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Unplanned missing responses are common to surveys and tests including large 

scale assessments. There has been an ongoing debate on how missing responses should 

be handled and some approaches are preferred over others, especially in the context of 

the item response theory (IRT) models. In this context, examinees’ abilities are normally 

estimated with the missing responses generally ignored or treated as incorrect. Most of 

the studies that have explored the performance of missing data handling approaches have 

used simulated data. This study uses the SERCE (UNESCO, 2006) dataset and 

missingness pattern to evaluate the performance of three approaches: treating missing as 

incorrect, midpoint imputation, and multiple imputation with and without auxiliary 

variables. Using the Rasch and 2PL models, the results showed that treating missing as 

incorrect had a reduced average error in the estimation of ability but tended to 

underestimate the examinee’s ability. Multiple imputation with and without auxiliary 

variables had similar performances to one another. Consequently, the use of auxiliary 

variable may not harm the estimation, but it can become an unnecessary burden during 

the imputation process. The midpoint imputation did not differ much from multiple 

imputation in its performance and thus should be preferred over the latter for practical 

reasons. The main implication is that SERCE might have underestimated the student’s 

ability. Limitations and further directions are discussed. 
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CHAPTER I: INTRODUCTION 

Large-scale achievement assessment originated in 1922, with the implementation 

of the Stanford Achievement Test (Kelley, Ruch, & Terman, 1922). Since then other 

large-scale tests have appeared and assessments have been extended to comparing 

performance across countries. International achievement assessments such as the Trends 

in International Mathematics and Science Study (TIMSS), the Progress in International 

Reading Literacy Study (PIRLS), and the Programme for International Student 

Assessment (PISA) are among the most well-known international large-scale 

achievement tests. These three surveys have been administered to elementary and high 

school students in different domains. The majority of the participant countries in these 

tests are European and Asian with only few being from Africa or Latin-America. More 

recently, the United Nations Educational, Scientific, and Cultural Organization 

(UNESCO, using its Spanish acronym) supports a relatively new effort to measure 

education quality in Latin-American countries at the elementary level in mathematics, 

reading and writing, and sciences. 

All the above instruments measure cognitive skills across nations. Their main goal 

is to determine the performance of educational systems and the position of the countries 

in this matter. To assess the quality of education requires establishing comparability of 

scores between countries. Score comparability is connected to validity and test fairness. 

As such, lack of bias and equality in outcomes of testing are needed in order to guarantee 

quality of interpretation (Standards for Educational and Psychological Testing, 2014). 

One of the factors that contributes to bias is unplanned missing data or missingness 
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observed in the data collection stage. In large-scale assessment, and in any other survey, 

not all the examinees will provide answers to all the items. This may be because they do 

not know the answer or are unsure about their answer, they do not have time to answer all 

the items, they inadvertently skip one or more, or simply due to individual characteristics 

(e.g., risk-aversion, self-confidence, test-wiseness, test-taking behavior, etc.). 

Missingness reduces the sample size, and thus affects the representativeness of the 

population, the accuracy of parameter estimates (Mislevy & Wu, 1988, 1996), and the 

generalizability of inferences. 

The literature shows that the proportion of the missing data, the nature of the 

missingness (i.e., missingness mechanisms) during data collection, and the way it is 

addressed in statistical analysis yield different results (e.g., Allison, 2006; Dong & Peng, 

2013; Enders, 2010; Lord, 1973, 1980; Mislevy & Wu, 1988; Rubin, 1976; Little & 

Rubin, 1987; Schafer, 1997). For example, Mislevy and Wu (1988, 1996) assert that 

treating missing data as incorrect downwards the inferences about person ability. As will 

be explained soon, how missingness is handled can yield biased parameter estimates and 

distort both the final results and the quality of the inferences.  

Missing data and Ignorability 

Missingness mechanisms. Missing data can be either planned or unplanned. If 

the missing data are planned they are said to be missing by design. They are due to the 

researcher’s decision and under the researcher’s control. Data are missing due to 

characteristics or design of the instrument (e.g., adaptive tests), or are associated with the 

cost-effectiveness of the measurement (i.e., to save time and/or money). Consequently, 
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these missing responses can be ignored with negligible consequences on the inferential 

analysis. This type of the missingness can be modeled using either maximum likelihood 

or multiple imputation techniques (Enders, 2010). When the missing data are unplanned, 

they may or may not be ignored, depending on the cause of the missingness. 

Rubin (1976) and Little and Rubin (1987) introduced a taxonomy based on the 

missingness nature (ignorable or nonignorable). According to them, that there are three 

different missingness mechanisms. They depend on the probability of response 

conditioned to the outcome, some covariate variables, or both. Data are missing 

completely at random (MCAR) if the nonresponses are independent of the variable being 

measured. When the nonresponse is conditional on any other variable (covariate) except 

the outcome, the data are missing at random (MAR). Both, MCAR, and MAR are 

considered ignorable missingness for “likelihood-base inference” (Little & Rubin, 1987, 

p.15). Therefore, it is possible to get unbiased parameter estimates working only with the 

part of the data that has no missingness (when data are MCAR), or considering the 

conditional distribution if needed (when data are MAR).  

A last mechanism assumes that the data are missing not at random (MNAR). That 

is, the probability of response is conditional on both outcome and covariate variables. In 

this case, the missing data are systematic or non-random. MNAR is also known as 

nonignorable missingness, because the analysis of only the part of the data that are 

complete produces biased estimates (Little & Rubin, 1987; Rubin, 1976). For example, 

when dealing with the estimation of item parameters under IRT statistical programs 

generally assume that the missingness is ignorable. Violation of this assumption biases 
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item and person parameter estimates. Similarly, incorrectly treating missingness may 

overlook the differential item functioning (DIF) for different participating groups 

(Emenogu, Barnabas, Falenchuk, & Childs, 2010).  

Unfortunately, there are not many techniques to test the nature of missingness. 

MCAR can be tested using Little’s test for MCAR (Little, 1988). The plausibility of 

MAR could be checked with a t-test of the mean difference between the group of 

participants with and without nonresponses (Diggle, Liang, & Zeger, 1995; as cited in 

Dong & Peng, 2013; Tabachnick & Fidell 2012). Nevertheless, even when it may be 

evident that the missingness is conditional on some variables (i.e., MAR), it is practically 

impossible to verify that the missing data are not related also to the variable under 

measure (Dong & Peng, 2013).  

Missing data handling methods. There are different ways to deal with missing 

data. They vary according to the missingness mechanisms and the researcher’s 

willingness to work with complete or incomplete data. Appendix A shows the different 

techniques. In complete data analysis only the cases that do not have missing responses 

are used. This approach assumes that the missingness is ignorable (MCAR). The 

incomplete data analysis implies working with the whole collected data, including 

missing responses. In this case, the missing data are assumed to be random missingness 

(i.e., either MCAR or MAR) most of the times. Methods to treat nonresponses can be 

classified in deductive, deterministic, and stochastic. The method is deductive when the 

missing values are imputed using additional logic information. If a predicted or specific 

value is used, then the method is deterministic, and it is stochastic if randomness is 
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incorporated into the process. 

In listwise deletion (LD), observations with missing responses are discarded. The 

analysis is then done only with the complete cases. The advantages of this approach is 

simplicity and comparability (Little & Robin, 1987). The disadvantages are the loss of 

information due to reduction of sample size, and biased sample estimates if the 

mechanisms is not MCAR. When the observations are eliminated according to the 

variables to be studied the analysis is said to be available-case or pairwise deletion. The 

advantage of this technique is that the sample loss is less than in listwise deletion. The 

drawback is the variability of the sample size from variable to variable, which depends on 

the missingness pattern (see Enders, 2010 for description about the patterns). 

Single Imputation (SI) methods have shown to yield biased parameters estimates, 

even under MCAR (Enders, 2010). Appendix A lists the different SI techniques. The 

unconditional mean imputation (or mean substitution, or arithmetic mean imputation) 

consists of taking the mean of the available data and assigning that value to all the 

missing responses. This approach “systematically underestimates variances and 

covariances” (Little & Rubin, p.44). Person mean imputation (or averaging the available 

items or prorating a scale score) can be used when the researcher wants to work with 

scale scores instead of working with item responses. That is, the scale score is computed 

by taking the average (or the sum) of the items with responses. Although more studies 

need to be conducted to check on the disadvantages of person mean imputation, “it may 

produce biased parameter estimates [even] with MCAR data” (Enders, 2010, p.51). Other 

mean-based imputation techniques are explained in more detail in the next chapter. 
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Regression imputation (also called Buck’s method or conditional mean 

imputation) assumes that the missing data are conditional on the observed variables. 

Therefore, the missing values for each variable are estimated by a linear regression where 

Y is the variable with missing values and Xi are other variables in the dataset. The 

disadvantage of this method is that the imputed value will be the same for all the cases 

that have the same predictor values. Due to that lack of variability, this method 

overestimates the correlation and the R2 statistic (Enders, 1999, 2010). This approach also 

underestimates variances and covariances, although in a smaller degree than the mean-

based imputation (Enders, 2010; Little & Robin, 1987). 

Another alternative is the stochastic regression imputation. In this method, the 

regression equation includes a residual term. This term is randomly selected from a set of 

numbers normally distributed with mean zero and variance equal to the residual variance 

from the model (if the criterion is a continuous variable). The variability issue is taken 

into account with this additional element in the imputation process. This approach 

produces unbiased estimates even under MAR assumption. Nonetheless, it still 

underestimates sampling error, increasing type I error. Also, it becomes complex with 

multivariate missingness (Enders, 2010; Little & Robin, 1987).  

Hot-deck imputation is a set of techniques that imputes the missing values with 

scores from similar respondents (Enders, 2010). There are several versions of this 

approach (e.g., random hot-deck, the deterministic hot-deck, hot-deck nearest neighbor, 

etc.). However, the idea behind them is the same. They replace the missing values with 

the observed values from respondents that share the same characteristics (matching 
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variables) in the dataset. This method preserves the data distribution and does not 

artificially make the data leptokurtic, because it maintains the data variability (Enders, 

1999, 2010). It does not rely on model fitting and avoids cross-users inconsistencies 

between imputation and data analysis (Andridge & Little, 2010). It, however, 

underestimates the sampling error (Enders, 2010). Moreover, it is not convenient for 

estimating measuring association, because this imputation approach affects the 

correlation and regression coefficient estimates (Schafer & Graham, 2002). Other 

disadvantages are: (a) it does not have a theoretical foundation; (b) the likelihood of still 

having missing data at the end of the procedure is high because donors may not be found; 

and (c) when the missingness is present in more than one variable, then the order in 

which the variables are imputed can affect subsequent imputation (Enders, 2010). 

Another matching-case method is the cold-deck imputation, which is similar to 

hot-deck imputation. In this case, the imputed data come from a different dataset against 

which missing values are matched. Similar response pattern imputation also shares some 

commonalities with the hot-deck imputation. It also uses matching variables between the 

complete and incomplete cases. In this method, the complete case that minimizes the 

standardized difference of the matching variables between the two sets (i.e., complete and 

incomplete) will donate its value to the incomplete one. If there is more than one donor, 

then the average of them is the imputed value. This approach works fine when data are 

MCAR (Brown, 1994; Enders, 2001; Enders & Bandalos, 2001; Gold & Bentler, 2000; as 

cited in Enders, 2010), but the bias could be substantial when data are MAR (Enders, 
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2010). The disadvantages for these two approaches are the same as for the hot-deck 

imputation. 

Last observation and worse observation carried forward are used in longitudinal 

measures. In the former case, after participant’s dropout, the last observed value in each 

variable is repeated for the rest of waves (i.e., points of measure in the time) in the study. 

In the latter case, the lowest registered value of each variable is repeated for the rest of 

the waves in the study. Different studies have shown that the parameter estimates are 

biased (under-or over-estimated) even with MCAR data (Cook, Zeng, & Yi, 2004; Liu & 

Gould, 2002; Mallinckrodt, Clark, & David, 2001; Molenberghs Thijs, Jansen, & 

Beunckens, Kenward, Mallinckrodt, et al., 2004; as cited in Enders, 2010) due to the 

distortion of mean and covariance structure (Carpenter, Bartlett & Kenward, n.d.). 

Maximum likelihood (ML) estimation is a set of approaches recommended by the 

literature (e.g., Enders, 2010; Rubin, 2014; Schafer & Graham, 2002) because it produces 

unbiased parameter estimates with smaller standard errors, even under MAR condition 

(Enders, 1999, 2010). It is also superior to other techniques when data are MCAR. ML 

estimates the parameters through an iterative process in which several values are tried 

until the estimates that yield the highest log-likelihood value are found. With ML 

concrete imputation is not needed. Instead, missing data become part of the input in the 

log-likelihood estimation. The main assumption with ML approaches is the normality of 

the data. However, violation of this assumption slightly impacts the parameter estimates. 

Although it distorts the likelihood ratio test and biases the standard error (Enders, 2010). 
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An extensively used technique within the ML approach is the expectation-

maximization (EM) algorithm proposed by Dempster, Laird, and Rubin (1977). This 

algorithm is a two-stage iterative process. In the first stage (the expectation or E-step) 

sufficient statistics of the unobserved data are estimated based on the observed data. In 

the second stage (the maximization or M-step), the unknown parameter are estimated by 

maximum likelihood by treating the estimated sufficient statistics as observed. This stage 

yield a set of estimated parameters that feed the next cycle (E-step) where again sufficient 

statistics are estimated. The difference of the estimate parameter values between each 

cycle is evaluated and the iteration stops when convergence is reached (i.e., the difference 

is smaller than a value set a priori) (Dempster, Laird, & Rubin 1977). 

All the previous missingness treatment approaches are framed within the 

frequentist paradigm. Multiple imputation (MI) is framed within an alternative paradigm: 

the Bayesian estimation. MI also refers to a collection of techniques and is currently 

regarded as an efficient approach for treating missing data along with ML estimation. 

Both approaches can deal with almost all the different missing data patterns (Enders, 

2010). MI makes the same assumptions as the ML: the MAR condition and the normality 

distribution of the data. However, MI differs from ML in that MI gives the complete-data 

condition to any dataset with missing responses (Little and Rubin, 1987). Therefore, MI 

allows standard analysis methods to be applied to the now complete dataset.  

Compared to SI techniques, MI has shown to be better because SI does not 

consider sampling variability in the imputation process. That is, most of the SI techniques 

replace the missing responses with the same value and do not take into account the 
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uncertainty about what the true response could be (i.e., only a single plausible value is 

considered). In contrast, MI considers both sampling variability and uncertainty. MI 

provides several plausible values for each missing response, which implies various 

complete-data sets on which the analysis is conducted (Little & Rubin, 1987). 

Enders (2010) describes MI as a three-phase process. During the first phase (i.e., 

imputation phase), several versions of complete-data are created, each of them with 

different missing response estimates. This phase heavily relies on Bayesian principles. 

The second phase (i.e., analysis phase) is the easiest part of the MI approach. Here, each 

dataset is analyzed with standard complete-data methods. Thus, this phase yields as many 

estimates of parameters and standard errors as the number of imputed datasets. In the last 

phase (i.e., pooling phase), all the parameter estimates and standard error estimates are 

averaged to generate only one set of results.  

It is in the imputation phase where the different MI techniques differ. There are 

several imputation methods, two of which that are used most frequently. These are 

Marcov Chain Monte Carlo-based strategies for missing data imputation: the multiple 

imputation with data augmentation (MIDA), based on the joint modeling, and the fully 

conditional specification (FCS) (Enders, 2010; Lee & Carlin, 2010; van Buuren, Brand, 

Groothuis-Oudshoorn, & Rubin, 2006).  

One difference between these two strategies is that MIDA specifies a parametric 

multivariate density which assumes a particular form of multivariate distribution. FCS 

does not assume such distribution, instead it specifies individual conditional density for 

each variable in the dataset. A second difference is that FCS does not use information 
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from the variable with missing values for the imputation, while MIDA does 

(Raghunathan, Lepkowksi, van Hoewyk, & Solenberger 2001; van Buuren, Boshuizen, & 

Knook, 1999; van Buuren et al., 2006). 

Schafer (1997) developed models for continuous (multivariate normal imputation 

or data augmentation), categorical, and mixed format data using the MIDA algorithm. 

MIDA is a two-step iterative imputation process: the imputation (I-step) and the posterior 

(P-step) steps. In the I-step an estimate of the mean vector (�̂�) and covariance matrix (�̂�), 

based initially on the EM algorithm (Leite & Beretvas, 2010), is used to build a set of 

regression equations that predicts the nonresponses from the observed data. The type of 

data would determine the type of regression equation (e.g., logistic regression for 

categorical data) if specified.  

These predicted responses are used to re-estimate the �̂� and �̂� in the P-step. Here, 

random residual errors drawn from a posterior distribution using MCMC are incorporated 

to the �̂� and �̂� elements. This modification is then carried to the I-step, where the new 

values of �̂� and �̂� are in turn used to generate a new set of regression equations. For each 

cycle a new complete dataset is generated (Enders, 2010). The EM algorithm is used only 

to estimate the initial parameters for the first imputation step algorithm (Leite & 

Beretvas, 2010). 

FCS was independently developed by van Buuren et al. (1999) and Raghunathan 

et al. (2001) (Enders, 2010; Lee & Carlin, 2010), although its premise has been present 

since 1991 (van Buuren et al. 2006; van Buuren, 2007). FCS (also known as the chained 

equations, sequential regression imputation, regression switching or MICE1) uses the 
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Gibb sampler algorithm, which is a Marcov chain Montecarlo algorithm that imputes one 

variable at a time. FCS is a semi-parametric MI algorithm that specifies a conditional 

density p(Yj | Y-j, θj), in which the missing values in the variable Yj are conditional on the 

other j-1 variables (Y-j) and the model parameters (θj). This density is used for the 

imputation of yi
miss given y-j (yi

miss | y-j) with a regression model (e.g., linear or logistic 

regression) on the observed data (van Buuren et al., 2006).  

The imputation consists of three steps. First, the posterior distribution of θ is 

estimated based on the observed data, p(θ | yobs). Second, a specific θ value, θ*, is drawn 

from the posterior distribution. Third, a specific value, y*, from the p(ymiss | yobs, θ= θ*) is 

drawn; this represents the imputed value. Notice that unlike JM no information about ymiss 

is used to draw θ*. The imputation normally starts with the variable with the lowest 

missingness level and progresses to the ones with higher missingness (Enders, 2010). The 

imputed value from one variable is used as a predictor in the next variable (Enders, 2010; 

Raghunathan et al., 2001; van Buuren et al., 2006). Once all the nonresponses in the 

dataset have been imputed (i.e., the first iteration is over), a Bayesian procedure is used to 

select a new set of regression parameters estimates. A subsequent iteration takes this set 

of parameters into account along with the imputed values from the previous iteration to 

generate new values. The cycle is repeated m times until the process generates a unique 

set of complete data (Enders, 2010).  

FCS has advantages over MIDA (Enders, 2010; van Buuren et al., 2006). First, 

FCS algorithm seems to work better than MIDA with all types of data (categorical, 

continuous, and mixed data) under MCAR and MAR mechanisms. Second, the creation 
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of flexible multivariate models is easier than with MIDA. That is, a common distribution 

of variables within the dataset is not necessary because each variable is individually 

modeled according to its distribution. Third, FCS preserves original data features that 

sometimes are hard to keep when working with MIDA (van Buuren et al., 2006; van 

Buuren, 2010). Enders (2010) and van Buuren (2010) give examples, such as linking two 

variables to avoid logical inconsistencies or to accommodate designed survey patterns.  

A fourth advantage is that that generalizations to missingness mechanisms that are 

different from MAR may be easier (van Buuren et al., 2006). FCS is an interesting 

approach because it does not require one to define the number of factors, or identify the 

items to the scale to which they belong. FCS does not require an assumption about the 

conditional independence among items nor to define the scale structure (van Buuren, 

2010). Fifth, as with MIDA, FCS uses auxiliary variables for imputation and it is 

available in more software packages (e.g., R, SPSS, STATA, Mplus) than MIDA 

(Enders, 2010; Lee & Carlin, 2010; van Buuren et al., 2006; van Buuren, 2010).  

FCS has also disadvantages. The first one is the lack of an underlying theoretical 

framework (van Buuren, 2007). Second, each conditional density has to be specified 

separately. Therefore, as the number of variables increase so does the modeling effort 

required. Third, “typical computational shortcut may not apply, and not much is known 

about quality of imputation because the implied joint distribution may not exist 

theoretically” (van Buuren et al. 2006, p. 1051). A fourth disadvantage is that FCS 

imputation does not pick up higher-order interactions, unless they are explicitly modeled 

in the imputation process (Vermunt, van Ginkel, van der Ark, & Sijtsma, 2008). 
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Fifth, convergence can only be guaranteed when compatibility of conditionals is 

met, which is hard to verify. According to van Buuren et al. (2006), “two conditional 

densities are compatible if a joint distribution exists that has the given densities as its 

conditional densities” (p. 1052). In other words, compatibility of conditionals refers to 

whether the model used to impute the nonresponses in one variable, conditional on the 

other variables in the dataset, is the correct “true” models (e.g., is it Y2 conditional on Y1, 

or on 𝑌1
2?). Simulated data analysis, however, indicates that FCS seems to be robust 

against incompatibility, converging normally with 5 to 20 iteration (van Buuren et al., 

2006; van Buuren, 2007). 

Missing data and item response theory (IRT) 

Unplanned missing data in achievement assessment are generally classified into 

not-reached2 and omitted. Nonresponses are not-reached if they occur due to insufficient 

time to complete the test. They are omitted if the participant accidentally skip the item or 

intentionally decided not to answer. It is expected that the not-reached responses would 

appear at the end of the test, assuming that the test was answered linearly, whereas the 

omitted responses are found “throughout the response vector, and not only at the end of 

it” (De Ayala, 2009, p.150).  

Not-reached items can be ignored, especially for ability estimation purposes. 

Omitted responses, on the other hand, represent nonignorable missing data because they 

are related to the examinee’s ability (Lord, 1973, 1980; Ludlow & O’Leary, 1999; 

Mislevy & Wu, 1988, 1996). That is, examinees with more knowledge about the 

construct under assessment tend to omit responses at a lower level than less proficient 
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examinees. These proficient examinees base their decision on their perception of 

correctness, because they have a better understanding of the measured construct. The 

omission is conditional to the person’s proficiency (Stocking, Eignor, & Cook, 1988).  

Ignoring omitted responses in IRT models may affect estimation accuracy. 

Examinees could improve their overall performance by only answering the items they are 

sure they will get right if they know their ability is estimated based on correct responses 

only (Lord, 1980; Mislevy & Wu, 1988). Also, ignoring omitted responses may violate 

the unidimensionality assumption of responses if these are found to be loading on a 

variable different than the one measured by the instrument (Ludlow & O’Leary, 1999).  

The effectiveness of some of the approaches previously described were evaluated 

in different contexts, including in IRT models with findings that favor one approach over 

others (e.g., Huisman, 2000; Shin, 2009; van Buuren, 2010). There are, however, other 

deterministic and stochastic approaches that were especially developed for IRT analysis. 

For example, the two-stage approach (Ludlow & O’Leary, 1999) is used to handle 

missingness in some large-scale assessments. This method assumes that not-reached 

responses are ignorable for calibration phase, but not for the person ability estimation. 

Imputation methods such as midpoint and fractional imputation were explored and found 

to work well with IRT models (De Ayala, Plake, & Impara, 2001; De Ayala, 2003, 2006; 

Finch, 2008; Lord, 1973; Oshima, 1994). Other models incorporated the missingness as 

an indicator of a second dimension in the data analysis (Glas & Pimentel, 2008; Holman 

& Glas, 2005; O’Muircheartaigh & Moustaki, 1999; Pimentel; 2005). 
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Research problem and research questions 

Most of the missingness treatment approaches used with IRT models were 

evaluated with simulated data that reproduced the missingness pattern and just few (e.g., 

Rose, von Davier, & Xu, 2010) used empirical data in their study. Simulated data provide 

a benchmark for comparison purposes because the parameters are first estimated on a 

complete dataset whose values are later removed to study the different missingness 

approaches. The missingness pattern in simulated datasets, however, may not necessarily 

be the same as in empirical data. Consequently, missing data approaches may perform 

differently with empirical data to the extent to which the missing data pattern differ from 

what has been done to date. 

