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Dung beetles (Coleoptera: Scarabaeoidea) have a significant role in regulating the 

ecosystem services they provide on rangelands. Colonization of dung piles by dung beetles can 

help facilitate the decomposition of dung, control dung-breeding pests, and cycle important 

nutrients into the soil to improve pasture quality. Cattle are grazed on pastures at various 

stocking densities depending on the type of grazing practice. The influence of grazing practices 

on dung beetle communities and services remains largely unknown.  

Our first study investigated dung beetle activity across different cattle grazing practices to 

determine how grazing might influence dung beetle abundance and diversity. Dung beetle 

populations were monitored throughout the grazing season on pastures that were grazed under 

various practices: non-grazed/hay, continuous grazing, low-stocking rotational grazing, and high-

stocking (mob) rotational grazing. Results from this study showed significantly higher dung 

beetle diversity on pastures exposed to rotational grazing practices compared to continuous 

grazing or no grazing. In some cases, dung beetle abundance and species richness were 

significantly greater on pastures that were grazed through high-stocking rotational grazing 

compared to low-stocking rotational or continuous grazing treatments. Based on these data, 



 

 

rotational cattle grazing may favor the colonization of dung beetles on rangeland, regardless of 

stocking density. 

Our second study investigated whether dung beetles exhibit preferences for dung from 

cattle exposed to different grazing practices. Dung from cattle in three separate grazing practices 

were used to test dung beetle preference: continuous grazing, low-stocking rotational grazing, 

and high-stocking rotational grazing. Dung beetle abundance was measured as well as the 

nutrient and physical properties of each dung type. Results of the study revealed no significant 

differences in dung beetle abundance between dung collected from each grazing practice. 

Nutritional content, pH, moisture, and dry matter levels also were not significantly different. 

However, the results indicated varying dung beetle species composition on dung from the 

continuous versus rotational grazing practices. Overall, cattle grazing practices may not affect 

dung composition or its influence on dung beetle preferences.
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CHAPTER 1 

LITERATURE REVIEW 

 

Introduction 

 Dung beetles are coprophagous insects in the order Coleoptera and the families 

Scarabaeidae and Geotrupidae (Halffter and Matthews 1966). The two Coleopteran families 

include the subfamilies Scarabaeinae (Scarabaeidae), Aphodiinae (Scarabaeidae), and 

Geotrupinae (Geotrupidae) that are referred to as true dung beetles (Hanski and Cambefort 1991; 

Bertone 2004). Dung beetles have a critical role in the decomposition process of animal waste 

and the cycling of soil nutrients in a wide variety of ecosystems. 

 Dung beetles make up an essential portion of dung feeding organisms. In many 

ecosystems, they are the most abundant insects present on dung (Hanski and Cambefort 1991). 

The ecological linkages that dung beetles developed with mammals over the last ~ 40 million 

years have resulted in their life cycles relying entirely on animal dung (Hanski and Cambefort 

1991). Recent discoveries indicate that dung beetles may have evolved through coprophagy of 

dinosaur dung prior to the occurrence of mammals in the fossil records (Chin and Gill 1996). 

The long evolutionary history of dung beetles has allowed them to thrive in a broad range of 

different habitats (Hanski and Cambefort 1991). Dung beetles have been found on every 

continent in the world except Antarctica (Hanski and Cambefort 1991). 

Dung beetles act as one of the most important organisms on earth by providing key 

ecosystem services through the consumption of animal dung (Bornemissza 1960). The liquid 

components of dung are fed upon by adult beetles, while the fibrous materials are utilized to 

brood the next generation (Halffter and Matthews 1966). By breaking down dung and burying it 
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underground, dung beetles work to cycle soil nutrients, contribute to bioturbation, and mitigate 

greenhouse gases by removing dung from the surface (Bang et al. 2005; Yamada et al. 2007; 

Nichols 2008; Penttilä et al. 2013).  

 The vital role that dung beetles have in the function of many ecosystems can be 

visualized when there is an absence of dung beetles. An example of this type of scenario is when 

cattle were first brought to Australia (Bornemissza 1976). The local population of dung beetles 

were adapted to feeding on dung from the native marsupial fauna and did not have any 

adaptations to the dung of bovine animals (Bornemissza 1960; Bornemissza 1976). Without 

dung beetles feeding on and breaking down the cattle dung, dung began to build up in areas 

where cattle were present (Bornemissza 1976). The excess of dung also contributed to large 

emergences of dung-breeding pests, namely flies, which caused further issues in the region 

(Bornemissza 1976). To combat the problem of having cattle dung not decomposing, exotic dung 

beetles were brought to Australia (Bornemissza 1976). Onthophagus gazela was the chosen 

species to be introduced and help remedy the situation (Bornemissza 1976). The project was 

called the Australian Dung Beetle Project; led by Dr. George Bornemissza from 1965 to 1975 

(Bornemissza 1976). The example in Australia provides a prime illustration that appropriate 

levels of dung beetle activity are critical for the preservation of any grazed rangeland ecosystem. 

Dung beetles make up a huge portion of the scarabs in the world. There are 

approximately 35,000 species in the superfamily Scarabaeoidea which contains over 6,000 

known species of dung beetles (Simmons and Ridsdill-Smith 2011). There are 10 families 

containing 1,500 species of scarabs spread throughout North America (Ratcliffe and Paulsen 

2008). Dung beetles were introduced to the United States, although not to the extent of the 

Australian project. The beetles that have been introduced include Onthophagus gazela in 1972 
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and Onthophagus taurus a few years later (Blume and Aga 1978; Hoebeke and Beucke 1997). 

Other species have been introduced to the United States, although not having as large of an 

impact as the two previously mentioned species. In Nebraska, there are currently around 300 

identified species from 7 different families (Ratcliffe and Paulsen 2008). 

With currently over 6 million cattle being fed in Nebraska, dung beetle populations have 

a steady source of food and habitat (NDA 2016). Nebraska has a diverse landscape throughout 

the state, providing a broad range of habitat for dung beetles (Ratcliffe and Paulsen 2008). Dung 

beetles can be found across Nebraska from the far eastern edges all the way to the western 

panhandle (Ratcliffe and Paulsen 2008). The state is split into glaciated and unglaciated sections 

with habitats that include short and tallgrass prairie, Sand Hills prairie, deciduous forest, and 

Ponderosa pine forests (Ratcliffe and Paulsen 2008). Across the varying habitats, dung beetles 

work to breakdown dung deposited by vertebrate animals, mostly cattle, and cycle it into the soil 

(Ratcliffe and Paulsen 2008). In doing so, dung beetles have been found to improve soil quality 

and forage production (Halffter and Matthews 1966; Hutton and Giller 2003; Walters 2008; 

O’Hae 2010). The abilities of dung beetles to improve pasture production with their presence has 

caught the interest of many farmers and ranchers in Nebraska.  

Grazing practices being implemented on rangeland can have an effect on forage 

production as well as dung beetle activity. Common grazing practices like continuous and 

rotational grazing can alter rangeland ecosystems and change the grassland community 

(Holechek et al. 2011). Certain grazing practices have been found to favor the growth and quality 

of forages over that of others (Hickman et al. 2004). However, little has been studied about the 

impact that grazing practices have on dung beetle fauna in the ecosystem (Lee and Wall 2006; 

Yamada et al. 2007). 
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Dung Beetle Biology 

Dung beetles have evolved to adapt to many different habitats across the world. Species 

with various niche preferences can thrive in habitats primarily depending on their temperature 

and moisture tolerances (Hanski and Cambefort 1991). These niche preferences drive the 

variation in dung beetle assemblages across latitudinal gradients (Halffter and Matthews 1966). 

Most dung beetles will exhibit some form of seasonal activity, especially those present in more 

temperate climates (Hanski and Cambefort 1991). In such areas, dung beetles typically 

overwinter as adults by burrowing deep tunnels underground without burying dung (Kirk 1983). 

Adults will remain at the ends of the burrows until the following spring when they emerge and 

mate to produce the next generation of dung beetles (Kirk 1983). However, some species in the 

genus Geotrupes have been found to oviposit in the autumn months and will overwinter as larvae 

and pupae, as well as adults (Kirk 1983). 

Along with the surrounding environment, dung beetles can also have specific preferences 

to types of animal dung (Hanski and Cambefort 1991; Estrada et al. 1993). The beetles are 

attracted to different dung types based on the condition and odor (Doube 1987; Dormont et al. 

2004; Whipple and Hoback 2012). Previous studies have found that most dung beetles prefer 

dung from omnivorous animals compared to that of carnivores or herbivores (Scholtz et al. 2009; 

Whipple and Hoback 2012). Even though there is much variation, dung beetle preferences often 

overlap and allow for multiple species to coexist and compete across habitats and dung types 

(Horgan 2005; Scholtz et al. 2009).   

Dung beetles are able to use animal dung through various morphological adaptations. 

Many dung beetles have specialized mouthparts that are designed for consuming dung (Halffter 

and Matthews 1966). Adults primarily feed on the liquid constituents while the fibrous materials 
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are used for nesting (Halffter and Matthews 1966; Aschenborn et al. 1989). Dung beetles do this 

through the use of modified mandibles that are equipped with delicate fringes used for filtering 

out the liquid constituents (Halffter and Matthews 1966; Holter et al. 2002). Furthermore, the 

mandibles of most dung beetles are modified for grinding the fine particles in the liquids 

(Halffter and Matthews 1966; Holter et al. 2002). To find food, dung beetles rely on olfactory 

and tactile stimuli to seek out fresh dung (Halffter and Matthews 1966; Hanski and Cambefort 

1991). Most dung beetles search for food by walking or by flight, and some species will search 

by opening their antennae to detect odors in the air for directional cues (Halffter and Matthews 

1966).  

