
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Summer 5-2016

Sonifying Git History
Kevin J. North
University of Nebraska-Lincoln, knorth@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering
Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

North, Kevin J., "Sonifying Git History" (2016). Computer Science and Engineering: Theses, Dissertations, and Student Research. 103.
http://digitalcommons.unl.edu/computerscidiss/103

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/103?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages

SONIFYING GIT HISTORY

by

Kevin J. North

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professors Myra B. Cohen and Anita Sarma

Lincoln, Nebraska

May, 2016

SONIFYING GIT HISTORY

Kevin J. North, M.S.

University of Nebraska, 2016

Advisors: Myra B. Cohen and Anita Sarma

Version control is a technique that software developers use in industry to manage

their source code artifacts. One benefit of using version control is that it produces

a history of every change made to a codebase, which developers frequently analyze

in order to aid the software development process. However, version control history

contains highly multidimensional and temporal data. State of the art techniques can

show several of these dimensions, but they cannot show a large number of dimensions

simultaneously without becoming difficult to understand. An alternative technique to

understand temporal data with high dimensionality is sonification. Sonification maps

information to sound.

In this thesis we propose the use of earcons and parameter mapping sonification

to show version control history. Using sonification, we can show more dimensions

of version history simultaneously than other state of the art techniques. Our first

technique, GitSonifier, uses only sonification to portray version history and historical

conflict data. A user study shows that developers can easily understand the sonification,

but we also find limitations where visualization may be preferred. Our second technique,

GitVS, uses a combination of both visualization and sonification to overcome these

limitations.

iii

ACKNOWLEDGMENTS

I am grateful to my advisors, Dr. Myra B. Cohen and Dr. Anita Sarma. They

believed in me and held me to expectations they knew I could achieve. As a result,

their confidence in me led to me accomplishing much more than I thought possible.

I also am thankful to Dr. Brittany Duncan for being on my committee.

In addition, I want to thank several of my classmates. Shane Bolan worked with

me on the GitSonifier and wrote some of the code for our GitVS implementation.

Dr. Bakhtiar Kasi shared his research data on historical conflicts with me. Srikanth

Maturu worked with me on a class paper, a portion of which appears in this thesis’

background. Jonathan Saddler, Mikaela Cashman, and Justin Firestone, three of my

labmates, helped me out frequently. Nina Pickrel, Jacob Lloyd, and Natasha Jahnke

collaborated with me on Music++.

Finally, I have an incredible family and excellent friends. My parents, like my

advisors, believed in me and encouraged me to fulfill my potential. My friends,

especially Russ Canaday, Marsh Lemen, and Taylor Fiscus, are thoughtful, fun, and

generous people to be with. My family and friends’ encouragement and company have

made my research much more enjoyable and successful.

This work was supported in part by NSF grants CCF-1253786, IIS-1110916 and

CCF-1161767.

iv

Contents

Contents iv

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Contributions of this Thesis . 5

1.2 Overview of Thesis . 5

2 Background 7

2.1 Version Control . 7

2.2 Git . 7

2.2.1 How Git is Implemented . 8

2.2.1.1 A Git Repository as a Directed Graph 8

2.2.1.2 Decentralized Version Control 9

2.3 Merge Conflicts . 11

2.3.1 How Merge Conflicts Affect Industry Teams 11

2.3.2 Tools for Detecting Conflicts 12

2.3.3 Viewing Historical Conflict Data 12

v

2.4 Sonification . 13

2.4.1 The Advantages of Sonification 13

2.4.2 Earcon Sonification . 14

2.4.3 Parameter Mapping Sonification 15

2.4.4 Other Forms of Sonification 16

2.5 Music++ . 16

2.6 Related Work . 18

2.6.1 CocoViz . 19

2.6.2 code_swarm . 19

2.6.3 Orchestrating Change . 20

2.6.4 Other Applications of Sonification to Software Engineering . . 22

3 GitSonifier: Sonifying Version History 23

3.1 Motivation . 23

3.2 Design . 25

3.2.1 Developer Earcons . 25

3.2.2 Representing Time with Day Separators 25

3.2.3 Conflict Drums . 26

3.3 Implementation . 26

3.3.1 Architecture . 27

3.3.2 Implementation Details of the Sonification 28

3.3.2.1 Developer Earcons 28

3.3.2.2 Conflict Drum Earcons 29

3.3.2.3 Tempo . 29

3.4 User Evaluation . 29

3.4.1 Participant Characteristics . 30

vi

3.4.2 Study Design . 32

3.4.3 Threats to Validity . 34

3.4.3.1 Number of Participants 34

3.4.3.2 Participant Characteristics 35

3.4.3.3 Task Design . 35

3.4.3.4 Testing a Single System 35

3.5 Results . 36

3.5.1 RQ1: How well do participants interpret the sounds representing

a Git history? . 36

3.5.2 RQ2: How efficient is the use of sonification for understanding

a Git history? . 38

3.5.3 RQ3: What was the participants’ evaluation of sonification? . 39

3.6 Discussion . 40

3.6.1 Listening to Sonifications . 40

3.6.2 Incorrect Responses . 41

3.6.3 Participants’ Backgrounds with Music and Version Control . . 41

3.6.4 Sonification Effects . 42

3.6.5 Exit Questionnaire . 43

3.7 Conclusions . 43

4 GitVS: Combining Visualization and Sonification To Display Ver-

sion History 45

4.1 Motivation . 46

4.2 Use Case . 47

4.3 Design . 49

4.4 Implementation . 52

vii

4.4.1 Architecture . 52

4.4.2 Input . 54

4.4.3 The Data Collector . 55

4.4.3.1 Walking the Git Repository 55

4.4.3.2 Obtaining Conflict Data 56

4.4.3.3 Getting the Directed Graph Representation of the

Repository . 56

4.4.3.4 Obtaining the Sorted List of Commits to Send to the

Data Processor . 57

4.4.4 The Data Processor . 58

4.4.4.1 Processing Sonification Data 58

4.4.4.2 Processing Visualization Data 59

4.4.5 The Displayer . 59

4.4.5.1 Design of the Displayer 59

4.4.5.2 Final Processing Steps 60

4.4.5.3 Representing Commits Visually 61

4.4.5.4 Showing Details about Individual Commits Visually 61

4.4.5.5 Developer and Conflict Earcons 61

4.5 Planned User Evaluation . 62

4.5.1 Participant Demographics . 63

4.5.2 Using the GitVS Tool . 64

4.5.2.1 Training Session . 65

4.5.2.2 Experiment Tasks 66

4.5.3 Post Study: Filling out a questionnaire about our GitVS tool 69

4.5.4 Post Study: Completing an oral exit interview 70

4.6 Conclusion . 71

viii

5 Conclusions and Future Work 72

5.1 Conclusion . 72

5.2 Future Work . 73

5.2.1 User Study for GitVS . 73

5.2.2 Sonifying Additional Layers of Information 73

5.2.3 Sonification Design Ideas . 73

5.2.4 Designing Tools for Additional Use Cases 74

Bibliography 76

A Music++ 82

A.1 Design . 83

A.1.1 Limitations . 83

A.1.2 Sonification Design . 86

A.2 Implementation . 87

A.2.1 Cobertura . 87

A.2.2 Parser . 88

A.2.3 Music Generator . 89

A.3 Related Work . 89

A.3.1 Siren Songs and Swan Songs 90

A.3.2 Increasing Fault Detection Effectiveness Using Layered Program

Auralization . 90

A.4 Future Work . 91

A.5 Conclusions . 92

B GitSonifier Experiment Materials 93

C GitVS Experiment Materials 107

ix

List of Figures

2.1 Example of the directed graph representation of a Git history. 9

2.2 Two copies of the repository with new commits, c10 and c10′. 10

2.3 The repository after being fast-forwarded. 10

2.4 The repository after being merged with a merge commit. 10

2.5 A still frame from a code_swarm video [1] 21

3.1 GitSonifier’s Architecture . 27

3.2 Correct Answers by Category (in order of task ID) 36

3.3 Correct Answers by Category (in the order participants encountered each

task) . 37

3.4 Correct Answers per Participant . 37

3.5 Amount of Time to Answer Each Question 39

4.1 Screenshot of GitVS’ View of Commits 50

4.2 Screenshot of GitVS’ View of Selected Commits’ Details 51

4.3 Screenshot of GitVS’ Sonification Cursor. The sonification cursor is the

cyan bar in the background. 51

4.4 GitVS’ Architecture . 53

4.5 Example of Achronological Commits in GitVS 55

4.6 Example Output of git log --graph 57

x

4.7 Screenshot of the View of Commits in GitVS Without Sound 64

4.8 Screenshot of the View of Selected Commits’ Details in GitVS Without

Sound . 65

B.1 The first page shown to participants in the GitVS experiment. 93

B.2 Page 1 of training page in the GitSonifier experiment. 94

B.3 Page 2 of training page in the GitSonifier experiment. 95

B.4 Page 3 of training page in the GitSonifier experiment. 96

B.5 Page 4 of training page in the GitSonifier experiment. 97

B.6 The instructions in the GitSonifier experiment. 98

B.7 Page 1 of the questions page in the GitSonifier experiment. 99

B.8 Page 2 of the questions page in the GitSonifier experiment. 100

B.9 The page shown when the GitSonifier main task was completed. 100

B.10 Page 1 of the page that participants could view if they wanted to see which

questions they answered correctly in GitVS. 101

B.11 Page 2 of the page that participants could view if they wanted to see which

questions they answered correctly in GitVS. 102

B.12 Page 3 of the page that participants could view if they wanted to see which

questions they answered correctly in GitVS. 103

B.13 Page 4 of the page that participants could view if they wanted to see which

questions they answered correctly in GitVS. 104

B.14 Page 5 of the page that participants could view if they wanted to see which

questions they answered correctly in GitVS. 105

B.15 The questionnaire given to participants at the end of the GitSonifier study. 106

C.1 The first page shown to participants in the GitVS experiment. 108

C.2 Page 1 of training page in the GitSonifier experiment. 109

xi

C.3 Page 2 of training page in the GitSonifier experiment. 110

C.4 Page 3 of training page in the GitSonifier experiment. 111

C.5 Page 1 of the task instructions in the GitVS experiment. 112

C.6 Page 2 of the task instructions in the GitVS experiment. 113

C.7 Page 3 of the task instructions in the GitVS experiment. 114

C.8 Page 4 of the task instructions in the GitVS experiment. 115

C.9 Page 5 of the task instructions in the GitVS experiment. 116

C.10 Question 1 in the GitVS experiment. 116

C.11 Question 2 in the GitVS experiment. 116

C.12 Question 3 in the GitVS experiment. 117

C.13 Question 4 in the GitVS experiment. 117

C.14 Question 5 in the GitVS experiment. 118

C.15 Page 1 of the instructions shown when switching from one repository to

another while answering the objective questions in the GitVS experiment. 119

C.16 Page 2 of the instructions shown when switching from one repository to

another while answering the objective questions in the GitVS experiment. 120

C.17 Page 3 of the instructions shown when switching from one repository to

another while answering the objective questions in the GitVS experiment. 121

C.18 The instructions shown before participants saw the subjective questions in

the GitVS experiment. 121

C.19 Page 1 of the subjective questions in the GitVS experiment. 122

C.20 Page 2 of the GitVS experiment. 123

C.21 The page shown when the GitVS main task was completed. 123

C.22 Page 1 of the page that participants could view to review their answers to

questions during the exit interview in GitVS. 124

xii

C.23 Page 2 of the page that participants could view to review their answers to

questions during the exit interview in GitVS. 125

C.24 Page 1 of the page that participants could view if they wanted to see which

questions they answered correctly in GitVS. 126

C.25 Page 2 of the page that participants could view if they wanted to see which

questions they answered correctly in GitVS. 127

C.26 Page 1 of the questionnaire given to participants at the end of the GitVS

study. 128

C.27 Page 2 of the questionnaire given to participants at the end of the GitVS

study. 129

xiii

List of Tables

3.1 Demographics information for the participants in the GitSonifier study. . 31

3.2 The properties of each of the 10 clips used in the GitSonifier user study. . 33

3.3 The multiple-choice questions asked during each of the 10 tasks. 34

3.4 Questionnaire Results . 40

4.1 Objective questions that participants answer for each repository. 68

4.2 Subjective questions that ask participants to compare the repositories. . 68

4.3 Post-study questionnaire questions. 70

A.1 List of the types of variables that Music++ can parse. 84

A.2 List of the arithmetic operators that Music++ can parse. 84

A.3 List of the multiline statements Music++ can parse and the pieces of code

related to those statements that Music++ sonifies. 85

1

Chapter 1

Introduction

Version control is a software development technique that is widely used in collaborative

development. It provides a way for developers to keep track of the changes made to

a codebase, creating a history of the project over time. This history makes it easy

to maintain multiple versions of the same project and to revert to old versions if

changes are undesirable. In addition, version control allows multiple developers to

work on the same files of a project simultaneously, combining them automatically

when committed. Some tools that implement version control include CVS, Subversion,

and Git [2]. Exploring version control history can help developers accomplish different

tasks. For example, developers often use version control history to help them fix

bugs [3, 4, 5], understand why a piece of code evolved the way it did, or keep up with

changes to pieces of code on which they are actively working [4].

One problem that developers frequently encounter when using version control are

merge conflicts. A conflict occurs when two developers make changes in the same

location of the same file, but on different branches. When the branches are merged,

version control cannot automatically combine the developers’ changes, and one of

the developers must combine the changes manually [6]. Merge conflicts greatly slow

2

down teams because they can take a large amount of time to resolve, and they may

also reduce quality by introducing subtle bugs that may go unnoticed for a long time.

The longer a conflict exists, the more disruptive it is likely to be. As a result, it is

important for teams to quickly identify and resolve conflicts [6]. Teams sometimes

find it useful to analyze historical conflict data in order to understand how they can

produce fewer or completely avoid conflicts.

Over time, several techniques and tools have emerged to help developers manage

and understand version control history. They use visualization techniques to represent

the data contained in the version control history, making it possible for developers

to comprehend and analyze the information. One of the most common techniques

is a visualization that shows version control history as a directed graph where each

commit appears adjacent to its predecessors in history. One example of a tool that

uses this technique is the GitHub network view [7]. Another technique is called organic

visualization. Instead of having strict rules about how pieces of data are represented,

organic visualization allows elements of the visualization to organize themselves based

on more fluid rules. This makes it easier to see relationships that are difficult to

portray in traditional visualizations. Code_swarm is an example of a tool that uses

this technique. It produces a video in which every commit is represented by a dot

and each developer is represented by a string with their name. Each time a developer

makes a commit, the files the developer committed move closer to their name. Over

time, files and developers arrange themselves based on who works on which files the

most frequently. [1]. There are several techniques that help developers discover and

resolve merge conflicts. The primary technique used to discover conflicts is called

speculative merging. It attempts to merge code across all copies of a codebase on

different developers’ machines, and then lets them know if any of those merges results

3

in conflicts with teammates. This technique informs developers of conflicts as early as

possible, allowing them to resolve the conflicts quickly [6, 8, 9, 10].

However, each of these approaches has limitations. Version control history is

ordered by time and contains multidimensional data with many pieces of information

attached to each commit [11]. None of the state of the art visualization techniques

attempt to show more than a handful of these dimensions at once. For example, the

GitHub network graph, a version history visualization tool used in industry, only

shows the date commits were made on, who made each commit, and the branching

and merging structure of the history. However, it is important for version history

techniques to display as many dimensions of data as possible because several tasks

involve analyzing large amounts of information with respect to the version control

history. For example, in order to evaluate a team’s performance after making changes

to the collaboration process used with a new version control system, a manager will

likely be interested in seeing who made each commit [12], the branching and merging

structure of the repository [13], the list of files that the commit changed [14,15,16], and

when merge conflicts appear in history [6]. All of this data will need to be shown for

a period of time that may span weeks or months and contain hundreds or thousands

of commits on many branches.

In addition, while speculative merging techniques can show conflicts in real time,

the field is missing techniques that show patterns of conflicts in a project’s history.

This is because, while it is possible to discover historical conflicts in version history, it is

difficult to do so for many version control systems, including Git. Some researchers have

analyzed Git repositories to find historical conflicts for use in their experiments [17,18],

but they have not shown the resulting conflicts to developers, and the methods these

researchers have used to find historical conflicts are nontrivial. Since conflicts slow

4

teams down, if they had easy access to historical conflict data, this might allow them

to avoid future conflicts or to make conflict resolution easier to accomplish.

In order to solve these problems, in this work I turn to sonification, the portrayal

of data using sound. Sonification is especially well suited for portraying data that is

multidimensional and time based. This is because it is possible to design multiple sound

objects that play at the same time, but that listeners can nevertheless differentiate

and interpret simultaneously. In addition, listeners hear sound over time, making it

natural to map the passage of time in a sonification to the passage of time in the data

being portrayed [19].

Accordingly, we have created GitSonifier, a technique for sonifying version history.

It uses specific techniques called earcons and parameter mapping sonification in order

to produce a song that represents who made each commit, when each commit was

made, and when merge conflicts appeared in history. Conveniently, the GitSonifier

technique allows us to treat historical merge conflicts as a dimension of data to portray,

providing a natural way to incorporate that information into the sonification. We also

conducted a user study to evaluate whether developers can understand GitSonifier.

The results indicate that sonification of version history is a feasible technique [20].

However, our study shows that GitSonifier has a couple of limitations. First,

while developers can understand each individual data element in the sonification, they

have a harder time obtaining a holistic understanding of the data. In addition, like

visualization, when too many dimensions are portrayed in a sonification, it can become

difficult to interpret.

In order to overcome the limitations of GitSonifier, we next developed GitVS, a

technique that portrays version history by combining visualization and GitSonifier’s

sonification. Using the visualization, developers can obtain a holistic view of the data.

Furthermore, while visualization and sonification both are limited in the number of

5

dimensions they can portray on their own, combining them allows us to portray more

dimensions of version history simultaneously without making the data difficult to

understand.