The purpose of this study is to compare the effectiveness of missingness 

mechanisms in the person ability estimation using IRT models on data from the Second 

Regional, Comparative, and Explanatory Study (SERCE, using its Spanish acronym). 

SERCE has been implemented in 2006 in the member countries of the Latin American 

Laboratory for Assessment of the Quality of Education (LLECE, using its Spanish 

acronym). The LLECE is a network of quality assessment systems focused on education 

evaluation among its Latin-American member countries.3 It is coordinated by the 

Regional Bureau of Education for Latin America and the Caribbean 

(OREALC/UNESCO) located in Santiago, Chile. Thus, it is part of the United Nation 

efforts to improve the education quality. SERCE is one of the largest learning 

achievement study implemented in Latin America and the Caribbean. LLECE have 
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conducted other measures; PERCE (1997) and TERCE (2013). All these assessments 

(i.e., datasets and supporting materials) are available online.4 

SERCE assessed elementary students in grades 3rd and 6th in sixteen Latin-

American countries and the Mexican state of Nuevo Leon. It focuses on mathematics, 

reading and writing, and sciences. As other large-scale assessments, SERCE data contain 

both planned and unplanned missing responses. The unplanned missingness per person 

ranges from 2.9% to 5% per domain. Although these numbers are slightly lower than 

TIMSS or PIRLS5, only half the data are complete.  

Missingness in SERCE is handled differently than in most international 

assessments. In most international assessments, missing data are classified into not-

reached and omitted and treated differently between the item calibration and person’s 

ability estimation stages. Using marginal maximum likelihood estimation (MMLE) 

during the items calibration, the not-reached are ignored (i.e., left blank) or removed 

whereas the omitted are scored as incorrect (PISA Technical Report, 2012; TIMSS, 

PIRLS Technical Report, 2011).  

Person ability is later calculated using the estimated item parameters. In this stage, 

both not-reached and omitted responses are treated as incorrect. PISA, TIMSS, and 

PIRLS generate persons’ scores using the plausible values approach with examinees’ 

background information. That is, there are at least five scores per examinee. On the other 

hand, missingness in SERCE was not classified into not-reached and omit and both item 

and person parameters were simultaneously estimated using joint maximum likelihood 

estimation (JMLE). In this process, missing responses were treated as incorrect (Trevino, 
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Bogoya, Glejberman, Castro et al., 2008); however, several authors have found that this 

approach yields the worst estimates (Custer, Sharairi, & Swift, 2012; De Ayala et al., 

2001; De Ayala, 2006; Huisman, 2000, Rose et al., 2010), especially when used with not-

reached responses (Ludlow & O’Leary, 1999; Oshima, 1994).  

In order to explore the extent to which this and other approaches affects the 

quality of the person estimates the SERCE mathematics data are used. The missingness 

pattern of incomplete cases in this dataset is obtained and reproduced in the part of the 

data that has complete responses. This approach allows both to reproduce the empirical 

missing data pattern at the same time as to estimate the person parameters with a 

complete dataset that serves as benchmark for the effectiveness comparison.  

This study contributes to the literature by examining the performance of 

traditional missing data handling approaches using large scale assessment. Other 

contributions are to provide validity evidence of the approach used in SERCE and to see 

the extent to which students’ ability level could have been biased based by the treatment 

approach used. This also could have impacted the participant countries relative positions 

in the comparative ranking created based on the assessment.  

Three different missingness approaches are compared: when the missing data are 

treated as incorrect, when midpoint imputation is used, and when multiple imputation 

with and without covariates is utilized. This study aims to answer the following research 

questions: (a) is there a difference in the person parameter estimation associated to the 

missing data approach utilized? (b) does the effectiveness of missing data approaches 

differ when Rasch or two-parameter IRT model are used?  
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In the following, Chapter 2 contains the literature review regarding missingness 

approaches in IRT models. Chapter 3 describes the SERCE data and presents the 

methodology for the missing data pattern replication and the analysis of both complete 

and incomplete data. Chapter 4 presents the results. Person ability is estimated using both 

Rasch and 2PL, while item parameters are treated as fixed. In the final chapter the 

findings, limitations, and future research are discussed. 
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CHAPTER II: LITERATURE REVIEW 

The common characteristic among large-scale assessments are the format of the 

items and the way item responses are scored. Achievement assessments may consist of 

items whose format is either selected or constructed-response. With the selected item 

format the examinee chooses a response from the item’s set of responses, whereas with 

the constructed-response the examinee generates the answer. In either case this response 

is scored either dichotomously or polytomously. In a dichotomous scoring the examinee 

either gets the item right (score=1) or wrong (score=0). With polytomous scoring the 

item response is scored into one of more than two response categories or assigned a 

rating. For example, with a polytomously scored item you will have a correct answer, one 

or more partially correct responses (i.e., partial credit), as well as an incorrect response. 

In any case, these items are said to be categorical because the responses are limited to the 

number of categories that are defined by the test developer.  

Examinees may respond to all of some of the items. For example, the examinee 

may accidentally skip one or more items, may not be able to finish the exam due to 

insufficient time, or may purposely decide not to respond to an item. The first and third 

cases can be found throughout the test and are regarded as nonignorable missingness, 

meaning that the nonresponse is likely to be related to the examinee’s proficiency. In the 

second situation, the nonresponses would appear at the end of the test, assuming that the 

test was answered linearly. They can be considered to be ignorable missingness 

especially for ability estimation purposes. The missingness mechanism defines the way 

nonresponses should be treated (Little & Robin, 1987; Mislevy & Wu, 1988). 
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Shculte Nordhold, and Hoof Van Huijsduijnen (1997) group the methods for item 

nonresponse imputation into three categories: (a) deductive, if the missing values are 

imputed using other known information, (b) deterministic, if a predicted or specific value 

is used, and (c) stochastic, if randomness is incorporated in the process. Deductive 

imputation is normally employed with numerical data. It basically relies on logical or 

mathematical relationships between the variables with and without missing values 

(Eurostat, 2014). de Waal, Pannekoek, and Scholtus (2011) present the deductive 

imputation method adapted for categorical data following Felligi and Holt’s (1976) 

procedure (as cited in de Waal et al., p. 308). However, because deductive imputation 

requires dependency across items it cannot be applied to achievement data where items 

may be independent from each other.  

Deterministic imputation encompasses some of the missing data handling 

procedures presented in Chapter 1, such as unconditional mean imputation, person mean 

imputation, and regression imputation. With these methods, the imputed value is 

basically “copied or transferred” from other observed cases. On the other hand, stochastic 

imputation includes procedures in which uncertainty is incorporated through a 

randomness variable (i.e., error). Stochastic regression imputation, maximum likelihood 

and multiple imputation fall in this last category. Both deterministic and stochastic 

imputation has been used with categorical variables such as that found in cognitive 

assessments. A review of these approaches is presented next. Note that, throughout this 

chapter, all the missing data approach’s acronyms have been unified for comprehensive 

purposes.  



32 

 

 

Deterministic imputation for categorical variables 

Large-scale assessment (e.g., PISA, 2009; TIMSS, 2011; PIRLS, 2011) data 

analysis normally entails two stages: the psychometric scaling or item calibration and the 

students’ proficiency estimation. This proficiency or ability within a domain is 

considered to be a latent variable and thus assumed to be a latent continuum (De Ayala, 

2009). As such, the student proficiency represents the person location on that continuum. 

The student proficiency is normally represented with theta (θ) and its estimation with 

theta hat (𝜃). Different IRT models are used according to the way the items are scored. In 

TIMSS and PIRLS (Technical Report, 2011), this stage is based on three IRT models: the 

three-parameter logistic (3PL) model for the multiple choice items, the two-parameter 

(2PL) model for the constructed-response items that are dichotomously scored, and the 

partial credit model (PCM) for the items that are scored polytomously. The model used in 

PISA is a generalized multidimensional Rasch model, where the different dimensions of 

the latent variable (θD) are conditional on the population’s characteristics (PISA 

Technical Report, 2012). The PCM is used for items with multiple scores and the simple 

logistic model is used for dichotomously scored items (Organisation for Economic Co-

operation and Development [OECD], 2012).  

In PISA 2012, two item calibrations are done: the national and the international. 

For the national calibration, unweighted data are used and all the cases are included. The 

omitted and not-reached data are scored incorrect (i.e., coded with zero) for the item 

calibration. For the international calibration, a subsample of equal size from most of the 

OECD participant countries (i.e., 31 countries) is selected and cases with not-reached 
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responses are removed. New OECD country members are not included in this stage. The 

proficiency score is then estimated in a second stage. In this stage, the item parameters 

previously estimated are taken as fixed. PISA, TIMSS, and PIRLS generate the scores 

using the plausible values approach with conditioning variables or covariates, such as 

socio-economics status or gender. 

The way in which missing responses are treated varies in each of these two stages. 

In the calibration stage, cases with not-reached items are sometimes removed (e.g., PISA) 

or generally ignored (e.g., TIMSS, PIRLS) given that responses missing at random do not 

carry information about examinee’s ability and item parameter estimation beneficiates 

from ignoring them (not-administered or blank) (Lord, 1974, 1980; Ludlow & O’Leary, 

1999; Mislevy & Wu, 1988, 1996; Oshima, 1994). That is, speed and ability are 

considered to be independent (Mislevy & Wu, 1988). In the ability estimation stage, not-

reached items are treated as incorrect (coded with zero), as suggested by Ludlow and 

O’Leary (1999). Note that Lord (1980) suggested ignoring the not-reached items even for 

the person ability estimation, pointing out that ability does not depend on the items 

administered. That is, the “examinee’s θ is the same for all the items in the 

unidimensional pool” (pp. 182, 226). 

PISA, TIMSS, and PIRLS report that they treat omitted responses as incorrect in 

the two stages of the data analysis. This missing responses are assumed to be dependent 

upon the assessed ability (Lord, 1973, 1980; Mislevy & Wu, 1988, 1996). According to 

Ludlow and O’Leary (1999), both person ability and item parameters are better estimated 

when omitted responses are treated as incorrect in both stages. Using the Rasch model 



34 

 

 

with empirical data (n=116 students, J=50 multiple choice items with m=4 categories and 

missingness per item ranging between 1.7% and 32.8%) ordered by item difficulty, they 

demonstrated that, unlike the other approaches they studied (i.e., ignoring omitted and 

not-reached or treating them as incorrect), the two-stage approach does not lead to an 

inflated or overestimated difficulty parameter of the items located towards the end of the 

test, nor rewards students with a higher ability location that have a lower response rate. 

Oshima’s work (1994) followed the same line as Ludlow and O’Leary (1999). 

She evaluated alternatives to treat not-reached items, assuming independence between 

speededness and ability (MAR) and using the Bayesian expected a posteriori approach 

(EAP) to estimate person location in a 3PL IRT model. In her study (n=1000 simulees, 

J=60 multiple choice items, and missingness level: 5%, 10%, and 15%), she defined two 

different types of not-reached items: (a) blank-not-reached, when the students do not 

answer the items, and (b) not-reached with random responses, that refers to the items for 

which examinees randomly chose an option. Moreover, she investigated how these not-

reached items were treated. For example, the blank-not-reached items were coded as 

wrong, not considered in the calibration process, or imputed with fractional value, 1/m. 

She found that item parameter estimates were affected by the not-reached items 

proportion, the treatment of the missing data responses, and the item difficulty order in 

the test (i.e., from easy to hard, and ordered randomly). If the items were ordered by 

difficulty, item parameters were recovered better when the blank-not-reached items were 

excluded from the calibration process, regardless of the proportion of not-reached 

responses. The worse recovery was obtained when the not-reached items were treated as 
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incorrect. Specifically, the discrimination and difficulty parameters were underestimated 

at the beginning of the test and overestimated towards the end. The discrimination 

parameter was more affected, especially when the items were not ordered by difficulty. 

The guessing parameter showed the opposite trend. Oshima (1994) found that ability 

estimation was robust when not-reached responses were treated as incorrect, despite the 

not-reached response types and missingness level. Assigning fractional scores (1/m) to 

the blank-not-reached items led to better recovery of person and item parameter. 

Both Ludlow and O’Leary and Oshima assumed that not-reached responses and 

ability are not related. Other authors have studied the opposite situation. DeMars (2002) 

compared JMLE and MMLE performance in the item difficulty parameter estimation, 

under violation of speededness and ability independence condition (i.e., when not-

reached responses are related to the examinee’s ability). Factors where n=2000, J=60 

multiple choice items, and missingness per item level ranging between 39% and 69%. 

She discovered that the 1PL model with JMLE is more accurate in the item difficulty 

parameter recovery than MMLE, regardless of the missingness level, when data are 

MNAR. MMLE underestimated the item difficulty parameter in this condition. When the 

not-reached responses are MAR, however, MMLE is also a valid option. DeMars argues 

that this is due to the fact that JMLE is based only on available data, whereas MMLE 

relies on a prior ability distribution that is constant for all the examinees, regardless of the 

items they answer. This homogeneous or unified ability distribution assumption is not 

tenable when not-reached responses are dependent on ability (i.e., data are MNAR). 
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Shin (2009) complemented DeMars’ work by studying the JMLE effectiveness in 

the theta estimation when data are MNAR and non-equivalent groups are assessed. 

Unlike DeMars, Shin did not differentiate between omitted and not-reached responses 

meaning that missingness was not only located toward the end of the test. She used two 

coding schemes (incorrect and blank) for missing responses with both empirical and 

simulated dichotomous datasets. The Rasch model and JMLE were used. Factors were 

test length (J=50 for the empirical study and J=20 for the simulated study), sample sizes 

(n=2,941 for the empirical study and n=200, 500, 1000, and 3000 for the simulated one) 

and level of missingness (20.6%, 10.1%, and 7.6% for the empirical study, and 7%, 10% 

and 20% for the simulated). 

In the empirical data, Shin (2009) found that ignoring missing data or treating 

them as incorrect made no difference in the theta estimation. In the simulated data 

analysis, however, she found the opposite. Missing data coding schemes mattered when 

the missingness was present in anchor items of the different forms to be equated, 

regardless of the level of missingness for high, medium and low ability, respectively. 

That is, ignoring missing responses (blank) yields better results than treating them as 

incorrect when the missingness is MNAR and mainly observed in the anchor items that 

are used in the equating process. This statement becomes stronger with larger sample 

sizes. 

Custer, Sharairi, and Swift (2012) also examined the quality of item and person 

parameters recovery when not-reached responses were either dependent (MNAR) or 

independent (MAR) of ability using the Rasch model and JMLE. They used simulated 
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data with items ordered by difficulty (n=500, J=40 multiple choice items). They treated 

missing data in three different ways: (a) ignoring (blank) omitted and not-reached 

responses, (b) treating omitted as incorrect and ignoring not-reached, and (c) treating both 

as incorrect. For the two first missingness approaches, they found that the item difficulty 

was recovered with the same margin of error, regardless of the missingness level (0.81%-

10%; 1.62%-20% for omitted and not-reached, respectively), and the not-reached 

responses mechanisms (i.e., MAR or MNAR). The accuracy of this recovery, however, 

was directly proportional to the level of missingness. Conversely, treating omitted and 

not-reached responses as incorrect had the worse item difficulty recovery accuracy. 

Custer et al. (2012) encountered almost the same pattern for the person ability. 

Ignoring both omitted and not-reached responses led to better theta recovery regardless of 

missingness level and not-reached responses mechanisms. The worse recovery was found 

when omitted and not-reached were treated as incorrect. Also, they reported that the 

lowest level of root-mean-square deviation (RMSD) of theta ability was obtained when 

the not-reached responses were independent of ability, despite the missingness treatment. 

Considering the direction of the ability parameter bias, ignoring the two types of missing 

responses led to overestimation of the true parameters, whereas the other two approaches 

led to underestimation of the real theta values. Custer et al. (2012) demonstrated that 

these findings were tenable even when the Rasch model and JMLE were applied to data 

originally created under the 2PL condition. 

The reason why Oshima (1994) and Custer et al. (2012) findings seem to 

contradict Ludlow and O’Leary’s (1999) conclusions may be due to the difference in 
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methods. Ludlow and O’Leary used a two-stage parameter estimation each including a 

different treatment for not-reached responses, whereas Oshima simultaneously estimated 

both item and person parameters. This implies that the not-reached responses were 

treated in the same way throughout the data analysis. As a consequence, the θ estimates 

may be affected by the biased item parameter.  

On the other hand, De Ayala, Plake and Impara (2001) and De Ayala (2006) 

found that person ability estimation is more accurate (less underestimated) when the 

omitted data are imputed with the midpoint value (i.e., 0.5), despite the item nature (i.e., 

dichotomous or polytomous) and the person ability estimation methods (i.e., ML 

estimation or the Bayesian EAP). Both studies assumed MNAR for the omitted 

responses. They utilized the 3PL IRT model for the dichotomous items, and the partial 

credit model (PCM) and the generalized partial credit model (GPCM) for the polytomous 

instrument. Theta was estimated using ML, EAP, and biweight estimation with 

dichotomous data, whereas EAP was used with the polytomous data. Factors were sample 

size (n=41000 simulees for both dichotomous and polytomous data), test length (J=39 

multiple choice items and J=24 polytomous items), and person-level missingness (5.1%, 

10.3%, 15.4%, and 20.5% for dichotomous data and 4.2%, 12.5%, and 20.8% for 

polytomous data). 

Contrary to Ludlow and O’Leary’s (1999) findings, these authors showed that 

treating omitted answers as incorrect resulted in worse theta estimates for both 

dichotomous and polytomous items. Their findings, however, supported Custer et al.’s 

(2012) work. They showed that ignoring omitted responses has better results in the 
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person ability estimation than treating them as incorrect, although this procedure may not 

recommended due to reduction of sample size. The level of omission played an important 

role in the accuracy of θ recovery in all the cases. The higher the omission level the 

worse the θ recovery. Finally, they found that ML estimation is more affected than EAP 

when items are binary. However, likelihood-based method performed well in the θ 

estimation with polytomous data (De Ayala, 2006). 

In both studies, the authors mentioned that the caveats of this approach are the 

lack of the theoretical justification for this imputation value (De Ayala et al., 2001; De 

Ayala, 2006) and the introduction of additional measurement error to the extent that this 

answer (0.5) does not approximate the student’s true response. Finally, when working 

with rating data (e.g., Likert response scale), missing responses6 are best handled with the 

hot-deck approach in first place or with the midpoint imputation in second place (De 

Ayala, 2003). De Ayala (2003) demonstrated that with this type of data, neither 

likelihood-based models nor ignoring missing responses worked well. ML estimation and 

the rating scale model (RSM) were used in this research (n=41000 simulees with J=15 

Likert scale items and person-level missingness of 7%, 13%, and 20%). 

Huisman (2000) reviewed best practices with missing responses for non-cognitive 

categorical data. He explored the effectiveness of nine deterministic methods: random 

drawn substitution (RDS), incorrect answer substitution (IAS), person mean substitution 

(PMS), item mean substitution (IMS), corrected item mean substitution (CIM), item 

correlation substitution (ICS), and three variants of the hot-deck method: the hot-deck 

next case (HDNC), the hot-deck deterministic (HDD), and the hot-deck random (HDR)7. 
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Two different levels of parameters were evaluated: person ability and scale quality. 

Person ability was estimated as the weighted sum of the item scores. The scale quality 

was measured with the Cronbach’s alpha and the Loevinger’s H-coefficient. He 

considered different factors, such as different sample size (n=100, 200, 400), test length 

(J=40, 36), and number of item categories (m=2, 3, 5, 6 options), missingness level (5%, 

12%, and 20%), and missingness mechanisms (MCAR, MAR, and MNAR). 

At the person ability level, Huisman found that: (a) the effectiveness of the 

missing data treatment approaches were negatively related to the level of missingness and 

its mechanisms and positively related to the test length; (b) there was no interaction 

between the missing treatment methods and the sample size, meaning that no approach 

behaved differently due to n; and (c) “imputation techniques that take into account the 

relationships between items perform better than those that do not” (p. 345), meaning that 

CIM was the best technique to estimate person ability given the factors under study (n, J, 

K, missingness level, and mechanisms); (d) there was an interaction between the missing 

treatment methods and the number of categories per item on the person ability recovery. 

That is, although CIM was the best method for all the different analyzed cases, other 

approaches were as good as CIM depending on K. ICS performed well for m=2 or 3, 

whereas PMS and HDD were good for m=5 or 6. The worse techniques were RDS and 

IAS. At the scale quality level, Huisman could not identify a best technique. The effect of 

missing data handling procedure on the scale quality indices depended on test length, the 

missingness level, missingness mechanism, and K. However, he found that Cronbach’s 

alpha was more affected than H-coefficient. 
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All the points mentioned before can be summarized in two main outcomes. First, 

as argued by Huisman (2000), “using information from both persons and items results in 

better estimates of the missing values” (p. 349). That is, imputation corrected by person 

ability such as CIM yields less biased estimates. Consequently, the author said that using 

IRT-based models for both imputation and data analysis may improve the imputation 

effectiveness. Second, having a “good” recovery of person ability does not necessarily 

mean that the item/scale quality is also well recovered. Actually, they may be 

overestimated if IRT-based models are employed to impute missing values and to analyze 

the data. 

The fact that several authors (Custer et al., 2012; De Ayala et al., 2001; De Ayala, 

2006; Huisman, 2000) have independently demonstrated the poor performance of treating 

omitted responses as incorrect reinforces what Mislevy and Wu (1988) said: 

Supplying incorrect responses for omits leads to a “marginal conditional” MLE 

for θ under the assumption that responses to omitted items would surely have 

been incorrect. This may be reasonable for open-ended items, but it is not 

plausible for multiple-choice items for which even the least able examinees have 

nontrivial probabilities of success. In these cases, supplying incorrect responses 

for omits would bias estimates of θ downward. (p. 41). 

Stochastic imputation for categorical variables 

Multiple imputation and maximum likelihood. ML estimation and MI are 

referred as the “state of the art” (Schafer & Graham, 2002) or the “principled methods” 

(Dong & Peng, 2013; Carpenter, Bartlett & Kenward, n.d.) in the missing data literature 
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and have appealing characteristics: both approaches can deal with almost all the different 

missing data patterns (Enders, 2010), they both assume the normality distribution of the 

data, and are robust with data MAR.  

Both approaches have advantages and disadvantages. ML-based models have the 

advantage of producing deterministic results from the data analysis. That is, the same 

outcome will be obtained every time the data analysis is done with the ML. Conversely, 

MI-based methods will return different results every time it is run (Allison, 2012). The 

reason why this happens is that randomness of draws is the main characteristic in MI 

models. Additionally, ML offers the advantage of likelihood ratio test for nested model 

comparisons.8 Collins, Schafer, and Kan (2001) and Schafer and Graham (2002) found 

that ML “produces smaller standard error than MI;” whereas Graham, Olchowski, and 

Gilreath (2007) concluded that “ML-based methods have greater power than MI” (as 

cited in Dong & Peng, p.15). Enders (2010) stated that although ML generates biased 

parameter estimates under MNAR, “the bias tends to be isolated to a subset of the 

analysis model parameters,” unlike other traditional procedures (p.87). 