Dung beetles are typically categorized based on their nesting behavior with three major 

guilds consistently appearing throughout the literature. The three guilds include endocoprids, 

paracoprids, and telecoprids (Hanski and Cambefort 1991; Simmons and Ridsdill-Smith 2011). 

Endocoprids nest within dung pats, paracoprids nest in burrows in the soil underneath dung pats, 

and telecoprids nest in a separate ball of dung, called a brood ball, that is formed from the 

original dung pat and buried underground some distance away (Hanski and Cambefort 1991). 

The names of these three groups have been further simplified to being known as dwellers 

(endocoprids), tunnelers (paracoprids), and rollers (telecoprids) (Hanski and Cambefort 1991; 

Simmons and Ridsdill-Smith 2011).  Some dung beetle species are also recognized as 

kleptoparasites, which nest in dung that has already been buried by another dung beetle (Doube 

1990). These beetles are not considered to be “true dung beetles” and will therefore not be 

included in this manuscript (Hanski and Cambefort 1991). Doube (1990) has described 

extensively how different subgroups have also been recognized within each of the listed groups 

on the basis of larval provisioning, nest construction, and breeding activity, but mostly how the 
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beetles use and disrupt dung. The classification of subgroups has been described in multiple 

ways and continues to be a debated topic when considering higher dung beetle classification 

(Hanski and Cambefort 1991; Ratcliffe and Paulsen 2008; Simmons and Ridsdill-Smith 2011). 

The endocoprids, commonly referred to as “dwellers,” are a type of dung beetle that 

burrow into dung pats to eat and lay eggs. Most of the dweller species are in the subfamily 

Aphodiinae and genus Aphodius (Hanski and Cambefort 1991; Ratcliffe and Paulsen 2008). 

These dung beetles are all relatively small in size (length < 10 mm) and are most commonly 

found in northern temperate regions; however, some exist in subtropical and tropical regions as 

well (Hanski and Cambefort 1991). Adults form egg-filled brood balls within the dung pats 

where larvae will hatch out and complete their development (Simmons and Ridsdill-Smith 

2011). Dweller species spend their entire juvenile life, from egg to pupae, inside dung pats 

(Hanski and Cambefort 1991). They prefer large droppings, especially bovine dung, where they 

interact with a large range of other insects (Hanski and Cambefort 1991; Ratcliffe and Paulsen 

2008). Dwellers often compete for food and space in the dung pat as both adults and larvae 

(Hanski and Cambefort 1991; Ratcliffe and Paulsen 2008). 

Paracoprids, also called “tunnelers,” burrow underneath dung pats and nest in chambers 

filled with dung. Tunnelers occur primarily in the subfamilies Scarabaeinae and Geotrupinae 

(Hanski and Cambefort 1991; Ratcliffe and Paulsen 2008). Tunnelers can range in length from 

around 13 mm to < 10 mm (Ratcliffe and Paulsen 2008). Hanski and Cambefort (1991) found 

that most of the larger tunneler species tend to be nocturnal while the smaller species are 

typically diurnal. Tunnelers have a broad scope of habitats that range anywhere from temperate 

to tropical regions (Hanski and Cambefort 1991; Simmons and Ridsdill-Smith 2011). Both sexes 

will arrive at a dung pat where mating happens quickly above ground followed by the mating 
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pairs digging tunnels underneath the pat (Hanski and Cambefort 1991; Simmons and Ridsdill-

Smith 2011). Tunnelers will form brood chambers underground, and then fill these chambers 

with small dung balls containing individual eggs (Nichols et al. 2008; Simmons and Ridsdill-

Smith 2011). There can be much variation within the structure of nesting burrows between 

different tunneler species (Hanski and Cambefort 1991). Burrows range from very primitive, 

simple tunnels with only one brood chamber to a complex series of tunnels consisting of multiple 

brood chambers (Hanski and Cambefort 1991). 

The dung beetle guild known as the telecoprids or “rollers” form balls of dung from dung 

pats and roll them away to bury underground. Rollers consist of members from subfamily 

Scarabaeinae (Hanski and Cambefort 1991; Ratcliffe and Paulsen 2008). These beetles make up 

the largest of the dung beetles and are usually > 10 mm in length with a number of species 

reaching over 20 mm in more subtropical and tropical regions of the world (Hanski and 

Cambefort 1991; Ratcliffe and Paulsen 2008). Rollers are similar to tunnelers in that they bury 

dung beneath the soil; however, rollers move dung some distance away instead of digging 

directly under dung pats (Simmons and Ridsdill-Smith 2011). Brood balls are often rolled by 

both members of a mating pair with the male mainly acting as protector to defend the ball from 

theft by other beetles (Hanski and Cambefort 1991). Combat over brood balls occurs frequently 

among rollers, usually between the same species but sometimes between different species 

(Hanski and Cambefort 1991). Rollers will transport their balls of dung up to 15 m away from 

the original dung pat before forming a nest with it underground (Simmons and Ridsdill-Smith 

2011). Mating pairs usually cooperate until copulation occurs in the burrow and the female lays 

her eggs in the nest (Hanski and Cambefort 1991).  
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Dung beetles can undergo fierce competition for food and breeding space around dung 

pats. Nearly all dung beetle species exhibit some type of maternal care which is likely important 

to guard against other dung beetles (Simmons and Ridsdill-Smith 2011). Depending on the guild, 

body size, and speed of the dung beetle, some species are more competitive than others (Peck 

and Forsyth 1982; Hanski and Cambefort 1991; Simmons and Ridsdill-Smith 2011). Dwellers 

are usually the smallest dung beetles and exhibit the most vulnerable nesting behaviors (Hanski 

and Cambefort 1991). Due to their size and presence inside dung pats, dweller species can easily 

be disturbed by other beetles (Doube 1990; Hanski and Cambefort 1991). The activity of certain 

dung beetle species can also be limited by the number of other dung beetles competing for the 

same resources (Horgan 2005; Doube 1990). Several species of Onthophagus have been found to 

only be able to use about half of a dung pat in optimal conditions (Doube 1990). When forced to 

compete with higher numbers of other beetles, this efficiency can be depleted to much lower 

levels (Doube 1990). Other dung beetles are able to use nearly 100% of a dung pat, enabling 

them to be highly competitive compared to other beetles (Peck and Forsyth 1982; Doube 1990). 

Differences in diurnal and nocturnal activity between dung beetle species can also lead to diffuse 

competition between beetles (Peck and Forsyth 1982). However, most dung beetles are diurnal 

which causes more intense diffuse competition for the nocturnal species (Doube 1990). 

Nebraska Dung Beetle Taxonomy  

Dung beetle taxonomy has been studied extensively and is now relatively well 

understood. However, the organization of certain subfamilies, Aphodiinae in particular, remain 

topics of debate (Ratcliffe and Paulsen 2008). The following list is a current taxonomic 

classification of the Scarabaeiodea that are associated with dung in Nebraska. It consists of the 

families Scarabaeidae and Geotrupidae with only the major dung beetle tribes and genera being 
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included. This list has been constructed based on the works of Hanski and Cambefort (1991), 

Bertone (2004), and Ratcliffe and Paulsen (2008). 

 

Family: Scarabaeidae 

Subfamily: Aphodiinae 

 Tribe – Aphodiini 

  Genus – Aphodius 

  Genus – Diapterna 

 Tribe – Eupariini 

  Genus – Ataenius 

Subfamily: Dynastinae 1 

Subfamily: Scarabaeinae 

 Tribe – Coprini 

  Genus – Copris 

 Tribe – Canthonini 

  Genus – Canthon 

  Genus – Melanocanthon 

Tribe – Onthophagini 

  Genus – Onthophagus 

 Tribe – Phanaeini 

  Genus – Phanaeus 

Family: Geotrupidae 

 Subfamily: Bolboceratinae 1 
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 Subfamily: Geotrupinae 

  Tribe – Geotrupini 

   Genus – Geotrupes 

1 Although not considered true dung beetles, members of the subfamilies Dynastinae and Bolboceratinae have been 
included for the purposes of this study due to their attraction to dung and likely role in dung decomposition on 
Nebraska rangelands. 

 

Ecosystem Services Attributed to Dung Beetle Activity 

 Dung beetles have an important role in regulating grassland ecosystems. In pastures, 

dung beetles help regulate the ecosystem as decomposers; removing dung from the surface and 

burying it underground to feed their offspring (Nichols et al. 2008). Dispersing and incorporating 

dung into the soil provides important benefits to agricultural systems through ecosystem 

functions such as nutrient cycling, pest suppression, and trophic regulation (Nichols et al. 2008).  

 Dung decomposition is a critical service that dung beetles provide in rangeland 

ecosystems. Dung beetles bury dung underground which helps mitigate potentially harmful 

greenhouse gas emissions and releases important nutrients like nitrogen, phosphorous, 

potassium, and magnesium into the soil (Yamada et al. 2007; Penttilä et al. 2013). These nutrient 

pulses in the soil then become available to pasture flora to improve soil fertility and forage 

production (Bang et al. 2005; Yamada et al. 2007). Some studies have found that nutrient 

mobilization and the bioturbation caused by dung beetle activity may outperform the plant 

growth benefits from that of chemical fertilizer applications (Fincher 1981; Miranda et al. 2000).  

