7143, P = 0.1361 

Body Mass -0.2571, P = 0.6583    0.3143, P = 0.5639  
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(c) 

Trait 

May Maximum 

Temperature Standard 

Error 

June Maximum 

Temperature Standard 

Error 

   Wing Length    0.3714, P = 0.4972  -0.3714, P = 0.4972 

Tail Length    0.6000, P = 0.2417   0.0857, P = 0.9194 

Middle Tail Length    0.1429, P = 0.8082  -0.5429, P = 0.2972 

Tarsus Length   -0.0286, P = 0.9999  -0.0857, P = 0.9194 

Culmen Length    0.4286, P = 0.4194  -0.7143, P = 0.1361 

Culmen Width    0.3143, P = 0.5639   0.4857, P = 0.3556 

Wing FA    0.2571, P = 0.6583  -0.4286, P = 0.6228 

Tail FA    0.4857, P = 0.3556  -0.6571, P = 0.1750 

Tarsus FA    0.3143, P = 0.5639   0.3143, P = 0.5639 

Body Mass    0.2000, P = 0.7139  -0.3143, P = 0.5639 
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Figure 2-1. Mean wing length (a) and mean tail length (b) of juvenile Cliff Swallows each year 

in relation to the mean maximum air temperature during the month of June in the study area each 

year, 2001 – 2006.  Sample sizes are shown next to symbols and error bars indicate ± 1 SE. 

Spearman correlation coefficients are given in Table 1. 
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(b) 
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Figure 2-2.  Adult wing length (a) and adult tail length (b) in relation to the same measurement 

for the same bird as a juvenile for 417 Cliff Swallows. Solid lines indicate the best fitting curve 

and dotted lines the 95% confidence limits.  Both wing length (rs = 0.3545, P < 0.0001) and tail 

length (rs = 0.4854, P < 0.0001) as a juvenile was positively correlated with the same 

measurement as an adult. 
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Chapter 3. Lifetime changes in morphology of Cliff Swallows (Petrochelidon 

pyrrhonota): wings and tails get longer but no evidence of senescence 
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Abstract: The extent to which morphological traits in birds vary systmatically with an 

individual's age has been addressed in a variety of field studies, but relatively little information 

exists on changes in morphology occurring across birds' lifetimes.  We used data on over 4000 

Cliff Swallows (Petrochelidon pyrrhonota) of known ages measured in western Nebraska to 

examine age-related variation in wing and tail length, skeletal measures of body size, and extent 

of fluctuating asymmetry.  Juvenile birds measured in the days immediately after fledging had 

shorter wings and tails, and smaller body size as measured by skeletal traits, than adults; 

juveniles also had lower levels of fluctuating asymmetry.  Morphological differences among 

adult age classes were slight, but wing and tail length increased significantly with age and levels 

of fluctuating asymmetry in wing and tail tended to decline among adults.  Nutritional 

constraints on juveniles and younger adults may lead to the age-related variation in feather 

growth, and skeletal size in this species clearly is not fully developed until well after fledging.  

The results suggest no evidence for senescence through age 7 in Cliff Swallows, as the decline in 

levels of fluctuating asymmetry with age suggest that the oldest adults maintain high phenotypic 

performance.  Age-related variation in morphology of Cliff Swallows suggests that bird age 

should be taken into account in analyses of morphological variation in small passerines. 
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Morphological traits are commonly measured in field studies of birds, and widely used to infer, 

for example, patterns of geographic variation (Hamilton 1961; James 1970), intensity of sexual 

selection (Searcy 1979; Andersson 1994), habitat selection (Ulfstrand et al. 1981), parentage 

(Alatalo et al. 1984a, 1989), diet and energetics (Feinsinger et al. 1979; Yom-Tov and Yom-Tov 

2006; González-Gómez and Estades 2009), migratory propensity (Pérez-Tris and Tellería 2001), 

and, most recently, potential effects of climate change (Przybylo et al. 2000a; Yom-Tov 2001; 

Kanuscak et al. 2004, Guillemain et al. 2005; van Buskirk et al. 2010).  In addition, beak 

dimensions and other aspects of body size have often been studied as targets of natural selection 

(Bryant and Jones 1995; Barbraud 2000; Przybylo et al. 2000b; Covas et al. 2002; Hall et al. 

2004), in some cases allowing demonstration of selection in contemporary time (Bumpus 1899; 

Schluter and Smith 1986; Grant and Grant 1989, 1993, 1995, 2002; Brown and Brown 1998, 

2011).     

The implicit assumption in many studies is that a bird‘s morphology is largely fixed over 

its lifetime, and thus measurements of an individual at any one time in its life accurately reflect 

its size or shape at other times and that any fitness correlate does not vary temporally.  However, 

increasing evidence indicates that individual morphology is malleable, and proper interpretation 

of morphological variation requires knowing how skeletal and feather measurements may 

potentially vary with ecology or phenotype. For example, feather wear may lead to a decrease in 

measured wing length from one season to another (Dhondt et al. 1979; Yosef and Meissner 

2006) and wing shape (including length) may vary among individuals within a population 

depending on the extent to which they are migratory or resident (Pérez-Tris and Tellería 2001; 

Ellrich et al. 2010; Jakubas and Wojczulanis-Jakubas 2010; Kovács et al. 2010).   
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A bird‘s age may have perhaps the greatest potential effect on its size or shape.  In a 

number of species, yearlings have shorter wings than older adults (Löhrl 1954; van Balen 1967; 

Thorne 1975; Dhondt et al. 1979; Ålbu 1983; Alatalo et al. 1984b; Arcese 1984; Hogstad 1985; 

Smith et al. 1986; Ewald and Rohwer 1980; Wojciechowski 1992; Merom et al. 1999; 

Nowakowski 2000, 2002; Wysocki and Kiriaka 2007; Arizaga et al. 2009; Jakubas and 

Wojczulanis-Jakubas 2010), with wing length presumably reflecting either nutritional constraints 

on feather growth in young birds (Lucas and Stettenheim 1972; Jacober and Stauber 1980; 

Slagsvold 1982; Merom et al. 1999) and/or increased aerodynamic maneuverability conferred by 

shorter wings in younger birds (Alatalo et al. 1984b; Merom et al. 1999).  Wing length is not 

generally thought to vary with age among birds older than 1 year, although some evidence 

indicates that both wing and tail length may decline among the oldest individuals in Barn 

Swallows (Hirundo rustica), perhaps reflecting senescence (Møller and de Lope 1999).  Age-

related changes in skeletal size (tarsus and beak) have also been reported in a few species 

although without a consistent pattern (Slagsvold 1982; Price and Grant 1984; Alatalo and 

Lundberg 1986; Smith et al. 1986).   

In this study we use repeated morphometric measurements of wings, tail, tarsus, and beak 

to investigate age-related changes in individual Cliff Swallows (Petrochelidon pyrrhonota) as 

part of a long-term study on how a rare climatic event influenced the evolution of morphology 

(Brown and Brown 1998, 2011).  Using a data set of over 4000 known-age birds measured at 

more than one age during their lifetimes, this study is among the largest to investigate effects of 

age on morphometrics in birds.  Our objective is to determine if morphological traits increase in 

size for individuals early in life, as reported in other species, or among older age classes, and 
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then to examine the evidence for potential senescence-related decreases in body size among the 

oldest individuals.  

In addition to studying body size metrics, we also investigate age-related variation in the 

extent of fluctuating bilateral asymmetry.  With asymmetry widely regarded as an index of 

individual quality (reviewed in Møller and Swaddle 1997), systematic changes in the level of 

fluctuating asymmetry may reflect either enhanced performance due to experience or 

deterioration of condition due to senescence (Møller and de Lope 1999). 