The advantage of MI over ML is the differentiation between the “imputation” 

phase and the “analysis” phase. In the imputation phase, MI replaces the missing value 

with imputed data, thereby generating complete data. In the analysis phase, complete-data 

approaches can be used on the imputed data set. That is, MI provides plausible values for 

the missing responses, whereas ML does not. However, certain available software such as 

SPSS and LISREL provide the option of imputing the missing values “with the raw data 

after the final EM cycle” (p. 113) providing the users with a complete-data version. 
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Enders (2010) cautions about using this option to generate complete-response data set 

within ML context. According to von Hippel (2004), this practice leads to biased 

parameters and attenuates data standard error (as cited in Enders, 2010). 

ML methods include the missingness as an additional variable in the parameter 

estimation procedure. Therefore, no plausible values are created for missing responses. 

This is exactly the reason why ML has advocates. When working with ML estimation, 

the concern about the compatibility between the imputation phase and the data analysis 

phase is not an issue, because these phases are indistinguishable. When using MI, 

however, the difference between these two phases (i.e., variables and the underlying 

model used) needs to be considered. For example, if X2 was not used for the imputation 

of Y missing values, a posterior study of the relationship between these two variables may 

show a weak association. Likewise, interaction among variables can be weak if the model 

that underlies the MI procedure did not include this feature (Collins, Schafer, & Kam, 

2001; Dong & Peng, 2013; Schafer & Olsen, 1998).  

Schafer and Olsen (1998) stated that although both approaches are equally 

efficient, “ML methods will be slightly more efficient (with large sample size) than MI 

because they do not rely on simulation” (p. 37). Yuan, Yang-Wallentin, and Bentler 

(2012) also found that ML-based methods tend to be more accurate and efficient than MI. 

Nevertheless, the fact that the two approaches tend to yield similar results is known. 

According to Collin et al. (2001) this depends on the congeniality among (a) the model 

that underlies the ML process, (b) the model that underlies the MI process and (c) the 

model used to analyze the imputed datasets. Both ML and MI have become accessible 
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options on a variety of statistical packages, such as Mplus, SAS, S-PLUS, and R, among 

others (Schafer & Graham, 2002; Sinharay, Stern, & Russell, 2001). However, there 

seems to be a preference for MI over ML. For instance, there are twice as many MI 

publications as ML and, generally speaking, the MI approach has shown a steady 

increase in publications across the time.9 

ML and MI with categorical data. Most of the references in the literature (e.g., 

Chan, Yi, & Cook, 2009; Chou, Bentler, & Satorra, 1991; Curran, West, & Finch, 1996; 

Enders, 2001, 2002; Enders & Bandalos, 2009; Finch, West, & MacKinnon, 1997; 

Savalei & Falk, 2014; Yuan, Bentler, & Zhang, 2005;) about the application of these 

methods to categorical missing data are related to the effectiveness of ML estimation in 

the structural equation model (SEM) context. This is probably because the available 

software programs with ML options are mainly for SEM purposes, such as Mplus or 

LISREL (Enders, 2010).  

According to Enders (2010), some studies (e.g., Chou, Benter, & Satorra, 1991; 

Curran, West, & Finch, 1996; Finch, West, & MacKinnon, 1997; Hu, Bentler, & Kano, 

1992; Yuan, Bentler, & Zhang, 2005) have demonstrated that ML with nonnormal data 

can impact standard error and distort the likelihood ratio test, although it has little impact 

on the parameter estimates. However, he also stated that there are corrective procedures 

for these two issues that are currently incorporated in statistical programs, but that these 

procedures were designed for complete data.  

Nevertheless, some researchers (Enders, 2001, 2002; Gold & Bentler, 2000; 

Graham, Hofer, & MacKinnon, 1996; Savalei, 2008; Savalei & Bentler, 2005, 2007; 
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Yuan, 2007; Yuan & Bentler, 2000; as cited in Enders, 2010) have explored nonnormal 

missing data and ML imputation. For example, Yuan and Bentler (2000) (as well as Yuan 

& Lu, 2008 and Yuan, 2009) investigated the performance of ML in parameter estimates 

(e.g., mean, covariance, factor loadings) under normal and nonnormal data distributions 

and two missingness mechanisms: MCAR and MAR.  

The conclusions from these studies are: (a) if the population distribution is 

known, ML should be modeled taking into account the true distribution of the data. This, 

however, is not easy to do (unless the data are normally distributed) given that ML 

models available in software programs are generally based on normal distribution of the 

data. This adds computational burden to the actually complicated work of modeling with 

missingness (Yuan & Lu, 2008); (b) ML techniques (e.g., EM) produce accurate 

parameter estimates under MCAR or MAR when the data are normally distributed. This 

is actually the scenario for which ML methods were originally designed (Yuan & Bentler, 

2000; Yuan, 2009); (c) the discrepancies (bias) they found in their analysis (i.e., between 

the parameters estimated for the complete normally distributed data and the data with 

MCAR or MAR) are not due to the use of ML techniques, but mainly due to the size of 

the sample (Yuan & Bentler, 2000). They, however, said that the variability in the 

parameter recovery across iterations reflected “that the estimates under MAR may not be 

as accurate as under MCAR” (Yuan & Bentler, 2000, p. 189), even for normally 

distributed data; (d) these normal-distribution-based ML methods can still produce 

efficient parameter estimates when the data are nonnormal and the missingness 

mechanism is either MCAR or MAR. In the case of MAR, this holds only if the observed 
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variables are linear combinations of independent random components (Yuan & Bentler, 

2000; Yuan, 2009). ML, however, is not equally efficient for all nonnormal distributions, 

despite the missingness mechanism (Yuan & Bentler, 2000); (e) Yuan and Bentler 

studied the performance of three ML estimators (the minimum chi-square, the two-stage 

ML and the direct ML) with nonnormal missing data. They found that the minimum chi-

square method (Ferguson, 1996) works better with large samples. The direct ML and 

two-stage ML methods should be used with medium sample size, although direct ML 

produces less consistent standard errors with non-normality (Yuan & Lu, 2008). Two-

stage ML is recommended for SEM with missing data and unknown population 

distribution (Yuan & Lu, 2008); and (f) estimates with either contaminated data (i.e., with 

outliers) or under MNAR are highly biased and inaccurate, regardless of the sample size 

and the data distribution (Yuan & Lu, 2008). 

Yuan, Yang-Wallentin, and Bentler (2012) compared MI and ML approaches for 

different levels of data missing at random (5%, 6%, 15%, 18%, 25%, and 30%), sample 

size, number of variables with missing responses, and underlying population distributions 

(normal, log-normal, and uniform). The authors found that in all the cases ML produced 

better and more efficient parameter estimates (i.e., variance-covariance matrix) than MI. 

This suggests that ML is more robust to departure from a normal distribution than MI. It 

is especially true when sample size is small. However, as sample size increases the 

estimation bias observed in MI decreases.  

When comparing the performance between sandwich-type covariance matrix and 

the observed-information covariance matrix for estimating the sample standard deviation, 
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the sandwich-type-based covariance matrix is more precise for ML-based estimates. For 

MI, none of these two formulas are consistent. Furthermore, the mean parameter was 

equally and efficiently estimated by both methods. Yuan et al. (2012) also found that the 

biases are related to the missingness level for both approaches, regardless of the data 

distribution. Finally, they cautioned that the MI may outperform ML when underlying 

distribution is known or suspected, given that MI allows working with informative priors. 

Bernaards and Sijtsma (1999, 2000) evaluated several imputation methods 

including EM-based approaches with categorical data. The authors’ first study evaluated 

RDS, OM, CM, IMS, PMS, LD, and EM. The second study compared OM, PMS, CM, 

IMS, TW, CIM, and additional variants of these methods that incorporate residual 

variance (denoted as OM-E, PMS-E, CM-E, IMS-E, TW-E, and CIM-E).10 Also, two 

EM-based algorithms were included in Bernaards and Sijtsma’s second work: the EM-

loading and the EM-covariances. The difference between these two methods is whether 

the first cycle of estimations is conducted using the whole dataset that contains missing 

values or only the portion with complete data. The EM-loading starts the iteration 

towards the convergence by replacing missing data with random values and the factor 

scores are estimated. Then the missing values are adjusted given the estimated factor 

scores from the previous round until convergence is reached. The EM-covariances 

method starts the parameters estimation using the data with no missing values only 

(Bernaards & Sijtsma, 2000). 

The fixed factors in the first study were the number of latent traits (two), item 

categories (m=5), test length (J=20 items), and the correlation between the two latent 
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variables (r=0.24). The variable factors in the first study were sample size (n=100 and 

500), missingness level (5%, 10%, and 20%), the missingness mechanisms (MCAR and 

MAR), and item mixture ratio (1:0, 3:1, and 1:1). The item mixture ratio represents the 

proportion that the item measures each of the two latent traits. This ratio has an effect on 

the scoring weight value, where 1:1 ratio has the same weight for all the items and thus is 

considered unidimensional (Bernaards & Sijtsma, 1999, 2000). Also, Bernaards and 

Sijtsma (1999) had the factor extraction methods (i.e., principal components and ML) as 

variable condition. The fixed factors in the second study were the same, except for the 

correlation between the two latent traits, which was set to vary (r=0, 0.24, and 0.5). 

Likewise, the variable factors were the same in both studies. The authors measured the 

performance of the imputation methods by comparing the factor loadings recovery in 

both studies (Bernaards & Sijtsma, 1999, 2000).11 

Additionally, two special designs were studied in their first paper, both with data 

MAR (Bernaards & Sijtsma, 1999). All the imputation method except LD were 

compared. In the first design, the data had four dimensions or latent traits but only two 

factors were extracted (i.e., the variables were loaded on two factors only). The same test 

length and missingness level as the main study were kept. The sample sizes (n=50, 100, 

and 150) and item mixed ratios (3:1:1:0, 3:1:0:0, 1:3:0:3, and 1:3:0:0) were different. In 

the second special design, the data were bidimensional and the conditions were 5% and 

20% of missing data, n=100, and the item mixed ratios were the same as in the main 

study (1:0, 3:1, and 1:1). In this case, the number of factors underlying the data were 

decided upon the eigenvalue > 1 criterion obtained from the data with imputed values. If 
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the eigenvalue was equal to or larger than one, the factor was retained. The number of 

latent traits detected with the eigenvalue criterion was the measure of good (if 4 factors 

are retained) or bad performance of the missing data approaches.  

The authors found that the missingness level affected the performance of the 

missing data handling methods (Bernaards & Sijtsma, 1999, 2000). For example, 

doubling the missingness level (e.g., from 5% to 10%) at least doubles the bias in the 

factor loading recovery (Bernaards & Sijtsma, 1999). They also saw that the bias 

decreased as n increased (Bernaards & Sijtsma, 1999, 2000). The results showed that the 

bias was higher when the missingness progressed from MCAR to MNAR, regardless of 

the other analyzed conditions. The relative performance of the imputation methods, 

however, seemed to be independent of the missingness mechanism (Bernaards & Sijtsma, 

1999, 2000). Furthermore, all the imputation approaches, except the EM-based models, 

improved their performance when the correlation among the latent traits increased. The 

best situation was when the data were unidimensional. The EM-loading and EM-

covariances approaches, however, were independent of the level of association among 

latent traits (Bernaards & Sijtsma, 2000).  

Among all the methods, EM was consistently the best method to handle missing 

data (Bernaards & Sijtsma, 1999, 2000). Both EM-loading and EM-covariance produced 

good factor loading values recovery when working with rating scale data. PMS was the 

second best method, performing even better with unidimensional data (i.e., high latent 

traits correlation value) (Bernaards & Sijtsma, 1999). In general, person mean techniques 

(PMS, TW, TW-E, CIM, and CIM-E) are good alternatives for factor loadings recovery if 
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the researcher prefers working with simpler approaches. Although CIM and TW tend to 

inflate the correlation between the latent traits. CIM-E and TW-E are hence better. These 

person mean techniques performed better than LD and imputation methods not based on 

the person mean (IMS, RM, CM, and OM) (Bernaards & Sijtsma, 2000). The worst 

methods were RDS, LD, IMS-E, CM-E, and OM-E. In terms of factor extraction, they 

found that both ML and principal components factor analysis equally estimated factor 

loading (i.e., they had similar level of bias) (Bernaards & Sijtsma, 1999, 2000). 

Finally, in the first special design Bernaards and Sijtsma (1999) found that the 

effect of missingness level and sample size was the same as in the main study. EM did 

not perform well in this design. They found that when factor analysis extracts the wrong 

number of latent traits it distorts the performance of all the imputation methods. Thus, not 

knowing the number of dimensions underlying the data can have consequences on the 

quality of performance of missing data approaches. The second special design found that 

the eigenvalues were affected by the item mixed ratios, regardless of the missingness 

level and missing data approach, except EM. When the items were 1:0 four eigenvalues 

were larger than 1. For the ratio 3:1 two eigenvalues were larger than 1 and for 1:1 

(unidimensional), it reduced to one. The eigenvalues were not significantly affected by 

missingness level and were similar for RDS, OM, CM, IMS, and PMS. Finally, datasets 

imputed with EM algorithm yielded eigenvalues that led to the identification of correct 

number of dimensions in all the item mixed ratios and missingness levels. 

Among the MI algorithms, the most widely used is MIDA (Schafer, 1997). This 

approach has been extensively studied, especially in the educational and psychological 
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context. The other MI approach, Fully Conditional Specification or FCS (Raghunathan, 

Lepkowski, van Hoewyk, & Solenberger, 2001; van Buuren, Boshuizen, & Knook, 

1999), is well known and more used in the medical field, but there are applications of this 

approach in IRT models.  

Fully conditional specification. When comparing FCS and MIDA, there are some 

interesting findings. For instance, Lee and Carlin (2010) found no difference between the 

FCS and MIDA. They compared the performance of these two methods with data with 

J=5 mixed variables (one continuous and 4 categorical), n=1000, and data MAR. Up to 

33% of missingness was present in one, three, or four variables and none of the variables 

was normally distributed. The continuous variable was skewed and the categorical 

variables had 2 or 5 categories. When imputing the skewed continuous variable the two 

imputation methods were compared under three conditions: when skewness was ignored, 

when the variable was log transformed, and when the variable was log transformed so 

that the skewness was zero. Variables with 5 categories were imputed with FCS ordinal 

logistic regression and using MIDA with rounding to the nearest value. The binary 

variable was imputed with FCS logistic regression and MIDA with either simple or 

adaptive rounding. The simple rounding was first suggested by Schafer (1997) and other 

authors after that (Schafer & Olsen, 1998; Allison, 2001). In simple rounding, the 

imputed values will be rounded to either zero or one. Imputed values equal to or higher 

than 0.5 will be rounded to 1, if less than 0.5 the imputed value is replaced with zero. In 

adaptive rounding, a normal approximation to the binomial distribution is used to decide 

the imputed value. 
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Lee and Carlin (2010) observed the parameter recovery (here, regression 

coefficients) after imputation with both methods. They found that the recovery was 

equally poor with both imputation methods when the missingness was only in the 

continuous variable and its skewness was not considered. Once skewness was 

incorporated (i.e., variable was transformed so skewness=0), both imputation approaches 

performed equally well. Likewise, FCS and MIDA were equally accurate when 

missingness was also present in the categorical variables with 5 categories. Finally, the 

two approaches yielded the same results when the binary variable had missing values, 

with the adaptive rounding imputation showing the best parameter recovery. 

van Buuren (2007) also found that both FCS and MIDA with simple rounding 

recovered the parameters (here, regression and correlation coefficients) with almost the 

same accuracy. In his study (n= 3801, J=3 items, m=2 or 5 categories, and 58% of the 

sample with at least one missing response), he warned about the accuracy of the reference 

curves values estimation. Reference curves are standard curves computed from the 

responses of reference participants (e.g., the ratio weight/height for children to detect 

undernourishment). In this study the reference curve refers to breast development by age. 

When using MIDA with rounding procedure, the parameters were well recovered, but the 

reference curved showed underestimation of breast development at early ages and 

overestimation otherwise. On the other hand, FCS produced good reference curves for the 

different breast development stages. That is, MIDA did not preserve the original ratio 

between the dependent and independent variables along the continuum as good as FCS 

did. Consequently, van Buuren (2007) concluded that FCS is better than MIDA when 
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dealing with categorical variables, regardless of the number of categories, under 

ignorable missingness. The author, however, cautioned that MIDA performance could be 

affected by the fact that the imputed data were rounded to the nearest plausible value. 

This technique has proven to not be effective when working with categorical data, 

especially with binary variables (Ake, 2005; Allison, 2006; Horton, Lipsitz, & Parzen, 

2003).  

In another study, van Buuren (2010) compared the performance of FCS approach 

with two versions of TW (Bernaards & Sijtsma, 2000). Two datasets were simulated, 

both of the same length (10 items) and size (n=11000). The first one consisted binary 

items and the second dataset was comprised of items with five response categories. In 

both datasets, half of the items loaded on one dimension and the other half did on the 

second dimension, the two dimensions were correlated (r=.10). The author examined 

three different MCAR levels (44%, 58%, and 73%). One version of TW (TW1) imputed 

the missing values assuming that all the items loaded on the same construct, whereas the 

second version (TW2) correctly assumed the data were bi-dimensional. The performance 

of the imputation methods was compared using three indices: (a) the number of valid 

cases used in the data analysis (after the imputation). That is, the number of cases that 

were not removed by the software after being flagged as extreme values, (b) the 

Cronbach’s alpha, and (c) the correlation between the two dimensions or scales measured 

with the instrument.  

van Buuren (2010) found that the number of valid cases to be used in the data 

analysis was higher when FCS was used, regardless of the number of item categories. 
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That is, the TW approaches imputed values that were categorized as extreme during the 

model fit analysis (done with Rasch). Likewise, the Cronbach’s alpha was best recovered, 

although slightly underestimated, by the FCS technique for both dichotomous and 

polytomous items. TW1 and TW2 greatly overestimated this coefficient regardless of the 

number of item categories. The same pattern was observed with the correlation 

coefficient between the two scales. The correlation between scales was inflated with 

TW1 and TW2 and it was around the real value (.10) with FCS. 

Multiple imputation with data augmentation. Several authors have stated that 

MIDA is effective for handle missing categorical data (e.g., Ake, 2005; Allison, 2006; 

Bernaards, Belin, & Schafer, 2007; Horton, Lipsitz, & Parzen, 2003; Leite & Beretvas, 

2010; Schafer, 1997; Schafer & Graham, 2002), even under clear violation of MIDA’s 

multivariate normal distribution assumption (Allison, 2006; Schafer & Olsen, 1998). This 

approach also has been shown to produce acceptable results with ordered categorical 

data, especially with high number of item categories (Leite & Beretvas, 2010). 

For instance, Leite and Beretvas (2010) studied the performance of MIDA with 

rating scale such as Likert-type items. They evaluated the correlation coefficient recovery 

under different missingness levels (10%, 30%, and 50%), mechanisms (MAR and 

MCAR), number of item categories (m=3, 5, and 7), inter-item correlation (r = .2 and  

r = .8), and data distribution (normal and non-normal) with n=400. Their results showed 

that: (a) the correlation coefficients using data with imputed values using MIDA were 

consistently underestimated; (b) MIDA was robust to violations of normality and 

continuity; and (c) MIDA’s effectiveness was not affected by the inter-item correlation 
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level but by the missingness level and mechanisms. For example, MIDA was robust to 

MAR or MCAR with 10% of missing data, but when the missingness was 30%, MIDA 

only performed well when data were MCAR. MIDA produced unacceptable bias when 

50% of data were missing. They concluded by saying that MIDA can be safely used with 

a low missingness level (i.e., less than or equal to 10%). 

Regarding binary variables, there are contradictory recommendations concerning 

rounding the estimated missing value. Schafer (1997), Schafer and Olsen (1998), and 

Allison (2001) suggested rounding the imputed values to 1 when the estimated value is 

0.5 or higher, and to zero otherwise. Horton, Lipsitz, and Parzen (2003), on the other 

hand, showed that the proportion of correct responses or the probability of success (p) 

with binary variables is better estimated when the imputed value is not rounded under 

MCAR condition. Ake (2005) also found that dichotomous variables with unrounded 

imputed values resulted in less bias (difference of the estimated p with respect to the real 

p), with up to 40% of missing data when MCAR or MAR was observed. He showed 

similar results for non-binary categorical data. Allison (2006) expanded Horton et al.’s 

(2003) findings by demonstrating that rounded imputed values led to the worst recovery 

method for both p and linear regression coefficients, despite the missingness mechanisms 

(MCAR or MAR). 

Bernaards, Belin, and Schafer (2007) found that rounding methods also play a 

relevant role in parameter estimates bias. Using two different missingness levels (25% 

and 50%) and sample sizes (n=50, and 500), Bernaards et al. tested three different 

approaches (simple rounding, coin flipping rounding, adaptive rounding) of rounding 
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values imputed with MIDA. The data were MAR and contained both categorical (binary) 

and continuous variables. The rounding methods were only applied to binary variables. 

Values imputed for continuous variables were kept as generated by MIDA.  

In simple rounding, the imputed values will be rounded to zero when they are if 

less than 0.5, and to 1 otherwise (Schaffer, 1997). Coin flipping rounding is based on a 

Bernoulli distribution where the imputed values between 0 and 1 were treated as the 

probability of drawing 1. In adaptive rounding, a normal approximation to the binomial 

distribution is used. Here, the threshold (t) values for the rounding decision were 

estimated with: 

𝑡 = �̅� − 𝛷−1(�̅�)√�̅�(1 − �̅�), (1) 

where �̅� “denotes the mean value on a single variable [i.e., an item] of available 

<observed> binary observations and imputed values produced by the multivariate normal 

imputation procedure” (p. 1372) and can range from 0 to 1; 𝛷−1 is the quantile function 

of a normal distribution, with 𝛷(𝑍) for 𝑍 = (�̅� − 𝑝)/√�̅�(1 − �̅�), which has a normal 

distribution for a given population proportion (p) (Bernaards et al., 2007). 

Several parameters were evaluated (Bernoulli proportion, odds ratios, continuous 

parameters, and logistic regression coefficients). For all of these, Bernaards et al. (2007) 

found that the parameters were recovered with little bias when the variables were 

continuous, while the parameter estimates showed higher bias in binary variables. The 

adaptive rounding generated parameter estimates only slightly better than the simple 

rounding regardless of sample size and missingness level. The worse performance was 

seen with the coin flipping method. 
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Other multiple imputation methods. There are other MI approaches for 

categorical data such as RandomForest (RF), MissForest (MF), log-linear multiple 

imputation (LLMI), and latent-class multiple imputation (LCMI). RF is an algorithm 

developed by Breiman and Cutler in 2001. It is currently available as stand-alone 

software (https://www.salford-systems.com/) and as R package. The goal in the RF is the 

imputation of continuous and categorical variables with classification trees. The 

classification tree analysis is one of the main techniques used in data-mining. It consists 

of defining the different outcomes (plausible values) that can be potentially obtained from 

the combination of different variables (decision tree). In the RF, several classification 

trees are constructed and the one with the higher chances is selected. Detailed 

information of how this method works can be found in Breiman’s (2001) work and at his 

website (http://www.stat.berkeley.edu/~breiman/RandomForests/).  

MF It is a non-parametric iterative approach that deals with mixed-type data (i.e., 

categorical and continuous). Stekhoven and Bühlmann (2012) proposed this approach, 

and it is based on RF algorithm. In the first stage, a RF estimation is computed only on 

the complete data. Then the missing values are predicted and they are carried again to the 

first stage as input for the next cycle. The process continues until convergence is reached. 

MF’s main advantages are that it does not need tuning of parameters nor it requires 

previous data distribution assumption. Also, it can be used in data with complex 

interaction, non-linear relation or high dimensional datasets Stekhoven and Bühlmann 

(2012). 

http://www.stat.berkeley.edu/~breiman/RandomForests/
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Stekhoven and Bühlmann (2012) tested this technique with mixed-type format. 

They compared it with different techniques for both continuous, categorical, and mixed 

data. For continuous data, MF was compared to the k-nearest neighbor imputation 

(KNNimpute), and the missingness pattern alternating lasso algorithm (MissPALasso). 