 Another ecosystem service that dung beetles contribute to is the reduction of livestock 

pests in the pasture. These pests include parasites such as flies, nematodes, and protozoa that 

infest or prey on cattle and can cause economic damage (Byford et al. 1992). By breaking down 

dung pats, dung beetles provide biological control of pests by disrupting the pest life cycle 
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(Fincher 1973). Some research has indicated that increased dung beetle abundance in cattle 

pastures can result in decreased pest emergence from manure (Bryan 1973; Fincher 1973; 

Fincher 1975). Fincher (1975) found that cattle grazed on pastures without dung beetles had nine 

times the number of parasites compared to cattle in pastures where dung beetle populations were 

high. By reducing the number of pests in pastures, dung beetles can help to minimize the 

management costs associated with livestock pests (Fincher 1981; Losey and Vaughan 2006). 

 Dung beetles play an integral part in the sustainability of livestock production in the 

United States and around the world. According to Losey and Vaughan (2006), the ecosystem 

services provided by dung beetles have an economic value of over $380 million annually in the 

United States. This value mostly comes from the reduction in costs of fertilizer application, pest 

management, and production loss due to poor forage quality and pest outbreaks (Fincher 1981). 

With pasture systems making up nearly 80% of agricultural land across the world, the presence 

and services provided by dung beetles form a huge importance to ecosystem health on a global 

scale (Steinfield et al. 2006). 

Cattle Grazing Practices in Nebraska 

 Grazing systems are specified plans that were established to manage livestock feeding on 

rangeland and other grassland ecosystems (Holechek et al. 2011; Schacht et al. 2011). Ranchers 

wanted to have control over when and where livestock were grazed in order to optimize their 

land use and grazing operations (Holechek et al. 2011). The concept of specialized grazing 

systems was first developed in the United States during the early 1900s and became popular by 

the 1950s (Holechek et al. 2011). Grazing systems have become important tools for ranchers 

across Nebraska and the Great Plains to achieve their rangeland management objectives (Schacht 

et al. 2011). 
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There are different types of grazing systems utilized by ranchers based on the kind of 

land management that is desired. As a whole, these grazing systems can be broadly categorized 

into two main practices, continuous grazing and rotational grazing (Heath et al. 1985). Both are 

commonly used throughout Nebraska rangeland (Heath et al. 1985; Schacht et al. 2011). In the 

case of continuous grazing, cattle are left to graze on a pasture for an extended period of time 

with little or no rest to the plants (Holechek et al. 2011). Rotational grazing on the other had 

involves dividing a pasture into multiple paddocks and rotating cattle through each one 

individually over the course of the grazing season (Holechek et al. 2011). Rotational grazing can 

be further divided up into categories based on the stocking densities of livestock on a specific 

area of ground (Heath et al. 1985; Holechek et al. 2011). Ranchers may choose to graze cattle 

less intensively by keeping them in low to medium stocking densities, or they can graze them in 

a high or ultra-high densities to increase the grazing intensity on the land (Holechek et al. 2011). 

Cattle are grazed on pasture at different stocking densities depending on the type of grazing 

practice being implemented (Holechek et al. 2011). 

Continuous grazing, also referred to as traditional grazing, involves letting cattle graze 

freely in an undivided pasture all season long. It is critical that the stocking density of 

continuously grazed pastures is low because ranchers must allow there to be enough forage 

available to carry the animals through the entire season (Holechek et al. 2011). At such low 

stocking densities, cattle have maximum dietary selectivity and will therefore preferentially feed 

on forbs and reduce the grazing pressure on grasses (Holechek et al. 2011). In doing so, cattle 

will typically graze in a less efficient manner and leave behind large amounts of less-desired 

forage in the pasture (Holechek et al. 2011; Schacht et al. 2011). This preferential feeding can 

result in widespread patchiness throughout the pasture (Knapp et al. 1999). 
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Rotational grazing is the other common grazing practice that ranchers often use. This 

type of grazing splits a pasture into multiple, smaller paddocks which are then grazed 

individually (Holechek et al. 2011; Schacht et al. 2011). In this system, cattle are moved from 

one paddock to the next as the available forage becomes depleted (Holechek et al. 2011). 

Rotational grazing was originally invented to help enhance the grazing efficiency of cattle on 

rangeland (Heady 1961). It can allow for more uniform forage utilization by reducing the 

selective grazing habits of cattle (Heady 1961; Holechek et al. 2011). For many ranchers, 

rotational grazing is considered to be the superior strategy for managing rangeland, however this 

has been a consistently debated topic (Walton et al. 1981; Briske et al. 2008; Derner et al. 2008). 

Since its introduction, multiple variations of rotational grazing have been developed and 

classified based on the size of the grazing paddocks and the animal stocking density (Holechek et 

al. 2011; Schacht et al. 2011).  

One of the more intense, higher density forms of rotational grazing is commonly referred 

to as high-stocking rotational grazing or “mob” grazing (Thomas 2012). This high-intensity, 

short-duration grazing practice involves grazing large densities of cattle (~ 500 AU ha-1) in small 

paddocks for short time durations (Gompert 2009; Thomas 2012). High-stocking rotational 

grazing is more labor intensive than other forms of rotational grazing by requiring more frequent 

movements of the cattle (Gompert 2009). Numerous studies have found that high-stocking 

rotational grazing may reduce selective grazing, increase harvest efficiency, and provide more 

uniform dung and urine deposition (Aarons et al. 2009; Moir et al. 2010; Thomas 2012). The 

extent of the benefits attributed to this grazing practice remains controversial as described by 

Holechek et al. (2000). Nevertheless, grazing cattle via high-stocking rotational grazing 

continues to be a practice of growing popularity among ranchers (Thomas 2012).  
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Dung Beetles and Livestock Grazing 

 Dung beetles and livestock are essential for sustaining agricultural grassland ecosystems. 

Dung beetles are able to provide the ecosystem services that are necessary to support animal 

grazing and large-scale livestock production (Nichols et al. 2008). In turn, livestock grazing 

provides the fertilizer and forage maintenance needed to keep rangelands in optimal condition 

(Aarons et al. 2009). This relationship between dung beetles, livestock, and rangeland health can 

be influenced through dung utilization and the type grazing practices that are implemented. 

Timely dung decomposition is necessary in cattle-grazed rangeland ecosystems. It has 

been found that if dung pats are not degraded relatively quickly, their presence can deter cattle 

grazing for up to two years (Dohi et al. 1991; Walters 2008). The colonization of dung beetles 

works to remedy this situation by breaking down dung pats through their regular activity (Hanski 

and Cambefort 1991; Simmons and Ridsdill-Smith 2011). The faster decomposition rates can 

help to mitigate the amount of greenhouse gasses that are emitted from dung pats on the soil 

surface (Bang et al. 2005; Yamada et al. 2007; Penttilä et al. 2013; Slade et al. 2016). By burying 

the dung underground, dung beetles also act as important contributors to overall soil fertility by 

cycling nutrients to create healthier rangelands (Mittal 1993; Estrada et al. 1998; Walters 2008). 

 Livestock management practices can have an effect on the plant communities that are 

being grazed upon. Different grazing practices, depending mostly on animal stocking densities, 

can have varying effects on rangeland (Heath et al. 1985; Holechek et al. 2011). It has been seen 

that at higher stocking rates, rotational cattle grazing may have the ability to improve plant 

diversity and overall rangeland health (Hickman et al. 2004; Barnes and Howell 2013). The high-

intensity grazing can also be useful for weed control by allowing more even utilization of forage 

(Frost and Launchbaugh 2003). Grazing cattle in such a way may be able to improve pasture 
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productivity and the overall profitability of the beef industry (Thomas 2012; Herrero and 

Thornton 2013). 

 Along with improving the rangeland itself, different grazing practices may also influence 

dung beetle populations within the system. Several studies have already proven that grazing 

activities can have a positive impact on the abundance and diversity of dung beetles (Hutton and 

Giller 2003; Verdú et al. 2007; Numa et al. 2010). However, very little research has been done 

on how different grazing practices might affect dung beetles (Lee and Wall 2006; Yamada et al. 

2007). Preliminary data from a study by Whipple (2011) revealed that rotational cattle grazing 

may favor dung beetle colonization. It was found that rotationally grazed pastures yielded over 

six times as many dung beetles and twice as many dung beetle species compared to continuously 

grazed pastures. The difference in abundance and diversity between the two grazing practices 

could be from several management factors, but stocking density and a higher concentration of 

dung pats may have had the strongest influence (Richards and Wolton 1976; Whipple 2011).  

Research Objectives 

The impacts that cattle grazing practices have on dung beetle assemblages in Nebraska 

rangeland has not been extensively studied. There is increasing concern over maintaining 

adequate levels dung beetle activity as it is a critical part of sustaining healthy rangeland 

ecosystems (Hutton and Giller 2003; O’Hae 2010; Beynon et al. 2012). It has become important 

to researchers as well as producers throughout Nebraska to evaluate the abundance and diversity 

of dung beetles in cattle-grazed systems. The need for knowledge on this topic sets up the 

objectives of this research. 

• To quantify the overall abundance of dung beetles on rangeland across various cattle 

grazing practices (Chapter 2) 
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• To evaluate the levels of species diversity of dung beetles on rangeland across various 

cattle grazing practices (Chapter 2) 

• To evaluate whether or not dung beetles exhibit preferences for dung from cattle grazed 

in one grazing practice over that of another (Chapter 3) 



 

 

17 

CHAPTER 2 

COMPARISON OF ABUNDANCE AND SPECIES DIVERSITY OF DUNG BEETLES 

(COLEOPTERA: SCARABAEOIDEA) BETWEEN CATTLE GRAZING PRACTICES IN 

CENTRAL NEBRASKA 

 

Introduction 

 Dung beetles have an important role in the function of many ecosystems. Their activities 

involve the removal of animal dung from the soil surface by breaking it down and burying it 

underground (Hanski and Cambefort 1991; Simmons and Ridsdill-Smith 2011). Dung beetles do 

this through consuming dung and using it for nesting purposes to brood the next generation of 

coprophagous beetles (Halffter and Matthews 1966). By removing dung from the surface, dung 

beetles perform key ecosystem services; nutrient cycling, greenhouse gas mitigation, parasite 

suppression, and overall trophic regulation (Bang et al. 2005; Yamada et al. 2007; Nichols et al. 