1.1 Contributions of this Thesis

The contributions of this thesis are:

• A technique, GitSonifier, for displaying version control history and historical

conflicts. This technique uses sound to portray who made each commit, when

commits were made, and when conflicts were present in a project’s history.

• A user study to evaluate GitSonifier. In this study, participants were trained to

use GitSonifier, then asked to interpret 10 different sound clips generated by the

GitSonifier technique. The study results show that the GitSonifier sonification

technique makes it easy to understand individual pieces of data from sonification,

but it is somewhat difficult to understand the data holistically.

• GitVS, a hybrid visualization that uses both novel visual elements and sound

to enrich the understanding of history. This combination fixes GitSonifier’s

limitation of making it difficult to understand the overall picture of version

history data. In addition, it allows more dimensions of version control history

to be displayed at once than the state of the art.

1.2 Overview of Thesis

Chapter 2 of this thesis discusses the existing literature about Git, merge conflicts, and

sonification, three topics that are important for understanding this thesis. Chapter

6

3 introduces GitSonifier, a technique that uses sonification to represent information

about who made each commit, when commits were made, and when conflicts existed

in version control history. In addition, the chapter discusses an exploratory user study

that demonstrated sound can be an effective way of displaying version history. Chapter

4 introduces GitVS, a technique that combines the GitSonifier sonification with a

novel visualization. Chapter 5 discuss avenues for future work and offers concluding

thoughts on the thesis.

7

Chapter 2

Background

2.1 Version Control

A version control tool allows developers to maintain different major versions of the

same software and record commits, or different changesets to their codebase, so that it

is easy to revert to a stable version if necessary. It also allows multiple developers on

the same team to concurrently modify the same source code file without interrupting

each other.

Version control tools are an extremely common tool in industry. Some of the most

well-known version control systems are CVS, Subversion, and Git [2].

2.2 Git

Git is one of the most prominent version control tools today. Unlike many other

common version control systems, it is a distributed version control system. This means

that each developer on a project hosted by Git has an entire copy of the repository

hosted on their own computer. This allows a wider variety of version control workflows

8

than centralized version control systems, in which the only copy of the entire repository

exists on a version control server. [2, 11]

2.2.1 How Git is Implemented

This section explains the data structures Git uses to store commits and branches. It

also shows how new branches can be introduced to the history by developers sharing

changes with each other, even if the developers do not explicitly create new branches

themselves.

2.2.1.1 A Git Repository as a Directed Graph

Internally, Git represents the relationships between commits using a directed graph.

Each vertex in the graph is a commit, and an edge goes from one commit to its parent

commit.

Each commit is represented as a data structure with the following attributes:

• The commit’s hash, calculated by computing the SHA1 hash of the rest of the

commit’s data [21].

• The commit’s parents, or the commits made immediately before the given

commit in history. This is stored as a list of hashes. Each hash in the list

corresponds to one of the parents.

• A data structure representing which files were changed by the commit and how

each file was modified.

• The time and date that the commit was created.

• The name and email of the developer who created the commit.

9

c1 c2

c3 c4

c5

c6

c7 c8 c9

master

Figure 2.1: Example of the directed graph representation of a Git history.

For example, Figure 2.1 shows an example of what a typical Git repository might

look like, represented as a directed graph. The repository has a branch that starts

at commit c2 and is merged in commit c7. The arrows on the graph point from

commits to their parents. This may be counterintuitive, but it is how Git represents

commits internally: commits contain information about their parents, but not their

children [11].

2.2.1.2 Decentralized Version Control

Git is a decentralized version control system. This means that in a team of developers,

each individual developer has a full copy of the repository on their machine. This

makes a wide variety of version control workflows possible. For example, while it is

possible to do so, Git does not require developers to have a central server host the

official copy of the repository.

Depending on how the developers use Git, the decentralized nature of Git sometimes

causes branches to appear in history, even when developers do not explicitly create

branches. Specifically, when a developer pulls changes from another copy of the

repository into their own repository, Git will record the pulled changes as a new

branch if the developer tells it to do so or if the pulled changes conflict with the

changes the developer already has.

For example, suppose two developers are working on the project represented in

Figure 2.1. Each developer has their own copy of the repository on their own machine.

Then, both developers make changes. The first developer creates commit c10, and the

10

c1 c2

c3 c4

c5

c6

c7 c8 c9 c10

master

c1 c2

c3 c4

c5

c6

c7 c8 c9 c10′

master

Figure 2.2: Two copies of the repository with new commits, c10 and c10′.

c1 c2

c3 c4

c5

c6

c7 c8 c9 c10 c10′

master

Figure 2.3: The repository after being fast-forwarded.

c1 c2

c3 c4

c5

c6

c7 c8 c9 c10

c10′

c11

master

Figure 2.4: The repository after being merged with a merge commit.

second developer creates commit c10′. Figure 2.2 show the developers’ repositories

after the changes.

If the first developer pulls the changes from the second developer, Git will produce

either the history shown in Figure 2.3 or Figure 2.4. If the changes from c10 and c10′

don’t have any conflicts, Git can flatten the history and produce the history shown in

Figure 2.3 without any new branches. If there are conflicts between c10 and c10′, or

if the developer prefers it, Git will produce the history in Figure 2.4, which shows a

new branch for the commit pulled from the second developer. The branch starts at

commit c9 and is merged in commit c11 [11].

11

2.3 Merge Conflicts

When using version control, developers will frequently edit the same files on different

branches. In most typical cases, version control systems can automatically combine

these changes when the branches are merged. Sometimes, however, the automatic

merging process fails, requiring the developers to manually inspect their changes from

each branch and decide which to keep. This situation is called a merge conflict.

Some merge conflicts arise when two or more developers change the same lines

of code on the same files on different branches. In these conflicts, Git will not

allow developers to merge those branches at all until they have manually edited the

conflicting files to resolve the conflicting lines of code.

Other types of conflicts exist. For example, it is possible to have a conflict in which

the code on two separate branches compile successfully, but upon being merged, the

resulting commit has a build error. Conflicts other than the direct, textual conflicts

in the previous paragraph are not automatically detected by version control tools [8].

2.3.1 How Merge Conflicts Affect Industry Teams

Merge conflicts make the development process more difficult. Conflicts that exist for

a long period of time before being resolved can be especially costly to fix and may

introduce subtle bugs even after being resolved. M. Guimarães and A. Silva express

the common view of conflicts in one of their papers, writing, “[C]onflicts emerge due to

concurrent work, and become more complex as changes grow without being integrated

and as further developments are made. Consequently, the later conflicts are detected,

the harder it is to resolve them because more code must be reworked. Besides, a

conflict detected late is generally harder to resolve since the changes that caused it

are no longer fresh in developers’ minds” [6].

12

One of the most difficult aspects of working with conflicts is that they can be

difficult to identify. Without tools to help them, developers are frequently entirely

unaware of conflicts until they attempt a merge with a conflicting branch. By that

point, the conflict is likely far more difficult to resolve. In some cases, when the

automatic merge appears to succeed but quietly introduces a runtime bug, the conflict

might go unnoticed indefinitely [6, 10]!

2.3.2 Tools for Detecting Conflicts

To help developers deal with conflicts, researchers have developed tools that perform

speculative merging. These tools continuously attempt to merge developers’ uncom-

mitted changes with commits that other developers have prepared but not yet pushed.

When these merges fail, the tools are able to identify that there is a conflict and let

the developers know, allowing them resolve it sooner when it is still relatively easy to

fix. These tools will show conflicts as they are created in real time, but do not show

historical conflict data [6, 8, 9, 10].

2.3.3 Viewing Historical Conflict Data

Git does not record when conflicts occurred in a project’s history, so unfortunately,

there is no easy way to explore historical conflict data. Historical conflicts can be

discovered later by attempting to merge historical branches and seeing which branches

generate conflicts, but to my knowledge, researchers have attempted to recover this

information only for the purposes of performing experiments [17, 18]. There are no

tools for industry or practitioners for exploring conflict patterns in a project’s history.

13

2.4 Sonification

Sonification is the use of sound to represent data. This thesis primarily uses two

sonification techniques. The first, earcon sonification, uses individual musical sounds to

represent pieces of data. Changes to these musical ideas can provide details about the

data they correspond to [19,22]. The second technique, parameter mapping sonification,

represents continuous or near-continuous data by mapping each dimension of the data

to an attribute of a single sound wave, then manipulating the sound wave’s attributes

over time to display the corresponding data [19].

2.4.1 The Advantages of Sonification

Sonification has several advantages over other techniques of portraying data, such as

visualization. The two advantages most important to my work are that sonification

can easily portray temporal data and multidimensional data.

Since listeners hear sound over time, it is natural to use sound to portray data

with time as one of the axes. As a result, a sound can be produced such that the time

that passes as the listener hears the sound corresponds to the passing of time in the

data being sonified.

Sonification is also effective at portraying multidimensional data. This is because

it is possible to design sounds so that multiple sounds play at once, but listeners can

still distinguish them and follow each of the sounds at the same time. For example, if

two sounds are played at the same time, one high-pitched and the other low-pitched,

a listener can easily follow both sounds as separate auditory objects. Likewise, if

one sound is played on the right speaker and the other on the left speaker, again, a

listener can easily tell them apart. As a result, if there are multiple datasets that are

related to each other, they can be sonified simultaneously. As long as the sonification

14

is carefully designed, a listener can understand all of the datasets at the same time.

For example, if one sound is played out of the left speaker and another sound is played

out of the right speaker on a stereo, a typical listener can easily follow both sounds

simultaneously. [19]

2.4.2 Earcon Sonification

Earcons are analogous to visual icons. In a traditional visual GUI, an icon represents

an event or object of interest. For example, the GUI for Apple’s OS X operating

system uses an icon of a trash can to represent the concept of deleting a file. In

addition, multiple icons can be combined or related to each other to suggest related

ideas. For example, a circle with a diagonal line through it or a large “X” are both

icons typically used to represent canceling or prohibiting an action. As a result, an

icon with a large “X” over a trash can suggest that a file cannot be deleted.

Likewise, earcons represent ideas with musical sounds. In particular, earcons are

typically designed as musical motifs, which are short musical phrases with distinct

pitches and rhythms. Unlike icons, which typically have an obvious visual association

with the ideas they represent, earcons tend to be abstractly mapped to the ideas

they represent. As a result, earcons can be used to represent data that doesn’t have

an obvious analogy to exploit for an icon. The disadvantage is that a listener will

typically have to learn earcons ahead of time, then be able to mentally map an earcon

when he or she hears it with the idea it represents.

The motifs used to create earcons have several characteristics. Pitch refers to

which notes are played. Rhythm is the timing of the notes. Timbre is the sound of

the instrument playing the motif. Related earcons can share musical characteristics so

their relationship is easier to recall [19, 22,23,24].

15

A measure is a group of notes representing all or part of a motif, and is the basic

unit of time in music. [23]

2.4.3 Parameter Mapping Sonification

In Parameter Mapping Sonification (PMSon), each dimension of a data set is mapped

to a characteristic of a sound wave, which is then manipulated over time to represent

the data. This allows multidimensional, continuous data to be represented with a

single sound.

The Sonification Handbook [19] describes PMSon using the example of displaying

the temperature of a kettle of water as it heated. For example, consider the temperature

of a pot of water as it is boiled. The temperature increases with time until it reaches

100◦C and boils. A parameter mapping sonification of the same data might map the

temperature of the water with the pitch of a sound wave. When a user listens to such

a sound, it would start at a low pitch, then gradually increase in pitch until it reached

a pitch corresponding to the boiling point.

In general, a PMSon works well with data where multiple variables change in

response to one continuous or near-continuous variable. In the example above, temper-

ature changed in response to time. Other pieces of data could be sonified as well. For

example, in order to measure how the water expanded as it got hotter, the temperature

and volume of the water could have been sonified simultaneously over time. Once

the data to be sonified has been selected, each dimension of the data is mapped to a

different aspect of the sound wave used in the sonification. For example, in the boiling

water example, two aspects of the sound wave, perhaps pitch and loudness, would be

selected to represent the temperature and volume of the water respectively.

16

Loudness and pitch are two of the aspects of a sound wave that PMSon can map data

to. Other aspects include which vowel sound the sound wave most resembles [19, 24].

2.4.4 Other Forms of Sonification

There are several other techniques for designing sonifications. Audification is a

technique in which data that is already in the form of a physical wave is directly

played as sound. Frequently, mild transformations are be applied to the data to make

it easier or possible for human listeners to hear the sound. For instance, seismologists

audify earthquake records, but since the waves have a frequency lower than humans

can detect, the records are sped up significantly first [19].

Auditory icons are sounds representing pieces of data. They are selected so

that their meanings are intuitive. For example, an early computer program called

SonicFinder added sound effects to a file explorer, including the sound of an object

scraping on the ground while a user dragged a file. The sound effect is intuitive

because dragging an object in the real world produces a scraping sound [19,25].

2.5 Music++

Music++ was an early proof-of-concept sonification for my research that demonstrated

sonification is a viable technique in software engineering. It established the idea of

using earcons to represent pieces of data in order to produce a song as a common

theme in my research.

Music++ was a joint project with Dr. Myra Cohen, Dr. Anita Sarma, and my

classmates Nina Pickrel, Jacob Lloyd, and Natasha Jahnke. This section includes

material from a class paper that my classmates and I worked on together [26].

17

The Music++ sonification was implemented in a tool that sonifies the execution

paths of simple Java programs. The tool has multiple earcons that correspond to

different elements in a Java program, and when each line of code in a sonified Java

program’s execution path is reached, the earcons for that line of code’s elements play

simultaneously. Music++ can be used to help teach programming by demonstrating

to students how their computers “see” their programs when the programs are run.

Music++ uses an earcon-based sonification. It assigns different earcons to Java

data types, arithmetic operations, and control statements. When sonifying the

execution path, as each line of code in the program is encountered, all of the earcons

corresponding to the elements in the line of code play simultaneously. For example,

a line of code that declares a String variable would play the String earcon, but no

other sounds. A line of code that added two integers, then assigned the result to an

int variable would play the int earcon and the addition earcon simultaneously.

When the execution path goes inside the body of a control statement, the sonifica-

tion continuously plays an earcon to indicate that the execution path is inside of the

body. For example, to sonify a line of code that adds two integers, assigns the result

to a variable, and occurs inside of an if statement’s body, the sonification would play

the earcons for addition, the int type, and the if statement body simultaneously.

In addition to sonifying each line of code, Music++ also sonifies the conditions

in conditional and loop statements. For example, when sonifying an if statement,

Music++ will first sonify the statement’s condition. Then, if the statement evaluated

to true, the sonification will sonify each of the elements in the if statement body.

Each earcon is a measure long because untrained listeners can intuitively tell when

a measure begins and ends [23]. All of the earcons were written in the same key so

that when they are combined with each other, they still sound musically pleasing.

The earcons are written using a wide variety of instruments, pitches, and rhythms

18

in order to make them easier to tell apart. However, earcons related to the same

conditional or loop statement are written using the same instrument and similar

pitches. For example, both the while condition and while body earcons are written

using a trombone. This makes it easy to identify which earcons are related to the

same while loop when multiple earcons play at the same time inside of the while loop’s

body. Reusing instruments for related earcons is an established earcon sonification

technique [19].

In addition, to make them more distinct, the arithmetic operator earcons are all

written using drum sounds instead of pitched instruments. Each of the four arithmetic

earcons are written with a different drum that plays one loud, easily noticeable note

on the same rhythm. As a result, it is easy to identify an arithmetic operator earcon.

Three of the ideas that I initially explored in Music++ became common features of

my other sonifications. First, I routinely use earcons that are a measure long. Second,

the earcons I use in other sonifications use a wide variety of rhythms, pitches, and

instruments for one type of data, and a consistent drum pattern for another type of

data. Third, I continue to play multiple earcons simultaneously in order to provide

multiple details about a single data points.

For more information about Music++, refer to Appendix A.

2.6 Related Work

Several other researchers have explored making version control data easier to under-

stand and using sound in software engineering.

19

2.6.1 CocoViz

CocoViz is a tool that uses a combination of visualization and sonification to display

code metrics for a software project. Each file in the repository is represented by a 3D

shape that has several properties, including color, X and Y position on a grid, and

volume. Each of these attributes is mapped to a different code metric, such as number

of lines of code, number of functions, or Cyclomatic complexity. Which specific metrics

are used is configurable by the end user, and CocoViz connects with IDE plug-ins in

order to obtain metric data, giving users a large number of options for which metrics

to select.

If the user maps all of the available visual parameters to metrics and wishes to view

even more metrics, CocoViz uses sound to show the additional metrics. CocoViz’s

creators explored two different techniques with sound. In one, a marker is added to the

visualization and can be moved around by the user. All of the 3D shapes continuously

emit sounds, and the marker picks up the sounds of the 3D shapes closest to it as

though it had a microphone attached to it. By moving the marker around, the user

can get a sense of what kinds of values are typical in different portions of the codebase.

In the second technique, whenever the user hovers their mouse over a 3D shape, it

plays its sound.

Unlike CocoViz, my work sonifies version control history. CocoViz focuses specifi-

cally on visualizing and sonifying code metrics without regard for version history [27,28].

2.6.2 code_swarm

Code_swarm is a tool that shows version control history in a way that makes it

easy to see patterns in development. It uses a technique called organic visualization

20

which aims to make the qualitative aspects of data easier to understand instead of the

quantitative aspects.

Code_swarm generates a video showing the history of a project. Each developer is

represented by a piece of text with their name on it, and each file is represented by a

dot. Whenever a developer makes a commit, all of the files that the developer modified

and the developer’s name all move closer to each other, as though they were briefly

attached by invisible springs. As a result, over time, developers become surrounded

by “bubbles” of dots showing which files they work on the most frequently. Other

patterns, such as files gradually moving from one developer to another, can be easily

observed.