Whereas for categorical data, MF was compared to the MICE algorithm, and a dummy 

variable encoded KNNimpute. Different missingness levels (10%, 20% and 30%) were 

studied under MCAR condition. They found that MF performed better than KNNimpute 

with continuous variables. MF was better than MICE and the dummy variable encoded 

KNNimpute with categorical variables. With the mixed-type data, MF again did well. 

Unfortunately, no evaluation of this has been done with less strict missingness 

mechanisms. 

Andreis and Ferrari (2012) examined the performance of four missing data 

handling methods: LD, MICE, forward imputation (FI), and MissForest. LD and MICE 

were previously described. FI is “based on an iterative algorithm which alternates 

nonlinear principal component analysis (NLPCA) on a subset of the data with no missing 

data and sequential imputations of missing values by the nearest neighbor method” 

(Ferrari, Annoni, Barbiero, & Manzi, 2011, p. 2412). FI is effective in factor loading 

estimation and score recovery in multidimensional categorical analysis. Andreis and 

Ferrari compared the performance of the missingness methods in the estimation of item 

parameters using multidimensional IRT, specifically the M2PL, with the imputed data. 

The dataset consisted of N=113 examinees and 10 dichotomous items with different 

missingness levels (5%, 10%, and 30%) and mechanisms (MAR, MCAR, and MNAR) in 
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four of them. The first problem the author faced was that FI and MICE do not fill in all 

the nonresponses. Therefore, they had to stochastically impute values that the methods 

did not fill in.  

Andreis and Ferrari found that missingness level and mechanism had an effect in 

the missing data handling techniques. Among the methods, there was not a technique that 

yielded good estimates. The item difficulty was recovered better by FI and MF, 

regardless of the missingness mechanisms or level, whereas MF and MICE recovered the 

item discrimination parameter best. Nonetheless, they found that in the majority of the 

cases, the δj was overestimated, except when 30% of the data were MNAR. Conversely, 

the αj was underestimated. The LD outperformed the other methods when recovering αj 

and the missingness was high. 

LLMI was proposed by Schafer (1997) and has been shown to perform well. 

Also, the author offers a free stand-alone software called CAT that imputes values with 

the LLMI approach. Research has shown that LLMI “yields unbiased statistical 

inference, and it is robust against departures from the assumed imputation model” 

(Vermunt, van Ginkel, van der Ark, & Sijtsma, 2008, p. 371). However, LLMI’s major 

drawback is that it works only when one has a small number of categorical variables. As 

such, it is impractical when using empirical data (Finch, 2008; Gebregziabher & 

DeSantis, 2010; Schafer, 1997; Vermunt, van Ginkel, van der Ark, & Sijtsma, 2008). 

LCMI was suggested by Vermunt, van Ginkel, van der Ark, and Sijtsma (2008). 

LCMI is an unrestricted latent model that incorporates the missingness through a binary 

variable. According to the authors, the advantages of this approach are: (a) the imputation 
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with LCMI can be done separately for each variable with missing values. Thus, the size 

of the datasets is not an issue as it is with LLMI; (b) LLMI “respects the categorical 

nature of the variables” (p. 390); (c) its flexibility, because it is able to detect and 

conserve complex dependencies between the variables present in the imputation model; 

and (d) it “is easy to apply and [it is] neutral in the sense that no detailed a priori content 

knowledge is needed to build an imputation model” (p. 390). The LCMI model assumes 

that the joint probability density of the person’s observed responses on J categorical 

variables is: 

𝑃(𝑦𝑖,𝑜𝑏𝑠; 𝜃) = ∑ 𝑃(𝑥𝑖 = 𝑘; 𝜃𝑥) ∏ [𝑃(𝑦𝑖𝑗|𝑥𝑖 = 𝑘; 𝜃𝑦𝑗
)]

𝑟𝑖𝑗𝐽
𝑗=1

𝐾
𝑘=1 , (2) 

where P(yi,obs; θ) is the joint probability density of yi, the vector of observed 

responses of person i on J categorical variables; yij is the answer of the person i on the 

item j; xi is a particular latent class; K is the total number of latent classes with index k;  

θ = (θx, θy) is the vector with unknown parameters, the subscripts indicate to which set of 

multinomial probabilities the unknown parameters belong; and rij is the missingness 

indicator for the person i on item j. If the person did not answer the item, then rij=0, 1 

otherwise. Likewise, the conditional distribution of the missing responses is: 

𝑃(𝑦𝑖,𝑚𝑖𝑠𝑠|𝑦𝑖,𝑜𝑏𝑠; 𝜃) = ∑ 𝑃(𝑥𝑖 = 𝑘|𝑦𝑖,𝑜𝑏𝑠; 𝜃) ∏ [𝑃(𝑦𝑖𝑗|𝑥𝑖 = 𝑘; 𝜃𝑦𝑗
)]

1−𝑟𝑖𝑗𝐽
𝑗=1

𝐾
𝑘=1 , (3) 

The extent to which the LCMI imputation model approximates the distribution of 

yi depends on K, with a larger K providing a better approximation than a smaller K. Three 

model-fit statistics are used to determine the appropriate K: BIC, AIC, and AIC3.12 The K 

with the lowest model-fit statistic value should be selected.  
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Vermunt et al. (2008) used a nonparametric bootstrap for the imputation of values 

under this model. In their study they compared LCMI, ML estimation with missing data, 

and LLMI using simulated data with 70% of values MAR. This dataset was comprised of 

six dichotomous variables and n=10000. Additionally, they examined parameter recovery 

using LCMI with empirical data (n=4292) which had 81.5% of missingness and 79 

categorical variables with different number of categories (between 2 and 17). In both 

analyses, the parameters to evaluate were regression coefficients. Vermunt et al. found 

that imputation with larger latent class number yielded better results than a smaller 

number. They also said that the actual value of K is not relevant, as long as it large 

enough. They suggested to use AIC and AIC3 over BIC to have an idea of the K value. 

They also found that LCMI recovered parameter estimates with the same accuracy as 

LLMI and ML with missing data. Moreover, LCMI worked well under MAR regardless 

of the number item categories. 

MI and ML with auxiliary variables. Additional research has found that both 

ML and MI perform better in handling missing data with the support of auxiliary 

variables or covariates than when they do not use covariates (Meng, 1994; Rubin, 1996; 

Schafer, 1997; Schafer & Olsen, 1998; Collins et al., 2001; Schafer & Graham, 2002; 

Graham, 2003; and Enders, 2010). Auxiliary variables improve the missing data handling 

procedure. With simulated data, Collins et al. (2001) showed that values imputed with 

auxiliary variable were less biased than when they were not used. As a consequence, 

imputation with auxiliary variables reduces the standard error and thus increases 

statistical power. Auxiliary variables are especially useful with MI, which can handle a 
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higher number of auxiliary variables than ML. Also, MI with auxiliary variable is 

available in a larger number of statistical programs than ML (Collins et al., 2001). 

There are three model strategies to incorporate auxiliary variables into ML-based 

analyses: the extra dependent variable, the saturate correlates model, and the two-stage 

approach (Enders, 2010). The first two are correlation-based models proposed by Graham 

(2003), but the saturate correlates model is easier and more efficient than the extra 

dependent variable model. The third strategy estimates a mean vector and covariance 

matrix that incorporates as many auxiliary variables as desired (stage 1) and uses this 

information as input for the following analysis (stage 2). Its major disadvantages are  

(a) the need to specify the sample size a priori and this can “bias the standard errors from 

the analysis stage (Enders & Peugh, 2004)” (Enders, 2010, p. 134), and (b) the lack of 

friendly programs to implement some features that affect parameter estimates precision 

(Enders, 2010). 

Collins et al. (2001) mentioned that auxiliary variables are useful because they 

may be related to the cause of missingness or at least correlated with the variables that 

have missing values. This increases the likelihood of adjusting the missingness 

mechanisms from MNAR to MAR (Sinharay et al., 2001) or to mitigate the bias under 

MNAR condition (Collins et al., 2001; Enders, 2010). Schafer and Olsen (1998) also 

suggested including variables in the MI process when they seem to be strong predictors 

of missingness, even if they are not needed for later substantive analyses. In this regard, 

Collins et al. suggested using auxiliary variables when the correlation between them and 

the variable with missing data are 0.9 and the missingness exceeds 25%. She found that 
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when missingness is less than 25% and the correlation is .4 omitting auxiliary variables 

has negligible effects in the results. Enders (2010) recommended using auxiliary 

variables when the correlation between them and the variable with missing data are at 

least 0.4, despite the missingness mechanisms (MCAR, MAR, or MNAR).  

On the other hand, there is no agreement on the consequences of including too 

many auxiliary variables. Sinharay et al. (2001) found a negative effect on the accuracy 

of the parameter estimates (i.e., correlation coefficients) when the number of covariates 

increases in the imputation model. Likewise, multicollinearity problems and variance 

inflation (VIF) due to large numbers of covariates may be also present (Wayman & 

Swaim, 2002; as cited in Leite & Beretvas, 2010; Yuan & Lu, 2008). Conversely, Collins 

et al. (2001) advised that researchers should care more about the implications of omitting 

auxiliary variables than including irrelevant ones. That is, including too many of them 

does not harm the results, although there is little benefit in using a large number auxiliary 

variables (Enders, 2010).  

Supporting this argument, Schafer and Olsen (1998) stressed the importance of 

including variables in the MI process on which later investigation will be carried out in 

order to preserve the association between them. Also, the model used for the imputation 

should not be too different from the analysis model in order to avoid altering 

(strengthening or weakening) potential relationship among variables (Meng, 1994; 

Schafer & Olsen, 1998). This includes interactions among variables or any other complex 

relationship they may have (Enders, 2010). However, Sijtsma and van der Ark (2003) 
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said that using the same model, say IRT, for both imputation and analysis produces a 

dataset biased in favor of the hypothesis that is modeled. 

One explanation for the lack of agreement in the number of auxiliary variables 

and its consequences can be found in Thoemmes and Rose’s (2014) work. They showed 

that the inclusion of auxiliary variables not necessarily mitigates bias, but it can also 

enhance it. They found that “true” the relationship between the auxiliary variable, the 

missingness variable (which is a binary variable that shows whether the value is observed 

or missing), and the outcome variable (which has missing values and is the one for which 

the imputation is aimed) plays a role in the quality of the imputation using either ML or 

MI techniques. They classified auxiliary variables into bias-induced and bias-reduced 

variables based on that relationship. They used direct acyclic graphs and simulated data 

(n=500, 30% missingness, multivariate normally distributed variables, and six different 

values of explained variance associated with the auxiliary variable, 0%, 5%, 15%, 20, 

25%, 35%, and 45%, under MCAR, MAR, and MNAR conditions) to prove their 

hypotheses. They evaluated the outcome variable mean and variance recovery in this 

study. 

They found that when data are MCAR and MAR: (a) auxiliary variable induces 

bias in the estimates when the auxiliary variable is “truly” not related to the outcome 

variable or the missingness, even though when the correlation between the auxiliary 

variable and the other two variables seems to be important. The bias worsens when the 

missingness mechanism detaches from MCAR; (b) if the auxiliary variable is “truly” 

related to the other variables (missingness and outcome variables); and when data are 
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MNAR (c) “bias can be increased in the presence of MNAR, even if an auxiliary variable 

is added that is directly related to missingness and outcomes” (p. 28); (d) the sign of the 

coefficients between the auxiliary variable and the measured variable determines whether 

the inclusion of auxiliary variables increases or reduces bias. Thoemmes and Rose 

recognized that identifying whether the variable is bias-reduced or bias-induced in the 

imputation context is hard. They, however, suggest to avoid the inclusion of “as many as 

possible” criterion when selecting the auxiliary variables. Rather, they suggested to do a 

careful consideration of the variables before including them in the imputation process. 

Additional concerns about the use of auxiliary variables are the quality of the 

collected information (normally done with a background questionnaire) and the 

missingness that may also be present in these variables. Generally, the auxiliary variables 

are categorical data that classify the participants into categories, such as socio-economic 

status, gender, religion, etc. When the missing values of these auxiliary variables are 

imputed, the risk of misallocating examinees into the categories is high. This increases 

the chances of biased parameter estimates for the groups. Rutkowsky and Rutkowsky 

(2010) address these issues for international large-scale assessments from the perspective 

of plausible values. Plausible values are also a MI procedure in which several 

achievement scores are assigned to each participant student in order to estimate the 

performance of the population they belong to. This approach relies on the students’ 

performance on the test and their background information (or auxiliary variables) such as 

gender and socio-economic status.  
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The authors affirmed that background information is not as accurate as it could 

be, because inconsistencies in participants’ answers are normally present. This could be 

due to the fact they do not know the right response (e.g., how much students know about 

their parents’ level of education), or simply because the question is not clear to them. The 

authors demonstrated this inaccuracy issue with two indicators: (a) the (low) correlation 

between children and parents’ responses to items that are common to the two 

questionnaires, and the (b) (low) scale reliability for countries ordered by level of 

income. The worse results for both indices were present in the lowest-achieving 

participants and middle- to low-income countries. 

Rutkowsky and Rutkowsky (2010) highlighted that missingness in the 

background data are a problem for the country performance estimation in large-scale 

assessments. Enders (2008), however, said that the decision of working with incomplete 

auxiliary variables depends on both (a) their level of missingness and (b) the extent to 

which the auxiliary variables are correlated with the missingness in the variable for which 

the imputation is done (i.e., the manifest variable). In his full information maximum 

likelihood-based structural equation study, he saw that when auxiliary and manifest 

variables are highly related, the auxiliary variable “works well” even when it has 50% of 

missingness, regardless of the auxiliary variable missingness mechanism (MAR or 

MNAR).  

Enders also found a positive relationship between biased parameters and the 

proportion of missingness that is simultaneously present in both the manifest and the 

auxiliary variables. The bias is higher when the missingness is simultaneously present in 
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both variables, but missing values in either one or the other did not produce bias. Also, he 

found that the bias was extreme when 15% of the cases had matching missingness. 

However, bias was minimal when only 8% of the cases had this pattern. In his book, 

Enders (2010) suggests not including auxiliary variables that share more than 10% of 

missing cases with the variables for which the imputation will be done. 

Missing data in IRT context. Some missing data studies explicitly incorporate 

the missingness treatment in IRT models. They either generated the imputed values with 

IRT models (e.g., Huisman & Molenaar, 2001; Sijtsma & van der Ark, 2003) or 

suggested adjusted IRT models that incorporate the missingness as latent variable (e.g., 

Glas & Pimentel, 2008; Holman & Glas, 2005; Pimentel, 2005), as a manifest variable 

using an indicator (Rose et al., 2010), or as grouping factor using missingness levels 

(Abad, Olea, & Ponsoda, 2009) in the data analysis.  

Imputation with IRT models. The response-function (RF) imputation and mean 

response-function (MRF) imputation are nonparametric estimations based on the item 

response function (IRF) of a subsample of the data with no missing values. These 

approaches “do not impose restriction on the shape of the IRF and not explicitly on the 

dimensionality of measurement” (p. 514, 515) to avoid bias towards a particular IRT 

model. Imputation with RF and MRF include random draws from the Bernoulli 

distribution for binary data and from the multinomial distribution when the items are 

polytomous. The difference between these two approaches is that the first one uses 

proportion correct as part of the process, whereas MRF uses the mean of the regressions 

for all the items on the test (Sijtsma & van der Ark, 2003).  



68 

 

 

Sijtsma and van der Ark (2003)13 evaluated these two methods along with other 

two approaches that are also based on random draws from the Bernoulli distribution: 

PMS and TW imputation. Factors studied were missingness level (1%, 5%, and 10%) and 

mechanisms (MCAR and MNAR), sample size (n = 10, 20, 50, 100, 200, 500, 1000, and 

2000) and test length (J = 10 and 20). The recovery of four variables was evaluated: 

Cronbach’s alpha, the Mokken’s H scalability coefficient, R1c and Q2.
14 The first two 

coefficients are scale quality measurements, while the last two are Rasch coefficients of 

goodness of fit. They used R1c and Q2 to compare whether the data were unidimensional.  

Using dichotomous data, Sijtsma and van der Ark found that RF best recovered 

all four coefficients previously mentioned, regardless of the missingness level or 

mechanism. However, RF was more accurate in recovering R1c and Q2 than estimating 

Cronbach’s alpha and the Mokken’s H scalability coefficient. The performance of the 

other three approaches (MRF, PMS, and TW) was conditional on the missingness level. 

The second best performer was the TW imputation although it often overestimated the 

scale quality measurements. Like RF, TW was found to work well with nonignorable 

missingness. The authors also pointed out that RF can be unstable when the subsample of 

data with complete information used for RF is small. In this case, TW imputation should 

be preferred. Although they did not clarify whether the data were unidimensional, they 

found that PMS and TW imputation tend to reject the unidimensionality assumption, 

contrary to MRF. Finally, the authors mentioned that RF and MRF may work best with 

unidimensional data, although they did not explore this idea. 
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van Ginkel, van der Ark, and Sijtsma (2007) evaluated the performance of six 

different missing data approaches (RDS, TW, TW-E, CIM-E, RF, MIDA) by comparing 

the discrepancy in the estimation of three statistics (Cronbach’s alpha, Loevinger’s 

scalability H-coefficient, and the item cluster solution from Mokken’s scale analysis) 

using ANOVA in two studies. The discrepancy was defined as the difference between the 

coefficient obtained from the imputed dataset and the coefficient estimated from the 

complete dataset. For the first study, the variable factors were the latent-variable ratio, 

represented by different item ratios (1:1 and 3:1), sample size (n=200 and 1000), 

missingness level (5% and 15%), and missingness mechanisms (MAR, MCAR, or 

MNAR), and whether auxiliary variables were used in the imputation. Fixed factors were 

bidimensional data, J=20, polytomous (m=5) items and correlation between the latent 

variables of 0.24. For the second study, n=1000, J=20, missingness was 5% and MAR, 

auxiliary variables were used in all the imputations, and the data were bidimensional. The 

factors that varied in this second analysis were latent traits correlation (r=0.0, 0.24, and 

0.5), latent-variable ratio was of (1:0, 1:1, and 3:1), and the number of m (2 and 5).  

van Ginkel et al. (2007) observed that missingness mechanism had a little effect 

in the bias observed in the recovered parameters. More relevant to the parameter recovery 

were the levels of missingness and sample size. That is, they had an important role in the 

performance of imputation approaches. Moreover, the effectiveness of the imputation 

approaches varied depending on the variable used for the comparison (Cronbach’s alpha, 

Loevinger’s coefficient, or the item cluster solution). For example, TW-E and CIM-E 

were least affected by changes in the missingness level when recovering Cronbach’s 
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alpha and Loevinger’s coefficient. For the item cluster solution recovery, TW-E, MIDA, 

and RF were more stable across missingness level and sample size changes.  

van Ginkel et al. found that Cronbach’s alpha recovery was affected, although 

slightly, by the level of correlation of the latent variables and the dimensionality. They 

saw that Cronbach’s alpha was better recovered TW-E, CIMS-E, and RF when the 

correlation between latent variables was high or the data were unidimensional. The item 

cluster solution coefficient were better recovered with MIDA under the same 

circumstances. Loevinger’s coefficient was best recovered by TW-E, CIMS-E and RF, 

but this statistic was neither affected by the dimensionality of the data nor the correlation 

between the latent traits. Finally, the number of item categories did not affect the 

recovery of the Cronbach’s coefficient. Discrepancy in the Loevinger’s and the cluster 

solution coefficients, however, was higher when m=5 than when m=2. The imputation 

approaches that performed the best were TW-E, CIMS-E and RF for Loevinger’s 

coefficient and RF and MIDA for the cluster solution coefficient. 

Overall, van Ginkel et al. found that a combination of a small missingness level 

and a large sample size seemed to improve the performance of missing data approaches. 

Also, TW-E, CIM-E and the RF were consistently the approaches that yielded the 

smallest discrepancies in recovering two of the evaluated statistics regardless of the 

factors under study in this research. There were situations where RF outperformed the 

other two approaches in the case of the cluster solution coefficient. MIDA did not do 

better than the three aforesaid methods, but its performance was not the worst. RDS was 

consistently the worst approach. 
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Huisman and Molenaar (2001) worked with IRT models in both data imputation 

and data analysis stages; this was an extension of Huisman (2000). The factors they 

worked were sample size (N=20, 400, and 800), number of item categories (m=2, 3, and 

4), test length (J=5 and 10), missingness level (5%, 12%, and 20%), and missingness 

mechanisms (MCAR and two levels of MNAR). The levels of analysis were (a) person’s 

sum score, which was computed as the weighted or unweighted sum of correct responses, 

and (b) scale quality indices: Cronbach’s alpha and the Loevinger’s H-coefficient.  

They evaluated six different missing data treatment approaches. Two of them, 

hot-deck nearest neighbor (HDNN) and CIM, were based on a technique they called 

adjustment cells. The idea behind adjustment cells is that respondents are grouped 

according to certain covariates or auxiliary variables and the imputation is done for each 

group individually. The third imputation technique was based on the non-parametric 

Mokken scaling-based model (MOK). In the MOK imputation, the dichotomous items 

are ordered by difficulty (i.e., proportion of correct response). Then, each person’s 

imputed response for the jth item is determined by the number of correct answers the 

individual has before and after the item with nonresponse (see p. 227 for the imputation 

criteria).  

The remaining three approaches are based on the 1PL IRT model: expected value 

(EV) rounded to the nearest integer, one single random draw (SRD) from the estimated 

distribution of responses, and multiple random draws (MRD) from the estimated 

distribution of responses (Huisman & Molenaar, 2001). Person ability is estimated using 

the observed responses. Later, the distribution of responses in every cell (i.e., estimated 
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probability) is estimated. A response then is imputed either by rounding the estimated 

probability to the nearest integer (EV), or drawing one or multiple responses based on the 

estimated probability (SRD or MRD, respectively).  

At the person quality level, Huisman and Molenaar found that the performance of 

the imputation techniques was conditional on the test length (positive relationship), the 

number of item categories (positive relationship), as well as the missingness level 

(negative relationship) and mechanism (worse with MNAR than with MCAR). Sample 

size did not affect the person’s sum score. Also, test length was more important than the 

number of item categories. That is, the sum score was better estimated for a long test with 

a small number of item categories than for a short test with a large number of item 

categories. Additionally, overestimation of sum score values was present for data MNAR, 

but not for data MCAR. The authors also found that person’s sum score was best 

estimated when the missing data were imputed with MRD, regardless of the factors. The 

second best method was EV, although only slightly better than CIM and MOK. HDNN 

did not perform well at all. Huisman and Molenaar also highlighted that MOK and the 

three IRT-based imputation models recovered sum score better when data were 

dichotomous and the missingness level was low and nonignorable.  

At the scale quality level, both scales were overestimated with all the approaches 

but HDNN. Loevinger’s H was more affected than Cronbach’s alpha. This could be due 

to the fact that Cronbach’s alpha depends on the test length and number of categories. 

These scale indices cannot be used as evidence of the goodness of fit between model and 

data, especially when IRT-based models are used for both stages imputation and analysis 
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of imputed data (Huisman & Molenaar, 2001). 

In a second section of the study, Huisman and Molenaar compared individual’s 

performance estimate using person ability instead of sum of score using three different 

missing data treatment (MRD, HDNN, and CIM) and the analysis of incomplete data. 

The factors were missingness mechanism (MCAR and MNAR), J=5, m=2 and 3, N=400, 

and 12% of missing data. They found that person ability was best estimated with no 

imputation of nonresponses in three of the four conditions. CIM performed best only with 

data MCAR and m=3. Huisman and Molenaar found that MRD was more affected than 

the other approaches across the conditions. They argued that this is due to “a systematic 

change in the ability estimates by [running the model] twice, for imputation and 

estimation consecutively” (p. 241). 