2008; Penttilä et al. 2013). 

Dung beetle activity is recognized as being highly important for ranching practices by 

maintaining healthy cattle-grazed rangeland ecosystems (Aarons et al. 2009). Cattle can produce 

an average of ~ 10 dung pats per day, with each pat covering an average of ~ 0.08 m2 of surface 

area (Bornemissza 1960, Fincher 1981). Therefore, an individual cow can foul almost 1 m2 of 

pasture each day (Fincher 1981). The effects of cattle defecation are then amplified, as cattle are 

typically grazed in large herds (Fincher 1981). With such an abundant source of dung, dung 

beetles act as important decomposers while also reducing dung-breeding pests and recycling 

nutrients into the soil (Nichols et al. 2008). 
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Nitrogen from dung is a key source of fertilizer on rangeland; however, close to 80% of 

nitrogen is usually lost as ammonia through volatilization (Gillard 1967). In some cases, dung 

beetle activity can reduce these nitrogen losses to nearly 5% (Gillard 1967). Along with boosting 

pasture fertility and forage production, dung beetle activity can also act as biological pest control 

(Estrada et al. 1998; Walters 2008). Dung beetles provide biological control services by 

disrupting the life cycles of many dung-breeding pests, and, thereby, decreasing their emergence 

rates on the pasture (Bryan 1973; Fincher 1973; Fincher 1975). The services provided by dung 

beetles have been estimated to have an economic value of over $380 million each year in the 

United States (Losey and Vaughan 2006). 

 Nebraska has over 9 million hectares of rangeland and pasture, most of which is used for 

grazing cattle (NDA 2016). Cattle are managed on the rangeland in numerous ways with two of 

the most common practices being continuous and rotational grazing (Heath et al. 1985). 

Continuous grazing involves cattle that are grazed in a single, open pasture for the duration of 

the grazing season (Holechek et al. 2011). This type of grazing requires low cattle stocking rates 

to ensure that there is enough forage to last the entire grazing season (Holechek et al. 2011). The 

other common type of cattle grazing is rotational grazing. This grazing practice involves splitting 

pastures into multiple paddocks with cattle being rotated through each paddock as available 

forage becomes depleted (Holechek et al. 2011). In rotational grazing, cattle may be stocked at 

higher densities than that of continuous grazing (Holechek et al. 2011). One variation of 

rotational grazing involves a more labor-intensive approach that is usually referred to as as high-

stocking rotational grazing or “mob” grazing (Thomas 2012). High-stocking rotational grazing 

involves the rotation of high densities of cattle (~ 500 AU ha-1) through small paddocks for short 

time durations of one day or less (Gompert 2009; Thomas 2012). The goal behind high-stocking 
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rotational grazing is to improve pasture productivity by increasing cattle grazing efficiency and 

allowing for more uniform dung and urine deposition across the pasture (Aarons et al. 2009; 

Moir et al. 2010; Thomas 2012). 

 Several studies have found that consistent cattle grazing can positively influence dung 

beetle populations (Hutton and Giller 2003; Verdú et al. 2007; Numa et al. 2010). However, the 

impact that specific grazing practices have on dung beetle activity remains largely unknown (Lee 

and Wall 2006; Yamada et al. 2007). In cattle-grazed pastures, Whipple (2011) indicated that 

rotational grazing produces over six times the number of dung beetles and twice the number of 

dung beetle species relative to continuous grazing (Whipple 2011). Although several factors 

could influence dung beetle abundance between grazing practices, higher stocking density and 

increased dung pat concentration could be the most influential (Whipple 2011). With dung beetle 

populations declining in recent years due to habitat fragmentation and elevated pest 

management, ranchers are continually looking for ways to conserve dung beetle populations in 

their pastures (Hutton and Giller 2003; Slade et al. 2016). Intensifying grazing practices that 

promote dung beetle activity could be beneficial for ranchers by improving the ecosystem 

services they provide on rangeland. 

The objective of this study was to quantify dung beetle activity between cattle grazing 

practices on rangeland to determine the influence of cattle stocking density on dung beetle 

populations. It is hypothesized that cattle grazing practices with higher stocking density will 

favor (1) dung beetle abundance as well as (2) dung beetle species diversity. 

Materials and Methods 

Study site description. This study was conducted during the 2014 and 2015 grazing 

seasons on rangelands in the Sandhills Ecoregion of Nebraska (Ahlbrandt and Fryberger 1980). 
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This ecoregion is composed of grass-covered sand dunes and sub-irrigated meadows with 

numerous lakes and wetlands spread throughout (Ahlbrandt and Fryberger 1980; McNab and 

Avers 1994). The Sandhill rangelands are primarily made up of mixed-grass prairie with 

combinations of plant species that are tolerant to sandy conditions (McNab and Avers 1994). 

Reedgrass and bluestem varieties are among the most dominant grasses found throughout the 

region (McNab and Avers 1994). The growing season lasts ~ 150 days with annual precipitation 

ranging from 430 – 580 mm and temperature averages of ~ 10 °C (McNab and Avers 1994).  

Research was conducted on three individual ranches in the northeastern Sandhills. The 

ranches were the University of Nebraska-Lincoln’s Barta Brothers Ranch, and two private, 

commercial ranches – the Rick Marshall ranch (Rusty Star Ranch) and the Randall Shinn ranch. 

The Barta Brothers Ranch was located in Rock County approximately 11 km west of Rose, 

Nebraska (42°13’N; 99°38’W). The Rick Marshall ranch was located in Brown County 

approximately 32 km south of Johnstown, Nebraska (42°19’N; 100°4’W). The Randall Shinn 

ranch was located in Rock County approximately 14 km south of Newport, Nebraska (42°29' N; 

99°20'W). Research was conducted in the lowland, sub-irrigated meadow pastures at all three 

ranch locations. Samples were also taken in the sandy upland pasture at the Rick Marshall ranch.  

Experimental design and procedures. The study used a repeated measures design with 

pitfall traps to collect dung beetle samples. The pitfall traps were placed in randomized transects 

throughout each study pasture. Within the transects, traps were spaced ~ 50 m apart from each 

other to ensure that no interference occurred (Larsen and Forsyth 2005). Pitfall traps were 

designed similar to Ratcliffe (2013), but using 500 ml Nalgene jars and steel cover plates 

(Figures 2.1 and 2.2). Each trap was baited with a 20-ml vial containing approximately 10-20 ml 

of homogenized primate dung from chimpanzees fed on a standard diet. Chimpanzee dung was 
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used as bait on the basis that dung beetles exhibit higher attraction to primate dung compared to 

that of other animals (Whipple and Hoback 2012). For a killing agent, Nalgene jars were filled 

with approximately 50-100 ml of a 50% Ethylene glycol/water solution. Following similar 

methods to Whipple and Hoback (2012), the traps were baited for 7-day intervals within 14-day 

periods. This allowed the traps to be temporarily sealed up in case of heavy rain or a flooding 

event. Traps were collected at the end of each 14-day period and bait vials were replaced with 

fresh dung for the following period. 

Pitfall traps were used to monitor dung beetle activity on pastures under the influence of 

each grazing treatment. In 2014 and 2015, research began in early June when cattle were placed 

onto pasture and continued until cattle were removed in late August/September. Following 

collection, samples were taken to the laboratory where dung beetles were counted and identified 

to species according to Ratcliffe and Paulsen (2008).  

At Barta Brothers Ranch (BBR), traps were set up throughout the cattle-grazed meadow 

in each of five grazing treatments. The treatments had two replications that were grazed by two 

separate groups of cattle. The grazing treatments were continuous, low-stocking rotational which 

consisted of once-over and twice-over rotational treatments, high-stocking rotational, and no 

graze/hay as the control (Table 2.1). In the continuous treatment, cattle were grazed at low 

stocking densities (< 1 AU ha-1) and were kept in a single open pasture for the duration of the 

grazing season. For the once-over rotational treatment, cattle were grazed at low stocking 

densities (~ 20 AU ha-1) and were moved to a new paddock every 3-4 weeks. These cattle were 

rotated through their pasture once each season. In the twice-over rotational treatment, cattle were 

also grazed at low stocking densities (~ 20 AU ha-1), but were moved to a new paddock every 1-

2 weeks. These cattle were rotated through their pasture twice each season. For the high-stocking 
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rotational treatment, cattle were grazed at ultra-high stocking densities (~ 500 AU ha-1) and were 

moved to a new paddock two times per day. These cattle were rotated through their pasture once 

each season. Lastly, the no graze/hay treatment had no cattle present throughout the grazing 

season. There was a total of 60 traps at BBR with 30 traps in each of the two pasture replicates. 

At the Rick Marshall ranch location, traps were set up in transects throughout meadow 

and upland pastures. In the meadow site, there were two grazing treatments consisting of low-

stocking rotational (~ 20 AU ha-1) and high-stocking rotational (~ 500 AU ha-1). The low-

stocking rotational treatment was similar to the twice-over treatment at BBR, but with cattle 

being rotated to a different paddock every week. The high-stocking rotational treatment was 

similar to the high-stocking rotational treatment at BBR. In the upland site, there was only one 

treatment, high-stocking rotational. The grazing procedure was similar to the high-stocking 

rotational treatment in the meadow site. At the Marshall ranch, there was a total of 30 traps in the 

meadow pasture and 15 traps in the upland pasture. 