Figure 2.5 shows an example of what code_swarm looks like.

Unlike my work, code_swarm does not use sound and does not show historical

conflicts [1].

2.6.3 Orchestrating Change

Orchestrating change: An artistic representation of software evolution introduces a

method to systematically generate music based on software projects’ version control

histories. Each component in the project is represented by a different musical motif,

and each developer is represented by a different instrument. Each measure represents

a period of time, such as a day or an hour. Then, for each measure, all of the commits

created during that time period are converted into music by finding which software

components were modified by which developers in each of the commits, then playing

the corresponding motifs with the corresponding instruments [29].

Unlike my work, this paper’s technique is solely intended to be enjoyable to listen to,

not to make it easier to understand version control history. The Orchestrating Changes

21

Figure 2.5: A still frame from a code_swarm video [1]

paper expressly states that its primary goals are to generate music that is aesthetically

beautiful and that accurately reflects the history of the sonified repository, but it

does not mention using the generated music to make the history easier to understand.

Furthermore, this paper does not run an experiment to determine whether it’s possible

to understand the data represented by the music. [29] In contrast, my work’s primary

concern is to make version control history easy to understand, and making the

sonification enjoyable is a secondary goal.

22

2.6.4 Other Applications of Sonification to Software

Engineering

Sonification has been successfully applied in many software engineering disciplines

besides version control history.

One of the first tools to use sonification, SonicFinder, used sound to provide

additional information to users of Apple’s operating system in the 1980s. For example,

dragging a file across the desktop generated a scraping sound. The larger the file, the

lower-pitched the dragging sound was. As another example, selecting a file or folder

generated a sound of hitting a wooden or metallic material. Again, the size of the file

or folder being selected affected the pitch of the sound [25].

Hussein et al. show that sonification is a good alternative to visualization for

program comprehension. They created a tool that sonifies the number of lines of

code, the number of function calls, and the number of times a specific API is called

by a Java program. They then ran an experiment where some participants used the

sonification and other participants used a visualization portraying the same data. The

experiment found that participants were able to answer questions as accurately and

nearly as quickly when using the sonification compared to using the visualization. The

visualization was still more usable, but the sonification was close enough to suggest

that the technique could be improved until it was better than the visualization. [30].

Sonification has also been used for program comprehension [31], performance

tuning [32], and debugging [33,34].

While these projects provide an argument for sonification, my work focuses on

version control history specifically, and version history is a separate subfield altogether

than the examples listed above. There is no work that satisfies my goal of using sound

to understand historical version control data.

23

Chapter 3

GitSonifier: Sonifying Version History

This section discusses GitSonifier, a technique that combines earcons to represent

the history of Git repositories. The sonification represents who made each com-

mit and when each commit was made using earcons. It also shows when conflicts

were introduced and resolved in a repository’s history using drums playing in the

background.

In a user study on an open source project’s data, I found that users can easily

understand GitSonifier, indicating that sonification has the potential to help developers

understand version control history more effectively. In addition, users can comprehend

GitSonifier easily regardless of their prior experience with music.

Some of the material in this chapter was published in [20].

3.1 Motivation

Developers use Git routinely. Oftentimes, exploring Git history will help them

accomplish different tasks. For example, developers often use Git history to help them

fix bugs [3,4,5], understand why a piece of code evolved the way it did, or keep up with

24

changes to pieces of code they are actively working with [4]. Furthermore, as discussed

in Section 2.3, merge conflicts can significantly slow down software development teams.

Teams could look at when conflicts were introduced and resolved in their projects’

histories in order to decide how to better handle and avoid conflicts in the future. To

our knowledge, no one has considered showing developers historical conflict information

before us.

There are several tools that already exist for displaying version control history,

but they have limitations. Many tools, such as GitHub’s network graph view, display

a project’s history as a directed graph [7]. These directed graph views have limited

dimensionality, which means that there are already so many pieces of information

mapped to different visual elements that trying to include additional types of informa-

tion will quickly cause the visualization to become difficult to understand. Another

tool, code_swarm, uses visuals to show historical data, but doesn’t show information

about conflicts [1]. Tools exist to let software developers know when they are conflict-

ing with other developers, but these tools only show current conflicts, not historical

conflicts [6, 8, 9].

As noted earlier in Section 2.4, sonification is an excellent tool to use for multidi-

mensional and time-based data. In a version control history, each commit is associated

with many different pieces of information, such as who made the commit and whether

the commit introduces or resolves conflicts. In addition, commits record when they

were created, so they occur over time. As a result, version control history is both

multidimensional and time-based. Thus, by using sonification, we can potentially

display more dimensions of version control history than we can with images. One of

those dimensions can be when conflicts were introduced and resolved, providing useful

information about conflicts to developers as well.

25

3.2 Design

GitSonifier uses earcons to create songs that represent version control history.

3.2.1 Developer Earcons

Each developer is assigned a musical motif as an earcon that is created using unique

timbre, pitches, and rhythm. According to previous research, this makes them easier

to differentiate [19]. To ensure that the earcons sound musically pleasant with each

other, they are all written in the same key.

3.2.2 Representing Time with Day Separators

Each commit is represented by a measure of music, a decision we made because

untrained listeners can intuitively tell when a measure begins and ends [23]. As a

result, the amount of time the sonification plays to represent a day’s worth of commits

is longer or shorter depending on how many commits were made during the day.

We used a variable length of time for a day in order to clearly represent activity

sequentially. Since our goal was to hear each of the commits in order, we wanted to

make sure that each commit could be clearly differentiated more than we wanted to

closely simulate the passage of time.

Accordingly, each day is represented by an earcon called a day separator. The

day separator plays for one measure when one day ends and another begins so that

each day’s commits are bookended by day separators. For instance, if developer A

and developer B commit in that order one day, and then developer A makes another

commit the next day, then developer A’s earcon, developer B’s earcon, a day separator,

and developer A’s earcon would play in that order for one measure each. On days

26

when no activity occurs, the day separator is played multiple consecutive times to

show the number of days that pass.

To make it easier to identify, the day separator icon is written in a different key

than the developer earcons. In addition, the day separator is played by a distinctive

instrument, further differentiating it from the other earcons.

3.2.3 Conflict Drums

Conflict earcons are represented by a drum motif. The more unresolved conflicts

there are during a commit or day separator, the louder the earcons will be during the

corresponding measure. When a conflict is introduced, the drums start playing or get

louder, and when a conflict is resolved, the drums get quieter. When there are no

active conflicts, the drums do not play at all.

Conflict drums are played as an overlay onto the commit timeline. For example, if a

developer makes a commit while there is one conflict active, the developer’s earcon and

the quiet drums signaling one commit will play simultaneously. We do this because

conflicts can exist in a Git project concurrently with commits being added. In future

work, we can parameterize and overlay additional data, such as the size of commits.

3.3 Implementation

Figure 3.1 shows how GitSonifier works1. GitSonifier parses Git data (#2), flattens

the data into a timeline (#3), adds a layer indicating the number of conflicts (#4),

and renders the music clip (#5).

Our implementation of GitSonifier is compatible specifically with Git repositories.
1GitSonifier sounds and experimental data can be found at: http://cse.unl.edu/~myra/

artifacts/NIER15/

http://cse.unl.edu/~myra/artifacts/NIER15/
http://cse.unl.edu/~myra/artifacts/NIER15/

27

3.3.1 Architecture

Git
History

Team

Sonifier

Sounds

!!!!!!!!!!!!!Timeline!

Days Commits

Conflicts

Parameterization

Conflicts

Manager

1!

2!

3!

4!

5!

6!

Commits/
days

Figure 3.1: GitSonifier’s Architecture

To start (#1), data is collected from a team’s Git repository. GitSonifier walks

through the Git repository, collecting each commit’s SHA1 hash, author, timestamp,

and list of parents. This information is combined with a list of when each conflict in

the project’s history was introduced and resolved. GitSonifier does not attempt to find

conflicts, and the end user is expected to provide the conflict information themselves.

2

Next, the Git data is passed to the sonifier module (step #2), which collects

three key data elements for each commit: the commit’s author, the day on which

the commit was made, and whether the commit introduced or resolved conflicts. In

step #3, the data for commit authors and days is arranged into a timeline. The

timeline is represented by a list of Measures, where each Measure represents all of

the information needed to sonify a single commit or day separator. The list is in the

order the Measures will be played in the sonification.
2I want to thank Dr. Bakhtiar Kasi, one of my classmates while I was working on GitSonifier, for

providing us with lists of conflicts he had found during his research.

28

In step #4, we use the information about which commits introduce and resolve

conflicts in order to count how many conflicts are active during each commit and day

separator. This is used to determine during which measures the conflict drums will

play and how loudly they play when active.

Although steps #3 and #4 are conceptually separate, our software implementation

performs these two steps simultaneously. A loop iterates over each commit in order

and determines which conflict drums and developer earcon or day separator to combine

for each measure of music. As a result, after a single pass, the information for both

developer earcons and conflict drums has been processed.

Finally, in step #5 we combine the timeline data and the conflicts into a music

clip, which is exported and played (step #6) for a manager or software development

professional.

To implement GitSonifier, we created .wav files for our earcons. Each file is one

measure long, making it easy to combine them. We used JGit, a library for working

with Git repositories [35], to parse the repository’s history. We then used Beads, a

Java library, to combine the sounds on the timeline [36]. Beads can combine sounds

both sequentially, playing commits and day separators in order, and concurrently,

playing commits and conflicts at the same time.

3.3.2 Implementation Details of the Sonification

3.3.2.1 Developer Earcons

In the implementation we created, there are 14 developer earcons altogether, although

in principal, this number can be easily changed. The 13 developers who make the

most commits are each assigned their own earcon, while the remaining, less active

developers share the 14th earcon.

29

We made this decision for three reasons. First, in the initial version control

repository that we studied, we saw that the 13 most active developers contributed

approximately 75% of the repository’s commits [37]. Second, assigning less active

developers the same earcon makes it easy to tell when a commit was made by an

outside developer. The 14th earcon uses a distinctive synthesizer for its instrument,

making it easy to recognize. Finally, if we created one earcon for every developer in a

repository, many of the earcons would start to sound very similar to each other, and

it would be difficult for an end user to differentiate between them.

3.3.2.2 Conflict Drum Earcons

Our implementation of GitSonifier can portray up to four conflicts at once. If there

are five or more simultaneous conflicts, the drums will continue playing, but they

won’t get any louder. In principal, the maximum number of conflicts that GitSonifier

can show can set to whatever value desired.

3.3.2.3 Tempo

The music generated by GitSonifier is played at a tempo of 100 beats per minute. In

our informal experience, this is fast enough to be enjoyable, but slow enough to be

understood.

3.4 User Evaluation

To evaluate whether sonification is an effective means for portraying development

history, there are several questions that need to be answered. As an initial step, we

performed an exploratory study to evaluate the basic assumption that developers can

distinguish a set of information encoded in a sonification. Before we evaluate whether

30

users can listen and comprehend the music as part of a more complex tool or while

performing other tasks, we needed to first determine whether sonification is feasible.

We asked the following three research questions:

• RQ1: How well do participants interpret the sounds representing a Git history?

• RQ2: How efficient is the use of sonification for understanding a Git history?

• RQ3: What was the participants’ evaluation of sonification?

3.4.1 Participant Characteristics

We recruited six participants who have experience working in teams and using version

control systems. They had experience in Git, SVN, and CVS, ranging from 1.5 months

to 10 years. Most had experience working in small teams. Three had no music

background, whereas the others had 10 to 25 years of musical experience. Four were

male and two were female. Table 3.1 shows the demographics information for each

participant.

31

Ta
bl
e
3.
1:

D
em

og
ra
ph

ic
s
in
fo
rm

at
io
n
fo
r
th
e
pa

rt
ic
ip
an

ts
in

th
e
G
it
So

ni
fie
r
st
ud

y.

P
ar
ti
ci
pa

nt

W
hi
ch

ve
rs
io
n
co
nt
ro
l

sy
st
em

s
is

th
e

pa
rt
ic
ip
an

t
fa
m
ili
ar

w
it
h?

H
ow

lo
ng

ha
ve

th
ey

be
en

us
in
g

th
em

?

H
ow

m
an

y
pe

op
le

w
er
e

on
th
e
la
rg
es
t

so
ft
w
ar
e
te
am

th
ey

ha
ve

w
or
ke
d
in
?

D
o
th
ey

ha
ve

an
y

m
us
ic
al

ex
pe

ri
en
ce
?

If
ye
s,

ho
w

m
an

y
ye
ar
s?

G
en
de
r

Y
ea
r
in

sc
ho

ol

P
1

G
it
H
ub

,C
V
S,

SV
N
,

a
pr
op

ri
et
ar
y
sy
st
em

9-
10

ye
ar
s

5-
6
pe

op
le

N
o

M
al
e

O
ut

of
sc
ho

ol

P
2

SV
N
,G

it
,C

V
S

3
ye
ar
s

20
-3
0
pe

op
le

Y
es

25
ye
ar
s

M
al
e

G
ra
du

at
e

st
ud

en
t,

12
ye
ar
s

P
3

G
it

1
ye
ar

2
pe

op
le

Y
es

10
ye
ar
s

Fe
m
al
e

G
ra
du

at
e

st
ud

en
t,

3
ye
ar
s

P
4

G
it
H
ub

1
ye
ar

2
pe

op
le

N
o

Fe
m
al
e

G
ra
du

at
e

st
ud

en
t

1.
5
ye
ar
s

P
5

G
it
,S

V
N

10
+

ye
ar
s

40
-5
0
pe

op
le

N
o

M
al
e

O
ut

of
sc
ho

ol

P
6

G
it
H
ub

1.
5
m
on

th
s

6
pe

op
le

Y
es

16
ye
ar
s

M
al
e

O
ut

of
sc
ho

ol

32

3.4.2 Study Design

We used GitSonifier to create a soundclip of the history of a GitHub project, Voldemort

[37]. We sonified data from November 4 and 5, 2009, which includes 3 developers and

1 conflict. The conflict in this data was a test conflict, which means that Git was able

to automatically merge the files together, but tests started failing in Voldemort after

the merge. This resulted in a 26-second long clip. We then created ten variants of this

clip by adding or removing users, days, and conflicts from the history. Some variants

changed only one parameter, while others change two or all three parameters. Each

variant includes 1 to 3 days, 2 to 4 developers, and 0 to 3 conflicts. Across all of the

clips, we used 5 different developer earcons. Each sonification variant is 24-29 seconds

long so that there is a significant amount of data encoded, but at the time same it is

feasible to complete a set of 10 clips in the study time period. Of the 10 clips, one is

the same as the original, and two, clips #4 and #8, are duplicates. Table 3.2 shows

the properties of each clip.

Participants were trained by a website on what earcons meant in the sonification of

the original data (from here on, I call it the training clip). They then had to complete

a brief quiz about the data in the training clip. They could review the training clip

and the earcons multiple times. Participants had to answer all the questions correctly

before proceeding to the next part of the experiment, regardless of how long or how

many tries it took them to do so.

In the next part of the experiment, the participants completed a set of ten tasks

(one per variant). Each task had 3 multiple-choice questions that asked if the training

clip and the variant clip had the same, more, or fewer developers, days, and conflicts.

The training clip was included in the task description for review. We measured the

amount of time it took each participant to complete each task and which questions

33

Table 3.2: The properties of each of the 10 clips used in the GitSonifier user study.

Clip Number of
Developers

Number of
Days

Number of
Conflicts

Length
(in seconds)

Original / Training 3 2 1 26

1† 3† 3 1 29
2† 3† 2 2 26
3† 3† 2 1 26
4 2 2 1 26
5† 3† 1 2 24
6† 3† 2 0 26
7 4 1 3 29
8 2 2 1 26

9* 3* 1 0 24

10* 3* 2 2 26
† These clips had the exact same 3 developers as the training clip.
* These clips had the same number of developers as the training clip, but they
were a different set of three developers.

each participant answered correctly. Tasks were presented in a random order to

minimize learning effects. Table 3.3 shows the questions that participants were asked.

If participants wished, they could see which questions they answered correctly

after the experiment ended.

At the end of the experiment, participants filled out a questionnaire on the usability

of the sonification. Each of the questions in the questionnaire was on a Likert scale

from 1 to 5, 5 being the most positive. Table 3.4 in Section 3.5 below shows the

questions. Finally, there was an exit interview in which we verbally asked participants

about any unusual patterns we noticed.

Appendix B shows screenshots of the website we used to run the experiment. It

shows the precise wording and format of the training and questions we showed to

participants.

34

Table 3.3: The multiple-choice questions asked during each of the 10 tasks.

Question Possible Answers
How many developers were there in • There were more developers.
this song compared to the original? • There were fewer developers.

• There were the same number of
develoeprs [sic (from study)], but they were
different developers.
• There were the exact same developers.

How many days passed in this song • More days passed.
compared to the original? • Fewer days passed.

• The same number of days passed.
How many conflicts were there in • There were more conflicts.
this song compared to the original? • There were fewer conflicts.

• There were the same number of
conflicts.

3.4.3 Threats to Validity

There are several threats to validity in this study. Several of these stem from the fact

that this was an exploratory study. We wanted to quickly evaluate whether sonifying

version control history was a worthwhile effort for us to invest more time and energy

into, so we accepted some limitations on our study in order to obtain results more

quickly.

3.4.3.1 Number of Participants

We had six participants in our study. The small number of participants prevents us

from saying whether our results are statistically significant. Nonetheless, as will be

discussed below in Section 3.5, we had very positive results.

In addition, our small number of participants means that our sample group may not

be sufficiently heterogeneous in ways that made our results more positive or negative

than we would have found with a more thoroughly randomized group.

35

3.4.3.2 Participant Characteristics

Our study recruited students and professors as participants. In fact, only one of our

participants was a full-time developer. Thus, our results may not be indicative of how

developers in industry would perform when using GitSonifier.