Finch (2008) studied seven approaches (4 deterministic and 3 stochastic) for 

handling missingness under different sample sizes (N=500, 1000), missingness level (5%, 

15%, and 30%), and mechanisms (MAR, MNAR) within the IRT context and using 

dichotomous data. The seven approaches were CIM, not-presented (NP), incorrect (IAS), 

fractionally correct (FR), RF, MIDA, and EM algorithm. In the NP, the cases are 

completely removed from the data. The FR is the imputation with the reciprocal of the 

total number of item categories, 1/m. Item parameter recovery for the 3PL model was 

assessed. The number of items correctly answered was used as covariate in the MIDA 

process under the MAR condition. 

Overall, Finch found that scoring missing data as incorrect was the worst method 

to address missingness for dichotomous responses with EM being the second worse and 
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MIDA only slightly better. Also, when data were MNAR none of the approaches 

performed well. MIDA, FR and NP had almost the same performance with data MNAR. 

As with previous research (e.g., Huisman, 2000; Huisman & Molenaar, 2001), sample 

size was not relevant in the item parameter recovery. Moreover, the standard errors of 

item parameter estimates were smaller under MNAR condition than under MAR. 

There were some particularities with the item parameters’ recovery. In the case of 

the item discrimination, the level of missingness affects the estimation bias level. MIDA 

yielded the best αj estimation. Item difficulty was also best recovered with MIDA. Under 

MNAR, however, the δj was underestimated regardless of missingness level and missing 

data approaches, indicating that the items appeared to be easier than they really were. 

Treating nonresponse as incorrect led to the opposite conclusion; that is, the items 

appeared to be harder than they were. The missingness level had no effect on the 

estimated δj. Finally, in recovering the item pseudo-guessing parameter (χj) none of the 

methods performed well regardless of the missingness mechanism, although IAS was the 

worst. Under MNAR, a fourth index was estimated: the proportion of correct responses. 

The value of p was higher than its true value for all the approaches except IAS. The 

smallest discrepancy was given by MIDA and the largest discrepancy by EM.  

Finally, three remarks are relevant to this study. First, when generating the 

missing data, simulees were more likely to be assigned missing values if the original 

answer was incorrect. Second, the imputed values obtained via MI were rounded to the 

nearest 0 or 1, although other researchers have shown that this rounding produces biased 

estimates (Ake, 2005; Allison, 2006; Horton et al., 2003). Third, Finch actually generated 
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complete data with the EM algorithm even though this is regarded as bad practice and is 

not recommended (Enders, 2010). Finch acknowledged that the last two points may have 

had an effect on the performance level of MIDA and EM. 

More recently, Wolkowitz and Skorupski (2013) explored the idea of polytomous 

IRT model used in the imputation phase to study item statistics’ robustness. They 

approached nonresponses imputation using the multiple-choice model (MCM, Thissen & 

Steinberg, 1984). The MCM is an (3K-1) parameter model where K is the number of item 

categories. The MCM model assumes that students who do not know the answer to an 

item are attracted to the options at different rates. Thus, they do not choose the answer 

totally at random. Therefore the option a student chooses carries information about his or 

her ability. The MCM has parameters for all the item’s options, including a guessing 

parameter.  

Multiple imputation with MCM (MCM-MI) uses the probability of an examinee 

selecting a specific option to impute his or her actual response option (e.g., a, b, c, or d 

for K = 4). The authors evaluated traditional item difficulty (i.e., proportion of correct 

responses) and the item-total correlation between MCM-MI and LD. To do this, they 

used simulated data with N=20,000, J=44 multiple choice items with m=5, and 16.5% of 

data missing according to one of the three missingness mechanisms (MCAR, MAR, 

MNAR). Results showed that for MAR and MCAR both LD and MCM-MI performed 

similarly, with negligible difference. However, when the data were MNAR, MCM-MI 

generated more accurate item statistics than LD. In the case of p, LD was 7.5 times more 

biased than MCM-MI. The inter-item correlation was 1.3 times more biased with LD 
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than MCM-MI (Wolkowitz & Skorupski, 2013). Unfortunately, the accuracy of item and 

person parameters recovery was not studied.  

Missingness as latent variable. Another approach for handling missing data is 

assuming they are related to some sort of latent variable. O’Muircheartaigh and Moustaki 

(1999) was the first study doing this. In their work, they treated missing data with ML 

methods using response function. Their approach, called symmetric pattern model, does 

not categorize variables as dependent or independent. Therefore, the missing responses 

are not predicted by other variables. The models are pattern-based because both the item 

responses and nonresponses patterns are relevant. In the symmetric pattern model, two 

dimensions are thought to be present: the attitude (θ) and the response propensity (ξ). 

The instrument is supposed to directly measure the theta and the response 

propensity represents the examinee’s disposition to respond to the items in the 

instrument. They modeled the response function for an item (xj) considering three 

different missingness mechanisms: (a) MCAR, where the probability of a missing 

response is constant across individuals; (b) MAR, where the probability of a missing 

response depends on ξ; and (c) MNAR, where the probability of a missing response 

depends on both θ and ξ. That is, with MNAR the likelihood of answering an item 

depends on the examinee’s position on both attitude and response propensity, whereas the 

response itself depends only on the examinee’s θ. 

These probabilities are based on three coefficients, rj0, rj1, and rj2, that define the 

effect of θ and ξ on the examinee’s response function (O’Muircheartaigh & Moustaki, 

1999). Assuming the following response function: 
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𝑙𝑜𝑔𝑖𝑡{𝜋𝑗(𝒛)} = 𝛿𝑗 + ∑ 𝛼𝑗𝑖𝑧𝑖
𝑞
𝑖=1 , (4) 

where 𝜋𝑗 = 𝑃(𝑥𝑗 = 1|𝒛); z represents the q latent variables (θ and ξ); δj are the 

difficulty parameters; and αji are the discrimination parameters. When q=1 (i.e., one 

latent variable), and the item discriminations are equal to 1 (αji = α = 1) the model 

becomes the unidimensional Rasch model. The response function unfolds into two layers, 

where missing response is denoted by 9: 

𝑃(𝑥𝑗 ≠ 9|𝜃, 𝜉) = 𝜋𝜉𝑗(𝜃, 𝜉)   for each response item 

𝑃(𝑥𝑗 = 1|𝜃, 𝜉, 𝑥𝑗 ≠ 9) = 𝜋𝜃𝑗(𝜃) for each attitude binary item 

The model for the attitude binary item is 𝑙𝑜𝑔𝑖𝑡{𝜋𝜃𝑗(𝜃)} = 𝛿𝑗 + 𝛼𝑗1𝜃. Despite the 

missingness mechanism the response item section of the response function depends on 

the assumptions about the missing data mechanism: 

For MCAR, 𝑙𝑜𝑔𝑖𝑡{𝜋𝜉𝑗(𝜃, 𝜉)} = 𝑟𝑗0 

For MAR, 𝑙𝑜𝑔𝑖𝑡{𝜋𝜉𝑗(𝜃, 𝜉)} = 𝑟𝑗0 + 𝑟𝑗2𝜉 

For MNAR, 𝑙𝑜𝑔𝑖𝑡{𝜋𝜉𝑗(𝜃, 𝜉)} = 𝑟𝑗0 + 𝑟𝑗1𝜃 + 𝑟𝑗2𝜉 

The coefficients (rj0, rj1, and rj2) can be zero, positive, or negative. If both ri1 and 

ri2 are equal to zero, the response is MCAR. If ri1 = 0, then the response is missing at 

random. Values of ri1 that are further away from zero mean that (a) an individual with a 

high position on the θ scale is more likely to respond to the item, and (b) more 

information about θ can be inferred from the not-answered item. The sign of ri1, depends 

on both how the attitude is being measured (i.e., direct or reversed wording) and the 

question’s sensitivity. For example, in a rating scale measure a high positive value of ri1 

would mean that the attitude is measured directly. If the question is sensitive, the 
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participants who agree with the item’s statement will have more willingness to answer 

that question than the ones who disagree. Thus, the missing response would probably be 

“imputed” as disagree. 

Finally, O’Muircheartaigh and Moustaki (1999) said that this approach works 

with binary, continuous, and mixed (binary and continuous) variables with missing data. 

However, they found that the uncertainty of what the imputed value must be is greater 

with binary variables. This uncertainty is reduced with mixed variables and, thereby, the 

“strength of the predicted scope of the model with respect to the missing value” increases 

(p. 187). The authors pointed out that this approach is compatible with attitude scaling 

given that each item provides information about the other items in the scale. 

Based on this antecedent, Glas and Pimentel (2008), Holman and Glas (2005), 

and Pimentel (2005) modeled the missingness mechanisms in the IRT “language.” That 

is, they assumed a second latent trait (or dimension) that determined the probability of 

answering an item (i.e., response propensity). The relationship between the response 

propensity (ξ) and the latent construct (θ) that is of interest to measure determines the 

missingness mechanism. Thus, they should both be included in the IRT data analysis. 

Holman and Glas (2005) studied item parameter recovery in the IRT context 

when the missingness mechanism is taken into account and when it is not. Their proposal 

starts from the IRT framework for missingness. They say that the missing data suitable 

for IRT analysis can be grouped in four different categories. The first category, MCAR, 

is when the data were set to be missing by design in the study. The missingness obtained 

in the adaptive test, two-stage, and multi-stage testing is the second category. In this case, 
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the data are missing according to the person’s response and it said to MAR. The third 

category refers to the missingness caused by the “don’t know” or “not applicable.” This 

missingness is not related to the ability being measured and thus is another type of MAR. 

Finally, the last category also has an unknown cause, but in this case the nonresponse is 

dependent on the person ability (MNAR).  

According to these categories, Holman and Glas presented four different IRT-

based approaches that model the missingness mechanism, three of them being different 

cases of MNAR and one of MAR. Basically, Holman and Glas (2005) assume that there 

are two latent traits that drive the person’s decision about whether to answer an item. The 

first one is the response propensity which represents individual characteristics (e.g., 

personality trait, omission propensity, etc.) that affect the person’s propensity to answer 

an item. This latent trait is not measured by the instrument. The second latent trait is the 

person ability that is measured with the instrument. The four approaches are based on the 

dependence of both observed response and nonresponse on these two latent traits, and the 

relationship between them, ρ(θ, ξ). 

In model 1 (G1), the probability of a particular observation for the person i on the 

item j, xij, depends on θ; the probability of a particular nonresponse (dij) depends on ξ; 

and there is no relationship between θ and ξ, ρ(θ, ξ) = 0.0. In this case, the data are 

ignorable (missing at random). The nonignorable missingness is modeled in three 

different situations. In all the situations it is assumed that θ and ξ have a common 

distribution. In model 2 (G2), the probability of xij depends on θ; the probability of dij 

depends on ξ; and there is a relationship between θ and ξ, ρ(θ, ξ) ≠ 0.0. In model 3 (G3), 
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the probability of xij depends on θ, but the probability of dij depends on both θ and ξ, and 

ρ(θ, ξ) ≠ 0.0. Finally, in model 4 (G4), the probability of xij and dij depends on both θ and 

ξ, and ρ(θ, ξ)  ≠ 0.0. 

Although these “missingness models” can be combined with different data 

analysis models, the authors only worked with them in conjunction with IRT analysis 

models (GPCM, PCM, 2PL and Rasch) using MML. Factors for the study with simulated 

dichotomous data and 50% of the data missing were sample sizes (N=500, 1000, and 

2000), test length (J=10, 20, and 30), and levels of ρ(θ, ξ) (0.0, 0.1, 0.2… 0.9). The closer 

ρ(θ, ξ) is to 1 (normally positive) the more likely the missingness can be considered 

nonignorable. Holman and Glas showed that the higher the ρ(θ, ξ) the greater the bias of 

item parameter estimates if the missingness is treated as ignorable when analyzing the 

data. That is, ignoring nonignorable missing data yielded biased estimators. The bias in 

the item parameter estimates recovery was higher for shorter tests and small sample. 

However, these biases can be reduced by incorporating or modeling the missingness 

through the above described models.  

Additionally, Holman and Glas (2005) tested the proposed models with empirical 

data (32 five-point rating scale items) in two ways. First, they modeled the missingness 

with the Rasch model and the observed data with the PCM. Second, the missingness was 

modeled with the 2PL and the observed with GPCM. In both ways, they used the four 

missingness models and an additional model in which there was only one latent trait (i.e., 

ρ(θ, ξ) = 1) that determined the probabilities of both xij and dij (named G0). They found 

that (a) the GPCM fitted the observed data better than the PCM and that G3 (with GPCM) 
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and G4 (with GPCM and PCM) were more efficient at modeling the missingness process 

than G0, G1 and G2; (b) the estimated ρ(θ, ξ) was larger than the data-based ρ(θ, ξ) 

coefficient; and (c) the model has a better fit when the missingness is modeled (G1 to G4) 

than when it is not (G0). 

Pimentel (2005) wrote a couple of chapters (2 and 3) for his doctoral dissertation 

related to missingness modeling with IRT. Chapter 2 refers to non-speeded tests and 

Chapter 3 combined this phenomenon with not-reached responses. Pimentel’s chapter 2 

(2005) simulated diverse conditions, some of which were studied by Holman and Glas 

(2005), such as MML estimation, N=500, J=10 items, dichotomous and polytomous (with 

m=3), MAR and MNAR mechanisms, 25% and 50% of missingness level, and different 

ρ(θ, ξ)=0.0, 0.4, and 0.8. However, Pimentel included a couple of additional conditions 

such as the bi-dimensionality (ξ1, ξ2) of the missingness data process, whether these 

dimensions were considered in the model, and the extent to which these dimensions were 

related, ρ(ξ1, ξ2) = 0.0, 0.4, and 0.8. Also, he analyzed the effect of incorporating 

covariates in both models (i.e., the missingness model and person ability model), 

assuming a linear association between the covariates and the latent variables (θ, ξ1, ξ2). 

Pimentel used the multidimensional 2PL and multidimensional PCM for the observed 

data modeling for dichotomous and polytomous items, respectively. Given that the 

missing data are based on a binary matrix that records the response or nonresponse of the 

examinee i on the item j as 1 or 0, respectively (dij = 1 or dij = 0), the missing data process 

was modeled with the multidimensional 1PL in both item formats. 

Pimentel’s (2005) conclusions aligned with those presented by Holman and Glas 
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(2005): (a) ignoring nonignorable missingness increased the error in the estimation of 

item parameter; (b) modeling the missingness, even partially, contributed to an 

improvement in estimation; (c) the higher the non-ignorability condition of the missing 

data (i.e., larger ρ(θ, ξ)), the greater the bias in the estimates if the missingness was not 

modeled; (d) the use of covariates (for both θ and ξ) improved estimation, regardless of 

the missingness level and mechanism, item format, or latent correlation, ρ(θ, ξ); (e) the 

use of covariates contributed to the efficiency even under MAR condition; (f) the use of 

covariates only (i.e., not modeling the missingness or ignoring the ρ(θ, ξ) value) reduced 

the bias in estimation (i.e., nonignorable missingness can be ignored if covariates are 

included in the parameter estimation, but a combination of both missingness modeling 

and covariates improved the estimation even more); and (g) there is not clear effect of 

ρ(ξ1, ξ2) values. 

Chapter 3 of Pimentel’s dissertation was published as Glas and Pimentel (2008). 

This paper also studied the efficiency of IRT models that incorporated missingness 

mechanisms in the data analysis. Not-reached responses were the type of missing data 

they dealt with in this study. They assumed that speediness and ability were related and 

thus the missing data were not ignorable (MNAR). Glas and Pimentel evaluated: (a) the 

position effect of dichotomous items in the test in their parameter estimation quality;  

(b) the effect of sample size, test length, and non-ignorability intensity on item parameter 

bias with dichotomous items; and (c) whether this approach applied to polytomous items. 

In all cases MML estimation was utilized. The models utilized in this study were the 

sequential or step model (Tutz, 1990, 1997; Verhelst et al. 1997), both uni- and bi-
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dimensional 2PL, and GPCM according to the item response format. Finally, the 

missingness models were based on the same approach as Holman and Glas (2005). 

To study condition (a) and assuming ρ(θ, ξ)=0.8 with 50% of MNAR, they had 

two scenarios: one in which the nonignorable missingness was explicitly modeled as if it 

were a second dimension on which the items load (scenario 1), and another in which it 

was ignored; that is, MNAR was assumed to be MAR (scenario 2). In scenario 1, the bi-

dimensional 2PL was used in the estimation, whereas the parameters in the scenario 2 

were estimated with the unidimensional 2PL. To study condition (b), the simulated data 

had N=500 or 1000, m= 10 or 40, and MNAR= 25% or 50%. The non-ignorability 

intensity was ρ(θ, ξ) =0.0, 0.2… 0.8. When ρ(θ, ξ)=0.0, the data were MAR. Like in the 

previous condition, the data were modeled assuming that nonignorable missing data were 

MAR or MNAR. The step model was used for the missing data and the 2PL for the 

observed responses. For condition (c), the dataset was comprised of polytomously scored 

items with 4 response categories. Factors were N=500 or 1000, m=10 or 40, MNAR= 

25%, and ρ(θ, ξ)=0.2… 0.8. Again, the data were modeled assuming that nonignorable 

missing data were MAR or MNAR. The step model was used for the missing data and the 

GPCM for the observed responses. 

Overall, the results showed that the item’s position in the test affected the quality 

of its parameter estimates whether missingness was modeled or not (scenarios 1 or 2). 

That is, the parameters of items located towards the end of the test showed higher 

standard error, on average. Also, as found with previous research (Holman & Glas, 2005; 

Pimentel, 2005), correctly modeling the missingness mechanism improves item 
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parameter estimates, regardless of their format (dichotomous or polytomous), sample 

size, test length, or non-ignorability intensity. However, non-ignorability intensity and the 

proportion of not-reached responses positively impacted the bias level if the missingness 

was not explicitly modeled. That is, as ρ(θ, ξ) increased, the bias in the item parameter 

estimation increased if data were treated as MAR. The sample size counterbalanced this 

effect such that the bias was less when N was higher, regardless of the non-ignorability 

intensity and the proportion of not-reached response.  

When nonignorable data were ignored, the parameters of items located in the 

second half of the test were consistently underestimated with item difficulty more 

severely affected. Glas and Pimentel (2008) argued that the high bias in the parameter 

estimates for these items showed that models that assumed MAR when the data were in 

fact MNAR do not accommodate differences in the variability of the proficiency level. 

When the not-reached responses are nonignorable, the participants that answer the last 

items are supposed to be more proficient than the ones that did not. Hence, this difference 

should be taken into account when estimating parameters. This is exactly what does not 

happen when nonignorable missingness is modeled with MAR assumption. An additional 

comment by Glass and Pimentel was that this approach may be seen as a test of goodness 

of fit. The main limitation of this study is that the authors ignored the omitted responses, 

when theory normally assumes they are also MNAR. 

Likewise, a study conducted by Rose, von Davier, and Xu (2010) evaluated the 

performance of different missing data techniques within the large-scale achievement 

assessment context. Using both, simulated and empirical data (PISA, 2006) they 
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compared six IRT models. Some of the models (models 2 to 4) used deterministic 

treatments for missing data. Whereas others (models 5 to 7) approached missing 

responses through what the authors called the latent response propensity. The idea behind 

the stochastic approaches considered by Rose et al. were the same as Holman and Glas 

(2005), Pimentel (2005), and Glas and Pimentel (2008).  

The first model (M1) is a unidimensional IRT that uses the simulated cases 

without missingness. M1 served as benchmark for evaluating the other models. In the 

second model (M2), the missing data were ignored in person and item estimation, 

whereas in the third model (M3) the missing data were scored as incorrect in the analysis. 

Model 4 (M4) was based on the two-stage approach that was originally suggested by 

Ludlow and O’Leary (1999) and that is normally applied by agencies that do large-scale 

assessment (PISA, TIMSS, and PIRLS). In this model, the missing data were ignored for 

the item calibration, but treated as incorrect for ability estimation. However, in PISA, 

TIMSS and PIRLS only not-reached responses are treated as ignored in the first stage and 

as incorrect in the second stage. Omitted data are always treated as incorrect in the two 

stages. This study did not distinguish between these two types of missingness.  

The fifth model (M5), called the latent regression model, had missingness 

modeled via the observed response rate of person i (𝑑�̅�) and was used as a θ predictor. 

The sixth model (M6), called the between-item multidimensional IRT model, 

incorporated two dimensions, θ and ξ, to model the missingness. With this model the 

probability of correctly answering the item was weighted by the response propensity for 

the item. The last model (M7) was the within-item multidimensional IRT model, in which 
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the missingness was incorporated into the item by adding an additional item 

discrimination parameter.  

For the simulated data, the conditions were 1000 cases with 26 dichotomous 

items, two levels of missingness (xmiss=30% and 49.81%), and ρ(θ, ξ)=0.622 and 0.80. It 

was assumed that the missingness mechanism was nonignorable in all the cases. The 

analysis of the simulated data were done using the Rasch model. EAP was used to 

estimate the θ estimates. With the simulated data M2 to M7 were compared to M1. Rose 

et al. (2010) evaluated the recovery of both item and person parameter estimates using 

bias, standard error, and mean square error values. Additionally, the authors reviewed the 

correlation between the true and the estimated ability, 𝑟(𝜃, 𝜃), and two reliability 

coefficients: 𝑟(𝜃, 𝜃)2 and the EAP reliability. 

The results showed that all the models, except M3, returned good item parameter 

estimates, albeit overestimated. There was no difference in the performance of the 

stochastic models. M2 was the most accurate, when xmiss = 30% and ρ(θ, ξ) =0.622, but it 

did not do well when xmiss = 49.81% and ρ(θ, ξ) =0.80. The item parameter conclusions 

for M2 also apply to M4, because M4 is a two-stage approach and it is the same as M2 in 

the first stage. M3, which assumed the missing data to be incorrect was the worst. It 

exhibited around 15 and 120 times more bias than the other models when xmiss =30% and 

ρ(θ, ξ) = 0.622, and when xmiss =49.81% and ρ(θ, ξ) =0.80, respectively.  

Using EAP, Rose et al. compared the models at the person ability level. Here 

again, the models’ accuracy was the same for the stochastic models. M2 and M3 were 

more accurate recovering person ability than recovering item parameters. An interesting 
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result was the performance of M4 in its second stage (θ estimation). Even when the item 

parameter bias was the smallest with M4, the 𝜃 based on the item parameter estimated 

(stage 1) greatly underestimated the true ability. This conclusion was the same for 

xmiss=30% and 49.81%. 

The values of 𝑟(𝜃, 𝜃) for the different models were all above 0.78. The highest 

correlation was for the stochastic models, which had the same value despite the 

missingness level. When xmiss =30% and ρ(θ, ξ) =0.622, the lowest correlation was 

reported for M3 and M4, and when xmiss =49.81% and ρ(θ, ξ) =0.80, M2 had the lowest 

correlation. By comparing the values of the two reliability coefficients, 𝑟(𝜃, 𝜃)2 and the 

EAP reliability, it was possible to detect if the models were overestimating  

(𝑟(𝜃, 𝜃)2 < EAP reliability) or underestimating (𝑟(𝜃, 𝜃)2 > EAP reliability) the 

reliability. From this analysis, the authors found that ignoring the missing data (i.e., using 

M2) underestimated the reliability, M3 and M4 overestimated the model-based reliability 

with M3 being worst. The stochastic models did not under- or over-estimate the reliability 

when xmiss =30% and ρ(θ, ξ) =0.622. With higher level of missingness and latent traits 

correlation (49.81% and 0.80, respectively), only M5 produced a negligible 

underestimation of the reliability coefficient (Rose et al., 2010). 