At the Randall Shinn ranch, traps were set up in transects throughout the meadow for 

2014 grazing season only. Research was not conducted at this ranch in 2015. There were two 

grazing treatments at the Shinn ranch consisting of low-stocking rotational (~ 20 AU ha-1) and 

high-stocking rotational (~ 500 AU ha-1). The low-stocking rotational treatment was performed 

the same way as the low-stocking rotational treatment at the Marshall ranch. The high-stocking 

rotational treatment was also performed similarly to the high-stocking rotational treatment at the 

Marshall ranch. There were a total of 18 traps in the pasture at the Shinn ranch. 

Statistical procedures. To compare dung beetle activity between the grazing treatments, 

four indices were generated for each treatment each year. The indices were peak abundance per 

trap, species richness, Simpson’s diversity index, and Simpson’s evenness. Peak abundance can 
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be defined as areas where cattle were present and dung beetle abundance was the highest. It was 

used to counteract the absence of cattle in paddocks that were not being grazed in the rotational 

grazing treatments. Species richness, or species count, was expressed as the total number of 

species that were captured in each grazing treatment. Simpson’s diversity index quantifies the 

diversity in a habitat by accounting for species richness as well as the relative abundance of each 

species in a sample (Magurran and McGill 2011). Simpson’s diversity index is calculated by the 

following equation: 

D = Σ!i2 

where !i	represents	the	proportion	of	abundance	for	species	i	(Magurran	and	McGill	2011).	

Simpson’s diversity index can be summarized as, “the probability that two individuals drawn at 

random from an infinite community would belong to the same species” (Magurran and McGill 

2011). The reciprocal of Simpson’s diversity index is the most common form used to measure 

diversity (Magurran and McGill 2011). The reciprocal index ranges on a scale from 1 to the 

maximum number of species collected, with higher values signifying more diversity in a sample 

(Magurran and McGill 2011). The reciprocal index was used to determine dung beetle diversity 

across each grazing treatment. Lastly, Simpson’s evenness is a measure of the relative abundance 

of species in a community (Magurran and McGill 2011). It can be calculated using the reciprocal 

Simpson’s diversity index as follows: 

E = (1/D)/S 

where 1/D represents the reciprocal of Simpson’s diversity index, and S represents the total 

number of species in the community (Magurran and McGill 2011). Simpson’s evenness ranges 

on a scale from 0-1, with 0 indicating maximum unevenness and 1 indicating perfect evenness 

(Magurran and McGill 2011). 
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All data gathered for this study were analyzed using LS-means implemented in the PROC 

GLIMMIX procedure with SAS statistical software version 9.4 (2013). Significantly different 

treatment means were separated using a Tukey’s HSD mean comparison test with an α = 0.05 

significance level. Mean comparisons with marginal significance (P ≤ 0.08) are also discussed. 

Results 

 Dung beetle collection totals. Across all grazing treatments in 2014, a total of 760 dung 

beetles were collected at BBR, 394 at the Marshall ranch meadow, 67 in the Marshall ranch 

uplands, and 564 at the Shinn ranch, with a grand total of 1,785. In 2015, a total of 1,441 were 

collected at BBR, 538 at the Marshall ranch meadow, and 428 at the Marshall ranch uplands, 

with a grand total of 2,407. The overall total number of dung beetles collected through both years 

of this study was 4,192.  

In 2014, there were a total of 12 dung beetle species collected at BBR (Table 2.2), 10 at 

the Marshall ranch meadow (Table 2.3), 7 at the Marshall ranch uplands (Table 2.4), and 13 at 

the Shinn ranch (Table 2.5). In 2015, there were 12 species collected at BBR (Table 2.2), 9 at the 

Marshall ranch meadow (Table 2.3), and 12 at the Marshall ranch uplands (Table 2.4). The 

overall total number of species collected through both years was 22, with 15 identified as new 

county records for Rock and/or Brown counties in Nebraska. Onthophagus spp. were the most 

consistently dominant dung beetles across all locations in 2014 and 2015 (Tables 2.2, 2.3, 2.4, 

and 2.5). 

Barta Brothers Ranch. The average peak dung beetle abundances on the grazed 

treatments were consistently higher than that of the non-grazed control treatment during both 

2014 and 2015 (Figure 2.3). In 2014, peak abundance in the high-stocking rotational treatment 

was significantly higher than both the once-over (F1,86 = 10.49, P = 0.0017) and the twice-over 
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(F1,86 = 9.47, P = 0.0028) rotational treatments (Figure 2.3). The high-stocking rotational 

treatment was also approaching significance over the continuous treatment (P = 0.0831) (Figure 

2.3). In 2015, results indicated significantly higher peak abundance in the high-stocking 

rotational treatment over the once-over and twice-over rotational and the continuous treatments 

(F1,104 = 14.87, P = 0.0002; F1,104 = 6.02, P = 0.0158; F1,104 = 16.38, P < 0.0001) (Figure 2.3).  

In terms of species richness, all grazed treatments over both years were significantly 

higher than the non-grazed control treatment, except for 2014 with the continuous treatment 

showing only marginal significance over the control (P = 0.0624) (Figure 2.4). In both 2014 and 

2015, species richness in the high-stocking rotational treatment was significantly greater than the 

once-over (2014: F1,5 = 17.53, P = 0.0086, and 2015: F1,5 = 19.26, P = 0.0071) and twice-over 

(2014: F1,5 = 17.53, P = 0.0086, and 2015: F1,5 = 12.32, P = 0.0171) low-stocking rotational 

treatments and the continuous treatment (2014: F1,5 = 22.78, P = 0.0050, and 2015: F1,5 = 27.66, 

P = 0.0033) (Figure 2.4). 

The Simpson’s diversity indexes calculated in 2014 and 2015 were considerably greater 

for all rotationally grazed treatments compared to the continuous and control treatments (Figure 

2.5). Compared to the continuous treatment, Simpson’s diversity in the high-stocking rotational 

(2014: F1,5 = 10.19, P = 0.0242, and 2015: F1,5 = 7.74, P = 0.0388) and the once-over (2014: F1,5 

= 9.31, P = 0.0284, and 2015: F1,5 = 9.42, P = 0.0278) and twice-over (2014: F1,5 = 8.22, P = 

0.0351, and 2015: F1,5 = 6.91, P = 0.0466) low-stocking rotational treatments were all 

significantly higher (Figure 2.4). No significant differences were observed between the 

continuously grazed treatment and the non-grazed control (2014: P = 0.9702, and 2015: P = 

0.9993) (Figure 2.5). 
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The Simpson’s evenness values that were calculated in both 2014 and 2015 had only one 

major difference between treatments (Figure 2.6). In 2015, the non-grazed control treatment had 

significantly higher evenness compared to the high-stocking rotational (F1,5 = 25.60, P = 0.0039) 

and the once-over (F1,5 = 11.26, P = 0.0202) and twice-over (F1,5 = 19.39, P = 0.0070) low-

stocking rotational treatments, as well as the continuous treatment (F1,5 = 26.92, P = 0.0035) 

(Figure 2.6). However, this significance is most likely indicative of the simple lack of dung 

beetles collected in the control treatment for that year. No other significant differences were 

observed between treatments in either of the two years. 

Rick Marshall ranch. Peak abundance of dung beetles varied across the grazing 

treatments in 2014 but not in 2015. In 2014, the meadow high-stocking rotational treatment had 

significantly higher peak abundance (F1,6 = 6.53, P = 0.0432) than the upland high-stocking 

rotational treatment (Table 2.6). Similarly, the low-stocking rotational treatment showed slightly 

greater peak abundance than the upland high-stocking rotational treatment, however this was 

only marginally significant (P = 0.0596) (Table 2.6). Results from 2015 had no significant 

differences between treatments. 

Species richness was considerably different between two of the grazing treatments at the 

Marshall ranch in 2014 (Table 2.6). The low-stocking rotational treatment had significantly 

higher species richness compared to the upland high-stocking rotational treatment (F1,9 = 6.03, P 

= 0.0364) (Table 2.6). No other differences in species richness were found in 2014 or 2015. 

Due to having no treatment replicates at the Marshall ranch, no treatment means could be 

calculated for Simpson’s diversity index or Simpson’s evenness; therefore, statistical 

comparisons could not be made for these values (Table 2.6). 
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Randall Shinn ranch. As mentioned earlier in this chapter, data was collected from the 

Shinn ranch only during the 2014 grazing season. There were no significant differences in peak 

abundance between the low-stocking rotational and the high-stocking rotational treatment (Table 

2.7). However, the high-stocking rotational treatment showed significantly higher dung beetle 

species richness than in the low-stocking rotational treatment (F1,12 = 6.90, P = 0.0221) (Table 

2.7). 

Similar to the data collected at the Marshall ranch, the Shinn ranch also did not have 

treatment replicates. Statistical comparisons for Simpson’s diversity index or Simpson’s 

evenness could not be made as means could not calculated for these values (Table 2.7). 

Discussion and Conclusions 

 The conservation and promotion of dung beetles continues to be a subject of ongoing 

concern among ecologists as well as ranching communities around the world (Barbero et al. 

1999; Hutton and Giller 2003). The ecosystem services provided by dung beetles are necessary 

for the function of many cattle-grazed rangeland ecosystems (Nichols et al. 2008; Slade et al. 

2016). Dung beetle populations have continued to decline in recent years due to changes in 

agricultural practices, habitat loss, and pesticide usage (Hutton and Giller 2003; Slade et al. 

2016). Their critical role in preserving ecosystem sustainability has made the conservation of 

dung beetles recognized as an increasingly important agenda (Barbero et al. 1999; Scholtz et al. 