3.4.3.3 Task Design

Our tasks are not wholly representative of a real-world problem. While we used real-

world data to design our training sonification clip, we used artificial version control

data for the ten task clips. This is because we wanted to design our questions around

comparing two different sonification clips in order to see whether users can understand

GitSonifier well enough to see how the data between two different sonifications compare.

As a result, we made sure the sonification clip participants compared against used

real data. Then, we made ten sonification clips that modified that data to make clips

that could be compared with the original.

Furthermore, the questions we asked participants tested whether the participants

could comprehend the clips, but not how they would use the clips in a real-world

scenario. As a result, we cannot be sure that the specific data we selected or the

questions we asked about it are representative of the kinds of data and the questions

developers would ask in real-world use.

3.4.3.4 Testing a Single System

We did not compare GitSonifier’s performance against any other tools. Therefore, it is

possible that, while GitSonifier performed well on its own, it may be more difficult to

understand than other techniques and tools or only represent a marginal improvement

on other tools.

36

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

N
um

be
r o

f C
or

re
ct

 A
ns

w
er

s

Task ID

Developers

Days

Conflicts

Figure 3.2: Correct Answers by Category (in order of task ID)

3.5 Results

In this section we discuss data related to each of our research questions in order.

3.5.1 RQ1: How well do participants interpret the sounds

representing a Git history?

Figure 3.2 shows how many correct answers were given per sonification clip. The task

IDs in the table correspond to the clip IDs in Table 3.2. Figure 3.3 shows how many

correct answers were given on each question in the order the participants encountered

each question. For example, Question 1 is the first task clip that each participant

encountered, but not necessarily clip 1 in Table 3.2. Figure 3.4 shows how many

questions in each category each participant answered correctly.

Each participant answered 27 to 30 questions out of 30 correctly, with an average of

29 correct answers per participant. Four of the six participants got all answers correct.

Every participant answered every question about the number of days correctly. On

37

Figure 3.3: Correct Answers by Category (in the order participants encountered each
task)

Figure 3.4: Correct Answers per Participant

38

five separate occasions, the participants answered questions about conflicts incorrectly.

The participants answered three questions about developers incorrectly.

In terms of how many questions participants answered correctly, there were no

discernible learning effects. Participants were as likely to miss some of the first

questions they were shown as they were to answer later questions incorrectly.

Altogether, our results indicate that participants correctly understand GitSonifier.

3.5.2 RQ2: How efficient is the use of sonification for

understanding a Git history?

Figure 3.5 shows the time to completion of each task, sorted in the order in which

tasks were attempted. (Remember that the question order was randomized for each

participant, so, for instance, the first question one participant answered might have

been the last question for a different participant.) The overall average time to complete

each task across all participants was 1 minute and 11 seconds. The longest time for

a task was 6 minutes and 21 seconds, which was participant’s P3 first task, but P3

rapidly improved while progressing through the tasks. Since each sonification clip was

24-29 seconds long, this means that participants typically listened to the clip 1 to 3

times while completing each task.

Four of the participants took roughly the same amount of time to answer each

question. Participants P3 and P4 took several minutes to answer their first question,

then quickly became faster at answering questions after that. After finishing 3 questions,

both participants were as quick at answering questions as the other participants. This

suggests that there is a learning effect in terms of how long it takes users to understand

the tool: some users must spend a significant amount of time to understand the tool

39

0	

60	

120	

180	

240	

300	

360	

420	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ti
m

e
(s

ec
on

ds
)

Task by Order Answered

Participants
P1 P2 P3

P4 P5 P6

Figure 3.5: Amount of Time to Answer Each Question

at first, but they quickly move past this inexperience and can use the tool efficiently

afterwards.

A key factor in how long it took to perform a task depends on how many times a

participant listened to the sonifications. Three of the participants, P1, P2, and P6,

answered most of the questions (per task) after only listening to the task sonification

once or twice and without listening to the training clip. They were able to answer

questions consistently in about 50 seconds.

Overall, participants were able complete the tasks reasonably quickly and often

became faster as they progressed through the tasks.

3.5.3 RQ3: What was the participants’ evaluation of

sonification?

The exit survey included questions on the usability of the sonification on a Likert scale

from 1 to 5, with 5 being the highest score. See Table 3.4 for the mean and median

scores.

For most questions, the median score is 5 and the average score is more than 4.5.

40

Table 3.4: Questionnaire Results

Question Mean Median
It was easy to tell the different sounds apart 4.8 5.0

It was easy to hear who each developer was 4.8 5.0

It was easy to hear the number of conflicts 4.7 5.0

It was easy to hear when days passed 4.7 5.0

The sound helped me understand the data 4.2 4.0

I would be interested in hearing the
development data of my own teams’ projects 4.5 4.5

Even the lowest-scoring question has a median of 4 and an average of 4.2. The lowest

score any participant gave for any question was 3, which only happened once — all of

the remaining responses we received gave scores of 4 or 5. This shows that participants

found the sonifications easy to understand.

3.6 Discussion

3.6.1 Listening to Sonifications

Four out of the six participants listened to the training clip at least once during

the study. Two re-listened on their first and third tasks, respectively, to ensure that

they remembered the original sonification. Another re-listened when they realized

the current clip was the same as the training clip and wanted to confirm it. A

fourth re-listened on questions 1 and 6 to double-check their work. When we asked

participants why they did not listen to the training clip more often, they said that

they had memorized the important information from the training clip. For example,

one participant said, “I kind of memorized the number and type of developers, the

conflicts, and the number of days, so I didn’t really need to [listen to the training clip

again].”

One participant with ten years of version control experience but no musical

41

background, P5, always listened to the current task both before and after answering

each sub-question in order to be confident of their answers. This significantly added

to their completion time.

3.6.2 Incorrect Responses

Only one question, Task 5 in Figure 3.2, received a notable number of incorrect

responses. Three participants got the sub-question about conflicts wrong. The task’s

sonification had two conflicts, and the conflict that was introduced first was resolved

one commit before the second conflict was introduced. As a result, drums appeared,

then stopped for one measure, then restarted. This was likely the most challenging

task for the participants because they failed to notice the brief silence between the two

conflicts’ drums. This suggests that a single measure of silence may not be enough.

3.6.3 Participants’ Backgrounds with Music and Version

Control

All participants who had experience playing an instrument or composing music got a

perfect score on each task. This suggests that people with music backgrounds had

more success in interpreting sonifications. However, the effect size of this is not high:

the lowest overall score that any participant got was 27 out of 30 questions correct.

This suggests that while having musical experience lets one use sonification easily,

sonification is nonetheless nearly as easy to use for users without musical experience.

There was no connection between experience and using sonification and there was

no correlation between the participants’ music experience and the time to completion

for tasks. The two slowest participants (P3 and P4 in Table 3.5) were non-native

English speakers. They quickly improved their times as they progressed. It’s possible

42

that the learning effect they experienced was due to them reading the instructions in

English instead of them having trouble using GitSonifier.

Experience in version control had no effect on the participants’ results with

GitSonifier.

3.6.4 Sonification Effects

When considering developer sounds, two participants missed one question each. One

of them misread the question and realized this mistake on their own later. The other

answered the question incorrectly and did not realize their mistake, although it was

not clear why not.

Questions regarding conflicts had the most incorrect answers. As discussed above,

task 5 in Figure 3.2 had a short gap between two sets of conflict drums, and 3

participants missed the “new” conflict. Two other questions regarding a conflict were

missed as well, but the circumstances in which these questions were missed didn’t

have anything else in common.

All participants correctly answered questions about the number of days. The day

separator sound may have stood out among the rest of the sounds because it was

written in a different key and had a distinct motif. This might indicate that earcons

that are very distinct from the rest of the sounds may work better. However, one

needs to consider how the different notes sound when put together, and a series of

earcons written in different keys may not be aesthetically pleasing. We may experiment

overlaying different kinds and lengths of earcons in the future, especially for conflict

earcons.

43

3.6.5 Exit Questionnaire

In the exit questionnaire results, one question, “The sound helped me understand

the data.” received a considerably lower score than the other questions (although it

still had a high score). The other questions ask whether participants can understand

individual pieces of data from the sonification and whether the tool is enjoyable to use.

The question with the lowest score, however, was about whether the tool made it easy

to understand the data holistically. As a result, one of the weakness with GitSonifier is

making it easy to understand the big picture of what is happening in a Git repository.

As I will discuss later, my second technique, GitVS, addresses this problem.

3.7 Conclusions

GitSonifier introduces a novel technique for sonifying version control and conflict

history data so that project managers or development team members can easily

comprehend it. We have applied this to conflict data from a Git repository and

performed a formative user study to evaluate whether or not users can understand the

content by listening to the resulting sound clips. Our study shows that the majority

of users were able to differentiate the data between clips and thought that differences

were easy to hear.

GitSonifier does have some limitations. While participants were able to understand

each individual piece of data in the sonification well enough, they reported on the

end-of-study questionnaire that they didn’t feel completely comfortable understanding

the data holistically. In addition, while the participants only needed to listen to each

sonification clip one to three times to answer its questions, the sound clips themselves

were 24 to 29 seconds long each and only sonified two days’ worth of history. Listening

44

to a longer period of history could become a time-consuming task, and jumping around

in an audio file while keeping track of where one is in the data could be difficult.

The next chapter introduces another tool, GitVS, that addresses these limita-

tions. It does so by combining GitSonifier’s sonification technique with an interactive

visualization, thereby gaining the benefits of both sonification and visualization.

45

Chapter 4

GitVS: Combining Visualization and

Sonification To Display Version

History

In the previous chapter, I introduced GitSonifier, a sonification for presenting version

control and conflict history to developers, and discussed a user study that shows

GitSonifier is a viable approach. However, we discovered limitations of that technique

and address some of those here. I have developed a hybrid technique, GitVS, that

combines a static visualization with sonification to represent a richer set of data.

GitVS combines the sonification developed in GitSonifier with visualizations in

order to be truly useful in real-world development situations. Combining sonification

and visualization is helpful because, on their own, each technique is limited in the

number of different dimensions of data it can show at once. By combining them, I

show more pieces of data while still keeping the resulting hybrid visualization easy

to understand. In addition, as shown in my GitSonifier experiment, a weakness of

sonification is it can be difficult for a user to understand the data holistically. By

46

using a visualization, I make it easy to get a holistic view of the data being presented,

then let users listen to the sonification for more details.

GitVS uses the same sonification design that GitSonifier introduced. However,

GitVS is implemented using a completely different architecture.

4.1 Motivation

As discussed in Section 3.1, developers use Git history data for a wide variety of

uses, and showing developers the history of conflicts can also be helpful. GitSonifier

demonstrated that sonifying this data has potential. GitVS is an attempt to realize

some of that potential.

While sonification has advantages for portraying multidimensional and time-based

data [19], visualization has several advantages of its own. Unlike a sonification, it is

easy to navigate to different points of a visualization merely by looking at a different

location. Likewise, one does not have to look over the entire visualization before

getting a general idea of the distribution or quality of the data portrayed, but a

sonification makes it difficult to understand data holistically. For example, in the

results for the GitSonifier study, participants reported that they could understand

each individual part of the sonification easily enough, but they had a more difficult

time understanding the data in general (see Section 3.6.5).

In addition, visualization and sonification both share a weakness: the more types of

data one attempts to portray in a single visualization or sonification, the more difficult

and unwieldy it becomes for the reader or listener to understand that data. CocoViz

(see Section 2.6.1) demonstrated that by combining visualization and sonification, a

visualization can be extended to include more types of data without becoming too

cluttered to be easily understood [27,28].

47

As a result, like CocoViz, GitVS combines sonification with visualization in order

to gain the advantages of both techniques while losing the disadvantage of having

limited dimensionality. GitVS uses visualization to show the branching and merging

pattern of version history, when commits were made, and which files were modified in

each commit. Then, sonification augments the visualization by indicating who made

each commit and where conflicts are located. While it is possible to show all of this

information in the visualization alone, the visualization would be complicated and

visually busy, so it would be difficult to interpret as a result.

4.2 Use Case

As noted in Section 3.1, developers often explore Git history to accomplish different

tasks, such as fixing bugs [3, 4, 5], understand how code evolves, or stay abreast of

important changes [4]. All of these use cases can benefit from better techniques for

exploring version history.

In this chapter, we focus on another use case in particular. There are many different

workflows and methodologies for working with version control, and teams must decide

on which methodologies to use. Examples of these methodologies include committing

frequently [14,15], using continuous integration to automatically test each commit [12],

creating new branches for each new feature [13], and removing extraneous commits

before pushing to a central repository [16]. Each of these workflows is intended to

make teams more efficient, in part by changing the way they use version control.

As a result, after implementing a new workflow, a team can evaluate whether the

new workflow is having the intended helpful effect by analyzing their version control

history.

48

In order to determine whether a new workflow is beneficial, there are many pieces

of information that developers and managers are likely to want to know:

• Who made each commit. For example, Vasilescu et. al. have found that using

continuous integration typically allows teams to accept changes from outside

contributors to an open-source project more quickly [12]. Seeing who made each

commit will allow teams to identify commits from outside developers and see

whether their changes are being accepted.

• The branching and merging structure of the version history. This is important

for seeing the effects of creating a unique branch for each figure [13].

• The number of files or changes in each commit, as well as when each commit was

made. The idea behind committing frequently is that it is easier to share changes

with teammates more quickly [14,15], so a team adopting such a workflow would

probably expect to see fewer changes being made per commit and commits being

made more frequently. Conversely, a team that removes extraneous commits

before sharing them [16] would probably expect to see larger commits made less

frequently in the history after small commits are removed.

• When merge conflicts appear in the history. As discussed in Section 2.3, merge

conflicts can slow down a team significantly, so a workflow that reduces the

number of conflicts may be preferable.

As a result, showing all of these pieces of data at once can help a team decide

whether a new workflow is helping them.

49

4.3 Design

GitVS shows the following pieces of information about a version control repository:

1. When each commit in the repository was made.

2. The branching and merging patterns in the repository’s history.

3. How many files were modified in each commit.

4. Each commit’s ID.

5. Which specific files were modified by each commit.

6. Who made each commit.

7. Which commits are made by developers who don’t commit frequently.

8. When conflicts were introduced and resolved in the project’s history.

Our software implementation shows this information for Git repositories in partic-

ular, but the technique can be applied to other version control systems.

To show all of this information, GitVS relies on a combination of images, interac-

tivity, and sound. In order to show all of to data listed above, GitVS:

• Represents each commit with a circle. The date and time each commit was

made on is shown to the side of the commit. Figure 4.1 shows several commit

circles.

• Visually shows the directed graph representation of the repository. Each branch

is drawn with a different color in order to make it easier to differentiate between

individual branches when there are many on screen at once. Figure 4.1 shows

how the branches are represented.

50

Figure 4.1: Screenshot of GitVS’ View of Commits

• Shows the date and time that each commit was made along the left side of the

visualization. Horizontal bars separate commits made on different days, making

it easier to see how many commits were made each day. Figure 4.1 shows how

the timestamps are displayed.

• Changes the size of the circles representing commits. The more files a commit

modifies, the larger the commit’s circle’s radius is. Figure 4.1 shows several

commits of different sizes.

51

Figure 4.2: Screenshot of GitVS’ View of Selected Commits’ Details

Figure 4.3: Screenshot of GitVS’ Sonification Cursor. The sonification cursor is the
cyan bar in the background.

• Allows users to click and drag over one or more commits to open an additional

window that gives more details about the selected commits. This window

shows the selected commits’ IDs, timestamps, contributors, and numbers of

files modified. It also includes a table showing which files each selected commit

modified. Figure 4.2 shows the additional window.

• Plays sound interactively. A “sonification cursor,” a horizontal blue bar, is

drawn in the background of the visualization. By clicking on buttons in the

corner of the screen, the user can move the sonification cursor up and down.

52

When the sonification cursor touches a commit’s circle, a developer earcon plays

corresponding to the developer who made the commit. Figure 4.3 shows a

screenshot of the sonification cursor.

• Uses the same sonification design as GitSonifier for the developer, conflict,

and day separator sounds. The 13 most prolific developers each get their own

individual developer earcon sound. All of the remaining developers share a 14th

sound. Likewise, the more conflicts are active at a commit, the louder the drums

in the background are.

In addition, when the sonification cursor passes a date, the day separator sound

plays once for every calendar day in-between the current date and the previous

one. This allows listeners to understand when multiple days have passed.

• Allows users to sonify specific commits at any time. By right-clicking, the user

can jump the sonification cursor to the mouse. If the sonification cursor jumps

on top of a commit, it will immediately play the commit’s earcons.

4.4 Implementation

4.4.1 Architecture

Figure 4.4 shows the architecture of GitVS. GitVS is implemented in three main

components:

1. The Data Collector component queries the Git repository being analyzed for its

raw data.

2. The Data Processor transforms this data into a form that can be used to

systematically create the visualization and sonification.

53

Figure 4.4: GitVS’ Architecture

3. The Displayer shows the combination visualization and sonification.

Overall, these three components are fit together using a pipeline architecture. The

54

Data Collector feeds the data it collects to the Data Processor, and when the Data

Processor finishes transforming it, the data is send to the Displayer.

While the sonifications in GitVS share the same earcon design as GitSonifier, our

implementation of GitVS has a completely different architecture.

4.4.2 Input

GitVS takes the following information as input:

• The path to the repository to be displayed in the visualization.

• A list of conflicts present in the repository’s history. Like GitSonifier, GitVS

does not find conflicts itself and expects the end user to provide it with historical

conflicts. As a result, whether GitVS displays only conflicts that version control

tools can detect automatically or also includes other types of conflicts depends

on the conflicts that the end user gives as input. While working on GitVS, we

developed a small script that finds historical conflicts that Git can automatically

detect.

• The first and last commits to display in the visualization.