In summary, treating the missing data as incorrect yielded either overestimated 

item parameter if all the parameters were simultaneously estimated (M3), or 

underestimated ability if this parameter was obtained in a second stage (M4). This means 

that the estimated reliability coefficients will be spuriously high for M3 and M4. Finally, 

M2 was robust when xmiss = 30% and ρ(θ, ξ) = 0.622, although it underestimated the 
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reliability of the ability estimates. The stochastic models performed the best in both item 

and person parameters estimation and yielded the highest correlation and most precise 

reliability coefficient. None of the three stochastic model could be chosen as the best 

(Rose et al., 2010). 

For the empirical data, only models M2 to M6 were reviewed. Given the 

complexity of PISA 2006, these models were adjusted to include: (a) a latent ability that 

was multidimensional (θi) to incorporate math, reading, science, and ξ; (b) for M5, the 

observed response rate was stratified into groups according to certain ranges (low, 

medium and high); (c) the country was included as a variable in the models (multi-group 

models); (d) the item parameters were constrained to be the same across countries; and 

(e) means, variance, and covariances were allowed to vary across countries (Rose et al., 

2010). 

The models were evaluated with the PISA 2006 data using variants based on the 

2PL model. In this analysis, the conclusions were almost the same as with the simulated 

data. Specifically, M2 and M5 had the best and similar performance at the item parameter 

level (discrimination and difficulty), with M6 being the second best. For the person 

ability estimation, the accuracy of the models was measured with the conditional 

expectation of the latent ability, conditional on the country (g), E(θk | g). M3 and M4 

underestimated the E(θk | g), whereas M2, M5, M6 performed almost equally. However, 

there was no evidence that the stochastic models outperformed M2 (Rose et al., 2010). 

Overall, Rose et al.’s conclusions are: (a) the stronger the relationship between the 

latent ability and the latent propensity response, the less ignorable the missingness is and 
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the more biased the estimates are; (b) stochastic models “adjust the EAP ability estimates 

selectively, due to the pattern of missing data, and correct for the unfair benefit of the 

systematically skipped items” (p. 43); (c) the higher the missingness level, the less 

efficient the unidimensional models are, although they perform well even with 30% of 

missingness; (d) treating missing data as incorrect is both unfair and inefficient. This 

approach distorts parameter estimates, underestimates reliability, and “tends to penalize 

respondents who actually might have solved the items” (p. 42); (e) stochastic models, 

although not outperforming the simpler ones in this study in terms of parameter 

estimates, offer the chance of determining the relationship between proficiency and non-

response (via the reliability of ability); and (f) M5 could be a good stochastic model given 

that there are greater computational costs with M6 and M7 than with M5, and the results 

are pretty much the same. A limitation of this study is that they did not differentiate 

between omitted and not-reached responses in neither the simulated data nor PISA, 2006 

data. The authors assumed that both omitted and not-reached responses were equivalent. 

Abad, Olea and Ponsoda (2009) evaluated the quality of parameter recovery for 

multiple-choice item responses with omitted data and polytomous IRT models, like the 

MCM, the Samejima-MCM (SMCM), and the nominal response model (NRM). 

Polytomous IRT models’ primary advantage is the additional information obtained from 

the different item categories (Drasgow, Levine, Tsien, Williams, & Mead, 1995; as cited 

in Abad et al., 2009). Nevertheless, they have some disadvantages such as the lack of 

guessing parameters in some models (e.g., NRM), lack of unique parameters estimates, a 

relatively large number of item parameters to be estimated (as is the case for MCM and 



90 

 

 

SMCM), the requirement of a large sample size, and the fact that these models do not 

address omitted response issues (Abad et al., 2009). 

Abad et al. suggested a restricted-SMCM (RSMCM) that addresses all these 

limitations of the three previous models. The key characteristic of this approach is that 

examinees are split into G groups with homogeneous propensity omission, that can be 

calculated as Oi=omits/ (omits+incorrect). Therefore, RSMCM assumes that there are 

different omitting propensity groups according to the omission level the examinees have. 

However, splitting the sample into groups could also be considered as the model’s 

drawback. In large-scale assessment, there may be a large number of sub-groups that can 

complicate the data analysis. In the RSMCM, the probability of omission is the same 

within the group and the omitting propensity for an examinee is constant across the items. 

Finally, RSMCM also assumes that the response propensity is conditional on both the θ 

and the omitting propensity of the group the examinee is a member of (Abad et al., 2009).  

The authors studied the performance of the four models using both empirical and 

simulated data. For the empirical data analysis (N=3,224 examinees, J=20 items, m=4), 

four groups were formed based on the propensity omission of examinees. Item 

parameters were estimated using MML. For NRM, SMCM, and MCM the omitted 

responses were coded as an additional response category. Two different levels of analysis 

were used to compare the four models’ performance: the item-fit and model-fit analysis. 

The item-fit analysis revealed that 14 out the 20 items fit the model at some level 

(moderated or full) when the analysis was done with RSMCM. When working with the 

other three models almost all the items (19 out of 20) failed to fit the model when the 
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parameters were forced to be equal (Abad et al., 2009).  

In terms of model-fit, the RSMCM showed the smallest AIC value, meaning that 

it fit the data better than the other three models. Person and item parameters for the 

different groups were estimated with only the 14 items that fit the model for all the four 

approaches in the study. Again, Abad et al. found that RSMCM had the best model-fit 

with this subset of items. Also, the mean difference analysis among groups showed that 

these groups had different ability levels. Therefore, RSMCM was shown to most 

accurately depict this situation. The authors also found that “lower ability examinees’ 

omission rates cannot be estimated so reliably in the MCM and SMCM as in the 

RSMCM” (Abad et al., 2009, p. 210). 

For the simulated data analysis, two factors were manipulated: sample size 

(N=1000, 2000, and 3152) and test length (J= 14 and 28). The items also had four 

response categories and four different groups were generated according to their omission 

propensity. Two sets of data were generated, the first one with the RSMCM and the 

second set with the other three models (NRM, MCM, and SMCM). Person ability was 

estimated using MAP. Both person and item parameters recovery were compared using 

different indices. Abad et al. (2009) found that sample size and test length affected item 

parameters recovery. The larger the sample and the longer test, the lower the difference 

between the estimated and the true item parameters. Additionally, the models were not 

equally effective when recovering item parameters. Contrary to what was expected, the 

NRM was found to be the best in item parameter recovery, but did not do so well with the 

theta estimation. The worst item parameter recovery was obtained with the MCM. On the 
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other hand, theta recovery was the best with RSMCM, when the data were generated with 

this model. When the data were generated with the other three models, RSMCM 

performed as well as the NRM, MCM, and SMCM in the θ recovery. Thus, RSMCM can 

be a good option when examinee’s guessing strategies were not properly considered in 

the model (Abad et al., 2009). 
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CHAPTER III: METHODS 

The 6th grader’ mathematics dataset from the SERCE are used in this study. The 

domain was chosen because sixth grade students had a lower performance in this area 

than in others measured by SERCE. In 2006, the SERCE was administered to third and 

sixth grade students from sixteen countries and the Mexican state of Nuevo Leon. Around 

196,000 students from the participant countries were evaluated in mathematics and 

reading and writing. A third area, sciences, was also administered to sixth graders. 

However, participation in this domain was not mandatory. Thus, only nine countries and 

Nuevo Leon have been assessed in science. Additionally, information regarding students, 

classrooms, and schools characteristics was collected. The SERCE is representative at the 

national, urban, and rural levels. 

Overall, SERCE developed 45 instruments to accomplish its purpose. Of them, 34 

are achievement tests, and 11 are background questionnaires. The instruments were 

paper-based and written in two languages: Spanish and Portuguese. All the instruments 

were previously piloted before their final use. The psychometric analyses were done 

using the Rasch model, Classical Test Theory and included differential item functioning. 

The items retained after the pilot testing were distributed in six blocks per domain.  

These blocks were combined to form six booklets, such that each of them would 

contain two blocks. Test administration followed a balanced incomplete blocks design 

and was limited to 60 minutes for reading and science, 45 minutes for writing, and 70 

minutes for mathematics. An additional 10 minutes was offered to students if they 

requested extra time to finish the test (Valdez et al., 2008). All the parameters were 
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estimated using the whole data (i.e., calibration was not done per country). Students’ 

scores are based only on the booklets they completed. The scores were estimated with 

Winsteps, which uses JMLE. 

This study uses the data of 6th grade students’ performance in mathematics 

because sixth grade students had a lower performance in this area than in others measured 

by SERCE. Also, because 6th grade tests contained more items than did the 3rd grade 

instruments. This test has a mixed-format design and 96 items. Therefore, each booklet 

has 29 multiple-choice (MC) items and 3 constructed-response (CR) items. Both MC and 

CR answers range from 1 to 4; MC items are dichotomously scored, whereas CR items 

are polytomously scored. CR items were rated under a nested design in which raters 

scored across items, but not across students. 

Missingness level 

SERCE study identifies five different sources of missingness at the item level in 

the achievement tests: (a) missing by design (called not-administered in the literature); 

(b) not legible due to printing issues; (c) not-administered (SERCE assigned this category 

to the items that had some issues in the printed booklet); (d) invalid; and (e) not-

answered. The first three categories are assumed to be missing completely at random and 

therefore ignorable. The item response is classified as invalid if the student selected more 

options than expected (i.e., multi-marks).  

SERCE does not differentiate between not-reached and omitted responses; thus, 

category (e) includes both. Not-reached responses are generally considered ignorable, 

whereas omitted responses are intentionally not answered by the participant (Lord, 1973, 
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1980; Mislevy & Wu, 1988, 1996). This distinction is pertinent to the missingness 

mechanism that is observed in each case (MAR and MNAR, respectively), and 

consequently in the treatment approach to be employed. Omitted responses are the 

intermediate missing values observed in the person’s response pattern and not-reached 

responses are the consecutive blank items clustered at the end of the test. There are no 

valid responses after not-reached items.  

Two issues emerge when distinguishing between these two levels of missingness. 

First, there is no reference (or rule of thumb) about the proportion of the items in a test 

that can be considered not-reached. When considering the definition and following the 

common practices of coding this type of cases,15 not-reached items can be found as early 

as in the second item in the response pattern in the SERCE study. Note that the concept 

of not-reached responses is linked to the time the students have to take the test. Thus, it is 

logic to think that only the last items are under this risk.  

This situation leads to the second issue; that is, the number of “non-answered” 

items that were actually not reached because of lack of time. This is related to the 

dependency between speededness and ability. If they are related, then the assumption of 

random missingness cannot be tenable (i.e., the higher the number of blank responses 

categorized as not-reached, the higher the likelihood of them being conditional on the 

participant’s proficiency). After all, low ability students tend to spend more time solving 

each item, given their comprehension limitation (Mislevy & Wu, 1988; Glas and 

Pimentel, 2008). There is some empirical evidence about the relationship between not-

reached responses and ability. Specifically, van den Wollenberg (1979) found a 
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significant correlation between percent-correct scores for the reached items and the total 

number of reached items (cited in Mislevy & Wu, 1988). For this reason, no distinction 

between omitted and not-reached responses are made in this study. 

The proportion of not-answered (i.e., omitted and not-reached) in 6th grade 

mathematics dataset can be measured in different ways. If considered as a matrix, 1.7% 

of the cells contain missing responses, whereas the missingness per item (or missingness 

by participant) ranges between .8% and 32.4%. Finally, the proportion of students with at 

least one nonresponse in mathematics is 48%. That is, almost half of the participant 

students from 6th grade did not answer at least one item in this domain.  

Data generation for the missing analysis 

For the purpose of this study, SERCE mathematics 6th grade MC and CR items 

data are dichotomously scored as correct (code=1) or incorrect (code=0), partial credits 

are considered incorrect as well as invalid responses. Not-answered items were 

`considered omitted (coded=2) and other sources of missingness (i to iii from missing 

data section) were considered ignorable. As said above, each of the six booklets has 32 

items. Cases with more than 10 missing responses were removed from the dataset (2.6% 

loss). Data calibration was conducted using the Rasch and 2PL models. There were items 

for that did not perform well (i.e., the item parameter estimates had extremely high 

values) and thus were removed as presented in the Appendix B. This resulted in a varying 

number of items per booklet (between 13 and 31, see Table 2 in the result section) and 

per model  (57 and 53 items for the Rasch and 2PL models, respectively). Consequently, 

the results for the two IRT models cannot be compared. The next step was to extract 
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missingness pattern from the dataset to be used with each IRT model, following a set of 

steps: 

Step 1. The dataset was split into two files per booklet: the complete-data (Cb 

where b=booklet=1, 2, …, 6) and incomplete-data (IAb) files. The complete-data file 

contains the participants who answered all of the items in a booklet, whereas the 

incomplete-data file contains participants who have between 1 and 10 non-responses. The 

two datasets were compared using an algorithm,16 which is based on Needleman and 

Wunsch algorithm used in genetics. The algorithm reported the level of match between 

all possible pair of cases in both files. The algorithm compared a case with a complete set 

of answers to the cases with omitted responses on an item-by-item basis. Differences in 

the responses across the two files could be due to different observed answers (e.g., one 

person answered correctly and the other incorrectly) or due to non-observed response 

(e.g., one person provided an answer and the other did not). The algorithm did not 

differentiate amongst these two differences, so the output was later analyzed and cases 

with differences due to different observed answer were discarded. 

The complete-data and incomplete-data files were matched by booklet because 

the items were not the same across the booklets. The percent match was calculated based 

on the observed responses the incomplete cases have. For example, if the case x1i with 

incomplete response pattern has 28 observed responses (i.e., 4 missing values) and 25 

matched responses (i.e., 3 responses are different) with case x1c which has complete 

response pattern, the percent match for these two pairs of cases is 89% (25/28). Only 

cases whose percent match was 100% were retained (i.e., the case in the example was 
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discarded). This yielded 6 complete-data files, one per booklet (Cb). They were used 

along with IAb to replicate the missingness pattern. 

Step 2. Using the six Cb from step 1 a new set of incomplete-data files (IBb) was 

generated. This was done by removing specific responses from the complete-data file 

following the missingness pattern observed in their matched incomplete-data file (IAb). 

For example, if the case x2i has its missing values in the 3rd, 7th, 23rd, and 31st items then 

its matched case, x5c, had the same item responses removed from its pattern response. 

This procedure produced two datasets per booklet: the complete-data file (Cb) and its 

modification that contained omitted responses (IBb).  

Step 3. The complete-data booklet files (Cb) were concatenated into one file (C) 

containing all the booklets. The same was done with the incomplete-data files (IBb) to 

create a single incomplete-data file (IB). Both the complete-data file (C) and the 

incomplete-data file (IB) each contained 17,126 cases. Dataset C was used to estimate the 

ability and item parameters. The item parameters were kept fixed for ability estimation in 

all conditions. Dataset IB was used with the different missingness approaches to estimate 

the ability parameters and evaluate their performance against the ability parameters 

estimated from the complete-data file. The percentage of missingness per item in the IB 

dataset used for the Rasch and 2PL models ranges between .6% and 67.6%. The 

correlation between the missingness level and the proportion of number correct in the C 

dataset was -.123 (p=.000) for both the Rasch and 2PL models. The correlation of 

missingness level and proportion of number correct in the IB dataset reduced to -.025 for 

the Rasch dataset and became positive (.030) for the 2PL dataset. 
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IRT models 

Item calibration. The complete-data file C (step 3) was calibrated using BILOG-

MG (MMLE, Zimowski, Muraki, Mislevy, & Bock, 2003) for each of the two IRT 

models: the Rasch and the 2PL. These item parameters were taken as fixed in the person 

ability estimation stage.  

Person ability estimation. EAP estimation was used for theta estimation in both 

the complete-data file and the dataset with imputed values. Thetas estimated with the 

complete-data file were the benchmark for the missingness approaches comparisons. For 

the theta estimation, an algorithm that uses EAP and that allowed the use of decimal 

numbers in response vectors was used.17  

Missingness approaches 

The midpoint imputation. In this approach, the missing values were replaced by 

.5 for the person ability estimation. Although this approach does not have a theoretical 

framework and may introduce additional measurement error, it was found to outperform 

other missingness techniques (De Ayala et al., 2001; De Ayala, 2003; De Ayala, 2006). 

Treat as incorrect. In this approach, missing values were treated as incorrect for 

the person ability estimation. SERCE used this approach for both the item and person 

parameters estimation, using JMLE. In this research, however, only person estimation 

was evaluated.  

MI with and without auxiliary variables. Multiple imputation was done using 

Mplus 7.1 (Muthén & Muthén, 1998-2012). This software package used three different 

models for imputation: the variance-covariance model or MIDA (default), the sequential 
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regression model or FCS, and the regression model.18 Continuous variables are 

standardized with mean zero and variance one (i.e., they are treated as normally 

distributed). After the imputation is done, the variables are again transformed to their 

original scale (Asparouhov & Muthén, 2010). Imputation of ordered categorical variable 

can be done in Mplus by specifying which variables are categorical (Asparouhov & 

Muthén, 2010). Probit link is used to determine the category that will replace the missing 

value (Enders, 2015). These values are later rounded to the closest plausible category. As 

described in the previous chapter and, as literature points out, rounding imputed values 

does not seem to perform well. 

Mplus treats categorical variables as normally distributed if the specification is 

not included. In this case, the values do not necessarily match the categories and there 

may be negative values among the imputed ones (i.e., implausible values are possible). 

For this study, imputation of responses is done using MIDA and treating the variables as 

normally distributed. Subsequently, a probit function was used to transform the imputed 

responses into values that are within the range of plausible values (i.e., between 0 and 1).  

The imputation of item scores was done per block, instead of by booklet in order 

to keep the original structure of the data (i.e., the planned missing values). A 

dichotomous vector indicating the block position (1 or 2) in the booklet was used in the 

imputation process. Five datasets per block were obtained (m=5) using this approach. 

These blocks were later combined into booklets for the ability estimation. 

Auxiliary variables. MIDA imputation was done with and without auxiliary 

variables. The two auxiliary variables were ISEC (socioeconomic status) and ICEH 
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(household cultural and educational condition). These two indices were scores generated 

by LLECE using principal component analysis (Trevino et al., 2008). ISEC is comprised 

of parents’ level of education, first language spoken at home, household physical 

characteristics, basic services, appliances, and number of books in the house. ICEH is 

based on reading habits, early childhood education attained, parental involvement in 

school-related activities, and perception of school quality (see SERCE technical report 

for more information about this). These auxiliary variables have 2% of concurrent 

missing values. That is, 342 cases have missing values on both auxiliary variables. These 

missing values were not imputed. There were 5 datasets imputed with auxiliary variables 

and 5 datasets imputed without them. The correlation coefficients between these auxiliary 

variables and the number correct per participant from the complete-response dataset 

ranged between .24 and .26.  

These correlation coefficients were larger than the correlation values observed in 

the original dataset, which were less than .21 in both indices. The variability of these 

indices, however, did not differ much between the original dataset and the one used in 

this study. Additionally, the point-biserial correlation between the items from the 

complete response dataset and these two auxiliary variables ranged between -.04 and .26. 

Finally, the correlation between the proportion of omit and the auxiliary variables in the 

dataset used in this study was not significant for neither ISEC (r=-.068, p>.05) or ICEH 

(r=-.071, p>.05). The correlation values observed in the original dataset were between -

.050 and 0 in both indices. 
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Evaluation criteria 

Five criteria were used to evaluate the performance of the missingness approaches 

as described below. The estimation of these values was done using R (2014). All these 

indices were also calculated for the theta estimated using the complete response dataset 

(i.e., where none of the cases have missing responses). The outputs obtained from the 

complete response dataset are used as benchmark to evaluate performance of the missing 

data handling approaches. 

Additionally, a variance partitioning analysis was done with the theta estimated 

using multiple imputations in order to decide how to compare the performance of this 

approach with the other missingness approaches. Little and Rubin (1987) explain that the 

variance of an estimate (e.g., estimated theta) across all m datasets generated using the 

multiple imputation approach is comprised of two components: the average within-

imputation variance (i.e., within each dataset) and the between-imputation variance (i.e., 

between datasets).  

In this study, the purpose of such an analysis is to determine the proportion of 

variance in the estimated theta that is accounted by for the between datasets variability. If 

this value is low, then the theta estimates are not that different from one another and thus 

an average across datasets can be used for the comparison with other missing data 

approaches. In contrast, if the differences between datasets are large, then the mean 

across datasets cannot be used for comparison purposes and the method may not be 

consistent through imputation iteration. 

Signed difference. This refers to the difference between the estimated theta from 
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the incomplete-data file after applying the missingness approach and the theta from the 

complete-data file. That is,  

𝑑𝑖𝑓𝑓𝑖 = 𝜃𝐼,𝑖 − 𝜃𝐶,𝑖  , (5) 

where 𝜃𝐼,𝑖 is the theta for the person i estimated from the incomplete-data file after 

applying the approach m (midpoint imputation, SERCE imputation, or MI); 𝜃𝐶,𝑖 is the 

theta for the person i estimated from the complete-data file. 

Root-mean-square deviation (RMSD). It is the difference between the theta 

estimated using the complete response dataset and the one using the dataset with missing 

responses after they were handled using each of the approaches. The square root puts the 

difference in the same scale as the parameter which makes easier the interpretation. This 

is an average estimated across all the cases within the dataset to summarize the difference 

between theta estimates for the whole approach. 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (𝜃𝐼,𝑖 − 𝜃𝐶,𝑖)2𝑛

𝑖=1  , (6) 

where n is the number of cases in the dataset (i.e., 17126) and all other terms are 

defined above. 

Coverage. This is also a summary index, it is based on the maximum likelihood 

confidence limit estimator (Birnbaum, 1968 as cited in De Ayala, 2009). It refers to the 

percentage of cases whose theta estimated from the complete-data file is within the 95% 

confidence band of the theta estimated from the incomplete-data file after applying the 

specific missingness approach. That is,  

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑛
𝑓𝑟𝑒𝑞 [𝜃𝐼,𝑖 − 𝑧(1−𝛼

2⁄ )(𝑆𝐸𝐼,𝑖) < 𝜃𝐶,𝑖 < 𝜃𝐼,𝑖 + 𝑧(1−𝛼
2⁄ )(𝑆𝐸𝐼,𝑖)], (7) 
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where 𝑆𝐸𝐼,𝑖 is the standard error of the estimated theta for person i from the 

incomplete-data file, after applying the specific missingness approach, and all other terms 

are defined above. 

Average length of confidence interval. A procedure that has a similar or higher 

rate of coverage than another but yields substantially shorter intervals should be preferred 

over the other, because this translates into greater accuracy and higher power (Collins et 

al., 2001, p.340). This summary index is estimated by: 

𝑙𝑒𝑛𝑔𝑡ℎ =
1

𝑛
[𝜃𝐼,𝑖 + 𝑧(1−𝛼

2⁄ )(𝑆𝐸𝐼,𝑖) − 𝜃𝐼,𝑖 − 𝑧(1−𝛼
2⁄ )(𝑆𝐸𝐼,𝑖)]. (8) 

Average standard error. This is defined as the average standard error of the 

estimated theta across cases within each dataset. The smaller the standard error the 

narrower the confidence interval and the higher the precision of the estimation 

(Thoemmes & Rose, 2014). 

Between and within imputation variability. Little and Rubin (1987) described 

two variance components when dealing with multiple imputation: within and between 

variance as defined below. These values are also reported as part of the comparison 

between the MIDA imputation with and without auxiliary variables. These were 

estimated for all four evaluation criteria. 