2009). Finding the best grazing practices that are able to maintain adequate abundance and 

diversity within the dung beetle community is key to keeping rangelands healthy enough to 

sustain cattle production. 

 The results of this study indicate that some cattle grazing practices may be more 

favorable toward the colonization of dung beetles. Observations made it clear that overall dung 
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beetle diversity could be improved with rotational grazing practices compared to continuous 

grazing (Figure 2.5). These findings support previous research by Whipple (2011) where higher 

dung beetle abundances and species numbers were reported in rotationally grazed pastures. 

Furthermore, higher stocking densities may also be a factor in promoting dung beetle 

populations, as abundance and species richness (but not diversity) were significantly greater in 

high-stocking rotational treatments over low-stocking rotational and continuous treatments 

(Figures 2.3 and 2.4). However, this trend may not always be the case as indicated by some of 

the outcomes at the other studied ranch locations (Tables 2.6 and 2.7). 

 At the Barta Brothers Ranch, Simpson’s diversity indices revealed that rotational grazing 

may support a more abundant and diverse community of dung beetles over that of continuous 

grazing or no grazing (Figure 2.5). However, the similarity in Simpson’s diversity among the 

rotational treatments is contradicted with the high-stocking rotational treatment showing greater 

abundance and species richness than the low-stocking rotational treatments (Figures 2.3 and 2.4). 

The relative evenness of species distribution may play a role because Simpson’s evenness 

appeared lower, although not significant, in the high-stocking rotational treatment (Figure 2.6). 

The relationship between Simpson’s evenness and Simpson’s diversity allows the lower 

evenness in the high-stocking rotational treatment to bring the diversity index value closer to that 

of the other rotational grazing treatments (Magurran and McGill 2011). Nonetheless, the higher 

abundance and species richness resulting from the high-stocking rotational treatment suggests 

that stocking density may have a greater effect on the dung beetle community beyond the 

utilization of rotational or continuous grazing. This could be due to an increase in the 

concentration and dispersal of dung pats throughout a pasture that is associated with stocking 

cattle at higher densities (Richards and Wolton 1976; Whipple 2011). More cattle and increased 
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dung deposition could prove to be more influential for attracting dung beetles. Since dung 

beetles are attracted to dung primarily by odor, high-stocking rotational or other forms of 

rotational grazing may favor the colonization of dung beetles (Whipple 2011). In turn, having 

more dung beetles could boost nutrient cycling, carbon sequestration, and mitigation of 

greenhouse gas emissions (Dormont et al. 2004; Penttilä et al. 2013; Slade et al. 2016).  

 At the collaborating ranches, mixed results compound what was seen between rotational 

treatments at BBR. The fact that the Marshall ranch showed no significant differences in dung 

beetle abundance or species richness among the rotational grazing treatments in the meadow 

(Table 2.6) implies that the results seen at BBR may not be ubiquitous. Simpson’s diversity and 

evenness values fluctuated in 2014 and 2015, which further supports these findings (Table 2.6). 

Values in the upland high-stocking rotational treatment were typically different from the 

meadow treatments, which may represent the variation between the two habitats and its affect on 

the community structure (Tables 2.3, 2.4, and 2.6). The 2014 results from the Shinn ranch were 

similar to the Marshall ranch except that species richness was significantly greater in the high-

stocking rotational treatment (Table 2.7). An explanation for the mixed outcomes from the 

collaborating ranches compared to BBR could be that location can act as a contingent factor for 

dung beetle assemblages. To better understand this, future research should be expanded to focus 

on diversifying the areas that are studied. Implementing continuous grazing and different 

rotational grazing practices on a broader range of grassland habitats could better demonstrate 

how dung beetle activity might vary depending on location.  

 Overall, this study contributes useful information to an important knowledge gap 

regarding the effects of grazing practices on dung beetle communities. It may give ranchers and 

other pastureland owners valuable insight into how they can graze their livestock and at the same 
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time promote dung beetle populations. Many studies have proven the benefits of dung beetles as 

they provide many essential ecosystem services (Bang et al. 2005; Yamada et al. 2007; Nichols 

et al. 2008; Slade et al. 2016). Conserving their populations by implementing grazing practices 

that favor them could be advantageous by boosting ecosystem functions to provide improved 

rangeland health in many regions, including Nebraska (Barbero et al. 1999). It has been 

demonstrated in this study that cattle grazing practices can affect dung beetle activity on 

rangelands. Furthermore, rotational grazing, and in some cases high-stocking rotational grazing, 

can help enhance the dung beetle community by promoting abundance as well as species 

diversity. By implementing rotational grazing practices, dung beetle biodiversity might be 

strengthened to help build and maintain more sustainable rangeland and grassland ecosystems. 
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Table 2.1: Relative cattle stocking densities that were used for each grazing treatment at the 

studied ranches in 2014 and 2015. 

 
Grazing treatment Stocking density (AU ha-1) 
No graze/hay 0 
Continuous < 1 
Low-stocking rotational (once-over & twice-over) ~ 20 
High-stocking rotational ~ 500 
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Table 2.2: Percent abundance of dung beetle (Coleoptera: Scarabaeoidea) species collected at 

Barta Brothers Ranch in 2014 and 2015. 

 
 % Total 

Species 2014 a 2015 b 2014/2015 Average 
Onthophagus hecate 36.58* 52.05* 44.32* 
Diapterna pinguella 41.45* 23.87* 32.66* 
Onthophagus pennsylvanicus 5.53* 13.95* 9.74* 
Aphodius rusicola 8.82* 1.53 5.18* 
Ataenius spretulus 5.13 3.75* 4.44 
Onthophagus orpheus pseudorpheus 0.92 1.87 1.39 
Aphodius fimetarius 0.53 1.04 0.79 
Aphodius rubeolus 0.39 0.76 0.58 
Aphodius haemorrhoidalis 0.26 0.76 0.51 
Geotrupes opacus - 0.21 0.11 
Melanocanthon nigricornis - 0.14 0.07 
Aphodius gordoni 0.13 - 0.06 
Ataenius imbricatus 0.13 - 0.06 
Canthon pilularius 0.13 - 0.06 
Bolbocerosoma bruneri - 0.07 0.03 
    
Sum 100 100 100 
Total number of species 12 12 15 
a A total of 760 dung beetles were collected across all sampling dates in 2014  

b A total of 1,441 dung beetles were collected across all sampling dates in 2015  

*  Dung beetle species making up ~ 90% of the total captures within a specified year  
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Table 2.3: Percent abundance of dung beetle (Coleoptera: Scarabaeoidea) species collected in 

the meadow pasture at the Rick Marshall ranch in 2014 and 2015. 

 
 % Total 

Species 2014 a 2015 b 2014/2015 Average 
Diapterna pinguella 39.60* 42.75* 41.18* 
Onthophagus hecate 44.16* 36.62* 40.39* 
Onthophagus pennsylvanicus 3.81 14.31* 9.06* 
Aphodius rusicola 9.90* 1.49 5.69 
Melanocanthon nigricornis 0.76 1.67 1.22 
Geotrupes opacus - 2.04 1.02 
Ataenius spretulus 0.51 0.74 0.63 
Copris fricator 0.51 0.19 0.35 
Aphodius rubeolus 0.25 0.19 0.22 
Odenteus filicornis 0.25 - 0.12 
Onthophagus orpheus pseudorpheus 0.25 - 0.12 
    
Sum 100 100 100 
Total number of species 10 9 11 
a A total of 394 dung beetles were collected across all sampling dates in 2014  

b A total of 538 dung beetles were collected across all sampling dates in 2015  

*  Dung beetle species making up ~ 90% of the total captures within a specified year  
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Table 2.4: Percent abundance of dung beetle (Coleoptera: Scarabaeoidea) species collected in 

the upland pasture at the Rick Marshall ranch in 2014 and 2015. 

 
 % Total 

Species 2014 a 2015 b 2014/2015 Average 
Onthophagus pennsylvanicus 28.36* 43.46*  35.91* 
Onthophagus hecate 32.84* 35.05*  33.95* 
Canthon ebenus 29.85* 7.01*  18.43* 
Geotrupes opacus - 6.54*  3.27* 
Melanocanthon nigricornis 4.48 1.64  3.06 
Onthophagus orpheus pseudorpheus 1.49 1.87  1.68 
Aphodius rubeolus 1.49 1.64  1.57 
Aphodius rusicola 1.49 0.23  0.86 
Canthon pilularius - 1.17  0.59 
Aphodius haemorrhoidalis - 0.93  0.46 
Copris fricator - 0.23  0.11 
Phanaeus vindex - 0.23  0.11 
     
Sum 100 100  100 
Total number of species 7 12  12 
a A total of 67 dung beetles were collected across all sampling dates in 2014   

b A total of 428 dung beetles were collected across all sampling dates in 2015   

*  Dung beetle species making up ~ 90% of the total captures within a specified year   
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Table 2.5: Percent abundance of dung beetle (Coleoptera: Scarabaeoidea) species collected at 

the Randall Shinn ranch in 2014. 

 
Species % Total a 
Onthophagus hecate 57.09* 
Ataenius spretulus 13.12* 
Diapterna pinguella 13.12* 
Aphodius rusicola 10.99* 
Onthophagus pennylvanicus 3.01 
Aphodius fimetarius 0.71 
Bolberocerosoma bruneri 0.71 
Aphodius rubeolus 0.35 
Aphodius erraticus 0.18 
Aphodius granarius 0.18 
Aphodius haemorrhoidalis 0.18 
Onthophagus orpheus pseudorpheus 0.18 
Tomarus relictus 0.18 
  
Sum 100 
Number of species 13 
a A total of 567 dung beetles were collected across all sampling dates in 2014  
*  Dung beetle species making up 90% of the total captures within a specified year  
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Table 2.6: Comparisons of dung beetle (Coleoptera: Scarabaeoidea) peak abundance, species 

richness, Simpson’s diversity, and Simpson’s evenness across low-stocking (LS) and high-

stocking (HS) rotational cattle grazing practices at the Rick Marshall ranch in 2014 and 2015. 