METHODS 

Study animal  

Cliff Swallows (Petrochelidon pyrrhonota) are highly colonial Neotropical migrant passerine 

birds. Breeding throughout much of North America and wintering in southern South America 

(Brown and Brown 1995), they are diurnal, aerial insectivores and can only forage when weather 

conditions allow insects to be active (Brown and Brown 1996, 1998). Based on 29 years of band 

re-sightings, Cliff Swallows in the study area can live as long as 13 years, but relatively few 

birds eight years of age or older have been found (MBB, CRB, pers. obs.). Juvenile Cliff 

Swallows after fledging can be identified by the mottled plumage of their heads and throats and 

by their overall duller coloration (Stoddard and Beecher 1983).  Juveniles molt into adult 

plumage and adults replace their plumage while on the wintering grounds from approximately 

November to January (Brown and Brown 1995). The study animal is described in greater detail 

in Brown and Brown (1995, 1996). 

Study site  

 Cliff Swallows were studied near the University of Nebraska School of Biological Sciences‘ 

Cedar Point Biological Station (41º 13‘ N, 101º 39‘ W); data collection for this study took place 
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over 11 years from 1996 to 2006. The study area lies along the North and South Platte rivers and 

includes parts of Keith, Deuel, Garden, and Lincoln counties. Historically, Cliff Swallows built 

their gourd-shaped mud nests on the sides of cliffs, but with the advent of human-created 

structures such as road bridges, highway culverts, and eaves of buildings, nearly all birds in the 

study area now place their nests on artificial structures. The number of and size of nesting 

colonies varies widely within and between years; the mean colony size is 405 nests (SE = ± 14, 

N = 2,209 colonies, 29 years), with some birds nesting solitarily. The study area is described in 

greater detail by Brown and Brown (1996).  

Capture and banding  

Cliff Swallows were captured and banded as part of a long-term capture-mark-recapture project 

in which we rotated among 27 – 40 colony sites throughout each nesting season (Brown and 

Brown 1996, 2004, 2009, 2011). Mist nests were placed across the entrances of road culverts or 

along the sides of bridges to capture birds as they flew through the culverts or beneath the 

bridges. The number of netting days at a colony site was determined by the number of birds at 

the colony, the phenology of the colony, and the practicality of netting at the site. All adult birds 

in this study were captured in mist nets, banded with individually numbered, aluminum USGS 

leg bands and weighed to the nearest 0.5 gram. All adults were captured during May, June and 

July. 

Juvenile Cliff Swallows were birds capable of sustained flight that had hatched earlier in 

the summer. Some of the juveniles were first banded as nestlings as part of other study protocols, 

while others were banded as free-flying birds that had been captured in mist nets along with adult 

swallows; all were marked with numbered USGS leg bands.  We restricted all juveniles in this 

study to those whose wing lengths were greater than 100 mm; this was done so that only 
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individuals that were independent of their parents and whose feathers had ceased growing were 

included in the analyses (MBB, CRB, pers. obs.). Juveniles were captured during June and July.  

The capture and banding protocols are described in greater detail by Brown and Brown (1996, 

2004). 

Morphometric measurements  

All measurements in this study and others were conducted by one individual (MBB; e.g., Brown 

and Brown 1996, 1998, 2002a, b, 2003, 2011); consequently no corrections to the data for 

multiple measurers were required (e.g., Price and Grant 1984; Bryant and Jones 1995; Grant and 

Grant 1995).  The following measurements were taken of both adult and juvenile swallows: the 

length of the unflattened, closed wing chord, the length of the middle and two outermost tail 

feathers, the length of each tarsus, and the length and width of the exposed culmen. Wing and tail 

feathers that were damaged were not measured; likewise, no tarsi or culmen were measured if 

they were damaged or malformed.  Wing and tail lengths were measured to the nearest whole 

millimeter with a stoppered wing ruler, and tarsus and culmen lengths were measured to the 

nearest 0.1 millimeter with calipers (see Brown and Brown 1998, 2011). Birds were also 

weighed to the nearest 0.5 g using a Pesola scale. Fluctuating asymmetry in wing, tail, and tarsus 

was calculated as the unsigned right side minus the unsigned left side value of each bilateral 

measurement.  

At smaller colonies, we measured most of the birds caught on each capture occasion; at 

larger sites, we measured a subset of those captured. In selecting birds to measure, we included 

as many birds banded in earlier years as possible, because more information on those individuals 

was available (e.g., age, previous year measurements, colony site usage). At the time of 

measurement, the measurer knew only a previously marked bird‘s band prefix and thus the 
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approximate year it was banded.  Birds caught and measured more than once within the same 

summer were assigned the mean value of their respective measurements for that year. 

Fumigation 

To remove the deleterious effects of nest-based, blood-feeding ectoparasites (swallow bugs; 

Hemiptera: Cimicidae: Oeciacus vicarius) on Cliff Swallow growth, development and 

maintenance, nests in some of the colonies used in this study were fumigated by regularly 

spraying them with a dilute solution of Dibrom® (naled; Chevron Chemical Corporation).  The 

nest fumigation protocol is described in greater detail by Brown and Brown (1986, 1996). 

Statistical analyses  

Repeatabilities (rI) of the morphological measurements were calculated using intraclass 

correlation (Zar 1996; Palmer 1994; Kuehl 2000; Soper 2009) from a sample of 1,525 birds that 

were measured twice during the same breeding season. Repeatabilities were high and statistically 

significant (P < 0.0001; MBB, unpubl. data). Repeatabilities of the morphometric measurements 

made by this measurer (MBB) in an earlier study are given in Brown and Brown (1998).   

In this study, as in Brown and Brown (1998, 2011), there was evidence for directional 

asymmetry in wing length measurements. Mean signed asymmetry for wing length differed 

significantly from 0 (one-sample t-test, P < 0.001); mean signed asymmetry for all other 

measurements did not differ significantly from 0 (P > 0.10). The directional asymmetry in wing 

length most likely reflects a handedness bias by the measurer (Brown and Brown 1998). This 

directional asymmetry was corrected by calculating the ([mean signed asymmetry] / 2) for wing 

and subtracting these values from the longer average side and adding these values to the shorter 

average side for each observation (Palmer 1994). The corrected asymmetry values are presented 

and analyzed in this study.  
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Only birds that were first banded as nestlings or juveniles and thus of known age were 

included in this study.  Birds measured as juveniles were assigned age 0; those measured in their 

first summer as an adult were assigned age 1; their second summer as an adult, age 2; etc. The 

measurements were analyzed using a linear mixed model-repeated measures technique in 

ASReml (Gilmour et al. 2009; http://www.vsni.co.uk/software/asreml/). This technique allowed 

us to use repeated-measures (birds measured at more than one age), and did not require complete 

measurement sets on each individual.  The model structure included fixed effects for age, sex, 

colony fumigation class, colony size, and an interaction between age and sex. Random effects 

included in the model were year, colony identity nested within year, and age by colony identity 

nested within year. After comparing alternative covariance structures using Akaike‘s Information 

Criteria (AIC), we selected a first order antedependence covariance structure for the residual 

covariance matrix. The residual covariance matrix captures the fact that measurements on the 

same individual will be correlated. The antedependence structure allows for the correlation 

between observations on the same individual to decrease over time. Wald-type F statistics, with 

the Kenward and Roger adjustment (Kenward and Roger 1997), were used to test for the effect 

of age on morphology. Least square mean estimates (in relation to age) for the six morphological 

traits and the three measures of fluctuating asymmetry were adjusted for the effect of years, 

colony sizes, colony identities, and gender (Fig. 1, Table 1). The least square means estimated 

values allow us to make comparisons across age categories after adjusting for the other effects in 

the model.  No birds older than 7 years were included in this analysis as the sample sizes in these 

categories were too small for rigorous analysis (age 8 = 24, age 9 = 13, age 10 = 6, age 11 = 1). .  