�̅� =
1

𝑚
∑ �̅�𝑗

𝑚
𝑗=1 , (9) 

𝐵 =
1

𝑚−1
∑ (�̅�𝑗 − �̅�)2𝑚

𝑗=1 , (10) 

𝑊 =
1

𝑚
∑ 𝑆(𝛾𝑗)2𝑚

𝑗=1 , (11) 

𝑇 = (1 +
1

𝑚
) 𝐵 + 𝑊, (12) 
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where �̅�𝑗 is the average criterion value (standardized bias, RMSD, coverage, 

average standard error) for imputed dataset j; m is the number of datasets imputed (m=5 

in all the cases), �̅� is the average criterion value across all the imputed datasets; 𝑆(𝛾𝑗)2 is 

the variance of the criterion for the imputed dataset j; B and W are the between and within 

variance, respectively; T is the total variance of the criterion; and (1 +
1

𝑚
) is an 

adjustment for finite m (Little & Rubin, 1987). A large criterion variance indicates large 

variability in the theta estimation that is primarily due to the use of auxiliary variables in 

the imputation of the item responses. 
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CHAPTER IV: RESULTS 

This section presents the data’s descriptive statistics and the performance 

comparison of the different approaches used to handle missing values. The two IRT 

models used in this study are not comparable because the number of items differed for 

each model (Table 2). Therefore, performance of the missingness approaches is presented 

in two separate sections, one for each IRT model. 

Table 1. 

Distribution of participants and items per booklet and IRT model 

 Rasch 2PL 

Booklet Participants Item Participants Items 

1 108 31 108 30 

2 4,626 16 4,626 15 

3 4,277 10 4,277 8 

4 2,099 20 2,099 22 

5 4,317 15 4,317 13 

6 1,699 22 1,699 18 

 17,126 57 17,126 53 

 

As previously mentioned, item parameters were estimated using the complete-

response dataset and kept fixed for the ability estimation under the different conditions. 

These parameters are presented in Appendix C. For the Rasch model, the difficulty 

parameter ranges between -3.807 and 3.965. In the 2PL model, the difficulty parameter 

ranges between -3.105 and 3.461, whereas the discrimination parameter ranges between 

.335 and 3.375. Fourteen of these items have discrimination values that are less than one. 

After imposing the missingness pattern on the dataset, the average percentage of 

missingness by item ranges between 0.6% and 64.7%. The item missingness level and the 

item difficulty is significantly positively associated for both the Rasch (r=.647, p=.000) 
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and 2PL (r=.540, p=.000) models. That is, the more difficult the item was, the more 

missing values were observed. The item discrimination in the 2PL model was non-

significantly correlated with the item level of missingness (r=.200, p=.150). 

Rasch model 

The students’ ability estimated using Rasch model on the complete-response 

dataset ranged between -2.99 and 2.45, with 71% percent of the students having a 

negative estimated theta. That is, most of the examinees showed low level of ability in 

this test (Figure 1). The mean of 𝜃 was -.444 logits (SD=.821) and the average standard 

error of the estimated theta was .557 logits (SD=.056).  

 

Figure 1. Distribution of estimated thetas and their standard errors using the complete-

response dataset, Rasch model. 

 

Additionally, there was a significant difference in the estimated standard error of 

𝜃 for those with high ability level (larger than zero) and for those with low level of ability 
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(less than zero), F(1,17124)=91.46, p=.001, η2=. 005, the difference was not meaningful. 

The standard deviation of the estimated error for the former was .057 whereas for the 

latter was .056. The average length of the confidence interval was 2.23 logits (SD=.224). 

On the other hand, the correlation of both auxiliary variables with the 𝜃s 

estimated from the complete-response dataset was significant. For the ISEC index, the 

correlation was .285 (p=.000) and for the ICEH it was .258 (p=.000). Also, the 

correlation between the 𝜃s estimated from the complete-response dataset and the level of 

missingness (M=.176, SD=.12) in the corresponding incomplete-response dataset was 

significant, but relatively low (r=-.036, p=.000). This low correlation shows that the 

missing data cannot be linearly associated to the examinee’s ability (Figure 2). In other 

words, the missingness mechanism might not be MNAR, but MAR or MCAR. 

 

Figure 2. Correlation between ability estimated using the complete-response dataset and 

the proportion of missingness per examinee, Rasch model. 
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Between and within imputation variability. There were five datasets imputed 

with auxiliary variables, and another 5 datasets imputed without auxiliary variables. The 

between and within variance were estimated across each of these two sets of datasets for 

each of the criteria used in the comparison of missing data handling approaches. Overall, 

there was almost no variability in the indices estimated between datasets. Most of the 

total variance was within the data set (more than 99%).  

Therefore, working with the mean of the imputed files will facilitate the 

comparison among conditions without compromising the results and the conclusions 

about the quality of the multiple imputation approach. That is, for each of the following 

indices the mean across all five imputed datasets without auxiliary variables and the 

mean of the five imputed datasets with auxiliary variables were reported. 

Coverage. The coverage index was high (more than .995) for all the missing data 

handling approaches. That is, most of the estimated thetas from the complete-response 

dataset were within the 95% confidence interval formed by the estimated thetas from the 

datasets with missing values treated by the different missingness approaches.  

Average length of confidence interval. The average lengths of the confidence 

interval (CI) for the estimated thetas were the same when the missing responses were 

imputed using multiple imputation with (M=2.208, SD=.224), without auxiliary variables 

(M=2.208, SD=.224), and the midpoint imputation (M=2.209, SD=.224). When the 

missing values were treated as incorrect the average length slightly increased by about 

1.3% to M=2.237 logits (SD=.222) in comparison to the other three approaches.  
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On the other hand, the middle-point and the MIDA with and without auxiliary 

variables showed smaller average CI length, compared with the average CI length 

estimated with the complete response datasets. When the missing was treated as 

incorrect, the average length of the CI was slightly larger than the observed for the 

complete response dataset (see Figure 3).  

 

Figure 3. Confidence interval from the complete response dataset versus the CI estimated 

under the different missingness handling approaches, Rasch model. 

 

Signed difference. The difference between the theta estimated with the complete-

response dataset and when missing responses were treated as incorrect ranged between -2 

and 0, which means that this approach tended to underestimate the thetas. However, only 

one third of the thetas were underestimated, the other two thirds of the thetas estimated 

using this approach were the same as the estimated with complete-response dataset (i.e., 

the difference was zero). The reason for the high proportion of estimation with no error is 
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that these cases were imputed with a response that matched the complete-response 

dataset. In other words, imputing the missing response with zero was correct for 67% of 

the cases. On average, the thetas estimated using this approach were underestimated by 

.132 logits (SD=.217). 

When only the cases with underestimation are considered, the average 

underestimation was .398 (SD=.192). This means that when the original answer was 1, 

imputing the response with zero underestimated the examinee’s ability level. The 

difference was inversely related to the theta values from the complete-response dataset 

(r=-.364, p=.000), which means that underestimation was larger at higher levels of ability 

(top of Figure 4). The accuracy in the estimation of ability using this approach was 

inversely related to the number of missing responses the student had. That is, the 

differences related to the theta estimates were larger when there were more missing 

responses (r=.376, p=000). Somewhat related to this is the fact that the correlation 

between level of missingness and estimated theta using this approach was greatly inflated 

from -.036 to -.144 (bottom of Figure 4).  
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Figure 4. Difference between the theta estimated when missing is treated as incorrect and 

the theta estimated with the complete-response dataset (top), and correlation of ability 

estimated using missing as incorrect approach and the proportion of missingness per 

examinee (bottom), Rasch model. 
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The signed difference when missing are imputed with midpoint ranged between  

-.788 and 1.279, which means that this approach both underestimated and overestimated 

the ability estimators. Most of the times (78%) the thetas were overestimated, and only 

8% of the cases had no difference with the thetas estimated from the complete-response 

dataset. The ability was on average overestimated by .201 (SD=.235). This difference was 

inversely related to the theta values from the complete-response dataset (r=-.423, 

p=.000), which means that there was overestimation at low levels of ability and 

underestimation at high levels of ability (top of Figure 5).  

Also, the overestimation was higher for those cases that had incorrect responses in 

the complete-response dataset than for those cases that had correct responses in the same 

dataset (M=.293 vs M=.014). In other words, midpoint imputation did the opposite that 

imputed as incorrect did. As above, the accuracy in the estimation of ability using this 

approach was also inversely related to the number of missing responses the student had 

(r=.651, p=.000). This correlation was stronger than when missing were treated as 

incorrect. Additionally, the correlation between the estimated theta using this approach 

and the level of missingness increased and became positive (r=.123, p=.000) (bottom of 

Figure 5).  
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Figure 5. Difference between the theta estimated when missing is imputed with midpoint 

and the theta estimated with the complete-response dataset and correlation of ability 

estimated using midpoint approach and the proportion of missingness per examinee 

(bottom), Rasch model (top). 
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The signed difference when missing responses were imputed using multiple 

imputation without auxiliary variables ranged between -.588 and 1.328 logits. That is, the 

differences were larger when overestimation occurred than when underestimation was 

observed. Moreover, overestimation of thetas was more frequent (80%) than 

underestimation (13%), and only 7% of the cases had no difference with the thetas 

estimated from the complete-response dataset.  

The ability was on average overestimated by .229 logits (SD=.235). This 

difference was inversely related to the theta values from the complete-response dataset 

(r=-.390, p=.000). In other words, the 𝜃s were largely overestimated at their low values 

and modestly underestimated at their high values (Figure 6). The overestimation was 

higher for those cases that had incorrect responses in the complete-response dataset than 

for those cases that had correct responses in the same dataset (M=.310 vs M=.063).  

Again, the accuracy in the estimation of ability using this approach was directly 

related to the number of missing responses the student had (r=.684, p=.000). This 

correlation is stronger than when missing responses were treated as incorrect. 

Additionally, the correlation between the missingness level and the theta estimated using 

this approach was also significantly positive (r=.144, p=.000) (Figure 7). 
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Figure 6. Difference between the theta estimated using multiple imputation without (top) 

and with (bottom) auxiliary variables and the theta estimated with the complete-response 

dataset, Rasch model. 
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When the imputation used auxiliary variables, the signed difference range did not 

change much from when there were no auxiliary variables in the imputation process. It 

actually increased slightly from -.596 to 1.354 compared to the previous approach. That 

is, differences were larger when overestimation occurred rather than when 

underestimation happened. The proportion of cases with overestimation and 

underestimation were the same as when no auxiliary variables were used. The ability was 

overestimated by .228 logits (SD=.235) on average.  

The relationship between the signed differences and the ability estimated from the 

complete-response dataset was the same as the previous approach (r=-.390, p=.000). 

Again, the 𝜃s were largely overestimated at their low values and modestly 

underestimated at their high values. The overestimation was higher for those cases that 

had incorrect responses in the complete-response dataset than for those cases that had 

correct responses in the same dataset (M=.309 vs M=.062). The correlation between the 

absolute difference between the 𝜃s estimated with the complete-response data and when 

missing values were treated using this approach, was large as well (r=.685, p<.000). As 

with the previous approach, the correlation between missingness and the thetas estimated 

with this approach was positive (r=.144, p=.000) (Figure 7). 

RMSD. The RMSD (calculated across the continuum) was the lowest when the 

missing values were treated as incorrect (RMSD=.254). This index was larger for thetas 

with positive estimates than for negative estimates (.362 vs .195). The second lowest 

RMSD value was observed when the missing responses were imputed with midpoint 

(RMSD=.309). 
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Figure 7. Correlation of proportion of missingness per examinee and ability estimated 

using MIDA without auxiliary variables (top) and with auxiliary variables (bottom), 

Rasch model. 

 

This time, the RMSD was larger for ability estimates below zero than for positive 

𝜃s (.337 vs .225). The RMSD was equally large when multiple imputation was employed 
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using auxiliary variables (RMSD=.329) than when they were not utilized (RMSD=.330). 

The RMSD for these two approaches was also larger at the lower level of the ability 

estimates. For all the approaches, the RMSD was larger for those cases that had incorrect 

answers in the complete-response dataset. 

Average standard error. The average standard error (SE) of the estimated thetas 

was very similar for all four conditions. When compared with the average SE from the 

complete-response dataset, the missing as incorrect condition yielded a slightly larger 

average SE (M=.559, SD=.056) than the other approaches. Moreover, in the cases where 

the thetas were estimated without error, the estimated SEs were also exactly the same as 

the observed when complete-response dataset was used. On the other hand, the average 

SE when missing values were imputed with midpoint (M=.552, SD=.056) or with 

multiple imputation with auxiliary variables (M=.552, SD=.056) or without them 

(M=.552, SD=.056) were smaller than the SE from the complete-response dataset. 

The correlation between the SEs estimated when missing responses were treated 

as incorrect and the SEs obtained with complete-response dataset is slightly larger than 

the relationship of the other conditions and the latter (Figure 8). Additionally, there is a 

significant correlation (r=.378, p=.000) between the level of non-response per student 

and their theta SE. That is, the SE of the estimated theta is larger when the examinees 

have a larger number of non-responded items. This correlation was almost the same when 

the missing values were imputed with midpoint (r=.309, p=.000), and when they were 

imputed multiple times with or without covariates (r=.306, p=.000). 
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SE for missing as incorrect 

 

SE for imputed with midpoint 

 

SE for imputed without auxiliary variables 
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2PL IRT model 

The students’ ability estimated using 2PL model on the complete-response dataset 

ranged between -2.559 and 3.023, with 55% percent of the students having a negative 

estimated theta. The mean estimated theta was -.0019 logits (SD=.860). The average 

standard error of the estimated theta was .519 logits (SD=.078) and the average length of 

the confidence interval was 2.074 logits (SD=.312). The theta SE was significantly larger, 

F(1,17124)=1662, p=.000, η2=.088, for the low ability estimates (M=.540, SD=.085) than 

for the high-level performers (M=.493, SD=.059). However, the sample size for the later 

was smaller than for the former. 

 

Figure 9. Estimated thetas and their SE, 2PL model using the complete-response dataset 

 

The correlation between the theta estimated from the complete-response dataset 

and the level of missingness (M=.176, SD=.120) in the corresponding incomplete-

response dataset was significant (Figure 10), but relatively low (r=-.081, p=.000). 

Additionally, the correlation of both auxiliary variables with the 𝜃s estimated from the 
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complete-response dataset was significant. For the ISEC index, the correlation was .290 

(p=.000) and for the ICEH it was .260 (p=.000). 

 

Figure 10. Correlation between ability estimated using the complete-response dataset and 

the proportion of missingness per examinee, 2PL model. 

 

Between and within imputation variability. There were five datasets imputed 

with auxiliary variables, and another 5 datasets imputed without auxiliary variables. The 

between and within variance was estimated across each of these two sets of datasets for 

each of the criterion to be used in the comparison of missing data handling approaches. 

Overall, there was almost no variability in the indices estimated between datasets. Most 

of the total variance is within the data set (more than 99%). Therefore, working with the 

mean of the imputed files will facilitate the comparison among conditions without 

compromising the results and the conclusions. That is, for each of the following indices, 

the mean across all five imputed datasets without auxiliary variables and the mean of the 
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five imputed datasets with auxiliary variables are reported. 

Coverage. As was the case with the Rasch model, the coverage index was high 

(more than .950) for all the missing data handling approaches. That is, most of the 

estimated thetas from the complete-response dataset were within the 95% confidence 

interval formed by the estimated thetas from the datasets with missing values treated by 

the different missingness approaches. 

Average length of confidence interval. The average lengths of the confidence 

interval (CI) for the estimated theta were the same when the missing responses were 

imputed using multiple imputation, with (M=2.016, SD=.281), without auxiliary variables 

(M=2.016, SD=.281), and the midpoint imputation (M=2.018, SD=.283). These three 

approaches had very similar performance in terms of the CI. Compared with the CI 

estimated using the complete-response dataset, these showed smaller average CI length. 

Their correlation with the CI of the complete-response dataset is high (Figure 11).  

When the missing values were treated as incorrect, the average length slightly 

increased (M=2.089, SD=.321) in comparison to the other three approaches. This change 

represented a 4% increase with respect to the average lengths from the other missing data 

handling approaches. The average length of the CI was slightly larger than the observed 

for the complete response dataset. Likewise, the dispersion was larger for this approach; 

this impacted the correlation with the CI of the complete-response dataset. 
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Figure 11. Confidence interval from the complete response dataset versus the CI 

estimated under the different missingness handling approaches, 2PL model. 

 

Signed difference. The difference between the theta estimated with the complete-

response dataset and when missing responses were treated as incorrect ranged between  

-2.424 and 0.000 logits. Around 68% of the thetas were accurately estimated (i.e., the 

difference was zero) and the rest (31%) were underestimated. No overestimation occurred 

(top of Figure 12). On average, the thetas estimated using this approach were 

underestimated by .123 (SD=.245). The differences were inversely related to the theta 

values from the complete-response dataset (r=-.384, p=.000), which means that the 

ability was more overestimated at lower levels of theta and less overestimated at high 

levels of ability.  
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Figure 12. Difference between the theta estimated when missing is treated as incorrect 

and the theta estimated with the complete-response dataset (top), and correlation of 

ability estimated using missing as incorrect approach and the proportion of missingness 

per examinee (bottom), 2PL model. 
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In fact, the correlation between the theta from the complete-response dataset and 

the estimated with this approach was lower for 𝜃<0 (r=.938, p=.000) than for 𝜃>0 

(r=.850, p=.000). On the other hand, the correlation of the absolute difference between 

the 𝜃s estimated with the complete-response data and when missing values were treated 

as incorrect, and the missingness level was positive. In other words, there was more error 

when the missingness level was higher (r=.332, p=.000). The correlation between the 

ability level and the missingness level increased from -.081 to -.189 (p=.000) when this 

approach was used (bottom of Figure 12). 

The signed difference when missing values were imputed with midpoint ranged 

between -1.225 and 1.627. Most of the times (81%) the thetas were overestimated, and 

only 3% of the cases had no difference with the thetas estimated from the complete-

response dataset. The ability was on average overestimated by .297 (SD=.340). Like in 

the previous case, the difference was inversely related to the theta values from the 

complete-response dataset (r=-.483, p=.000). This means that the theta was more 

overestimated at lower levels of ability than it was at higher levels of ability (top of 

Figure 13). This is confirmed by the low correlation between the theta from the complete-

response dataset and the estimated with this approach for 𝜃<0 (r=.773, p=.000) compared 

with 𝜃>0 (r=.861, p=.000).  
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Figure 13. Difference between the theta estimated when missing was imputed with 

midpoint and the theta estimated with the complete-response dataset (top), and 

correlation of ability estimated using midpoint approach and the proportion of 

missingness per examinee (bottom), 2PL model. 
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On the other hand, the correlation of the absolute difference between the 𝜃s 

estimated with the complete-response data and when missing values were imputed with 

.5, and the missingness level was also positive (r=.676, p=.000). That is, the differences 

were larger for those examinees that had a higher number of missing responses. The 

correlation between the ability level and the missingness level increased and became 

positive (r=.161, p=.000) when this approach was used (bottom of Figure 13). 

The signed difference when missing values were imputed using multiple 

imputation without auxiliary variables ranged between -.864 and 1.819. Overestimation 

of thetas was more frequent (80%) and with larger difference values than when 

underestimation occurred (14%). The other 6% of the cases showed zero difference. The 

rest of the cases had no difference with the thetas estimated from the complete-response 

dataset. The ability was, on average, overestimated by .325 logits (SD=.343). The 

difference was inversely related to the theta values from the complete-response dataset 

(r=-.459, p=.000) as can be seen in Figure 14, graph on the top.  

As the previous approach, the correlation between the theta estimates (from 

complete-response dataset and the imputed with this technique) was lower for the low 

ability examinees (𝜃<0) than for the high ones (𝜃>0). Also, there was a .692 correlation 

(p=.000) between the absolute differences in the theta estimated and the level of 

missingness per participant. Finally, the correlation between the missingness level and 

the theta estimated using this approach was significantly positive (r=.179, p=.000) (top of 

Figure 15). 
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Figure 14. Difference between the theta estimated using multiple imputation without 

(top) and with (bottom) auxiliary variables and the theta estimated with the complete-

response dataset, 2PL model. 
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Figure 15. Correlation of proportion of missingness per examinee and ability estimated 

using MIDA without auxiliary variables (top) and with auxiliary variables (bottom), 2PL 

model. 
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Almost similar values were found when the imputation used auxiliary variables. 

The range of the signed difference was between -.859 and 1.748 logits. The proportion of 

cases with overestimation was 80%. Fourteen percent of the thetas were underestimated 

and the rest showed no difference at all. The differences between the benchmark values 

and the estimated thetas were larger when overestimation occurred than when 

underestimation was observed. Ability was overestimated by .324 logits (SD=.344), on 

average. The correlation between the differences and the ability estimated from the 

complete-response dataset was the same as with the previous approach (r=-.458, p=.000) 

(bottom of Figure 14) as it was the low correlation between examinees with low ability 

level. As before, larger levels of missingness per participant were associated with larger 

differences in the theta estimated (r=.694, p=.000), and the correlation between the 

missingness level and the theta estimated using this approach was also positive (r=.179, 

p=.000) as observed in Figure 15 (bottom). 

RMSD. The RMSD was at its lowest when missing responses were treated as 

incorrect (RMSD=.279). This is because most of the thetas were accurately estimated, as 

mentioned before. This coefficient was larger for examinees with high ability estimate 

(𝜃>0) than for those with low ability estimation (.368 vs. .173). When the missing 

responses were imputed with midpoint, the RMSD=.452. Unlike the previous approach, 

the RMSD was larger for lower ability examinees and shorter for the ones that have 

higher theta values (.537 vs .319). The RMSD was equally large when multiple 

imputation without auxiliary variables (RMSD=.472) were employed than when these 

variables were used (RMSD=.473). The same pattern of missing imputed with midpoint 
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was observed with these two approaches (i.e., larger RMSD values for when the 𝜃s were 

below zero). In other words, the error in the estimation was larger for low ability level 

when midpoint or MIDA (with and without auxiliary variables) were used, whereas the 

error was larger for high ability estimates when missing was treated as incorrect. 

Average standard error. The average SE of the estimated thetas was the same 

when missing responses were imputed with midpoint (M=.504, SD=.071), as when they 

were imputed with MIDA without auxiliary variables SE (M=.504, SD=.070), and as 

when auxiliary variables were used for the multiple imputation (M=.504, SD=.070). 

When missing responses were treated as incorrect, the SE increased by 3.6% (M=.522, 

SD=.080). Compared with the average SE from the complete-response dataset, the 

missing as incorrect condition was closer to the average SE than the other three 

conditions. Moreover, for cases where the θs were estimated without error, the SE was 

also exactly the same as the observed when complete-response dataset was used. 

The correlation between the SE from the complete-response data set and the one 

obtained under the different missing data approaches was relatively high (Figure 16). 

There was more disagreement or dispersion when the SE from the complete-response 

data set was large. Additionally, there is a significant correlation (r=.353, p=.000) 

between the level of non-response per student and their theta SE when missing was 

treated as incorrect. In other words, the SE of the estimated theta was larger when the 

examinees had larger number of non-responded items. This correlation was smaller when 

the missing values were imputed with midpoint (r=.219, p=.000), and when they were 

imputed multiple times with or without covariates (r=.212, p=.000).  
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SE for imputed with midpoint 

 

SE for imputed without auxiliary variables 
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CHAPTER V: DISCUSSION 

This research aimed at exploring the performance of different approaches for 

handling missing data during theta estimation using large scale assessment data. 

Specifically, this study focused on the effectiveness of missing data approaches when the 

Rasch or two-parameter IRT models were used. The data used in this study come from 

SERCE, a large scale assessment. Item parameters for the Rasch and 2PL models were 

estimated using complete-response dataset and over which a missingness pattern was 

imposed as observed in the original dataset. Working with empirical data overcomes 

limitations observed with simulated data and sample size. All the missing responses were 

assumed to be omitted (i.e., not-answered responses towards the end of the test were not 

considered not-reached or ignorable). The results showed that the approaches do not 

differ much from each other but there are still some differences that are summarized in 

this chapter. 