 
 
Treatment 

Mean peak 
abundance a,b 

Mean species 
richness a,b 

Simpson’s 
diversity 

Simpson’s 
evenness 

2014     
Rotational LS 7.31 ± 1.75 AB 7.00 ± 1.08 A 2.58 0.26 
Rotational HS 8.19 ± 2.44 A 4.25 ± 0.48 AB 2.74 0.55 
Rotational HS (upland) 3.50 ± 0.99 B 3.00 ± 0.91 B 3.57 0.51 
       
2015       
Rotational LS 10.31 ± 5.01 A 4.50 ± 0.87 A 2.94 0.40 
Rotational HS 11.56 ± 4.13 A 5.50 ± 0.87 A 2.81 0.37 
Rotational HS (upland) 13.93 ± 5.90 A 5.80 ± 1.46 A 3.11 0.26 
a Letters indicate significance in columns (P < 0.05). Means with the same letter are not significantly different. 
b Values represent the means with standard error of the mean. 
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Table 2.7: Comparisons of dung beetle (Coleoptera: Scarabaeoidea) peak abundance, species 

richness, Simpson’s diversity, and Simpson’s evenness across low-stocking (LS) and high-

stocking (HS) rotational cattle grazing practices at the Randall Shinn ranch in 2014. 

 

 
Treatment 

Mean peak 
abundance a,b 

Mean species 
richness a,b 

Simpson’s 
diversity 

Simpson’s 
evenness 

2014     
Rotational LS 6.21 ± 1.45 A 8.14 ± 1.06 B 2.42 0.22 
Rotational HS 11.43 ± 2.20 A 12.71 ± 0.52 A 2.65 0.22 
a Letters indicate significance in columns (P < 0.05). Means with the same letter are not significantly different. 
b Values represent the means with standard error of the mean. 
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Figure 2.1: Diagram of the pitfall trap design that was used to measure dung beetle activity in 

cattle-grazed pastures during the 2014 and 2015 grazing seasons. 
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Figure 2.2: Photograph of a pitfall trap that was used to measure dung beetle activity in cattle-

grazed pastures during the 2014 and 2015 grazing seasons. 
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Figure 2.3: Mean (± SEM) peak abundance of dung beetles (Coleoptera: Scarabaeoidea) 

collected across different cattle grazing practices at Barta Brothers Ranch in 2014 and 2015. 

Grazing treatments were high-stocking (HS) rotational, once-over and twice-over low-stocking 

(LS) rotational, continuous, and no graze/hay. Letters indicate significance in treatments (P < 

0.05). Means with the same letters are not significantly different.  
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Figure 2.4: Mean (± SEM) species richness of dung beetles (Coleoptera: Scarabaeoidea) 

collected across different cattle grazing practices at Barta Brothers Ranch in 2014 and 2015. 

Grazing treatments were high-stocking (HS) rotational, once-over and twice-over low-stocking 

(LS) rotational, continuous, and no graze/hay. Letters indicate significance in treatments (P < 

0.05). Means with the same letters are not significantly different. 
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Figure 2.5: Mean (± SEM) Simpson’s diversity index (1/D) of dung beetles (Coleoptera: 

Scarabaeoidea) collected across different cattle grazing practices at Barta Brothers Ranch in 

2014 and 2015. Grazing treatments were high-stocking (HS) rotational, once-over and twice-

over low-stocking (LS) rotational, continuous, and no graze/hay. Letters indicate significance in 

treatments (P < 0.05). Means with the same letters are not significantly different. 
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Figure 2.6: Mean (± SEM) Simpson’s evenness of dung beetles (Coleoptera: Scarabaeoidea) 

collected across different cattle grazing practices at Barta Brothers Ranch in 2014 and 2015. 

Grazing treatments were high-stocking (HS) rotational, once-over and twice-over low-stocking 

(LS) rotational, continuous, and no graze/hay. Letters indicate significance in treatments (P < 

0.05). Means with the same letters are not significantly different. 
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CHAPTER 3 

EVALUATION OF DUNG BEETLE (COLEOPTERA: SCARABAEOIDEA) ATTRACTION 

TO CATTLE DUNG ORIGINATING FROM DIFFERING GRAZING PRACTICES 

 

Introduction 

Moisture and nutrient composition of dung can have a large impact on dung beetle 

activity in rangeland. The amount of fluid in dung is important for its attractiveness and 

suitability for dung beetles as they obtain the majority of their nutrition from liquid dung 

(Aschenborn et al. 1989). In fact, Halffter and Matthews (1966) found that adults dung beetles 

typically feed on the liquid components while the more fibrous materials are used for brooding 

offspring. Several studies have also found that variations in dung nutrition can alter its 

attractiveness to many coprophagous insects, including dung beetles (Estrada et al. 1993; 

Whipple and Hoback 2012). The diet of an animal and the resulting components of its dung can 

significantly affect dung beetle feeding preferences (Scholtz et al. 2009; Whipple and Hoback 

2012). Whipple and Hoback (2012) found that dung beetles were more attracted to dung from 

omnivorous animals than to dung from herbivores or carnivores. The results may suggest that 

dung beetles exhibit preferences for dung based on the nutritional value and moisture level 

associated with animal diet. In a rangeland setting, these preferences could be linked to cattle 

grazing as cattle diet may vary between different grazing practices. 

 There are several grazing practices used to manage cattle in rangeland ecosystems with 

two practices, continuous and rotational grazing, being the most common (Heath et al. 1985). 

Continuous grazing involves low densities of cattle (< 1 AU ha-1) being put out into an open 

pasture where they left to graze for the entire season (Holechek et al. 2011). Rotational grazing is 
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more complex – breaking the pasture into smaller sections called paddocks which are then 

grazed individually (Holechek et al. 2011). As the season progresses, higher densities of cattle (~ 

20 AU ha-1) are rotated between paddocks as available forage becomes depleted (Holechek et al. 

2011). Another type of rotational grazing with very high stocking rates is referred to as high-

stocking rotational grazing or “mob” grazing (Thomas 2012). High-stocking rotational grazing 

involves grazing the pasture by rotating high densities of cattle (~ 500 AU ha-1) through small-

sized paddocks (Gompert 2009; Thomas 2012). High-stocking rotational grazing requires 

frequent rotations throughout the season so that the pasture does not become damaged from 

overgrazing (Thomas 2012).  

 Cattle that are grazed continuously on a pasture may have more dietary selectivity than 

cattle that are rotationally grazed (Holechek et al. 2011). When put out into pasture, cattle 

typically prefer to eat the broad-leafed plants like forbs before they eat grasses (Holechek et al. 

2011). Cattle are able to exhibit this preferential feeding behavior when they are grazed at lower 

stocking densities (Holechek et al. 2011; Schacht et al. 2011). At higher stocking densities, cattle 

must graze on a more diverse range of plants because there is more competition with the other 

cattle in the pasture (Holechek et al. 2011). In the case of high-stocking rotational grazing, 

selective grazing can be decreased to increase harvest efficiency in the pasture (Heady 1961; 

Thomas 2012). These differences in feeding behavior may in turn change the nutritional content 

of dung through altered diets. 

The objective of this study was to determine if dung beetles exhibit a preference for cattle 

dung depending on the cattle stocking density. Lower stocking densities allow cattle to have 

more selective diets than cattle grazed at higher stocking densities (Holechek et al. 2011). 

Theoretically, cattle that have higher selectivity may then produce higher dung quality for dung 
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beetles. It is hypothesized that dung beetles will exhibit a greater attraction to dung from cattle 

grazed with a more selective grazing diet. 

Materials and Methods 

Study site description. This study was conducted during the 2015 grazing season at the 

University of Nebraska-Lincoln’s Barta Brothers Ranch in the Sandhills Ecoregion of Nebraska 

(Ahlbrandt and Fryberger 1980). The Sandhills are primarily composed of sand dunes and 

wetlands that are overlaid with mixed-grass prairie (Ahlbrandt and Fryberger 1980; McNab and 

Avers 1994). Annual precipitation is from 430 – 580 mm and the average temperature is ~ 10 °C 

(McNab and Avers 1994). 

The Barta Brothers Ranch was located in Rock County approximately 11 km west of 

Rose, Nebraska (42°13’N; 99°38’W). Research was done in a lowland, sub-irrigated meadow 

pasture that was used for haying purposes. The pasture was adjacent to other pastures in the 

meadow that were being grazed with cattle. 

Experimental design and procedures. The study was set up as a randomized complete 

block design consisting of 4 blocks with 4 treatments per block. Treatments consisted of 

individual pitfall traps that were baited with different types of cattle dung. Three of the 

treatments were baited with dung from cattle that were grazed at three different stocking 

densities and the fourth treatment was a non-baited control. The three baited treatments received 

dung from cattle that were in a high-stocking rotational grazing system (~ 500 AU ha-1), a low-

stocking rotational grazing system (~ 20 AU ha-1), and continuous grazing system (< 1 AU ha-1). 