At first, it might seem more user-friendly to take in the first and last date to

display, allowing participants to specify an input date range, instead of the first and

last commits. However, that approach has a problem. It is common to find commits

with timestamps out of order in real-world repositories. For example, Figure 4.5

shows commits timestamped October 7, 2009 appearing after commits timestamped

October 9, 2009, even though they were added to the repository first! We found

multiple examples of these achronological commits in both Voldemort and Storm, two

repositories we used to test GitVS [37,38].

55

Figure 4.5: Example of Achronological Commits in GitVS

As a result, using dates to specify the time frame is ambiguous. For example,

consider the example from Figure 4.5 again. If the user inputs October 9, 2009 for

the starting date, the user probably wants to see the commits at the top of the figure.

Since they are followed by commits timestamped October 7, 2009, should the commits

from October 7 be displayed as well, even though they have dates before the input

date? Letting the user enter the first and last commit to display avoids this ambiguity.

4.4.3 The Data Collector

4.4.3.1 Walking the Git Repository

The Data Collector performs several steps. First, using a library called JGit [35], the

Data Collector walks the target Git repository and collects information on all of its

commits. This is step #1 in Figure 4.4. The following pieces of data are collected for

each commit:

• The commit’s SHA1 hash.

56

• The commit’s author.

• The timestamp indicating when the commit was made.

• A list of the commit’s parents’ SHA1 hashes.

• A list of the names of the files that the commit modified.

In addition, this step counts the number of commits each author made.

4.4.3.2 Obtaining Conflict Data

Next, the Data Collector reads the input list of when conflicts were introduced and

resolved in the project’s history. This is step #2 in Figure 4.4.

4.4.3.3 Getting the Directed Graph Representation of the Repository

In the next step, the Data Collector obtains a directed graph representation of the

repository as described in Section 2.2.1.1. This is step #3 in Figure 4.4.

To obtain the directed graph, the Data Collector runs the following Git command:

git log --format=%H --graph --author-date-order --no-color

This command produces a visual representation of the repository’s history as a

directed graph. Figure 4.6 shows an example of the output generated by the command.

The Data Collector then parses the Git command’s output and produces a data

structure that can be used to recreate the visual representation of the graph later.

The data structure has two main components:

• The first is information that describes how the visual representation of the

repository’s history can be recreated. It includes the location of each commit

and each branch in the directed graph.

• The second component in the data structure is a topological sorting of the

commits in the directed graph representation of the Git repository. A topological

57

∗ 7511 c47dbbfa283a75e6984c48d7d2ca214c924f
∗ cdb10a34c2302dc5998a7a651e8dc99daf04eab9
| \
| ∗ 936 eb0bda4388244a4fc9c78529368abd40eac8c
| | \
∗ | | d f7582f707c336b5dc75632a0568eedc814365f f
∗ | | 0223062 ccdf2d51e1ce2b9c97b37ae2a67949fa6
| | ∗ cdcacd4e2391fa8a413436347466386e758fc7 f0
| ∗ | 55 a693f7269ef830478a914383dfb10dd2e48d2f
| | /
| ∗ fb25b61e6620e6b2f f6dac823eddc47000f743 f6
∗ | 5410639 d757426de5ad56d8fecd33ab664bc761d
| \ \
| ∗ | 9 e57a7205c9caab78c28e5c8808ab4b0d3cb3456
| | ∗ 09 de305b49ea7e1c2759be23b8b752faa934047f
∗ | | 3 e4ad808cae13234d45167e129b205767f1b2ec1
| ∗ | 7111485 a5fa2e627e04789bbfbe26aaf0220c5bd
| | /
∗ | 9 c222e6c981fc5a267f689092e891a733273168d
| /
∗ 5760 e50293fca30ccfb99ca16b859a94da6b3cc0

Figure 4.6: Example Output of git log --graph

sorting is a sorting of elements in a directed graph such that no element in the

sorted list appears before any of its parents [39].

This information is used in later steps to both decide which commits will be in the

final visualization and to decide how to visually represent the directed graph.

4.4.3.4 Obtaining the Sorted List of Commits to Send to the Data

Processor

Finally, the Data Collector produces a final list of commits to send to the Data

Processor. This is step #4 in Figure 4.4. First, it filters the data by selecting all

commits that appear in the topological sorting in-between the input starting commit

58

and ending commit. This gets a sublist of all commits that appear in the directed

graph representation of the repository that are sandwiched between the two input

commits.

As discussed in Section 4.4.2, we take specific commits as input instead of dates

because commits frequently appear in the repository out of date order. For example,

a commit timestamped October 9, 2009 might appear before a commit timestamped

October 7, 2009, even though the former commit was added to the repository first. As

a result, taking in two specific commits as input is much less ambiguous than taking a

date range as input.

Next, the selected commits are sorted so that they are in the same order they

appear in the topological sorting. This will make it easier to produce the visual

representation of the directed graph later.

Finally, this sublist, the information about the visual representation of the reposi-

tory, and the topological sorting are then sent to the Data Processor.

4.4.4 The Data Processor

The Data Processor is split into two main steps. The first prepares data for sonification,

and the second prepares data for visualization.

4.4.4.1 Processing Sonification Data

Ultimately, each developer will be assigned an earcon based on how many commits they

made relative to the other developers in the same way they were in the GitSonifier

sonification. The most prolific developer will be assigned one earcon, the second

developer will be assigned the next earcon, and so forth.

In order to prepare for assigning earcons to the correct developers, the Data

59

Processor produces a list of commit authors that is sorted in the order of how many

commits each commit author made in descending order. This is step #5 in Figure 4.4.

4.4.4.2 Processing Visualization Data

Processing the data for visualization is split into two main steps: coloring branches

and adding day separators.

Coloring Branches Each branch is assigned a different color so that when they are

ultimately drawn in the visualization, they are easy to differentiate. This is performed

in step #6 in Figure 4.4.

The colors are selected by iterating over each of the branches present at each

commit. In each iteration, if the branch existed in the previous commit, it keeps its

existing color. If the branch did not exist, then it is assigned a new color.

Preparing the Data Structure for Visualization. In the next step, step # 7 in

Figure 4.4, the Data Processor adds day separators to the directed graph representation

of the Git repository. Day separators indicate when a commit’s timestamp is on a

different day than its parent.

While GitVS represents day separators with sound, GitVS shows day separators

both visually and sonically.

4.4.5 The Displayer

4.4.5.1 Design of the Displayer

The Displayer is implemented using the game loop pattern, a design pattern most

typically found in the programming for video games and computer art projects. This

pattern is useful when a GUI must update quickly in response to user input.

60

In the pattern, there is a main loop that is called once every frame when the

computer updates what is displayed to the screen. First, classes that represent the

entities that can be drawn to the screen are updated, allowing them to change state

each frame automatically (step #10 in Figure 4.4). Then, the loop reads any input the

user may be providing, such as pressing keyboard buttons or dragging the mouse, and

performs more changes to the entities that are drawn to the screen accordingly (step

#11). Finally, a draw function renders everything that will be shown on the computer

screen based on the states of the entities in the previous steps (step #12) [40,41].

For the Displayer component in GitVS, we implemented the game loop pattern using

Processing [42], a Java library for working with sound and visuals programmatically.

The main loop reads user input in order to allow the user to explore the information

is displayed by the visualization and sonification. Then, all of the commits, their

timestamps, and the branching and merging patterns are represented by a list of

rendering objects. Depending on the user’s input, the main loop will select the

rendering objects that should be visible on the user’s screen, then draw those.

4.4.5.2 Final Processing Steps

Once the Displayer component receives the data from the Data Processor, it performs

some final processing before the first frame of the visualization in drawn.

First, it opens all of the sound files representing the developer and conflict earcons

so that the earcons can be easily played later. This is step #8 in Figure 4.4.

After that, it creates all of the rendering objects that will be used to represent

the data visually. Using the data produced by the Data Processor, the Displayer

determines where each commit and branch line should be located in the visualization

as well as what properties, such as their size or color, each commit and branch line

should have. The Displayer also creates rendering objects representing the commits’

61

timestamps, the sonification cursor, and buttons used to control the sonification. This

is all performed in step #9 in Figure 4.4.

4.4.5.3 Representing Commits Visually

The commit, branch line, and timestamp rendering objects produced in the previous

step are used to show the visualization shown in Figure 4.1.

The user can use the arrow keys on the keyboard to move the screen up and down

and side to side, thereby showing different portions of the graph visualization. They

can also use the mouse wheel to zoom in and out.

4.4.5.4 Showing Details about Individual Commits Visually

When the user clicks and drags over one or more commits, a second window appears

displaying the screen shown in Figure 4.2. This window works similarly to the main

window: the table and all of the information contained within it is represented by a

set of rendering objects that are created when the window first appears.

4.4.5.5 Developer and Conflict Earcons

The sonification cursor shown in Figure 4.3 moves up and down when the user clicks

on the left and right triangle buttons, respectively. Whenever the sonification cursor

touches a commit circle, the Displayer plays the commit’s author’s developer earcon.

The Displayer keeps track of a mapping between authors and the developer earcons

that correspond to them. When a commit is touched by the sonification cursor, the

Displayer looks up this map to determine which developer earcon to play. Similarly,

the Displayer keeps track of a map of the number of simultaneous conflicts to the

different conflict earcons and selects which conflict drums to play accordingly.

62

4.5 Planned User Evaluation

In order to determine whether the GitVS tool is truly helpful, we are conducting a

user study similar to the study performed for GitSonifier. This study compares how

effectively GitVS helps participants compared to a variant of GitVS without sound

and to the GitHub network view [7], a state of the practice Git history visualizer.

The study was underway as of when this thesis was submitted.

We are asking the following research questions:

• RQ1: Can participants understand GitVS more correctly than existing tools?

• RQ2: Can participants use GitVS more quickly than existing tools?

• RQ3: Does sound help participants understand the data in GitVS?

• RQ4: How does the use of GitVS affect participants’ perceptions of the Git repos-

itories they analyze? How do these perceptions compare to when participants

use other tools and GitVS without sound?

• RQ5: What are the participants’ evaluation of GitVS compared to other tools

and GitVS without sound?

The experiment uses a between-groups design. There are three groups. One group

completes the experiment using GitVS, the second group completes the experiment

using a version of GitVS without sound, and the third group completes the experiment

using a tool on GitHub, the network view, a state of the practice website for working

with open-source software projects [7].

For the group that uses GitVS without sound, we created a modified implementation

of GitVS with the following changes:

63

• None of the commits make any sounds, and the sonification cursor has been

removed.

• In the main view, commits that were made while at least one conflict was present

are highlighted with a red outline. Figure 4.7 shows an example.

• When commits are selected, the table that appears has an additional column

that shows the exact number of conflicts that were present during each commit.

Figure 4.8 shows an example.

In order to see who made each commit, participants who use GitVS without sound

can still look up committers’ names in the commit details view.

The user study has four parts:

1. Completing training using the assigned tool.

2. Answering questions using the assigned tool.

3. Filling out a questionnaire about the assigned tool (post study).

4. An oral exit interview about the assigned tool (post study).

4.5.1 Participant Demographics

We are recruiting undergraduate and graduate computer science students for our

study. Only students with experience with version control are able to participate in

the study. We ask each participant how many years of experience they have with

version control and music. Afterwards, we will see whether there are any correlations

between participants’ experience levels and the results we obtain in the user study.

We hope to recruit at least 15 participants.

64

Figure 4.7: Screenshot of the View of Commits in GitVS Without Sound

4.5.2 Using the GitVS Tool

The main user study has two parts:

1. Training on the GitVS tool

2. A set of questions to test the effectiveness of GitVS

Immediately before beginning the study, each participant is assigned a tool at

random. The first 10 participants are split randomly between using GitVS with sound

65

Figure 4.8: Screenshot of the View of Selected Commits’ Details in GitVS Without
Sound

and the GitHub network view. The next 5 participants use GitVS without sound.

Any additional participants are assigned treatments randomly. We are using this

distribution because we are not sure how many participants we will be able to recruit

before the end of the study, and we believe the research questions about comparing

GitVS to existing tools are our top priorities.

4.5.2.1 Training Session

During the training session, participants are shown a video that demonstrates the

use of the assigned tool. This example uses version control history from a dummy

software project created for the demo.

Once the participants have been trained to use the tool, they are asked several

questions about the data portrayed by the tool. The participant is allowed to move to

the experiment tasks only after they have correctly answered the training questions.

When answering the questions, they can look over the training video and use the

assigned tool however they wish. No data is collected during this phase.

66

4.5.2.2 Experiment Tasks

Based on the use case we are using to design GitVS, participants take on the role of

the manager of a software development team. In the scenario, their team currently

uses Git with the following formal processes for coordinating version control:

1. Whenever a new feature is started, the developers can choose to create a new

branch for that feature, but do not have to.

2. Before merging a completed feature, branches will be code-reviewed.

They are considering switching to all of the following processes:

1. Whenever a new feature is started, the developers must create a new branch for

that feature.

2. Before merging a completed feature, branches will be code-reviewed.

3. All commits will be sent to a continuous integration sever, which will automati-

cally build and test each commit.

Notice that in the new list of processes, process #1 is stricter, and process #3 has

been added.

For process #3, many software development teams use continuous integration

servers. A continuous integration server automatically pulls, builds, and tests each

commit made to a repository. If there are any compile errors or failing tests, the server

will notify the team members that there was a problem. Vasilescu et. al. found that

open-source development teams which use continuous integration merge more pull

requests per month from core developers and reject fewer pull requests per month

from outside contributors. In addition, core developers find more bugs on teams using

continuous integration, meaning that continuous integration makes it easier to discover

and proactively resolve faults [12]. Continuous integration doesn’t have a direct effect

67

on the patterns a team uses to create commits, but as Vasilescu et. al. have shown, it

has measurable indirect effects.

The manager wants to understand how these three new processes will affect their

team, so they have found another project that has a similar amount of activity to

theirs, but follows all of the processes they want to use.

In the experiment, the participant is shown, one at a time, the version control

history for both the manager’s current project and the project that already follows the

new processes. Two weeks’ worth of development history are shown to the participants

for each project. The order the two repositories are shown to participants is random

but counterbalanced.

In addition, participants are given lists of core developers and outside developers

for each repository. Participants who use GitVS are able to hear the earcons that

correspond to outside developers.

Although the identities of the projects are not shown to the participants, both

of the projects’ data is from real-world open-source repositories. Voldemort is a

distributed storage system [37], and Storm is a distributed computation system similar

to Hadoop [38]. Voldemort has over 4,100 commits and received its first commit on

April 17, 2011 [37], and Storm has over 6,500 commits and received its first commit

on September 15, 2011 [38], so the two projects have received a similar amount

of activity and are about the same age. Voldemort uses the formal methodologies

that the participant’s hypothetical repository uses [43], while Storm uses the formal

methodologies that the repository the participant is comparing against uses [44, 45].

Each participant is asked a series of questions with objective answers, listed in

Table 4.1, for each of the two projects, one project at a time. Then, they are asked

a series of subjective questions, listed in Table 4.2, asking them to compare the two

68

Table 4.1: Objective questions that participants answer for each repository.

Question
How many commits were made in-between [three of the days portrayed by the tool]?
On average, what is the number of files modified per commit in-between [three of the
days portrayed by the tool]?
How many conflicts were present in-between [the first and last date portrayed by the
tool]?
Look at the branches which were merged directly into the master branch. In days, what
is the average number of days these branches existed?
What is the average number of days each branch with at least one commit from an
outsider developer existed before being merged?

Table 4.2: Subjective questions that ask participants to compare the repositories.

Question
Based on the previous questions, which process would you recommend if your priority
is to have a large number of small commits?
Based on the previous questions, which process would you recommend if your priority
is to minimize conflicts?
Based on the previous questions, which process would you recommend if your priority
is to accept pull requests quickly?
Based on the previous questions, which process would you recommend if your priority
is to quickly merge commits from outside developers?

projects. For the first questions with objective answers, we also calculate how long it

takes participants to answer each question.

When necessary, we answer questions the participants ask about how to correctly

interpret the questions. Furthermore, if a participant takes longer than 5 minutes to

answer one of the questions with objectively correct answers, we let them skip the

question, but they do not have to do so.

Although participants are not told this information, each of the comparison

questions is based off of what the literature says about how methodologies will affect

teams’ efficiencies. The question about having a large number of small commits

is based off best practices in industry which recommend developers make commits

69

frequently. This makes it easier for developers to quickly share changes with their

teammates [14,15]. The question about minimizing conflicts comes from the literature

on how merge conflicts adversely affect teams, which is covered in Section 2.3. The

remaining two questions about accepting pull requests and accepting contributions

from outside developers comes from research by Vasilescu et. al. that found that

open-source projects that use continuous integration take less time to accept GitHub

pull requests and accept contributions from outside developers more quickly [12].

Each of the objective questions corresponds to one of the comparison questions.

When participants answer the comparison questions, they are able to review their

answers to the objective questions. This lets them use their answers as evidence to

support which process they select for each question.

Appendix C shows screenshots of the website we are using to run the experiment.

It shows the precise wording and format of the training and questions we showed to

participants.

4.5.3 Post Study: Filling out a questionnaire about our

GitVS tool

After the experiment study, participants fill out a survey about how the participant

felt using their assigned tool. 10 of the questions, shown in Table 4.3, are Likert scale

questions on a scale of 1 to 5. For each of the three questions that end, “(Why or

why not?)” the participant is also asked to write a short answer explaining why they

selected the Likert rating they did for that question.

2 of the questions are strictly open-ended. The open ended questions are:

• Would you recommend this tool to others?

• In your opinion, how can we improve the tool further?

70

Table 4.3: Post-study questionnaire questions.

Question
I could tell where commits were located.
I could identify who made each commit.
I could tell where conflicts were located.
I could tell when each commit was made.
I could see which files were changed by each commit.
I could tell where branches were located.
I could understand the details of the development data. (Why or why not?)
I could understand overall patterns in the development data. (Why or why not?)
I could see relationships between different pieces of development data. (Why or why not?)
I would be interested in using this tool for my own team.