The sample sizes by age (Fig. 1) include all individuals of that age measured; the same 

individual may be included in more than one age category. Bonferroni Multiple Comparison tests 
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were used to determine if mean estimates varied systematically by age category and Spearman 

correlations were used to determine if mean estimates varied across age categories (GraphPad 

Prism 2000; SAS 2009; Soper 2009).  Each bird was the unit of analysis and we controlled for 

correlated effects in the model structure.  

RESULTS 

All six morphological traits and the measures of wing and tail fluctuating asymmetry were 

significantly larger in birds during their adult years compared to their juvenile year (Fig. 1a - i); 

only tarsus fluctuating asymmetry did not increase after age 0 (Fig 1i). Also using each bird as 

the unit of analysis, we found no significant differences among the means for the different ages 

for any traits in adult birds of ages 1–7, including all three of the indices of fluctuating 

asymmetry (Fig. 1a - i). 

 In looking at a linear trend among age-specific trait means with time, however, we found 

that wing and tail length increased with age for adult birds aged 1–7, as measured by a Spearman 

correlation analysis (Table 1). Middle tail length, tarsus length, culmen length, and culmen 

width, as measured by mean values, did not increase or decrease over the birds‘ adult lives. Wing 

fluctuating asymmetry tended to decrease in size over ages 1–7 (although not significantly after 

Bonferroni correction), but tail and tarsus fluctuating asymmetry were not correlated with age 

(Table 1).  

 Of the 10 birds that were measured in five or more years during their lifetimes (seven 

measured in five years and three measured in six years), none showed consistently significant 

positive or negative correlation with age for any of the six measured traits or three measures of 

fluctuating asymmetry (Table 2). See Table 3 for least square mean estimates separated by 

colony fumigation class and gender.  
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DISCUSSION 

Our results indicate that morphological characters in Cliff Swallows are not invariant over an 

individual's life, with these birds in general tending to exhibit slightly longer wing and tail 

feathers as they get older.  While most of the changes were between juveniles versus adults (of 

all ages collectively), and the differences among birds aged 1–7 years were slight, nevertheless 

the results indicate that age does influence annual feather growth when potentially confounding 

variables are statistically controlled.  We found no evidence of senescence in Cliff Swallows 

through age 7; levels of fluctuating asymmetry in wing and tail (an indicator of individual quality 

that is expressed each year during molt) tended to decline among the older age classes, 

indicating, if anything, that higher quality birds were those that reached old age.  Two 

hypotheses can explain these results:  (1) an individual grows longer wings and tails and 

expresses less feather asymmetry as it gets older, or (2) only longer-winged, longer-tailed, and 

possibly less asymmetric individuals survive to reach the older age classes.  

Age-related changes in morphology 

Cliff Swallows appear to exhibit the typical avian pattern in which younger birds have slightly 

shorter wings and tails (Löhrl 1954; van Balen 1967; Thorne 1975; Dhondt et al. 1979; Ewald 

and Rohwer 1980; Ålbu 1983; Alatalo et al. 1984b; Arcese 1984; Hogstad 1985; Smith et al. 

1986; Wojciechowski 1992; Merom et al. 1999; Nowakowski 2000, 2002).  While finding this 

among juveniles is not surprising, and may reflect continued feather growth after fledging and 

even after young become independent of their parents, there was a non-significant trend for 

younger adults (1–2 years) to also have shorter wings and tails than the oldest birds.  That shorter 

wings and tails in juveniles reflect developmental trajectories with age is suggested by similar 

patterns for skeletal traits in juveniles. Tarsus and culmen clearly continued to grow after 
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juveniles had fledged, calling into question the assumption that skeletal traits are fixed in size 

relatively early during the nestling period or that they can be used to predict parentage (e.g., 

Stoner 1945; Alatalo et al. 1984a, 1989; Smith et al. 1986; Møller 1987; Sherman and Morton 

1988; Norris and Blakey 1989; Payne and Payne 1989; Dale et al. 2002; Nowakowski 2002).  

Growth of tarsus and culmen had stopped by the bird's first season as an adult, and these traits 

showed no change over the remainder of a bird's life, as might be expected for skeletal traits.  

That skeletal body size continues to grow for an undetermined time after birds fledge has rarely 

been reported for those few species in which skeletal traits were measured during that phase of 

the life cycle (e.g. Smith et al. 1986; Ng et al. 1997; Brown and Bhagabati 1998; Dale et al. 

2002; Nowakowski 2002). 

 The hypothesis that shorter wing length in younger birds may reflect nutritional 

constraints on feather growth early in life (Lucas and Stettenheim 1972; Jacober and Stauber 

1980; Slagsvold 1982; Merom et al. 1999) seems likely for Cliff Swallows.  This species is 

exposed to large numbers of blood-feeding ectoparasitic swallow bugs, and the bugs reduce 

nestling body mass, retard feather growth, and lead to premature fledging (Brown and Brown 

1986, 1996; Chapman and George 1991; Loye and Carroll 1991).  In support of this, although 

our sample of juveniles caught and measured at non-fumigated colonies was relatively small, we 

found that these birds tended to have shorter wings and tails than juveniles at fumigated sites:  

fumigated, wing = 102.4 ± 0.27; fumigated tail = 46.1 ± 0.03; non-fumigated wing = 101.3 ± 

0.37; non-fumigated tail = 45.5 ± 0.09; these differences were not statistically significant, as 

indicated by fumigation status not being significant in the model.  The alternative hypothesis that 

shorter wings in younger birds are adaptive responses to increase aerodynamic maneuverability 

during their first year (Alatalo et al. 1984b; Merom et al. 1999) is difficult to evaluate because 
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we lack information on age-specific foraging behavior and/or diet of Cliff Swallows during their 

first year of life.  Only if younger birds adopt different foraging strategies or select different prey 

types than do older birds might this hypothesis hold. 

Senescence 

If we define senescence as accelerating phenotypic deterioration of individuals with advancing 

age that leads to increased mortality (degenerative senescence; Fisher 1930; McDonald et al. 

1996; von Hardenberg et al. 2004), then our population of Cliff Swallows does not exhibit 

senescence.  If senescence did occur, one would expect to find evidence of it before the birds 

reached age 7. The strongest evidence against senescence is that measures of fluctuating 

asymmetry in wing (and, to a non-significant extent, tail) declined in the older age classes.  

Because Cliff Swallows molt and re-grow their wing and tail feathers each winter, their ability to 

symmetrically develop these bilateral traits should reflect relative to an individual's condition 

and its ability to sequester the energetic resources necessary for molt each season.  Older birds 

exhibited no decline in phenotypic performance with age, and if anything, increased in measures 

of symmetry.  Furthermore, unlike in Barn Swallows (Hirundo rustica; Møller and de Lope 

1999), wing and tail length did not decline among the oldest birds.   

 Some work has suggested that increased glucocorticoid (stress) hormone levels in birds 

can cause osteoporosis and lead to skeletal shrinkage in birds as they age (Siegel 1980). Previous 

studies on this population of Cliff Swallows (Brown et al. 2005a, b; Raouf et al. 2006) have 

shown that corticosterone levels increase in birds living in larger sized colonies and in colonies 

with large ectoparasite infestations. One might expect these increased corticosterone levels to 

cause osteoporosis-related skeletal size shrinkage in Cliff Swallows as they get older. However, 

this is not apparent in this study; none of the skeletal traits changed in size in relation to age. If 
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phenotypically higher quality and more experienced birds survive to the older age classes, they 

must be able to counteract any degenerative effects of osteoporosis.  

 In contrast to our results, a study of senescence and morphology in the related European 

Barn Swallow found the length of the outer tail feathers decreased among older individuals and 

that wing and tail fluctuating asymmetry increased among older individuals (Møller and de Lope 

1999).  Saino et al. (2002) found that measures of individual and offspring quality decreased 

with age in Barn Swallows.  Why Cliff Swallows presumably differ so much from Barn 

Swallows is unclear, but the difference could be due in part to a recent (1996) intense viability 

selection event that favored phenotypically higher-quality individuals (as measured by levels of 

fluctuating asymmetry) and presumably eliminated many of the inferior birds (Brown and Brown 

1998, 2011).  This may have masked our ability to detect senescence-related changes in 

morphological characters in the immediate aftermath of the selection event (when the present 

study was done); with time, age-related decreases in performance might become more apparent 

as the population accumulates individuals of lesser phenotypic quality. 