Each block contained individual pitfall traps that were representative of each treatment, totaling 

four traps per block. 
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Pitfall traps were designed similar to the ones utilized in Ratcliffe (2013), except they 

were modified by using 500 ml Nalgene jars and steel cover plates. Traps were baited with 20-ml 

vials containing approximately 10-20 ml of fresh cattle dung that was collected from each 

grazing system. Jars were filled with approximately 50-100 ml of a 50% Ethylene glycol/water 

solution to act as a killing agent. The pitfall traps were spaced no closer than 50 meters apart to 

ensure independence (Larsen and Forsyth 2005). Following methods similar to Whipple and 

Hoback (2012) the traps were baited with cattle dung for 7-day intervals within 14-day periods. 

After 7 days, the traps were collected and the bait vials were replaced with fresh dung for the 

next period. Trapping began in mid June after cattle were turned out to pasture and continued 

through July.  

Dung preference was measured based on the abundance of dung beetles collected in the 

traps for each treatment. After collection, dung beetles were counted and identified to species 

according to Ratcliffe and Paulsen (2008). Dung samples were sent to Ward Laboratories in 

Kearney, NE for analysis to compare dung quality between grazing treatments. Moisture, dry 

matter, and pH were measured along with levels of nitrogen, phosphorous, potassium, calcium, 

magnesium, sodium, zinc, and iron. 

Statistical procedures. The data gathered for this study was zero-inflated and was 

analyzed using a negative binomial regression model implemented in the PROC MEANS 

procedure with SAS statistical software version 9.4 (2013). Significant differences between 

treatment means were estimated using an α = 0.05 significance level.  

Results 

Dung beetle preference. Sampling over the duration of this experiment yielded only 16 

dung beetles from 5 different species. The overall mean for the data was 0.3333 with a variance 
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of 0.7801. As the variance was greater than the mean, there was evidence of over-dispersion. 

Means for dung beetle abundance per trap were then calculated for each treatment using zero-

inflated probabilities. 

Not including traps where no dung beetles were found, the mean number of beetles per 

trap were calculated as 1.4051 for the high-stocking rotational treatment, 1.5731 for low-

stocking rotational treatment, 2.2147 for continuous treatment, and 0 for the control. The 

remaining traps containing 0 beetles were then accounted for using percentages based on zero-

inflation probability. For example, the estimated zero-inflation probability of the high-stocking 

rotational treatment was 70.27%, making the remaining 29.73% (100 – 70.27 = 29.73) contain 

the mean of 1.4051. Therefore, the estimate for overall mean abundance per trap in the high-

stocking rotational treatment was 0.2973 x 1.4051 = 0.4177 beetles. Mean abundances for the 

continuous and low-stocking rotational treatments were also calculated using this method. The 

rounded calculated means for all treatments along with their associated standard errors are 

displayed in Table 3.1. 

 There were no significant differences found between dung beetle abundance across the 

three baited treatments. Species richness was also totaled for each treatment. Out of the 5 dung 

beetle species collected in total, the high-stocking rotational treatment and the continuous 

treatment each contained 3 beetles and the low-stocking rotational treatment contained 2 beetles 

(Table 3.1).  

 Dung analysis. Dung composition was relatively similar between cattle from the 

different grazing treatments. Nutrient percentages did not vary from one another by more than 

1% (Table 3.2). Similarly, pH, moisture, and dry matter percentages remained consistent across 

the different treatments (Table 3.2). 
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Discussion and Conclusions 

 It is well documented that animal diet can alter the attractiveness of a dung source to 

dung beetles (Hanski and Cambefort 1991; Estrada et al. 1993; Horgan 2005; Scholtz et al. 2009; 

Whipple and Hoback 2012). This attraction varies based on omnivore, carnivore, and herbivore 

feeding habits, but may also depend on the particular diets within those feeding guilds (Scholtz et 

al. 2009; Whipple and Hoback 2012). Understanding how differing cattle diets could change 

dung beetle preferences is important as it may prove beneficial to ranchers. Attracting more dung 

beetles could improve rangeland by providing more ecosystem services (Estrada et al. 1998; 

Nichols et al. 2008; Walters 2008). Evaluating the content of cattle dung from different grazing 

practices can be helpful to determine whether or not a particular dung type might increase the 

level of attraction for dung beetles. 

The results of this study indicate that dung beetles may not have a preference for cattle 

dung based on grazing practice. However, the number of beetles collected over the duration of 

the experiment might not have been enough to provide truly meaningful results. The fact that no 

dung beetles were caught in the non-baited control treatment does suggest that the baited 

treatments functioned as intended (Table 3.1). Low catch levels of dung beetles in the baited 

treatments could have been due to the lack of dung pats surrounding the traps. It is recognized 

that the quantity and spatial distribution of dung pats have a large influence on attracting dung 

beetles (Horgan 2005). Thus, the bait vials alone may not have been enough to attract larger 

abundances of dung beetles to the study area. Furthermore, the bait vials were replaced only once 

per week which could also affect dung beetle attraction. Over time, dung nutrition can decline as 

the dung decomposes and becomes colonized by fungi and microbes (Hanski and Cambefort 
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1991; Scholtz et al. 2009). This nutrient decline might have made the bait less attractive in later 

stages of the sampling periods and contribute to the overall reduction in dung beetle numbers. 

No major variations were found among the components of the cattle dung types that were 

used in this study. Nitrogen content is considered to be a main source for measuring nutrient 

quality in dung (Holter and Scholtz 2007). However, percent nitrogen along with other nutrients 

and the physical condition of the dung did not differ extensively among treatments (Table 3.2). 

Although zinc and iron levels were slightly elevated in cattle dung from the continuous treatment 

and the high-stocking rotational treatment (~ 400 mg kg-1), this has appeared to have no impact 

on dung beetle attraction (Tables 3.1 and 3.2). Lack of dung variation could suggest that cattle 

diets may have been nearly identical among treatments as the meadow pastures where cattle were 

being grazed were relatively homogeneous. Even though grazing practices taking place at the 

same location did not have any major effect on cattle diet, this could vary if compared between 

different pasture locations and grazing habitats. Future research may focus on comparing dung 

from cattle grazed in different locations all together. 

 It is noteworthy that the two Aphodius species collected in this study were only found in 

the dung from continuously grazed cattle (Table 3.2). The continuous treatment also had an 

absence of dung beetles from the Onthophagus genus that were present in both of the rotational 

grazing treatments (Table 3.2). These differences in species composition between dung types 

could be relevant as they may reveal individual species preference for dung. Conducting further 

research on individual species preference might prove useful for a better understanding of how 

dung beetles utilize dung on a communal basis. 

 In conclusion, this study provides information about the relationship between dung beetle 

preference and cattle grazing diets. It has been revealed that the composition of dung from cattle 
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in different grazing practices might not differ significantly as long as they are grazed in similar 

habitats. In turn, grazing practices do not appear to alter the overall abundance of dung beetles on 

different dung types. This information may be of some value as it shows that grazing practices 

might not be a factor in affecting dung beetle attraction to cattle dung. However, the data 

gathered from this study has also displayed evidence that variation in species composition could 

be present. Questions can then be raised about what other chemical components of dung might 

be affecting the level of attraction and how this can impact dung beetle abundance and diversity 

in rangeland ecosystems. Relatively few studies have examined the topic of dung beetle 

preference and attraction to cattle dung, making it an area of considerable research potential. 
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Table 3.1: Comparison of dung beetle (Coleoptera: Scarabaeoidea) abundance and species 

richness across cattle dung collected from different grazing practices at the Barta Brothers Ranch 

in 2015. 

 
 Dung type 

Species 
High-stocking 

rotational 
Low-stocking 

rotational Continuous Control 
Aphodius fimetarius 0 0 1 0 
Aphodius rusicola 0 0 1 0 
Diapterna pinguella 3 2 3 0 
Onthophagus hecate 1 4 0 0 
Onthophagus pennsylvanicus 1 0 0 0 

     
Species richness 3 2 3 0 
Abundance/trap 0.42 ± 0.37 a 0.50 ± 0.29 0.42 ± 0.27 0 
a Values represent the means with standard error of the mean. 

 



 

 

Table 3.2: Content analysis of cattle dung collected from different grazing practices at the Barta Brothers Ranch in 2015. 

 

Dung type 
Total N 

(%) 
P 

(%) 
K 

(%) 
Ca 
(%) 

Mg 
(%) 

Na 
(%) 

Zn  
(mg kg-1) 

Fe  
(mg kg-1) pH 

Moisture 
(%) 

Dry matter 
(%) 

High-stocking rotational 1.60 1.45 1.43 0.82 0.23 0.10 54.3 944.25 6.9 83.21 16.80 
Low-stocking rotational 1.86 0.86 1.29 1.06 0.28 0.05 98.55 481.55 6.8 85.42 14.58 
Continuous 2.13 1.25 0.63 1.23 0.30 0.70 468.25 553.95 6.7 82.85 17.1 
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APPENDIX 

Photos of Dung Beetles of the Nebraska Sandhills 

 

Guide to photo list: 

1. Aphodius erraticus * 

2. Aphodius fimetarius 

3. Aphodius gordoni 

4. Aphodius granarius 

5. Aphodius heamorrhoidalis 

6. Aphodius rubeolus 

7. Aphodius rusicola 

8. Ataenius spretulus 

9. Ataenius imbricatus 

10. Bolbocerosoma bruneri 

11. Canthon ebenus 

12. Canthon pilularius 

13. Copris fricator (♀) 

14. Diapterna pinguella 

15. Geotrupes opacus 

16. Melanocanthon nigricornis 

17. Odonteus filicornis (♂) 

18. Onthophagus hecate (♂) 

19. Onthophagus pennsylvanicus (♀) 
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20. Onthophagus orpheus pseudorpheus (♀) 

21. Phanaeus vindex (♀) 

22. Tomarus relictus 

 

* Size and appearance of dung beetles may vary based on gender. 
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