The first open-ended question is similar to the Likert-scale question asking, “I would

be interested in using this tool for my own team.” There are two main differences

between the two questions. First, “Would you recommend this tool to others?” asks

for a short written response, while, “I would be interested in using this tool for my own

team,” asks only for a Likert rating. Second, it’s possible that a participant enjoyed

using the tool they were assigned themselves but doubt other people would enjoy it.

The phrasing of the question, “Would you recommend this tool to others?” allows us

to learn whether that’s the case.

4.5.4 Post Study: Completing an oral exit interview

Finally, we conduct and audio record unstructured oral exit interviews. There is no

script for these interviews. We ask each participant about any specific activity where

the participant apparently had difficulty or otherwise performed in a way that was

notable or unusual.

71

4.6 Conclusion

GitVS combines the sonification from GitSonifier with an interactive visualization.

This visualization allows GitVS to overcome the disadvantages of sonification, including

the fact that a lone sonification must be listened to completely to get a holistic view

of the data and that navigating a sonification by itself is difficult. Nonetheless, GitVS

keeps sonification’s advantages of being a good fit for multidimensional and time-based

data. In addition, the combination of visualization and sonification allows GitVS to

display more dimensions of data than other tools without becoming overwhelming.

We have designed a user study that will be conducted to evaluate GitVS. This

study will demonstrate whether GitVS is more useful than existing tools.

72

Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, I introduced GitSonifier, a technique that sonifies version control

history and historical conflict data. Then, I performed a user study which shows

the GitSonifier sonification is easy to understand. Finally, I created GitVS, which

combines the sonification from GitSonifier with a visualization in order to produce a

technique that will be helpful to real developers.

Throughout all three tools, I used earcon sonification, a sonification technique that

represents data using sound. In GitSonifier and GitVS, each developer is assigned a

different earcon. In addition, the number of conflicts active in a project is represented

using drum earcons. By combining the developer earcons and conflict drums, I was

able to create a sonification that showed multiple pieces of information about each

commit in a repository while remaining easy to understand.

In addition, by sonifying historical conflict data, GitSonifier and GitVS are the first

techniques to help developers understand when conflicts occurred in their projects’

histories.

73

5.2 Future Work

5.2.1 User Study for GitVS

As discussed in the chapter on GitVS, I have designed a user study for GitVS. I will

carry out the experiment as described in Section 4.5.

5.2.2 Sonifying Additional Layers of Information

In GitSonifier and GitVS, I used sonification to represent when historical conflicts

were introduced and resolved. In theory, we can easily design earcons for other layers

of information. For example, we could use sonification to indicate when bugs were

discovered and resolved in history. We could also use sonification to indicate which

commits correspond to major releases. In the future, we can experiment with designing

such layers.

5.2.3 Sonification Design Ideas

We had several ideas for how to design our sonification, and we will implement these

designs, then run user studies to compare them to the sonification design we used

in GitSonifier and GitVS. One idea is to create a conflict resolution earcon in order

to make it easier to interpret when conflicts end. Since conflicts are represented by

drums, the conflict resolution earcon can be a long cymbal crash, a sound that is

typically used in music to signal when drums are finished playing.

Furthermore, we can write each developer earcon in a different key in order to make

the developer earcons easier to distinguish. We can experiment both with changing

the tonal center, such as writing one earcon in the key of C major and another in

the key of G major, and with writing earcons in major and minor keys. This might

74

make the earcons easier to understand by making them even more different from each

other. However, it also might make them more difficult to understand by destroying

the musicality of the generated music. We will conduct experiments to determine

which is the case.

Another idea is to use hierarchical earcons. This is a sonification technique in

which different musical aspects of an earcon are mapped to different pieces of data. For

example, perhaps which instrument plays an earcon can be mapped to the developer

who made the commit, then the notes the earcon plays can indicate how many files

were modified in the commit. [19] In this way, we can use a single layer of music in a

sonification to portray more data at once.

5.2.4 Designing Tools for Additional Use Cases

In the chapters on GitSonifier and GitVS, I discussed two specific use cases for

sonification of version control. In the future, I will evaluate alternative use cases for

these techniques.

One use case is helping managers keep track of their teams’ performances. At the

beginning of each day or week, a manager could listen to a sonification portraying

performance metrics obtained from version control history. While listening to the

sonification, the manager could do other tasks, such as reading email. If any of the

data is unusual or potentially indicates problems, it could be designed in a way to grab

the manager’s attention, allowing them to temporarily stop what they’re working on,

listen to the sonification, and get more details about the situation. To my knowledge,

there is not much literature suggesting that this is an important use case, so this use

case was not our first priority even though I find it interesting.

Another use case is helping developers debug programs. Developers frequently use

75

version control history to help them diagnose bugs [3, 4, 5]. A sonification tool could

potentially help developers discover the commits that are relevant to their debugging

tasks more quickly. Unlike GitVS, which shows a large amount of data at once and

allows users to make their own interpretations of that data, a debugging tool would

focus on helping developers quickly decide which pieces of information are relevant to

their search and allowing them to process just that information quickly.

76

Bibliography

[1] M. Ogawa and K.-L. Ma, “code_swarm: A design study in organic software

visualization,” Visualization and Computer Graphics, IEEE Transactions on,

vol. 15, no. 6, pp. 1097–1104, Nov 2009.

[2] “Git - about version control,” https://git-scm.com/book/en/v2/

Getting-Started-About-Version-Control, accessed: 2016-03-28.

[3] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software de-

velopment teams,” in Software Engineering, 2007. ICSE 2007. 29th International

Conference on, May 2007, pp. 344–353.

[4] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history under the

lens: a study on why and how developers examine it,” in Software Maintenance

and Evolution (ICSME), 2015 IEEE International Conference on. IEEE, 2015,

pp. 1–10.

[5] D. L. Atkins, System Configuration Management: ECOOP’98 SCM-8

Symposium Brussels, Belgium, July 20–21, 1998 Proceedings. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1998, ch. Version sensitive editing:

Change history as a programming tool, pp. 146–157. [Online]. Available:

http://dx.doi.org/10.1007/BFb0053886

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://dx.doi.org/10.1007/BFb0053886

77

[6] M. L. Guimarães and A. R. Silva, “Improving early detection of software merge

conflicts,” in Proceedings of the 34th International Conference on Software Engi-

neering. IEEE Press, 2012, pp. 342–352.

[7] “Say hello to the network graph visualizer,” https://github.com/blog/

39-say-hello-to-the-network-graph-visualizer, accessed: 2016-03-16.

[8] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of collabo-

ration conflicts,” in Proceedings of the 19th ACM SIGSOFT symposium and the

13th European conference on Foundations of software engineering. ACM, 2011,

pp. 168–178.

[9] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantír: Early detection of

development conflicts arising from parallel code changes,” Software Engineering,

IEEE Transactions on, vol. 38, no. 4, pp. 889–908, 2012.

[10] K. North, “How version control conflicts affect the software development process,”

University of Nebraska–Lincoln, Tech. Rep., May 2015.

[11] “Git - documentation,” https://git-scm.com/doc, accessed: 2016-03-15.

[12] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality

and productivity outcomes relating to continuous integration in github,” in

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp.

805–816. [Online]. Available: http://doi.acm.org/10.1145/2786805.2786850

[13] “Git workflows and tutorials | atlassian git tutorial,” https://www.atlassian.com/

git/tutorials/comparing-workflows/gitflow-workflow, accessed: 2016-03-28.

https://github.com/blog/39-say-hello-to-the-network-graph-visualizer
https://github.com/blog/39-say-hello-to-the-network-graph-visualizer
https://git-scm.com/doc
http://doi.acm.org/10.1145/2786805.2786850
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

78

[14] “Check in early, check in often,” https://blog.codinghorror.com/

check-in-early-check-in-often/, accessed: 2016-03-27.

[15] “Version control best practices,” https://www.git-tower.com/learn/git/ebook/

command-line/appendix/best-practices, accessed: 2016-03-27.

[16] “Understanding the git workflow,” https://sandofsky.com/blog/git-workflow.html,

accessed: 2016-03-28.

[17] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization through op-

timized task scheduling,” in Software Engineering (ICSE), 2013 35th International

Conference on, May 2013, pp. 732–741.

[18] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of collabo-

ration conflicts,” in Proceedings of the 19th ACM SIGSOFT symposium and the

13th European conference on Foundations of software engineering. ACM, 2011,

pp. 168–178.

[19] T. Hermann, A. Hunt, and J. G. Neuhoff, The sonification handbook. Logos

Verlag Berlin, 2011.

[20] K. J. North, S. Bolan, A. Sarma, and M. B. Cohen, “Gitsonifier: Using

sound to portray developer conflict history,” in Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE

2015. New York, NY, USA: ACM, 2015, pp. 886–889. [Online]. Available:

http://doi.acm.org/10.1145/2786805.2803199

[21] “Git - git-show documentation,” https://git-scm.com/docs/git-show, accessed:

2016-03-25.

https://blog.codinghorror.com/check-in-early-check-in-often/
https://blog.codinghorror.com/check-in-early-check-in-often/
https://www.git-tower.com/learn/git/ebook/command-line/appendix/best-practices
https://www.git-tower.com/learn/git/ebook/command-line/appendix/best-practices
https://sandofsky.com/blog/git-workflow.html
http://doi.acm.org/10.1145/2786805.2803199
https://git-scm.com/docs/git-show

79

[22] M. M. Blattner, D. A. Sumikawa, and R. M. Greenberg, “Earcons and

icons: Their structure and common design principles,” HumanâĂŞComputer

Interaction, vol. 4, no. 1, pp. 11–44, 1989. [Online]. Available: http:

//www.tandfonline.com/doi/abs/10.1207/s15327051hci0401_1

[23] M. Schonbrun, Reading Music: A Step-By-Step Introduction To Understanding

Music Notation And Theory. Fall River Press, December 2012.

[24] S. Maturu and K. North, “Sonification of the etoc genetic algorithm process,”

University of Nebraska–Lincoln, Tech. Rep., December 2014.

[25] W. W. Gaver, “The SonicFinder: An interface that uses auditory icons,” HCI,

vol. 4, no. 1, pp. 67–94, Mar. 1989.

[26] N. Pickrel, N. Jahnke, J. Lloyd, and K. North, “Final report: Music++,” Univer-

sity of Nebraska–Lincoln, Tech. Rep., April 2014.

[27] S. Boccuzzo and H. C. Gall, “Cocoviz with ambient audio software exploration,”

in Proceedings of the 31st International Conference on Software Engineering, ser.

ICSE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 571–574.

[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070558

[28] S. Boccuzzo and H. Gall, “Software visualization with audio supported cogni-

tive glyphs,” in Software Maintenance, 2008. ICSM 2008. IEEE International

Conference on, Sept 2008, pp. 366–375.

[29] S. McIntosh, K. Legere, and A. Hassan, “Orchestrating change: An artistic

representation of software evolution,” in Software Maintenance, Reengineering

and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE

Conference on, Feb 2014, pp. 348–352.

http://www.tandfonline.com/doi/abs/10.1207/s15327051hci0401_1
http://www.tandfonline.com/doi/abs/10.1207/s15327051hci0401_1
http://dx.doi.org/10.1109/ICSE.2009.5070558

80

[30] K. Hussein, E. Tilevich, I. Bukvic, and S. Kim, “Sonification design guidelines to

enhance program comprehension,” in ICPC, May 2009, pp. 120–129.

[31] A. Stefik, K. Fitz, and R. Alexander, “Layered program auralization: Using music

to increase runtime program comprehension and debugging effectiveness,” pp.

89–93, 2006.

[32] C. Henthorne and E. Tilevich, “Sonifying performance data to facilitate tuning of

complex systems: Performance tuning: Music to my ears,” in OOPSLA, 2010, pp.

35–42.

[33] A. Stefik, K. Fitz, and R. T. Alexander, “Increasing fault detection effectiveness

using layered program auralization.” in Software engineering research and practice,

2006, pp. 959–965.

[34] P. Vickers and J. L. Alty, “Siren songs and swan songs: Debugging with music,”

Com. ACM, vol. 46, no. 7, Jul. 2003.

[35] “Jgit,” https://eclipse.org/jgit, accessed: 2014-12-14.

[36] “Beads,” http://www.beadsproject.net/, accessed: 2015-06-04.

[37] “voldemort/voldemort,” https://github.com/voldemort/voldemort, accessed:

2016-03-20.

[38] “apache/storm,” https://github.com/apache/storm, accessed: 2016-03-20.

[39] M. C. Golumbic, Algorithmic graph theory and perfect graphs. Elsevier, 2004,

vol. 57.

[40] “Game loop,” http://gameprogrammingpatterns.com/game-loop.html, accessed:

2016-03-02.

https://eclipse.org/jgit
http://www.beadsproject.net/
https://github.com/voldemort/voldemort
https://github.com/apache/storm
http://gameprogrammingpatterns.com/game-loop.html

81

[41] “Anatomy of a video game,” https://developer.mozilla.org/en-US/docs/Games/

Anatomy, accessed: 2016-03-02.

[42] “Processing.org,” https://processing.org/, accessed: 2015-07-17.

[43] “Developer info - voldemort,” http://www.project-voldemort.com/voldemort/

developer.html, accessed: 2016-03-20.

[44] “Developer documentation,” https://github.com/apache/storm/blob/master/

DEVELOPER.md, accessed: 2016-03-20.

[45] “apache/storm - travis ci,” https://travis-ci.org/apache/storm, accessed: 2016-03-

20.

[46] “cobertura/cobertura,” https://github.com/cobertura/cobertura, accessed: 2016-

03-20.

[47] “Overview of the midi package,” https://docs.oracle.com/javase/tutorial/sound/

overview-MIDI.html, accessed: 2016-03-20.

https://developer.mozilla.org/en-US/docs/Games/Anatomy
https://developer.mozilla.org/en-US/docs/Games/Anatomy
https://processing.org/
http://www.project-voldemort.com/voldemort/developer.html
http://www.project-voldemort.com/voldemort/developer.html
https://github.com/apache/storm/blob/master/DEVELOPER.md
https://github.com/apache/storm/blob/master/DEVELOPER.md
https://travis-ci.org/apache/storm
https://github.com/cobertura/cobertura
https://docs.oracle.com/javase/tutorial/sound/overview-MIDI.html
https://docs.oracle.com/javase/tutorial/sound/overview-MIDI.html

82

Appendix A

Music++

Music++ is a technique that sonifies the execution paths of simple Java programs.

The tool has multiple earcons that correspond to different elements in a Java program,

and when each line of code in a sonified Java program’s execution path is reached, the

earcons for that line of code’s elements play simultaneously. Music++ can be used

to help teach programming by demonstrating to students how their computers “see”

their programs when the programs are run.

Music++ was an early proof-of-concept program for my research that demonstrated

sonification is a viable technique in software engineering. The idea of using earcons to

represent pieces of data in order to produce a song is a common theme in my research.

Music++ was a joint project with Dr. Myra Cohen, Dr. Anita Sarma, and my

classmates Nina Pickrel, Jacob Lloyd, and Natasha Jahnke. I worked on Music++ as

an undergraduate student.

This appendix chapter includes material from a class paper that Nina Pickrel,

Jacob Lloyd, Natasha Jahnke, and I worked on together [26].

83

A.1 Design

The purpose of Music++ was to explore whether sonification is a viable approach to

software engineering. In addition, the use case for Music++, teaching students how a

computer “understands” their Java programs, doesn’t require Music++ to implement

complex functionality that would be more appropriate for experienced users. As a

result, Music++ can only sonify relatively simple Java programs, but the sonification

design is robust.

A.1.1 Limitations

Music++ has several limitations on the input files it can process. This section explains

those limitations.

An input program can only contain one class with a main function and no other

functions. The contents of the main function will be sonified. The class cannot contain

any class or instance variables.

Music++ can only parse the following types of statements:

• Variable declarations

• Assignments to variables with simple mathematical expressions on the right-hand

side

• If, else, and switch statements

• For, while, and do/while loops

Music++ will only work with variables that have one of seven built-in types. Table

A.1 lists the built-in types that Music++ can parse.

When parsing the right-hand side of an assignment statement, the right-hand side

is limited to performing one operation on two operands. For example, adding two

84

Table A.1: List of the types of variables that Music++ can parse.

Type
int
double
String
byte
float
char
boolean

Table A.2: List of the arithmetic operators that Music++ can parse.

Arithmetic operation Token in Java
Addition and String Concatenation +
Subtraction -
Multiplication *
Division /

variables is fine, but adding three variables would not be parsed correctly. In addition,

Music++ can only parse four different operations, which are listed in Table A.2.

Music++ can parse if, else, switch, for, while, and do/while statements and

loops. A detailed list of which of these statements Music++ can parse and which

subexpressions Music++ extracts from these statements is shown in Table A.3.

Music++ will only parse conditional and loop statements nested one level deep.

For example, Music++ can parse an if statement, but it will not correctly parse an if

statement nested inside of a for statement.

Even though these limitations are quite restrictive, they are still generous enough

to be helpful in an introductory programming class. In addition, these limitations

made it possible to create a well-designed sonification early in my research.

85

Table A.3: List of the multiline statements Music++ can parse and the pieces of code
related to those statements that Music++ sonifies.

Statement Related Pieces of Code Description
switch Switch variable i.e., x in the statement switch(x)

Switch body The switch statement’s case statements and
the case statements’ bodies.

case Case condition The value to which the switch variable is
compared.

Case body
The lines of code that will be executed if
the case condition is equal to the switch
variable.

default Default body
The lines of code that will be executed if all
of the corresponding case conditions are
not equal to the switch variable.

do/while Do/while condition
The boolean expression that is evaluated at
the end of each loop iteration to determine
whether to stay in the loop.

Do/while body The body of the loop.

if If condition The boolean expression that determines
whether to enter the if body.

If body The lines of code that are executed if the if
condition is true.

else if Else if condition The boolean expression that determines
whether to enter the else if body.