 Interestingly, we found that measures of fluctuating asymmetry in wing and tail length 

were significantly lower in juveniles than in adult Cliff Swallows.  This likely reflected the fact 

that the majority of our sample of juveniles measured came from fumigated colonies, where the 

effects of ectoparasites were removed during the nestling period when these birds were growing 

their feathers, and in such situations, juvenile asymmetry is typically low (Brown and Brown 

2002a).  Adults, on the other hand, molt on the wintering grounds, and asymmetry in adult 

characters is unaffected by whether they occupied fumigated or non-fumigated breeding colonies 

the previous summer (Brown and Brown 2002a) and thus presumably more likely reflects 

conditions in South America. 
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Age-related selection on morphology? 

Our data at present do not allow us to determine whether any of the age-related changes in 

morphology among adult age classes in Cliff Swallows are due to physiological-based growth 

processes that change with age, or whether there is viability selection on birds with certain 

morphological characteristics that result in, for example, only relatively long-winged and long-

tailed individuals surviving to the older age classes.  Because we had relatively few individuals 

measured at all ages throughout their lives (only 10 birds), we cannot conclusively determine the 

extent and direction of individual-specific variation over time, although some of these birds did 

exhibit increases in trait sizes as they got older (Table 2).  That viability selection on morphology 

with age might be primarily responsible for these results is suggested by the fact that these 

morphological traits demonstrably respond to intense selection in Cliff Swallows (Brown and 

Brown 1998, 2002a, 2011).   

 On the other hand, the trend for an increase in wing and tail length with age is opposite 

the direction of the prevailing selection on these traits measured in the 1996 rare climatic event 

and in the decade subsequent to this catastrophe (Brown and Brown 1998, 2011).  Wing and tail 

become shorter during the selection event and continued on the same trajectory afterwards, 

suggesting the population is under selection for smaller wings and tails for unknown reasons.  

This result seems difficult to reconcile with the age-related changes reported here if survival 

selection alone is responsible for increased wing and tail lengths among older birds.  Formal 

viability selection analyses with marked birds, investigating to what extent morphological 

measurements are targets of selection in Cliff Swallows, are presently underway (CRB, MBB, 

unpubl.). 
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 In summary, Cliff Swallows exhibit slight but predictable changes in wing and tail length 

with age as adults, and even measures of skeletal morphology increased between the time that 

birds fledged and the following summer.  However, no evidence of senescence was apparent in 

this population. The results of this study suggest the need to consider bird age in any 

evolutionary, ecological, or behavioral analysis that relies on morphometric measurements taken 

at single points in time for small passerines such as Cliff Swallows. 

ACKNOWLEDGMENTS 

We thank S. Aldridge, J. Blackwell, K. Brazeal, A. Briceno, K. Cornett, S. Huhta, J. Klaus, A. 

Johnson, E. Landay, J. Leonard, L. Libaridian, J. Malfait, S. Narotam, C. Ormston, G. Redwine, 

S. Robinson,, K. Rodgers, A. Rundquist, R. Sethi, M. Shanahan, S. Strickler, P. Wallace, and E. 

Westerman for field assistance. The School of Biological Sciences at the University of Nebraska-

Lincoln allowed use of the facilities of the Cedar Point Biological Station. The Clary, 

Dunwoody, Knight, and Soper families and the Union Pacific Railroad granted access to land. 

Financial support to CRB was provided by the National Science Foundation (DEB-9613638, 

DEB-0075199, IBN-9974733, DEB-0514824), the National Institutes of Health (AI057569), and 

the National Geographic Society. MBB was supported by the Nebraska Environmental Trust 

(08-104). For helpful comments on the manuscript we thank ……. All aspects of this study were 

conducted with the approval of a series of Institutional Animal Care and Use Committees (Yale 

University, University of Tulsa, and University of Nebraska).  

 

 

 

 



92 

 

LITERATURE CITED 

Alatalo, R.V. and A. Lundberg. 1986. Heritability and selection on tarsus length in the Pied 

Flycatcher (Ficedula hypoleuca). Evolution 49: 574 – 583. 

Alatalo, R.V., L. Gustafsson, and A. Lundberg. 1984a. High frequency of cuckoldry in Pied and 

Collared Flycatchers. Oikos 42: 41-47. 

Alatalo, R.V., L. Gustafsson, and A. Lundberg. 1984b. Why do young birds have shorter wings 

than older birds? Ibis 126: 410 – 415. 

Alatalo, R. V., L. Gustafsson, and A. Lundberg. 1989. Extra-pair paternity and heritability 

estimates of tarsus length in Pied and Collared flycatchers. Oikos 56: 54-58. 

Ålbu, T. 1983. Post-juvenile growth in passerines. Cinclus 6: 53 – 56. 

Andersson, M. 1994. Sexual Selection. Princeton University Press, Princeton, NJ. 

Arcese, P.  1984. Some aspects of dominance behavior in the Song Sparrow (Melospiza melidia). 

M.S. thesis, University of British Columbia, Vancouver, British Columbia. 

Arizaga, J., M. A. Hernández, J. Rivas, and R. Miranda. 2009. Biometrics of Iberian Dippers 

Cinclus cinclus: environmental sources of among-population variation. Ardea 97: 23-30. 

Barbraud, C. 2000. Natural selection on body size traits in a long-lived bird, the Snow Petrel 

Pagodroma nivea. Journal of Evolutionary Biology 13: 81-88. 

Brown, C. R. and M. B. Brown. 1986. Ectoparasitism as a cost of coloniality in Cliff Swallows 

(Hirundo pyrrhonota).  Ecology 67: 1206-1218. 

Brown, C.R. and M.B. Brown. 1995. Cliff Swallow. In: The birds of North America. (A. Poole, 

and F. Gill, eds.). no. 149. Academy of Natural Sciences, Philadelphia, Pennsylvania. 

Brown, C.R. and M.B. Brown. 1996. Coloniality in the Cliff Swallow: the effect of group size on 

social behavior. University of Chicago Press, Chicago, IL. 



93 

 

Brown, C. R. and M.B. Brown. 1998. Intense natural selection on body size and wing and tail 

asymmetry in Cliff Swallows during severe weather. Evolution 52: 1461 – 1475. 

Brown, C. R., and M. B. Brown. 2002a. Ectoparasites cause increased bilateral asymmetry of 

naturally selected traits in a colonial bird. Journal of Evolutionary Biology 15: 1067 – 

1075.  

Brown, C. R., and M. B. Brown. 2002b. Spleen volume varies with colony size and parasite load 

in a colonial bird. Proceedings of the Royal Society of London B 269: 1367 – 1373. 

Brown, C. R., and M. B. Brown. 2003. Testis size increases with colony size in Cliff Swallows. 

Behavioral Ecology 14: 569 – 575. 

Brown, C.R., and M.B. Brown. 2004. Group size and ectoparasitism affect daily survival 

probability in a colonial bird. Behavioural Ecology and Sociobiology 56: 498 – 511. 

Brown, C. R., M. B. Brown., S. A. Raouf, L. C. Smith, and J. C. Wingfield. 2005a. Steroid 

hormone levels are related to choice of colony size in Cliff Swallows. Ecology 86: 2904-

2915. 

Brown, C. R., M. B. Brown, S. A. Raouf, L. C. Smith, and J. C. Wingfield.  2005b. Effects of 

endogenous steroid hormone levels on annual survival in Cliff Swallows.  Ecology 86:  

1034-1046. 