Multiple imputation data augmentation with and without auxiliary variables was 

used to generate decimal responses during the imputation process. These non-binary 

decimal numbers were used to estimate the theta values. In both the Rasch and 2PL 

models, the MIDA without auxiliary variables performed the same as when auxiliary 

variables were used. They returned similar theta estimates and the level of difference 

between the estimates from the complete-response dataset was the same. Overall, they 

equally overestimated examinees’ ability with both the Rasch and 2PL models and 

showed the same average standard error of the estimate. Working with auxiliary variables 

when estimating thetas does not seem to improve the accuracy of the estimation.  
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One of the reasons for the similar performance could be low the level of 

correlation between the auxiliary variables (socioeconomic status and household cultural 

and educational condition) and the outcome variable (less than .30); the outcome variable 

was the number correct in the complete-response data set. Likewise, the correlation 

between the auxiliary variables and the estimated thetas was below .30 for both the Rasch 

and the 2PL models.  

The literature (Collins et al., 2001; Enders, 2010) indicates that auxiliary variables 

are useful when the correlation with the missing analysis variable is larger than .40. 

Enders (2010) found that bias still exists when auxiliary variables are used, but they tend 

to decrease it, especially when the correlation with the missing analysis variable is larger 

than .50. Also, omitting auxiliary variables with correlation lower than .40 has a minimal 

impact on reducing the bias, especially when the missingness level is less than 25% 

(Collins et al., 2001).  

Although they evaluated different parameters, this study showed that their 

conclusions hold for ability estimation as well. Therefore, an exploratory correlational 

analysis should be conducted in order to decide whether to include auxiliary variables 

when imputing ability estimates. Moreover, additional correlational analysis between the 

potential auxiliary variable and a binary missing indicator of the variable of interest 

should also be obtained. A high correlation is normally considered as evidence of MAR 

and thus should be included in the imputation process (Collins et al., 2001). 

Imputing missing responses with a midpoint (i.e., .5) yielded also similar results 

as multiple imputation with data augmentation. The correlation between the estimated 
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theta using this approach and the estimated theta from the complete-response dataset was 

the same as those observed with MIDA for both IRT models. Likewise, this approach 

showed the same level of correlation between the missing level and the error in the 

estimation as with MIDA approaches. In other words, there was more error in the 

estimation of theta when there was higher level of missingness. This was true despite the 

fact that there was a low correlation between the theta estimated from the complete-

response dataset and the level of missingness for both IRT models. 

Imputing missing responses with midpoint, too, mainly overestimated the ability 

level but to a lower extent than either MIDA with and without auxiliary variables. The 

standard error of the estimate was the same as the previous approach. Consequently, it 

can be said that using the midpoint approach did not imply any loss in the accuracy of the 

ability estimation. Moreover, this approach has advantages over multiple imputation with 

data augmentation. The latter requires work with multiple files in order to maintain its 

stochastic nature. Working with several files to take into account the error in the 

estimation can be burdensome when this has to be combined with other types of analyses. 

Also, it may be confusing or tedious for secondary data analysts to deal with multiple 

files (Ender, 2010). Likewise, chances of error in the data analysis process increases as 

the number of files does. In contrast, the midpoint imputation allows the analyst to deal 

with only one dataset without compromising the quality of the estimates. 

Unlike the three approaches described above, when the missing values were 

treated as incorrect the ability was either correctly estimated or underestimated. 

Moreover, the average error in the estimation was lower than what was observed in the 
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other approaches. In fact, treating missing responses as incorrect estimated the ability 

level of examinees without error at least two third of the times. The standard error of the 

estimate, although slightly higher than the other approaches, was closer to the observed 

with the complete-response dataset. 

However, the error level in the cases where the thetas were underestimated was 

the highest for both IRT models. In other words, when this approach did not correctly 

estimate the thetas, it greatly underestimated it, on average. The reason for the good 

performance of this approach over the others is that most of the cases with missing 

responses had incorrect as their responses in the complete-data set. Therefore, treating 

missing as incorrect successfully imputed the expected answer two third of the times. The 

difference in performance between the imputed as incorrect and the other approaches was 

worse in the 2PL than in the Rasch model. Differences in the indices used to evaluate the 

approaches were larger for the former than for the latter.  

Rose et al. (2010) found similar results as the ones presented for the missing as 

incorrect. Person’s ability was underestimated when missing was treated as incorrect and 

the item parameters were estimated ignoring the missing responses (i.e., left in blank). 

When missing values were treated as incorrect, the average error in the ability estimation 

was similar to the level they observed when thetas were estimated with the complete-

response dataset (compared to the true θ). Likewise, Ludlow and O’Leary (1999) showed 

that treating missing as incorrect led to better results than ignoring them in both item 

calibration and person ability estimation. In this study, the item parameters were 

estimated with the complete-response dataset and kept fixed throughout the study. 
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However, it is possible that the underestimation in this approach is due to differences in 

the “basic item statistics, such as the percent correct and the item total correlations 

between different stages of the analysis” (Rose et al., 2010, p. 4). 

Regarding the ability level, both MIDA and midpoint imputation showed higher 

margin of error at the low level of ability estimates for both IRT models. In other words, 

the theta were more overestimated when they were below zero. Smaller errors were 

observed on the high ability level. Treating missing as incorrect yielded the opposite 

results. That is, the ability was more underestimated at the high level of ability (i.e., when 

theta estimates were above zero) than when the ability was low. In fact, a higher 

proportion of thetas estimated without error was observed at the low level of ability. The 

characteristics of the sample seems to explain this pattern, given the high number of cases 

with incorrect (i.e., zero) as the original response. Most of these cases (75%) were located 

at the low end of ability estimates.  

The sample size should not represent a problem in this study, given the large 

number of examinees, although the ability distribution is positively skewed. Also, there 

appears not to be a relationship between sample size and the missingness approaches. The 

missingness level, on the other hand, seems to play a role. The correlation between this 

variable and the errors in the estimation for both MIDA and midpoint imputation was 

twice as large as it was with missing as incorrect. This high correlation is associated with 

the fact that the relationship between missingness level and ability gets inflated when any 

of the missing data handling approaches is used. While this correlation was low (less than 

-.10) for both IRT models when thetas estimated with the complete-response dataset were 
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used, it was twice or three times larger when the responses were treated as incorrect (e.g., 

r=-.144 for the Rasch model) and it became positive when the other approaches were 

used (e.g., r=.123 for the midpoint imputation in the Rasch model). This is associated to 

the fact that the former approach underestimated the ability performance while the last 

ones overestimated it, on average. Also, it is interesting to see that using proportion of 

number correct as a proxy of examinees’ ability to estimate correlation with missingness 

level could be misleading when evaluating the ignorability of the missing responses (see 

data generation, step 3). 

Overall, it seems that treating missing as incorrect yields a smaller average error 

in the person ability estimation, especially when the proportion of non-response per 

person is not so high (e.g., it was less than .20 in this study). In this approach, it is 

assumed that the examinees would provide a wrong answer to the unanswered items. 

Therefore, the likelihood of examinees getting the item right, regardless of their ability 

level, is reduced to zero with this approach. When the user is interested in cluster average 

such a country level performance, this approach seems to yield an acceptable estimate. 

Nevertheless, data analysts should be aware of the underestimation they will face and the 

subsequent inflation in the association between missingness and ability. Considering this, 

midpoint imputation might be more appropriate and more effective than multiple 

imputation. In addition, the use of auxiliary variables in the latter approach should not be 

considered unless there is a high correlation with the observed score. 
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Limitations 

A limitation of this study was that the performance of these approaches did not 

consider the effect of missingness on item parameter estimation. Nevertheless, this study 

reported a significant and high correlation between item difficulty and missingness. The 

goal in this research was to examine the impact of missing data handling procedures in 

the estimation of the ability level for large samples. In large scale assessment surveys, 

however, item parameters also need to be estimated. Consequently, the effect of the 

quality of estimation of these parameters upon the person ability estimation have to be 

explored. As other authors have pointed out, there is a carry forward effect of the item 

estimation on the theta estimates (e.g., Ludlow & O’Leary, 1999; Oshima, 1994; Rose et 

al., 2010).  

Another limitation of this study is the not control over the missingness 

mechanism. The missingness mechanism was not a condition in this study because the 

missingness pattern used in this study was taken from SERCE data. The low correlation 

between the missingness level and the estimated theta using the complete-response 

dataset may imply that the missingness mechanism more resembled either MCAR or 

MAR, but not MNAR. Further research is needed to compare the performance of these 

approaches when the missingness follow a MNAR pattern more closely. Moreover, it is 

possible that the missing mechanism differs from country to country in a large scale 

assessment. Rose et al. (2010) say that the comparison among “groups of respondents 

might be unfair if they differ in their amount of missing data and in the strength of the 
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relationship between the latent variable and the missing data” (p. 17). Consequently, this 

correlation should be estimated by country to rule out this issue. 

A third limitation is that the performance of the missingness approaches was 

evaluated using only dichotomous items. It is most likely that performance of these 

approaches may differ when polytomous items are used, especially when the test contains 

a large proportion of these items. For example, it is possible that the missing as incorrect 

approach would underestimate ability more in these circumstances, given that there 

would be other potential answer options for the low ability examinees besides zero. Also, 

the IRT models were unidimensional which is how SERCE was designed. However, it is 

possible that the missingness approaches differ if multidimensional assumption is held, as 

is the case with PISA data. 

Another limitation, although of the study but of Mplus, is the fact that the 

program does not allow to distinguish between the planned and unplanned missing data. 

Therefore, imputation cannot be conducted on the whole response matrix. Instead, the 

matrix has to be split (in this case in blocks) in order to get imputed values only for the 

unplanned missing responses. In other words, multiple imputation was conducted on 

blocks rather than booklets to prevent the software from imputing unplanned missing 

data. As a consequence not all the observed answers of the examinees were considered at 

once when imputing their missing responses. Although a variable indicating the block 

order was included in the imputation process, it is likely that information about the 

student’s ability contained in the items not included in the imputation process would have 

improved the performance of this approach. 
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Finally, it could be that not only the missing proportion but also missing values 

distribution conditions the missingness approaches. The distribution of the ratio number 

of missing values to total number of items was positively skewed in SERCE dataset. In 

other words, most of the examinees in this assessment had low proportion of missing 

responses (M=.176, SD=.120). The effect of the missingness distribution on missing data 

handling approaches needs to be explored in future studies. 
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APPENDIX A. Missing data handling methods 

1. Complete data analysis 

1.1. Complete-case analysis (listwise deletion) 

1.2. Available-case analysis (pairwise deletion) 

2. Incomplete data analysis 

2.1. Single imputation  

a) Unconditional mean imputation 

b) Person mean imputation 

c) Regression imputation 

d) Stochastic regression imputation 

e) Hot-deck imputation 

f) Cold-deck imputation 

g) Similar response pattern imputation 

h) Last observation carried forward 

i) Worse observation carried forward 

2.2.  Maximum likelihood estimation 

a) Expectation-maximization (EM) 

2.3.  Multiple imputation 

a) Fully conditional specification (FCS)  

b) Multiple imputation with data augmentation (MIDA) 
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APPENDIX B. Items retained () or removed () based on item analysis 

 

Item Rasch 2PL Item Rasch 2PL Item Rasch 2PL

DM6B1IT01   DM6B3IT01   DM6B5IT01  

DM6B1IT02   DM6B3IT02   DM6B5IT02  

DM6B1IT03   DM6B3IT03   DM6B5IT03  

DM6B1IT04   DM6B3IT04   DM6B5IT04  

DM6B1IT05   DM6B3IT05   DM6B5IT05  

DM6B1IT06   DM6B3IT06   DM6B5IT06  

DM6B1IT07   DM6B3IT07   DM6B5IT07  

DM6B1IT08   DM6B3IT08   DM6B5IT08  

DM6B1IT09   DM6B3IT09   DM6B5IT09  

DM6B1IT10   DM6B3IT10   DM6B5IT10  

DM6B1IT11   DM6B3IT11   DM6B5IT11  

DM6B1IT12   DM6B3IT12   DM6B5IT12  

DM6B1IT13   DM6B3IT13   DM6B5IT13  

DM6B1IT14   DM6B3IT14   DM6B5IT14  

DM6B1IT15   DM6B3IT15   DM6B5IT15  

DM6B1IT16   DM6B3IT16   DM6B5IT16  

DM6B2IT01   DM6B4IT01   DM6B6IT01  

DM6B2IT02   DM6B4IT02   DM6B6IT02  

DM6B2IT03   DM6B4IT03   DM6B6IT03  

DM6B2IT04   DM6B4IT04   DM6B6IT04  

DM6B2IT05   DM6B4IT05   DM6B6IT05  

DM6B2IT06   DM6B4IT06   DM6B6IT06  

DM6B2IT07   DM6B4IT07   DM6B6IT07  

DM6B2IT08   DM6B4IT08   DM6B6IT08  

DM6B2IT09   DM6B4IT09   DM6B6IT09  

DM6B2IT10   DM6B4IT10   DM6B6IT10  

DM6B2IT11   DM6B4IT11   DM6B6IT11  

DM6B2IT12   DM6B4IT12   DM6B6IT12  

DM6B2IT13   DM6B4IT13   DM6B6IT13  

DM6B2IT14   DM6B4IT14   DM6B6IT14  

DM6B2IT15   DM6B4IT15   DM6B6IT15  

DM6B2IT16   DM6B4IT16   DM6B6IT16  
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APPENDIX C. Item parameters per IRT model 

Rasch model 

 

* item discrimination is 1 for all the items. 

 

 

  

Item Difficulty SE Item Difficulty SE Item Difficulty SE

M01 -2.528 0.067 M20 0.525 0.058 M39 0.933 0.027

M02 -1.356 0.054 M21 -0.028 0.054 M40 0.638 0.028

M03 0.495 0.059 M22 -2.157 0.064 M41 1.821 0.035

M04 -1.569 0.056 M23 -1.638 0.055 M42 -0.857 0.025

M05 -0.631 0.055 M24 -3.807 0.094 M43 0.597 0.025

M06 -0.239 0.056 M25 1.315 0.068 M44 0.744 0.026

M07 1.437 0.071 M26 -1.887 0.056 M45 2.553 0.049

M08 0.614 0.056 M27 -0.412 0.049 M46 1.616 0.037

M09 0.229 0.057 M28 -0.541 0.057 M47 1.440 0.033

M10 1.448 0.079 M29 0.125 0.051 M48 -1.092 0.026

M11 1.459 0.078 M30 0.932 0.064 M49 -1.840 0.028

M12 0.388 0.055 M31 1.893 0.081 M50 -1.201 0.026

M13 0.850 0.061 M32 0.150 0.029 M51 -0.660 0.025

M14 0.014 0.054 M33 -1.321 0.029 M52 1.365 0.037

M15 0.979 0.064 M34 0.992 0.032 M53 1.074 0.034

M16 0.421 0.061 M35 -0.601 0.029 M54 -0.024 0.031

M17 -3.799 0.090 M36 0.772 0.031 M55 2.078 0.051

M18 -1.131 0.056 M37 -2.700 0.032 M56 3.965 0.108

M19 -1.369 0.056 M38 -1.667 0.026 M57 1.190 0.039
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2PL model 

 

Note: Do not compare the item parameters across models because they are different items 

(e.g., M01 from the Rasch is not the same as M01 from the 2PL). 

  

Item Discrimination SE Difficulty SE Item Discrimination SE Difficulty SE

M01 1.133 0.119 -1.752 0.133 M28 2.017 0.108 1.065 0.038

M02 1.058 0.093 -0.689 0.060 M29 2.097 0.135 1.681 0.061

M03 0.769 0.072 1.484 0.147 M30 1.933 0.297 3.210 0.218

M04 1.426 0.122 -0.769 0.051 M31 1.145 0.080 -3.105 0.166

M05 1.634 0.128 -0.024 0.039 M32 0.929 0.038 0.832 0.042

M06 1.732 0.125 0.259 0.041 M33 1.033 0.044 -0.660 0.032

M07 0.965 0.078 0.944 0.093 M34 0.597 0.036 2.465 0.143

M08 1.135 0.090 1.970 0.142 M35 1.382 0.048 0.023 0.022

M09 0.883 0.078 2.395 0.200 M36 0.540 0.034 2.329 0.143

M10 0.363 0.053 2.725 0.431 M37 0.695 0.042 -2.775 0.148

M11 0.357 0.055 3.896 0.615 M38 1.151 0.042 -0.952 0.032

M12 0.560 0.061 1.189 0.161 M39 0.398 0.031 3.461 0.260

M13 0.438 0.057 3.472 0.463 M40 1.534 0.048 0.984 0.027

M14 1.208 0.093 0.959 0.084 M41 1.517 0.050 -0.182 0.018

M15 1.289 0.120 -2.479 0.167 M42 0.335 0.027 3.194 0.261

M16 2.185 0.112 -0.302 0.028 M43 1.683 0.084 2.307 0.068

M17 2.173 0.115 -0.451 0.029 M44 2.366 0.096 1.433 0.028

M18 1.407 0.069 0.933 0.050 M45 1.305 0.048 1.755 0.049

M19 1.411 0.070 0.503 0.041 M46 1.196 0.045 -0.405 0.024

M20 3.375 0.217 -0.837 0.027 M47 1.510 0.058 -0.930 0.028

M21 1.524 0.082 -0.705 0.041 M48 1.063 0.039 -0.543 0.029

M22 2.704 0.249 -1.735 0.067 M49 1.120 0.041 -0.022 0.023

M23 1.631 0.085 1.441 0.061 M50 1.077 0.049 0.584 0.035

M24 1.490 0.087 -0.895 0.045 M51 2.186 0.125 1.742 0.050

M25 0.986 0.057 0.263 0.052 M52 1.979 0.190 2.969 0.147

M26 2.308 0.108 0.072 0.027 M53 1.681 0.078 1.330 0.041

M27 1.022 0.059 0.756 0.059
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Endnotes 

1    R software has a module called multivariate imputation by chained equations (MICE) that 

implements this method. Given its popularity, sometimes FCS is called MICE. 
2    The National Assessment of Educational Progress (NAEP) defines a not-reached item as the 

one “to which the student did not respond because the time limit was up for the section of the assessment 

on which s/he was working. After the first "not reached" item, the student will have no responses to any 

further questions on that section of the assessment" (NAEP Glossary, n.d.). Therefore, the first item with 

missing response is treated as [intentionally] omitted and the following non-responses are treated as not 

administered (Mislevy and Wu, 1988). The Australian Council for Educational Research (ACER) defines 

not-reached items when there are more than two blank answers. 
3     Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, 

Honduras, Mexico, Nicaragua, Panama, Paraguay, Dominican Republic, Uruguay, and the Mexican State 

of Nuevo Leon. 
4     Website: http://www.unesco.org/new/en/santiago/education/education-assessment/, and for the 

SERCE data: http://www.unesco.org/new/fileadmin/MULTIMEDIA/FIELD/Santiago/zip/bcf362e6.zip 
5     In TIMSS, 2011, 3.2% and 4.5% of the students have omitted and not-reached responses, 

respectively. In PIRLS (2011) 8.9% of students omitted responses(Foy et al., 2011; Organisation for 

Economic Co-operation and Development, 2012).  
6     It is not possible to talk about not-reached and omitted responses in rating scale data, therefore 

non-answered items are referred as missing responses. 
7     RDS replaces a missing value with a random draw from the permitted response options. IAS 

imputes (a) the incorrect answer, when item is scored as right or wrong, or (b) the answer that is socially 

most undesirable (i.e., worst case scenario) for attitude items. IMS imputes the missing values with the 

mean of observed cases in the item. PMS replaces missing values with the average of the observed 

responses for each case. CIM adjusts the item mean by taking into account the respondent’s ability. ICS 

imputes the missing value with the observed responses on the item with which the item with missing values 

has the highest correlation. HNC uses as the donor the first complete case after the incomplete case. HDD 

uses the complete case for which the distance from the incomplete case is minimized. HDR first selects 

several donors with small distance from the incomplete case. Then, one of them is randomly selected 

(Huisman, 2000). 
8     “Even though Schafer (1997) provided a way to combine likelihood ratio test statistics in MI, 

no empirical studies have evaluated the performance of this pooled likelihood ratio test under various data 

condition. Also, this test has not been incorporated into popular statistical packages” (Dong & Peng, 2013, 

p. 15) 
9     There is a website that more formally tracks the work done with MI, 

http://www.stefvanbuuren.nl/mi/index.html. However, this statement is done basically comparing the 

number of papers that either have the methods as part their title or they are mentioned in the document. 
10     Mean conditional on the covariates (CM): “imputes the mean based on the available scores 

across all items of all persons within the same covariate class, and imputes this mean for each missing in 

this covariate class”. Overall mean (OM): imputation based on the data matrix mean. Two-way imputation 

(TW): the imputation for the missing observation (i, j) = IMS + PMS – OM (Bernaards & Sijtsma, 2000). 

The two-way imputation with normally distributed error (TW-E) is an imputation method that corrects both 

for person effect and item effect, and adds a random error drawn from a normal distribution (µ=0, σɛ
2) to 

the imputation process. The corrected item-mean with normally distributed error (CIM-E) implies that “the 

item mean is corrected for person i’s score level relative to the mean of the items to which he/she 

responded. Normally distributed errors are added to CIMij using a procedure similar to the one used for 

adding normally distributed errors in method TW-E” (van Ginkel et al., 2007, pp. 391-393). 
11     The factor loading recovery was measured with the Tucker’s ϕ (Burt, 1948; Tucker, 1951) 

and the 𝐷2̅̅̅̅  in Bernaards and Sitjsma (1999). In Bernaards and Sijtsma’s (2000) study 𝐷2̅̅ ̅̅  and Πγ (i.e., the 

product of estimated eigenvalues) were the indicators. The Tucker’s ϕ is a coefficient of congruence that 

 

http://www.unesco.org/new/en/santiago/education/education-assessment/
http://www.unesco.org/new/fileadmin/MULTIMEDIA/FIELD/Santiago/zip/bcf362e6.zip
http://www.stefvanbuuren.nl/mi/index.html
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measures the similarities between the factors derived from factor analysis. It is basically a correlation 

coefficient. The 𝐷2̅̅̅̅  index is the average of the D2 across all the sample replications within each condition. 

D2 is the sum of squared differences, divided by the number of extracted factors based on the complete data 

and the corresponding factor loadings based on the imputed datasets using the methods aforesaid 

(Bernaards & Sijtsma, 1999, 2000). 
12     BIC: Bayesian Information Criterion, AIC: Akaike Information Criterion, and AIC3 is a 

modified index of AIC Vermunt, van Ginkel, van der Ark, and Sijtsma (2008). 
13     Sijtsma and van der Ark (2003) study is based on two main parts. Only one part is presented 

in this document. The second part of the study refers to two methods to determine the missingness 

mechanism, originally proposed by Huisman (1999). One of them is done at the data matrix level (the 

Huisman’s (1999) asymptotic test), while the second method does it at the item level. For details, see 

Sijtsma and van der Ark’s (2003) publication. 
14     “R1c tests whether the response functions of the J items are logistic with the same slope 

against the alternative that they deviate from these conditions, and statistic Q2 tests whether the test is 

unidimensionality against the alternative of multidimensionality” (Sijtsma & van der Ark, 2003, p. 520). 
15     SERCE missing data were recoded following the procedure described by other large-scale 

assessments (e.g., PISA, TIMSS, and PIRLS). That is, the first missing response in the blank-response 

string was considered omitted and the rest are coded as not-reached. For example, a student’s pattern 

response such as 43231Z1Z43442Z3ZZZZZZZZZ (where “Z” is SERCE’s code for missing responses) was 

recoded as 43231Z1Z43442Z3ZRRRRRRRR, where “R” are not-reached responses. Notice that the firs “Z” 

was kept, given that this is normally taken as reached, thus intentionally omitted (Mislevy & Wu, 1988). 
16     Thanks to Yem Ahiatsi for writing the algorithm. 
17     Thanks to Dr. Rafael De Ayala for writing the algorithm. 
18     In the imputation with regression model, variables with non-missing values are considered 

covariate in the imputation process. 
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