Else if body The lines of code that will be executed if
the else if condition is true.

else Else body The lines of code that are executed if all of
the related if and else if conditions are false.

for For variable expression The portion of the for loop that defines the
counter variables.

For condition
The boolean expression that is evaluated at
the start of each loop iteration to
determine whether to stay in the loop.

For incrementation
The portion of the for loop that is executed
at the end of each iteration to increment
the loop variables.

For body The body of the loop.

while While condition
The boolean expression that is evaluated at
the start of each loop iteration to
determine whether to stay in the loop.

While body The body of the loop.

86

A.1.2 Sonification Design

Music++ uses an earcon-based sonification. Each program element listed in Table

A.1, Table A.2, and Table A.3 is assigned a different earcon. When sonifying the

execution path, as each line of code in the program is encountered, all of the earcons

corresponding to the elements in the line of code play simultaneously. For example,

a line of code that declares a String variable would play the String earcon, but no

other sounds. A line of code that added two integers, then assigned the result to an

int variable would play the int earcon and the addition earcon simultaneously.

When the execution path goes inside the body of a conditional or loop statement,

the sonification continuously plays an earcon to indicate that the execution path is

inside of the body. For example, to sonify a line of code that adds two integers, assigns

the result to a variable, and occurs inside of an if statement, the sonification would

play the earcons for addition, the int type, and the if statement body simultaneously.

In addition to sonifying each line of code, Music++ also sonifies the conditions

in conditional and loop statements. For example, when sonifying an if statement,

Music++ will first sonify the statement’s condition. Then, if the statement evaluated

to true, the sonification will sonify each of the elements in the if statement body. Table

A.3 shows precisely which substatements will be sonified for each of the conditional

and loop statements.

Each earcon is a measure long because untrained listeners can intuitively tell when

a measure begins and ends [23]. All of the earcons were written in the same key so

that when they are combined with each other, they still sound musically pleasing.

The earcons are written using a wide variety of instruments, pitches, and rhythms

in order to make them easier to tell apart. However, earcons related to the same

conditional or loop statement are written using the same instrument and similar

87

pitches. For example, both the while condition and while body earcons are written

using a trombone. This makes it easy to identify which earcons are related to the

same while loop when multiple earcons play at the same time inside of the while loop’s

body.

In addition, to make them more distinct, the arithmetic operator earcons are all

written using drum sounds instead of pitched instruments. Each of the four arithmetic

earcons are written with a different drum that plays one loud, easily noticeable note

on the same rhythm. As a result, it is easy to identify an arithmetic operator earcon.

A.2 Implementation

Music++ receives the end user’s Java code as input. This code is sent to Cobertura [46],

a code coverage tool for Java, which finds the execution path of the program. A

hand-written Java parser then uses both the original source code and the coverage

report produced by Cobertura to discover the program execution path. The execution

path is then given to a music generator, which produces the final sonification as a

MIDI file. Finally, the sonification MIDI file is played to the user or saved.

A.2.1 Cobertura

Music++ has a CoberCaller class that interacts with Cobertura. First, the Cober-

Caller class compiles the input program using version 1.6 of Java. (This is because

the version of Cobertura that was used to create Music++ isn’t compatible with Java

1.7 or 1.8.)

Next, the compiled class file is instrumented for Cobertura. Then, the program

calls Cobertura on the instrumented file. Cobertura runs the program once and

88

collects code coverage information. The CoberCaller class then calls Cobertura’s

report system to produce a coverage report.

A.2.2 Parser

Music++ has a hand-written Java parser that can parse the subset of Java specified

in Section A.1.1 above. The parser uses the original input source file and the coverage

report produced Cobertura as inputs and uses these to create a data structure

representing the input program’s execution path.

The data structure is a tree of “node” objects, where each node represents a line

of code in the program. Performing a pre-order traversal of the tree will recover the

original execution path. Leaves are usually “data structure” nodes, which represent

lines of code that declare or assign values to variables. Some leaf nodes and all non-leaf

nodes are “scope” nodes, which represent lines of code like if statements and for loops

that always have a body of one or more statements that are conditionally executed or

looped. If a scope node corresponds to a loop, the scope node is also marked with the

number of times that the loop was executed.

Data structure nodes correspond to the data types in Table A.1, and scope nodes

always correspond to the statements in Table A.3. If an arithmetic operation is

performed on any particular node, the node also records that the arithmetic operation

was performed on the corresponding line of code. The arithmetic operations that can

be recorded are listed in Table A.2.

The source file is parsed line by line and a corresponding node is created for each

line. Lines of code that assign variables are parsed as data structure nodes, and the

type assigned to each node is the type of the variable on the left-hand side of the

89

assignment. Lines of code corresponding to loops and conditional statements are

parsed as scope nodes.

A.2.3 Music Generator

The music generator was implemented using two different sub-components. The

MidiUtilities class uses the built-in Java MIDI library [47] to combine MIDI files

together. The MusicGenerator class takes the abstract representation that Cobertura

and the parser created and combines the correct earcons to create the final MIDI

project.

The MidiUtilities class includes functionality for opening MIDI files, copying

MIDI data from one object to another, and saving MIDI files.

The MusicGenerator walks the execution path tree in pre-order traversal. At each

node, including non-leaf nodes, it generates a measure of music for the line of code

corresponding to the node. In addition, by walking the execution path as a tree, the

MusicGenerator keeps track of each node’s ancestors in the tree, allowing it to create

layered music for code inside of loops and conditional statements by playing the loops

and conditionals’ body earcons at the same time as playing the earcons for the lines

of code inside the bodies.

After the MusicGenerator creates a MIDI song to represent the program, it can

save it as a file or play it immediately.

A.3 Related Work

Several other researchers have created tools that sonify the execution paths of programs.

Unfortunately, this means that Music++ is not a completely novel tool.

90

A.3.1 Siren Songs and Swan Songs

In their paper Siren Songs and Swan Songs: Debugging with Music, Vickers and

Alty created a tool that sonifies Pascal programs. Their technique, much like that of

Music++, sonifies when IF and WHILE statements have their conditions evaluated and

their bodies executed. They play earcons written in major keys, which sound generally

happy, when a condition evaluates to true and earcons in minor keys, which generally

sound sad, when a condition evaluates to false. In addition, they play low-pitched,

drawn-out droning notes to indicate when the sonified programs are inside of loop and

conditional bodies. The drones start when entering a loop or conditional body, become

layered with additional droning notes when entering nested loops and conditionals,

and stop playing when the bodies are exited [34].

A.3.2 Increasing Fault Detection Effectiveness Using Layered

Program Auralization

Stefik, Fitz, and Alexander created a layered sonification of program execution in

their papers Increasing Fault Detection Effectiveness Using Layered Program Auraliza-

tion and Layered Program Auralization: Using Music to Increase Runtime Program

Comprehension and Debugging Effectiveness. Each layer portrays a different aspect

of the executed program and controls a different aspect of the generated sonification.

For example, to indicate when loop and conditional statements are entered and exited,

a cadential or control flow layer changes the chord progression that the sonification

uses. The chord progressions are based on cadences, or well-known chord progressions

that have a strong sense of finality when they are finished. The cadences start when

entering a loop or conditional statement body and resolve, reaching their sense of

91

finality, when the loop or conditional bodies exit. For nested loop and conditional

statements, the sonification changes key.

Another layer, the orchestration or program state layer, changes the number of

instruments in the sonification based on how much memory the program is using. In

their paper, Stefik, Fitz, and Alexander gave the example of keeping track of the number

of elements in an important linked list. As elements are added, more instruments join

the sonification, and as elements are removed from the list, instruments drop out. A

third layer, the lyrics or semantic data layer, produces lyrics for singing pieces of data

or control flow statements of interest [31,33].

In Layered Program Auralization: Using Music to Increase Runtime Program

Comprehension and Debugging Effectiveness, Stefik, Fitz, and Alexander conducted a

user study that showed the control flow and state layers were helpful, but the semantic

layer’s lyrics were confusing [31].

A.4 Future Work

Although I did not work on this addition, my classmate Shane Bolan has modified

Music++ so that when the sonification plays, the source code being sonified is shown

on the computer screen. As each line of code is sonified, it is highlighted on the screen,

making it even easier to understand the sonification and the program’s execution path.

In the future, the handwritten parser that Music++ uses will be replaced with

a robust third-party parser. This will allow the limitations on the programs that

Music++ can parse to be lifted. At the same time, the sonification will be extended so

that more Java programs can be sonified. Ultimately, the goal is to sonify all possible

Java programs.

92

A.5 Conclusions

With Music++, we created a technique that uses earcon sonification to produce a song

that represents the execution path of a simple Java program. Music++ introduced

several ideas that I use in the rest of my research projects. I consistently use earcon

sonification to represent pieces of data as well the idea of using a measure of music

for each earcon to separate earcons. In addition, I continue use the idea of layering

earcons to provide multiple pieces of data simultaneously.

While Music++ isn’t a novel tool, creating this tool set the course for the remainder

of my research.

93

Appendix B

GitSonifier Experiment Materials

Figures B.1 through B.15 show the materials used in the GitSonifier experiment. The

GitSonifier experiment is discussed in Chapter 3.

Thank you for volunteering to participate in our research experiment.

As part of the experiment, you will complete three tasks:

1. You will learn to use a new tool we've developed, the Git Sonifier. The tool
portrays data from an opensource's version control history using sound.

2. You will use the Git Sonifier to answer some questions.
3. Finally, we will have you fill out a questionnaire asking what you thought of the
Git Sonifier, then verbally ask you some questions about it.

When you are ready, you can start learning about the Git Sonifier.

Figure B.1: The first page shown to participants in the GitVS experiment.

94

Examples
Developer Sounds
In our tool, each developer in a software project is represented by a different sound.

Sarah is represented by a harp:

Devin is represented by a choir:

Andrew is represented by a trombone:

Representing Commits
These sounds are combined into songs that represent programming projects'
version control histories. When the sounds are combined, each measure of music
represents a single version control commit.

For example, listen to this song:

As you listen to it, you will hear three measures of music:

1. The first measure of music is Sarah's harp, so Sarah made the first commit
in the project.

2. Devin's choir represents the second commit.
3. Andrew's trombone represents the third commit.

Here is another example:

1. Devin's choir plays twice, indicating that she made the first two commits.
2. Then, Andrew's trombone plays twice, so he made the next two commits.

0:02

0:02

0:02

0:07

0:09

Figure B.2: Page 1 of training page in the GitSonifier experiment.

95

Day Separators
Multiple commits can be made in a single day. Day separators indicate when one
day ends and another begins.

A day separator sounds like this:

For example:

Andrew makes two commits.
The day separator indicates that the day is over.
Next, Andrew makes a third commit on the next day.

Conflicts
Conflict drums indicate when version control conflicts are introduced and
resolved. For example:

Andrew and Sarah make commits.
Devin makes a third commit that introduces a conflict, as indicated by the
drums.
Devin and Sarah make the next two commits. Neither resolves the conflict.
Devin makes one more commit. The conflict drums stop on this commit,
indicating that the conflict was resolved.

Note that when the drums start playing, the commit that resolved the conflict is the
one after the drums stop.

In some cases, a new conflict will be introduced before an old one is resolved. In this
case, the conflict drums will become louder. For example:

0:03

0:09

0:14

Figure B.3: Page 2 of training page in the GitSonifier experiment.

96

Andrew and Devin make commits.
Devin makes a second commit that introduces a conflict.
Sarah makes a commit.
Andrew makes another commit. This one introduces a second conflict, so
the conflict drums become louder.
Andrew makes two more commits.
Sarah makes a commit that resolves a conflict. There is one unresolved
conflict left, so the conflict drums become quieter.
Devin makes two more commits. The second one resolves the remaining
conflict.

RealWorld Example
The following sonification represents some realworld data obtained from sonifying
part of an opensource project's version control history:

To make sure you understand the training, please answer the following questions:

Which developer made the first commit in this sonification?

Sarah
Devin
Andrew

How many conflicts are there in this sonification?

1
2
3 or more
There are no conflicts in the sonification.

If there is at least one conflict in the sonificaton, who introduced the first conflict?

Sarah
Devin
Andrew
There are no conflicts in the sonification.

If there is at least one conflict in the sonificaton, who resolved the final conflict?

Sarah
Devin

0:24

0:26

Figure B.4: Page 3 of training page in the GitSonifier experiment.

97

Andrew
There are no conflicts in the sonification.

How many days altogether are portrayed in this sonification, counting the first and
last days?

1
2
3 or more

Finish

Figure B.5: Page 4 of training page in the GitSonifier experiment.

98

Instructions
We will now show you ten songs. They are all similar to the realworld song you
were asked questions about during the training. Some of them have been changed
slightly, changing the meaning of the data they portray. Some (or perhaps none) of
them are identical to the original sonfication.

We will ask you the following questions about each song:

How many developers were there in this song compared to the original?

1. There were more developers.
2. There were fewer developers.
3. There were the same number of develoeprs, but they were
different developers.

4. There were the exact same developers.

How many days passed in this song compared to the original?

1. More days passed.
2. Fewer days passed.
3. The same number of days passed.

How many conflicts were there in this song compared to the original?

1. There were more conflicts.
2. There were fewer conflicts.
3. There were the same number of conflicts.

In addition to showing you a new song and questions to answer, each page will also
include the original song and all of the sounds covered in the training for your
reference.

When you are ready, click here to begin the first question.

Figure B.6: The instructions in the GitSonifier experiment.

99

Question 1
Listen to the following song:

Please answer these questions:

How many developers were there in this song compared to the original?

1. There were more developers.
2. There were fewer developers.
3. There were the same number of develoeprs, but they were different
developers.

4. There were the exact same developers.

How many days passed in this song compared to the original?

1. More days passed.
2. Fewer days passed.
3. The same number of days passed.

How many conflicts were there in this song compared to the original?

1. There were more conflicts.
2. There were fewer conflicts.
3. There were the same number of conflicts.

Reference
For your reference, here are the original song and important sounds.

Original Song

Developers' Sounds
Sarah

Devin

0:26

0:26

0:02

0:02

Figure B.7: Page 1 of the questions page in the GitSonifier experiment.

100

Andrew

Day Separator Sound
Day Separator

Conflict Sounds
1 Conflict

2 Conflicts

3 Conflicts

0:02

0:03

0:02

0:02

0:02

Figure B.8: Page 2 of the questions page in the GitSonifier experiment.

Finished
You are now finished learning about and working with the Git Sonifier tool. We will
now ask you to complete a questionnaire on paper, then verbally ask you some
questions. When those are finished, the experiment will be complete.

Figure B.9: The page shown when the GitSonifier main task was completed.

101

Results for Questions
Overall Score: 6 out of 30

Question 1

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were fewer developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: The same number of days passed.

How many conflicts were there in this song compared to the original?
Incorrect
Your answer: There were more conflicts.
Correct answer: There were the same number of conflicts.

Question 2

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were fewer developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: The same number of days passed.

How many conflicts were there in this song compared to the original?
Incorrect
Your answer: There were more conflicts.
Correct answer: There were the same number of conflicts.

Question 3

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were the exact same developers.

How many days passed in this song compared to the original?
Correct

0:26

0:26

0:28

Figure B.10: Page 1 of the page that participants could view if they wanted to see
which questions they answered correctly in GitVS.

102

Your answer: More days passed.
Correct answer: More days passed.

How many conflicts were there in this song compared to the original?
Incorrect
Your answer: There were more conflicts.
Correct answer: There were the same number of conflicts.

Question 4

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were the exact same developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: The same number of days passed.

How many conflicts were there in this song compared to the original?
Correct
Your answer: There were more conflicts.
Correct answer: There were more conflicts.

Question 5

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were the exact same developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: The same number of days passed.

How many conflicts were there in this song compared to the original?
Incorrect
Your answer: There were more conflicts.
Correct answer: There were fewer conflicts.

Question 6

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were the same number of developers, but
they were different developers.

0:26

0:26

0:26

Figure B.11: Page 2 of the page that participants could view if they wanted to see
which questions they answered correctly in GitVS.

103

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: The same number of days passed.

How many conflicts were there in this song compared to the original?
Correct
Your answer: There were more conflicts.
Correct answer: There were more conflicts.

Question 7

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were the exact same developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: The same number of days passed.

How many conflicts were there in this song compared to the original?
Incorrect
Your answer: There were more conflicts.
Correct answer: There were the same number of conflicts.

Question 8

How many developers were there in this song compared to the original?
Incorrect
Your answer: There were more developers.
Correct answer: There were the same number of developers, but
they were different developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: Fewer days passed.

How many conflicts were there in this song compared to the original?
Incorrect
Your answer: There were more conflicts.
Correct answer: There were fewer conflicts.

Question 9

How many developers were there in this song compared to the original?
Incorrect

0:26

0:24

0:24

Figure B.12: Page 3 of the page that participants could view if they wanted to see
which questions they answered correctly in GitVS.

104

Your answer: There were more developers.
Correct answer: There were the exact same developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: Fewer days passed.

How many conflicts were there in this song compared to the original?
Correct
Your answer: There were more conflicts.
Correct answer: There were more conflicts.

Question 10

How many developers were there in this song compared to the original?
Correct
Your answer: There were more developers.
Correct answer: There were more developers.

How many days passed in this song compared to the original?
Incorrect
Your answer: More days passed.
Correct answer: Fewer days passed.

How many conflicts were there in this song compared to the original?
Correct
Your answer: There were more conflicts.
Correct answer: There were more conflicts.

Reference
For your reference, here are the original song and important sounds.

Original Song

Developers' Sounds
Sarah

Devin

Andrew

0:28

0:26

0:02

0:02

0:02

Figure B.13: Page 4 of the page that participants could view if they wanted to see
which questions they answered correctly in GitVS.

105

Additional Developer (Flute)

Additional Developer (Oboe)

Day Separator Sound
Day Separator

Conflict Sounds
1 Conflict

2 Conflicts

3 Conflicts

0:02

0:02

0:03

0:02

0:02

0:02

Figure B.14: Page 5 of the page that participants could view if they wanted to see
which questions they answered correctly in GitVS.