Brown, J.L. and N. Bhagabati. 1998. Variation in mass, wing, and culmen with age, sex, and 

season in the Mexican Jay. Journal of Field Ornithology 69: 18 – 29. 

Brown, M.B, and C. R. Brown. 2009. Blood sampling reduces annual survival in Cliff Swallows. 

Auk 123: 853 – 861.  

Brown, M.B. and C.R. Brown. 2011. Intense natural selection on morphology of Cliff Swallows 

a decade later: did the population move between adaptive peaks? Auk 128: 69-77. 



94 

 

Bumpus, H. C.  1899.  The elimination of the unfit as illustrated by the introduced sparrow, 

Passer domesticus.  Biological Lectures of the Woods Hole Marine Biology Station 6: 

209-226. 

Bryant, D.M. and G. Jones. 1995. Morphological changes in a population of Sand Martins 

Riparia riparia associated with fluctuations in population size. Bird Study 42: 57 – 65.  

Chapman BR, George JE. 1991. The effects of ectoparasites on Cliff Swallow growth and 

survival. In: Loye JE, Zuk M (eds) Bird-Parasite interactions: ecology, evolution and 

behavior. Oxford University Press, Oxford, UK. 

Covas, R. M., C. R. Brown, M. D. Anderson, and M. B. Brown.  2002.  Stabilizing selection on 

body mass in the Sociable Weaver Philetairus socius.  Proceedings of the Royal Society 

of London B 269: 1905-1909. 

Dale, S., T. Slagsvold, H.M. Lampe and J.T. Lifjeld. 2002. Age-related changes in 

morphological characters in the Pied Flycatcher Ficedula hypoleuca. Avian Science 2: 

153 – 166. 

Dhondt, A.A., R. Eykerman, and J. Huble. 1979. Will Great Tits become little tits? Biological 

Journal of the Linnaean Society 11: 289 – 294. 

Ellrich, H., V. Salewski, and W. Fiedler. 2010. Morphological sexing of passerines: not valid 

over larger geographical scales. Journal of Ornithology 151: 449-458. 

Ewald, P.W. and S.A. Rohwer. 1980. Age, coloration, and dominance in non-breeding 

hummingbirds: a test of the asymmetry hypothesis. Behavioural Ecology and 

Sociobiology 7: 273- 279. 



95 

 

Feinsinger, P., R. K. Colwell, J. Terborgh, and S. B. Chaplin. 1979. Elevation and the 

morphology, flight energetics, and foraging ecology of tropical hummingbirds. American 

Naturalist 113: 481-497. 

Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Clarendon Press. Oxford, UK. 

Gilmour, A.R., B.J. Gogel, B.R. Cullis, and R. Thompson. 2009. ASReml User‘s Guide Release 

3.0, VSN International, Hemel Hempstead, UK. 

González-Gómez, P. L., and C. F. Estades. 2009. Is natural selection promoting sexual 

dimorphism in the Green-backed Firecrown Hummingbird (Sephanoides sephaniodes)? 

Journal of Ornithology 150: 351-356. 

Grant, B. R., and P. R. Grant.  1989.  Natural selection in a population of Darwin‘s finches.  

American Naturalist 133: 377-393. 

Grant, B. R., and P. R. Grant.  1993.  Evolution of Darwin‘s finches caused by a rare climatic 

event.  Proceedings of the Royal Society of London B 251: 111-117. 

Grant, P. R., and B. R. Grant. 1995. Predicting microevolutionary responses to directional 

selection on heritable variation. Evolution 49: 241 – 251. 

Grant, P. R., and B. R. Grant.  2002.  Unpredictable evolution in a 30-year study of Darwin‘s 

finches.  Science 296: 707-711. 

GraphPad Prism. 2000. Version 3.02, GraphPad Software, San Diego, California. 

Guillemain, M., J.-Y. Mondain-Monval, A. R. Johnson, and G. Simon.  2005.  Long-term 

climatic trend and body size variation in Teal Anas crecca.  Wildlife Biology 11:81-88. 

Hall, K. S. S., H. Ryttman, T. Fransson, and B.-O. Stolt. 2004. Stabilising selection on wing 

length in Reed Warblers Acrocephalus scirpaceus.  Journal of Avian Biology 35: 7-12. 



96 

 

Hamilton, T. H. 1961. The adaptive significances of intraspecific trends of variation in wing 

length and body size among bird species. Evolution 15: 180-195. 

Hogstad, O. 1985. Age-related increase in wing length of male Willow Warblers Phylloscopus 

trochilus. Cinclus 8: 116 – 118. 

James, F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 

365-390. 

Jacober, H. and W. Stauber. 1980. Flügellängen und Gewichte einer südwestdeutschen 

Population des Neuntöters (Lanius collurio) unter Berücksichtigung der 

geschlechtsspezifischen Arbeitssteilung während der Brutperiode. Vogelwarte 30: 198 – 

208. 

Jakubas, D., and K. Wojczulanis-Jakubas. 2010. Sex- and age-related differences in the timing 

and body condition of migrating Reed Warblers Acrocephalus scirpaceus and Sedge 

Warblers Acrocephalus schoenobaenus. Naturwissenschaften 97: 505-511. 

Kanuscak, P., M. Hromada, P. Tryjanowski, and T. Sparks. 2004. Does climate at different 

scales influence the phenology and phenotype of the River Warbler Locustella fluviatilis? 

Oecologia 141: 158-163. 

Kenward, M.G. and J.H. Roger. 1997. Small sample inference for fixed effects from restricted 

maximum likelihood. Biometrics 53: 983 – 997.  

Kovács, S., T. Csörgő, A. Harnos, P. Fehérvári, and K. Nagy. 2010. Change in migration 

phenology and biometrics of two conspecific Sylvia species in Hungary. Journal of 

Ornithology, in press (DOI 10.1007/s10336-010-0596-7).á 

Kuehl, R. O. 2000. Design of experiments: statistical principles of research design and analysis. 

2
nd

 edition. Duxbury Press. Pacific Grove, California. 



97 

 

Löhrl, H.  1954. Gefiedermerkmale bei einer Population des Halsbandschnäppers (Muscicapa 

albicollis). Bonn. Zool. Beitr. 5: 33 – 48. 

Loye, J. E., and Carroll, S. P.  1991.  Nest ectoparasite abundance and Cliff Swallow colony site 

selection, nestling development, and departure time.  In:  Bird-Parasite Interactions: 

Ecology, Evolution and Behaviour (ed. by J. E. Loye and M. Zuk), pp. 222-241, Oxford 

University Press, Oxford, UK. 

Lucas, A. M. and P. R. Stettenheim. 1972. Avian anatomy: integument. Agricultural Handbook 

No. 362. Superintendent of Documents, Washington, D.C. 

McDonald, D.B., J.W. Fitzpatrick and G.E. Wolfenden. 1996. Actuarial senescence and 

demographic heterogeneity in the Florida Scrub Jay. Ecology 77: 2373 – 2381. 

Merom, K., R. McCleery, and Y. Yom-Tov. 1999. Age-related changes in wing-length and body 

mass in the Reed Warbler Acrocephalus scirpaceus and Clamorous Reed Warbler A. 

stentoreus. Bird Study 46: 249 – 255. 

Moller, A.P. 1987. Behavioural aspects of sperm competition in Swallows (Hirundo rustica). 

Behaviour 100: 92 – 104. 

Møller, A.P. and F. de Lope. 1999. Senescence in a short-lived migratory bird: age-dependent 

morphology, migration, reproduction and parasitism. Journal of Animal Ecology 68: 163 

– 171. 

Møller, A. P., and J. P. Swaddle. 1997. Asymmetry, Developmental Stability, and Evolution.  

Oxford University Press, Oxford, UK. 

Ng, K.W., E. Romas, L. Donnan and D.M. Findlay. 1997. Bone biology. Baillieres Clinical 

Endocrinology and Metabolism 11: 1 – 22. 



98 

 

Norris, K. J. and J.K. Blakey. 1989. Evidence for cuckoldry in the Great Tit Parus major. Ibis 

131: 436 – 441. 

Nowakowski, J.J. 2000. Long-term variability of wing-length in a population of the Reed 

Warbler Acrocephalus scirpaceus. Acta Ornithologica 35: 173 – 182. 

Nowakowski, J.J. 2002. Variation of morphometric parameters within the Savi‘s Warbler 

(Locustella luscinioides) population in eastern Poland. Ring 24: 49 – 67. 

Palmer, A. R. 1994. Fluctuating asymmetry analyses: a primer. In: Developmental instability: its 

origins and evolutionary implications (T. A. Markow, ed.). Kluwer, Dordrecht, 

Netherlands. 

Payne, R.B. and L.L. Payne. 1989. Heritability estimates and behavior observations: extra-pair 

matings in Indigo Buntings. Animal Behavior 38: 457 – 567. 

Pérez-Tris, J., and J. L. Tellería. 2001. Age-related variation in wing shape of migratory and 

sedentary Blackcaps Sylvia atricapilla. Journal of Avian Biology 32: 207-213. 

Price, T.D. and P.R. Grant. 1984. Life history traits and natural selection for small body size in a 

population of Darwin‘s finches. Evolution 38: 483 – 494. 

Przybylo, R., B. C. Sheldon, and J. Merila.  2000a. Climatic effects on breeding and 

morphology: evidence for phenotypic plasticity.  Journal of Animal Ecology 69:395-403. 

Przybylo, R., B. C. Sheldon, and J Merilä. 2000b. Patterns of natural selection on morphology of 

male and female Collared Flycatchers (Ficedula albicollis). Biological Journal of the 

Linnean Society 69: 213-232. 

Raouf, S. A., L. C. Smith, M. B. Brown, J. C. Wingfield, and C. R. Brown. 2006. Glucocorticoid 

hormone levels increase with group size and parasite load in Cliff Swallows. Animal 

Behaviour 71: 39-48. 



99 

 

Saino, N., R. Ambrosini, R. Martinelli, and A.P. Møller. 2002. Mate fidelity, senescence in 

breeding performance and reproductive trade-offs in the Barn Swallow. Journal of 

Animal Ecology 71: 309 – 319. 

SAS Institute. 2009. SAS OnlineDoc. Version 9.2. SAS institute, Cary, North Carolina. 

Schluter, D., and J. N. M. Smith. 1986. Natural selection on beak and body size in the Song 

Sparrow. Evolution 40: 221-231. 

Searcy, W. A. 1979. Sexual selection and body size in male Red-winged Blackbirds. Evolution 

33: 649-661. 

Sherman, P.W. and M.L. Morton. 1988. Extra-pair fertilizations in mountain White-crowned 

Sparrows. Behavioral Ecology and Sociobiology 22: 413 – 420. 

Siegel, H.S. 1980. Physiological stress in birds. BioScience 30: 529 – 534. 

Slagsvold, T. 1982. Sex, size, and natural selection in the Hooded Crow Corvus corone cornix. 

Ornis Scandinavica 13: 165-175. 

Smith, J.N.M., P. Arcese, and D. Schulter. 1986. Song Sparrows grow and shrink with age. Auk 

103: 210 – 212. 

Soper, D. S. 2009.  The free statistics calculators website, on-line software. 

http://www.danielsoper.com/statcalc 

Stoddard PK, Beecher MD (1983) Parental recognition of offspring in the Cliff Swallow.  Auk 

100: 795-799. 

Thorne, C.J.R. 1975. Wing length of Reed Warblers. Wicken Fen Group Report 7: 10 – 13.  

Ulfstrand, S., R. V. Alatalo, A. Carlson, and A. Lundberg. 1981. Habitat distribution and body 

size of the Great Tit Parus major. Ibis 123: 494-499. 

http://www.danielsoper.com/statcalc


100 

 

van Balen, J.H. 1967. The significance of variations in body weight and wing length in the Great 

Tit, Parus major. Ardea 55: 1 – 59.  

van Buskirk, J., R. S. Mulvihill, and R. C. Leberman.  2010.  Declining body size in North 

American birds associated with climate change.  Oikos 119:1047-1055. 

von Hardenberg, A., B. Bassano, M.d.P.Z. Arranz and G. Bogliani. 2004. Horn growth but not 

asymmetry heralds the onset of senescence in male Alpine ibex (Capra ibex). Journal of 

Zoology, London 263: 425 – 432. 

Wojciechowski, Z.  1992. [An attempt to explain the long-term variability of morphometric 

parameters in the Barn Swallow (Hirundo rustica)]. PhD thesis, University of Łódź, 

Łódź, Poland. 

Wysocki, D., and B. Kiriaka. 2007. Wing to tail length ratio in European Blackbirds (Turdus 

merula L.) of different age. Polish Journal of Ecology 55: 121-125. 

Yom-Tov, Y.  2001.  Global warming and body mass decline in Israeli passerine birds.  

Proceedings of the Royal Society of London B 268: 947-952. 

Yom-Tov, Y., and S. Yom-Tov. 2006. Decrease in body size of Danish goshawks during the 

twentieth century. Journal of Ornithology 147: 644-647. 

Yosef, R., and W. Meissner. 2006. Seasonal age differences in weight and biometrics of 

migratory Dunlins (Calidris alpina) at Eilat, Israel. Ostrich 77: 67-72. 

Zar, J.H. 1996. Biostatistical analysis. Prentice Hall International. Upper Saddle River, New 

Jersey.   

 

 

 

 

 

 



101 

 

Table 3-1. Spearman correlation coefficients and associated P values for nine morphological 

traits in relation to an individual's age in Cliff Swallows. Values in the Juvenile and Adult 

column include the juvenile year (0) and adult years (1 – 7) categories; values in the adult 

column include only adult values (years 1 – 7). After Bonferroni correction, culmen width and 

wing fluctuating asymmetry were not significantly correlated with age. 
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Trait Juvenile and Adult (N =  8) 

 

Adult (N = 7) 

        

Wing length 0.9286, P = 0.0009** 

 

0.8930, P = 0.0068** 

  

   Tail length 0.9286, P = 0.0009** 

 

0.8929, P = 0.0068** 

  

   Middle tail length 0.6667, P = 0.0710 

 

0.5000, P = 0.2532 

  

   Tarsus length -0.0476, P = 0.9108 

 

-0.5714, P = 0.1803 

  

   Culmen length 0.5000, P = 0.2070 

 

0.2500, P = 0.5887 

  

   Culmen width 0.7381, P = 0.0366* 

 

0.6071, P = 0.1482 

  

   Wing fluctuating asymmetry -0.1667, P = 0.6932 

 

-0.7500, P = 0.0522* 

  

   Tail fluctuating asymmetry 0.1429, P = 0.7358 

 

0.2857, P = 0.5345 

  

   Tarsus fluctuating asymmetry -0.3571, P = 0.3851 

 

-0.2500, P = 0.5687 
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Table 3-2. Direction of Spearman correlation coefficients for nine morphological traits of 10 

Cliff Swallows measured five or more times during their lives.  None of the correlations was 

statistically significant. 
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Trait 

Positive 

rs 

 

Negative 

rs 

        

Wing length 7 

 

3 

  

   Tail length       7 

 

3 

  

   Middle tail length 4 

 

6 

  

   Tarsus length 6 

 

4 

  

   Culmen length 5 

 

5 

  

   Culmen width 6 

 

4 

  

   Wing fluctuating asymmetry 5 

 

5 

  

   Tail fluctuating asymmetry 5 

 

5 

  

   Tarsus fluctuating asymmetry 4 

 

6 
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Table 3-3. Least square mean estimates of nine morphological traits separated by colony 

fumigation status and gender (mean ± 1 SE). 
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       Fumigated    Non-fumigated            Male         Female

Wing 106.0181 ± 0.0999 106.1145 ± 0.1255 106.2723 ± 0.1136 105.8604 ± 0.1370

Tail   50.5013 ± 0.0752   50.6031 ± 0.0975   50.4563 ± 0.0858   50.6481 ± 0.1038

Middle Tail   45.8319 ± 0.0791   45.9337 ± 0.1102   45.8145 ± 0.0903   45.9511 ± 0.1087

Tarsus   11.5285 ± 0.0162   11.5263 ± 0.0209   11.5247 ± 0.0175   11.5301 ± 0.0203

Culmen Length     7.3277 ± 0.0223     7.3346 ± 0.0264     7.3430 ± 0.0235     7.3193 ± 0.0259

Culmen Width     6.3785 ± 0.0138     6.3624 ± 0.0180     6.4209 ± 0.0147     6.3200 ± 0.0169

Wing Asymmetry     0.5741 ± 0.0312     0.6609 ± 0.0491     0.6202 ± 0.0319     0.6148 ± 0.0371

Tail Asymmetry     0.4162 ± 0.0251     0.4389 ± 0.0410     0.3812 ± 0.0289     0.4739 ± 0.0359

Tarsus Asymmetry     0.1359 ± 0.006     0.1494 ± 0.0091     0.1413 ± 0.0066     0.1440 ± 0.0076
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Figure 3-1.  Least square mean estimates of (a) wing length, (b) tail length, (c) middle tail length, 

(d) tarsus length, (e) culmen length, (f) culmen width, (g) wing fluctuating asymmetry, (h) tail 

fluctuating asymmetry and (i) tarsus fluctuating asymmetry. Sample sizes (number of birds in 

each age category used in the estimations) are shown next to symbols; error bars indicate ± 1 SE.  

Wald F statistics for each least square mean estimate are: wing (F = 21.38, df = 7, 38.6, P < 

0.001), tail (F = 118.99, df = 7, 47.3, P < 0.001), middle tail (F = 60.55, df = 7, 53.8, P < 0.001), 

tarsus (F = 4.47, df = 7, 42.1, P < 0.001), culmen length (F = 4.85, df = 7, 47.4, P < 0.001), 

culmen width (F = 16.94, df = 7, 46.6, P < 0.001), wing fluctuating asymmetry (F = 2.89, df = 7, 

46.6, P = 0.014), tail fluctuating asymmetry (F = 30.57, df = 7, 288.1, P < 0.001) and tarsus 

fluctuating asymmetry (F = 0.36, df = 7, 76.3, P = 0.923).  
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(i) 

0 1 2 3 4 5 6 7

0.00

0.05

0.10

0.15

0.20

3731 679 434
287 167

110

65

57

AGE (year)

T
A

R
S

U
S

 F
L

U
C

T
U

A
T

IN
G

 A
S

Y
M

M
E

T
R

Y


 1
 S

E
(m

m
)

 
 

 

 

 

  

 

 

 

 

 

 

 

 



117 

 

SUMMARY 

In May 1996, a 6-day period of unusually cold and wet weather in southwestern 

Nebraska led to the starvation deaths of thousands of Cliff Swallows. The birds that survived had 

larger skeletons, shorter wing and tail feathers, and less asymmetry in wing feather length than 

those that did not survive. By following this population of swallows for 10 years, this incident 

provided us with the opportunity to study 1) whether natural selection events result in permanent 

microevolutionary changes or if they are reversed by opposing selection pressures, 2) if seasonal 

variation in climate (temperature and precipitation) affect the growth and development of 

morphological traits, and 3) if morphological traits vary systematically in size with an individual 

bird‗s age.  

In the first section of this study, we examined patterns in morphological traits exhibited 

by Cliff Swallows following this selection event by measuring yearling birds born in the study 

area from 1997 to 2006. Wing and middle tail-feather lengths continued to decrease, bill length 

and width continued to increase, tarsus length was unchanged, and the amount of asymmetry in 

wing length increased over the 10-year period. The cumulative directional change in wing, tail, 

and bill length was greater in the years after the selection event than it was during the event. The 

variation in morphology we observed cannot be explained by phenotypic plasticity resulting 

from better environmental conditions during growth, because climatic conditions (temperature 

and precipitation) were not significantly different before and after the selection event. In this 

study, there was no evidence that opposing selection restored skeletal size or wing or tail length 

in this population of birds to that before the selection event. The reasons for the continued 

change in morphology in this population of Cliff Swallows are not clear but may represent the 

population shifting to a different fitness peak in the adaptive landscape.  
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In the second section of this study, we examined how variation in the climatic conditions 

that influence the availability of the insects Cliff Swallows feed on affect the growth of their 

wing and tail feather lengths, size of skeletal traits and body mass.  Juvenile Cliff Swallows were 

captured and morphometric measurements taken; only birds from large colonies where the 

effects of ectoparasites had been removed by fumigation were included in the study.  It appears 

that feather growth in juvenile Cliff Swallows is sensitive to climatically based variation in food 

availability. None of the skeletal traits we measured, or body mass, varied with May temperature, 

and none of the traits showed a relationship with the amount of precipitation that fell in May or 

June.  The average length of the birds‘ wing and tail feathers increased significantly with June 

temperature.  In cooler years birds appear to allocate less growth to wing and tail feathers than 

they do in warmer years, while maintaining normal levels of skeletal growth and body mass.  

Because adult and juvenile feather lengths are positively correlated, it appears that any changes 

in a bird‘s juvenile feather growth in response to rearing conditions persist into its first breeding 

season.    

In the third section of this study, we examined the extent to which morphological traits in 

Cliff Swallows vary systematically with age across an individual bird‗s lifetime.  The juvenile 

birds that we measured immediately after fledging had shorter wing and tail feathers, lower body 

mass, smaller skeletal size and lower levels of fluctuating asymmetry than adult birds.  Among 

adult age classes, morphological differences were slight, but wing and tail feather length 

increased significantly with age and levels of wing and tail fluctuating asymmetry tended to 

decline.  Nutritional constraints experienced by juvenile and younger adult swallows may lead to 

the age-related variation in feather growth that we observed; it appears that skeletal size in this 

species is not fully developed until well after fledging.  These results provide no evidence for 
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degenerative senescence occurring in Cliff Swallows, as the decline in levels of fluctuating 

asymmetry with age suggest that the oldest birds in the population maintain high levels of 

phenotypic performance.  The age-related variation in morphology we observed in Cliff 

Swallows suggests that bird age should be considered in future analyses of morphological 

variation in passerines. 

Future analyses of this long-term data set will involve evaluations of the effects of 

morphology (and fluctuating asymmetry) on the survival of Cliff Swallows and of the effects of 

colony size on the morphology of Cliff Swallows. 
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APPENDIX 

Developmental stability analyses based on morphological measurements or counts of 

repeated structures are used to make inferences about the fitness of individuals and populations 

(van Valen 1962; Møller and Swaddle 1997; Polak 2003). These analyses are based on the 

assumption that deviations from the ideal phenotype provide information about the precision of 

the development of individuals in the population; lower developmental precision reflects the 

disruptive effects of genetic quality and environmental stressors or both (van Valen 1962; Endler 

1986; Leary and Allendorf 1989; Parsons 1990; van Dongen et al. 1999; Kellner and Alford 

2003; van Dongen 2006). Unfortunately, the underlying principles of canalization, homeostasis, 

genetic architecture, heterogeneity, and compensatory growth which underlie developmental 

stability are imperfectly understood (Møller and Swaddle 1997; Kellner and Alford 2003; Polak 

2003; van Dongen et al. 1999; van Dongen 2006). Recognizing these limitations, micro- and 

macro-evolutionary studies utilizing the techniques and analytical methodology of 

developmental stability (morphology) are still possible (Kellner and Alford 2003; Polak 2003; 

van Dongen 2006). 

The developmental stability of individuals and populations are assessed and measured in 

two general ways, with frequency indices and repeated-formation indices. Frequency indices 

monitor the frequency of deviant phenotypes (phenodeviants) or measure the morphological 

variation in trait size among and within populations; they do not control for genetic differences 

between individuals or for the effects of environmental conditions on development. Examples of 

the use of frequency indices include studies of jaw deformities of fish in polluted and unpolluted 

lakes (Graham et al. 1993) or wing-vein abnormalities in Drosophila (Waddington 1953; 

Bateman 1959). While useful, these techniques are limited in that they do not allow a priori 
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predictions of the true frequency of phenodeviants or variations within and among populations—

the optimal phenotype in the population is not known. For frequency indices to be effective in 

providing accurate assessments of developmental stability, populations have to be exhaustively 

sampled (Møller and Swaddle 1997). Repeated-formation indices are derived from comparisons 

of measurements of morphological traits repeatedly formed on the same individual. This is the 

technique utilized in the present study. They control for genetic differences between individuals 

and for the effects of environmental conditions on development, which is their great advantage.  

Examples of traits useful for repeated-formation indices include scales in fish (Shakell and Doyle 

1991), microchaetae in Drosohila and molar cusps in Peromyscus (van Valen 1962).  These 

techniques allow a priori predictions of the true frequency of phenodeviants or variation within 

and among populations -- the optimal phenotype [symmetry] is known. They can be used to track 

populations to changing environmental conditions.  Repeated-formation indices are typically 

presented in terms of the symmetry or asymmetry of the measured individuals (Møller and 

Swaddle 1997).   

There are three types of asymmetry considered in studies of developmental stability: 

directional asymmetry (DA), antisymmetry asymmetry (AA), and fluctuating asymmetry (FA). 

The first two are developmentally controlled and normally are adaptive as asymmetries (van 

Valen 1962; Graham et al. 1993; Pratt and McLain 2002). The third is reduced by natural 

selection and may not be an adaptive asymmetry (Beardmore 1960; Thoday 1958; van Valen 

1962; Graham et al. 1993; Simmons et al. 1999; Polak 2003; van Dongen 2006). FA is 

commonly used to estimate the effects of developmental accidents in individuals and to serve as 

a measure of individual phenotypic quality (van Valen 1962; Emlen et al. 1993; Watson and 

Thornhill 1994; Gangestad and Thornhill 1999; Møller and Swaddle 1997; van Dongen et al. 
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1999; Simmons et al. 1999; van Dongen 2006); hence it is used in this study. Fluctuating 

asymmetry is referred to by Waddington (1957) as the being the result of ‗developmental noise‘. 

Directional is the form of asymmetry where one side of a trait develops more than the 

other and where it is possible to predict which side of the trait will be larger before the trait has 

begun to develop (handedness of the trait; van Valen 1962; Palmer and Strobeck 1986; Markow 

1992; McManus 1992; Graham et al. 1993; Møller 1994a, b; Runyon and Hurley 2004). 

Examples of DA include a variety of internal organs (i.e., lungs, heart, and testes), the beaks of 

Wry-billed Plovers (Anarhynchus frontalis) (Neville 1976) and the ears of owls (Norberg 1978). 

The presence of DA can be detected by the mean values of a trait differing systematically 

between the two sides of an individual (van Valen 1962; van Dongen et al. 1999; Kellner and 

Alford 2003; van Dongen 2006). 

Antisymmetry is the form of asymmetry where one side of a trait is larger than the other 

but it is not possible to predict which side of the trait will be larger before the trait has begun to 

develop (no handedness of the trait: Timofeeff-Ressovsky 1934). Examples of AA include the 

signaling claws of fiddler crabs (Uca musica) (Neville 1976; Pratt and McLain 2002) and the 

beaks of Red Crossbills (Loxia curvirostra) (Nevlle 1976; Benkman and Lindholm 1991).  The 

presence of AA can be detected by a bimodal distribution of the signed differences between the 

two sides of an individual or by a tendency toward platykurtosis rather than a normal distribution 

(van Valen 1962; van Dongen et al. 1999; van Dongen 2006). 

Fluctuating asymmetry, first described by Ludwig (1932, 1936), results from the inability 

of organisms to develop along precisely determined paths (van Valen 1962; Palmer and Strobeck 

1986; van Dongen et al. 1999; Kellner and Alford 2003; van Dongen 2006). This inability results 

in randomly occurring defects in the development and expression of traits. Since the defects are 
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random, their expression in an individual is symmetry; however, asymmetries may develop in a 

proportion of individuals in a population. While there is a substantial debate in the FA literature 

regarding the best method of analyzing FA data (Palmer and Strobeck 1986; van Dongen et al. 

1999; Palmer 1994; Green 2001; Kellner and Alford 2003; van Dongen 2006), the presence of 

FA can be detected by  an approximately normal distribution of signed asymmetry (R – L) scores 

around a mean of zero and an equal mean development of the trait on each side (van Valen 1962; 

Palmer and Strobeck 1986; Palmer 1994; Swaddle et al. 1994; van  Dongen et al. 1999; Kellner 

and Alford 2003; van Dongen 2006). Palmer and Strobeck (1986) assessed a variety of methods 

(14) of calculating FA for individuals and populations. For populations, they recommend using 

indices based on the variance of asymmetry in the population (var (R – L)). However, when 

studying asymmetry at the level of the individual, as in the current study, they recommend using 

indices based on the unsigned(R – L) asymmetry values (Palmer and Strobeck 1986; Swaddle et 

al. 1994); this is the method employed in this study. 

Since FA is characterized by a normal distribution of unsigned R – L around a mean of 

zero, it can be difficult to distinguish FA from measurement error, which will have a similar 

distribution (Lundström 1960; Greene 1984; Palmer and Strobeck 1986; Palmer 1994; Swaddle 

et al. 1994; Merilä and Bjorklund 1995; Fields et al. 1995). Typically, FA measurements are very 

small in relation to the trait being measured (< 1 % of trait size), so the difficulty in 

discriminating between FA and measurement error is exacerbated (Møller and Pomiankowski 

1993). To address this problem, repeated measurements of the same trait must be taken from the 

same individual to assess the relative effect of measurement error on asymmetry measurements 

(Lundström 1960; Palmer and Strobeck 1986; Palmer 1994). The inability to distinguish 

asymmetry from measurement error within a sample does not necessarily invalidate a 
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comparison between populations, especially if biologically significant differences are found 

(Swaddle et al. 1994, Møller 1997, Brown and Brown 1998, 2011), however, it does require 

caution in concluding there is no difference (Brown and Brown 1998, 2011). 

Individual FA and population FA have proven to be useful indices in evolutionary, 

ecological and behavioral studies.  For populations, FA can track evolutionary change over time 

(i.e., van Valen 1962; Møller and Pomiankowski 1993; Brown and Brown 1998, 2000, 2011, this 

study; Grant and Grant 2002) or to study population responses to changes in environmental 

conditions (i.e., Kirpichnikov 1981; Nilsson 1994; Brown and Brown 1998, 2000, 2011, this 

study; Leary and Allendorf 1989; Zakharov 1987, 1989; Leary et al. 1992; Swaddle and Witter 

1994; Bustnes et al. 2002; Grant and Grant 2002; Bize et al. 2004). For individuals, FA can 

indicate individual condition (i.e., Møller 1990, 1992, 1993, 1994a, b; Swaddle and Witter 1994; 

Brown and Brown 1998, 2000, 2002, 2011, this study; Pratt and McLain 2002; Bize et al. 2004) 

or be used as signaling trait (i.e., Møller 1992, 1993; Swaddle and Cuthill 1994; Palmer 1996; 

Swaddle 1996, Bowyer et al. 2001, Pratt and McLain 2002).  
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