106

Questionnaire
Please answer the following questions regarding the Git Sonifier:

 Never Rarely Sometimes Frequently Always

It was easy to tell the different
sounds apart.

It was easy to hear who each
developer was.

It was easy to hear how many
conflicts there were.

It was easy to hear when days
passed.

The sound helped me
understand the development
data.

Strongly
Disagree Disagree

Neither
Agree nor
Disagree Agree

Strongly
Agree

I would be interested in
hearing the development data
of my own teams’ projects.

Figure B.15: The questionnaire given to participants at the end of the GitSonifier
study.

107

Appendix C

GitVS Experiment Materials

Figures C.1 through C.27 show the materials used in the GitVS experiment. The

GitVS experiment is discussed in Chapter 4.

The materials shown are specific to the participants who used GitVS. Participants

who used GitVS without sound and the GitHub network view saw very similar pages

with some small differences. For example, only participants who used GitVS with

sound were shown the developer and conflict earcons on the task instructions and

training pages.

108

Thank you for volunteering to participate in our research experiment.

In this experiment, you will take on the role of the manager of a software development
team. Your team currently uses Git with the following formal processes for coordinating
version control:

Whenever a new feature is started, the developers can choose to create a new
branch for that feature, but do not have to.
Before merging a completed feature, branches will be codereviewed.

You are considering switching to the following process:

Whenever a new feature is started, the developers must create a new branch for that
feature.
Before merging a completed feature, branches will be codereviewed.
All commits will be sent to a continuous integration sever, which will automatically
build and test each commit.

You want to understand how these changes will affect your team, so you have found
another project that has a similar amount of activity to yours, but follows all of the
processes you want to use.

In the experiment, you will be shown the version control history for both your current
project and the project that already follows the new processes. You will analyze these
projects using GitVS, a tool for exploring Git history.

When you are ready to begin, you will learn how to use GitVS.

Figure C.1: The first page shown to participants in the GitVS experiment.

109

Watch the following video and practice using GitVS, and then complete the training quiz
below.

Feel free to use GitVS and ask questions.

After watching the video, please complete these questions.

How many developers contributed to this project?

2
3
4
5

How many conflicts are present in the project?

2
3
4
5

Who introduced the second conflict?

Andrew
Alex
Devin
Sarah

0:02

Figure C.2: Page 1 of training page in the GitSonifier experiment.

110

How long, in days, is the longest period of time during which there's always at least one
conflict?

1 day
2 days
3 days
4 days

How many commits modify exactly two files?

5
6
7
8

How many branches are there in this project?

5
6
7
8

How many commits are made by outside developers?

0
1
2
3

Finish

Reference

Conflict Sounds

1 Conflict

2 Conflicts

3 Conflicts

4+ Conflicts

0:02

0:02

0:02

Figure C.3: Page 2 of training page in the GitSonifier experiment.

111

Core Developers

The following developers are active developers on the training project:

Sarah

Andrew

Devin

The following developer is an outside developer:

Alex

0:02

0:02

0:02

0:02

0:02

Figure C.4: Page 3 of training page in the GitSonifier experiment.

112

Instructions
You will now be asked questions about the repository that uses the processes you are
considering adopting.

The team that maintains this repository follows several methodologies that you are
considering adopting in your own team. You want to see how it is different from your team
so you can understand what changes you can expect.

The methodologies this team follows are:

Whenever a new feature is started, the developers must create a new branch for that
feature.
Before merging a completed feature, branches will be codereviewed.
All commits will be sent to a continuous integration sever, which will automatically
build and test each commit.

Some of the questions may take a long time to complete. Please focus on each question
for at least 5 minutes. If you take longer than 5 minutes, you can skip to the next question
(or continue working on the question if you prefer).

Begin Questions

As you work on the questions, the following information will be displayed on each
question's page:

Reference

Show/Hide Conflict Sounds

Conflict Sounds

1 Conflict

2 Conflicts

3 Conflicts

4+ Conflicts

0:02

0:02

0:02

0:02

Figure C.5: Page 1 of the task instructions in the GitVS experiment.

113

Show/Hide List of Core and Outside Developers

Core Developers

The following developers are active developers on the repository that uses the processes
you are considering adopting:

Nathan Marz

P. Taylor Goetz

Jason Jackson

Robert (Bobby) Evans

The following developers are outside developers:

James Xu

Derek Dagit

wurstmeister

Michael G. Noll

afeng

anfeng

Sean Zhong

John Gilmore

Ben Hughes

Everyone else

Show All Oustide Developers

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

Figure C.6: Page 2 of the task instructions in the GitVS experiment.

114

ankitoshniwal
Sriharsha Chintalapani
Sergey Lukjanov
Kang Xiao
Thomas Jack
darthbear
Kyle Nusbaum
Sam Ritchie
Homer Strong
Martin Kleppmann
Sjoerd Mulder
Danijel Schiavuzzi
Argyris Zymnis
Evan Chan
haitao.yao
Prabeesh K
ChitturiPadma
supercargo
David Lao
Muneyuki Noguchi
David James
Philip (flip) Kromer
Jake Donham
Michael Cetrulo
nathanmarz
Niels Basjes
Mike Blume
Gabriel Silk
Brenden Matthews
roadkill001
Suresh Srinivas
troyding
Soren Macbeth
Stuart Anderson
smelody@wgen.net
Ross Feinstein
Dan Harvey
yerenkow
Vinod Chandru
Yu L Li
Bryan Baugher
Dan Dillinger
Lorcan Coyle
Andrew Otto
Trevor Wennblom
Guanpeng Xu

Figure C.7: Page 3 of the task instructions in the GitVS experiment.

115

Andrew Olson
Ryan
Michael Allman
thomas
Kyle Bolton
Bryan
Bryan Peterson
Tudor Scurtu
okapies
minghan
danehammer
thinker0
Steven Phung
Debo~ Dutta
Brian O'Neill
tombrown52
Srinivas Prasad Gumdelli
Bart Olsthoorn
Boris
Jean Vancoppenolle
davidlgr
Edison Xu
ashley
Jeroen van Dijk
xumingming
Fabian Neumann
dmmata
David Losada
engineerdev
Paul O'Fallon
Kasper Madsen
millerjam
Travis Wellman
Gabriel Grant
Drew
Haitao Yao
Srinivas Gumdelli
Alexey S. Kachayev
Adrian Petrescu
aprooks
dennis zhuang
Trevor Summers Smith
Patrick Houk
ptgoetz
Taylor Goetz
Bertrand Dechoux

Figure C.8: Page 4 of the task instructions in the GitVS experiment.

116

Tom Payne
Sam Stokes

Figure C.9: Page 5 of the task instructions in the GitVS experiment.

Please answer this question about the repository that uses the processes you are
considering adopting:

1. How many commits were made inbetween June 5 and June 7?

Reference

Show/Hide Conflict Sounds
Show/Hide List of Core and Outside Developers

Figure C.10: Question 1 in the GitVS experiment.

Please answer this question about the repository that uses the processes you are
considering adopting:

1. On average, what is the number of files modified per commit inbetween June 5 and
June 7?

Commit Files
1 Delete Row

Add Row Calculate Average

Final average:

Reference

Show/Hide Conflict Sounds
Show/Hide List of Core and Outside Developers

Figure C.11: Question 2 in the GitVS experiment.

117

Please answer this question about the repository that uses the processes you are
considering adopting:

1. How many conflicts were present inbetween May 29 and June 12?

Reference

Show/Hide Conflict Sounds
Show/Hide List of Core and Outside Developers

Figure C.12: Question 3 in the GitVS experiment.

Please answer this question about the repository that uses the processes you are
considering adopting:

1. Look at the branches which were merged directly into the master branch. In days,
what is the average number of days these branches existed?

Branch Days
1 Delete Row

Add Row Calculate Average

Final average:

Reference

Show/Hide Conflict Sounds
Show/Hide List of Core and Outside Developers

Figure C.13: Question 4 in the GitVS experiment.

118

Please answer this question about the repository that uses the processes you are
considering adopting:

1. What is the average number of days each branch with at least one commit from an
outsider developer existed before being merged?

Branch Days
1 Delete Row

Add Row Calculate Average

Final average:

Reference

Show/Hide Conflict Sounds
Show/Hide List of Core and Outside Developers

Figure C.14: Question 5 in the GitVS experiment.

119

Instructions
Next, you will be asked questions about your team's repository.

You want to determine how adopting new, stricter methodologies for version control will
change your team's performance. Currently, your team uses these methodologies:

Whenever a new feature is started, the developers can choose to create a new
branch for that feature, but do not have to.
Before merging a completed feature, branches will be codereviewed.

Begin Questions

As a reminder, please focus on each question for at least 5 minutes. If you take longer
than that, you can choose whether skip to the next question or continue working.

As you work on the questions, the following information will be displayed on each
question's page:

Reference

Show/Hide Conflict Sounds

Conflict Sounds

1 Conflict

2 Conflicts

3 Conflicts

4+ Conflicts

Show/Hide List of Core and Outside Developers

Core Developers

The following developers are active developers on your team's repository:

Alex Feinberg

0:02

0:02

0:02

0:02

Figure C.15: Page 1 of the instructions shown when switching from one repository to
another while answering the objective questions in the GitVS experiment.

120

Roshan Sumbaly

Jay Kreps

Bhupesh Bansal

The following developers are outside developers:

Ismael Juma

kirktrue

Kirk True

Rob Adams

bbansal

Lei Gao

Elias Torres

Siddharth Singh

Geir Magnusson

Everyone else

Show All Oustide Developers

Geir Magnusson Jr
Jonathan Traupman
Jakob Homan
Janne Hietamäki
Alejandro Crosa
Aleksandr Feinberg
Paul Lindner

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

0:02

Figure C.16: Page 2 of the instructions shown when switching from one repository to
another while answering the objective questions in the GitVS experiment.

121

Michael R. Head
unknown
claudio
Chris Riccomini
Padraig
Mike Frost
Anthony Lauzon
Scott Wheeler
jtuberville
Sergey Shepelev
Antoine Toulme
Ben Hardy
Barak A. Pearlmutter
Shannon Zhang

Figure C.17: Page 3 of the instructions shown when switching from one repository to
another while answering the objective questions in the GitVS experiment.

Comparison Questions
We will now ask you some questions that ask you to compare your team's repository to
the one that uses the processes you're considering. These questions do not have right or
wrong answers. Rather, we want to see what your opinion is.

Each question has a dropdown list and an openended text box. Please both select an
item from each dropdown list and write a short explanation for your choice in each text
box.

Your answers to the previous 10 questions will be displayed at the bottom of the screen for
your reference.

Begin questions

Figure C.18: The instructions shown before participants saw the subjective questions
in the GitVS experiment.

122

Please answer these questions:

Based on the previous questions, which process would you recommend if your priority is
to have a large number of small commits?

Select a repository

Why did you select that repository?

Based on the previous questions, which process would you recommend if your priority is
to minimize conflicts?

Select a repository

Why did you select that repository?

Based on the previous questions, which process would you recommend if your priority is
to accept pull requests quickly?

Select a repository

Why did you select that repository?

Based on the previous questions, which process would you recommend if your priority is
to quickly merge commits from outside developers?

Select a repository

Why did you select that repository?

Here are your answers to the previous questions.

Data Set Question Your
Answer

Your Repository How many commits were made inbetween June 10
and June 12?

(participant's
answer)

Your Repository On average, what is the number of files modified per
commit inbetween June 10 and June 12?

(participant's
answer)

How many conflicts were present inbetween June 10 (participant's

Figure C.19: Page 1 of the subjective questions in the GitVS experiment.

123

Your Repository and June 24? answer)

Your Repository
Look at the branches which were merged directly into
the master branch. In days, what is the average
number of days these branches existed?

(participant's
answer)

Your Repository
What is the average number of days each branch with
at least one commit from an outsider developer
existed before being merged?

(participant's
answer)

Comparison
Repository

How many commits were made inbetween June 5 and
June 7?

(participant's
answer)

Comparison
Repository

On average, what is the number of files modified per
commit inbetween June 5 and June 7?

(participant's
answer)

Comparison
Repository

How many conflicts were present inbetween May 29
and June 12?

(participant's
answer)

Comparison
Repository

Look at the branches which were merged directly into
the master branch. In days, what is the average
number of days these branches existed?

(participant's
answer)

Comparison
Repository

What is the average number of days each branch with
at least one commit from an outsider developer
existed before being merged?

(participant's
answer)

Figure C.20: Page 2 of the GitVS experiment.

Thank you for answering these questions.

We are finished using GitVS. The final steps in the experiment are:

1. A questionnaire about what you thought of using GitVS
2. A verbal exit interview about GitVS
3. If you wish, you can see your results on the questions asked during the experiment

Figure C.21: The page shown when the GitVS main task was completed.

124

Your Answers
Questions about your team's repository:

1. How many commits were made inbetween June 10 and June 12?
Your answer: (participant's answer)

2. On average, what is the number of files modified per commit inbetween June 10
and June 12?

Your answer: (participant's answer)
3. How many conflicts were present inbetween June 10 and June 24?

Your answer: (participant's answer)
4. Look at the branches which were merged directly into the master branch. In days,
what is the average number of days these branches existed?

Your answer: (participant's answer)
5. What is the average number of days each branch with at least one commit from an
outsider developer existed before being merged?

Your answer: (participant's answer)

Questions about the repository that uses the processes you are considering
adopting:

1. How many commits were made inbetween June 5 and June 7?
Your answer: (participant's answer)

2. On average, what is the number of files modified per commit inbetween June 5 and
June 7?

Your answer: (participant's answer)
3. How many conflicts were present inbetween May 29 and June 12?

Your answer: (participant's answer)
4. Look at the branches which were merged directly into the master branch. In days,
what is the average number of days these branches existed?

Your answer: (participant's answer)
5. What is the average number of days each branch with at least one commit from an
outsider developer existed before being merged?

Your answer: (participant's answer)

Comparison questions:

1. Based on the previous questions, which process would you recommend if your
priority is to have a large number of small commits?

Your answer:

Comparison Repository

(participant's answer)

Figure C.22: Page 1 of the page that participants could view to review their answers
to questions during the exit interview in GitVS.

125

2. Based on the previous questions, which process would you recommend if your
priority is to minimize conflicts?

Your answer:

Your Repository

(participant's answer)

3. Based on the previous questions, which process would you recommend if your
priority is to accept pull requests quickly?

Your answer:

Comparison Repository

(participant's answer)

4. Based on the previous questions, which process would you recommend if your
priority is to quickly merge commits from outside developers?

Your answer:

Your Repository

(participant's answer)

Figure C.23: Page 2 of the page that participants could view to review their answers
to questions during the exit interview in GitVS.

126

Results for Questions
Overall Score: 0 out of 10

Questions about your team's repository:

1. How many commits were made inbetween June 10 and June 12?
Incorrect
Your answer: (participant's answer)
Correct answer: 21

2. On average, what is the number of files modified per commit inbetween June 10
and June 12?

Incorrect
Your answer: (participant's answer)
Correct answer: 8

3. How many conflicts were present inbetween June 10 and June 24?
Incorrect
Your answer: (participant's answer)
Correct answer: 3

4. Look at the branches which were merged directly into the master branch. In days,
what is the average number of days these branches existed?

Incorrect
Your answer: (participant's answer)
Correct answer: 10

5. What is the average number of days each branch with at least one commit from an
outsider developer existed before being merged?

Incorrect
Your answer: (participant's answer)
Correct answer: 8

Questions about the repository that uses the processes you are considering
adopting:

1. How many commits were made inbetween June 5 and June 7?
Incorrect
Your answer: (participant's answer)
Correct answer: 15

2. On average, what is the number of files modified per commit inbetween June 5 and
June 7?

Incorrect
Your answer: (participant's answer)
Correct answer: 26

3. How many conflicts were present inbetween May 29 and June 12?
Incorrect

Figure C.24: Page 1 of the page that participants could view if they wanted to see
which questions they answered correctly in GitVS.

127

Your answer: (participant's answer)
Correct answer: 5

4. Look at the branches which were merged directly into the master branch. In days,
what is the average number of days these branches existed?

Incorrect
Your answer: (participant's answer)
Correct answer: 6

5. What is the average number of days each branch with at least one commit from an
outsider developer existed before being merged?

Incorrect
Your answer: (participant's answer)
Correct answer: 7

Figure C.25: Page 2 of the page that participants could view if they wanted to see
which questions they answered correctly in GitVS.

128

Questionnaire
Please answer the following questions regarding the tool that you used in the experiment:

Never Rarely Sometimes Frequently Always

It was easy to tell when each
commits was made.

It was easy to identify who
made each commit.

It was easy to tell where
conflicts were located.

It was easy to tell when each
commit was made.

It was easy to see which files
were changed by each
commit.

It was easy to tell where
branches were located.

It was easy to understand the
details of the development
data.

Why did you select your answer?

It easy to understand overall
patterns in the development
data.

Why did you select your answer?

It easy to see relationships
between different pieces of
development data.

Why did you select your answer?

Figure C.26: Page 1 of the questionnaire given to participants at the end of the GitVS
study.

129

Strongly
Disagree Disagree

Neither
Agree nor
Disagree Agree

Strongly
Agree

I would be interested in using
this tool for my own team.

Would you recommend this tool to others?

In your opinion, how can this tool be improved?

Figure C.27: Page 2 of the questionnaire given to participants at the end of the GitVS
study.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 5-2016

	Sonifying Git History
	Kevin J. North

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions of this Thesis
	Overview of Thesis

	Background
	Version Control
	Git
	How Git is Implemented
	A Git Repository as a Directed Graph
	Decentralized Version Control

	Merge Conflicts
	How Merge Conflicts Affect Industry Teams
	Tools for Detecting Conflicts
	Viewing Historical Conflict Data

	Sonification
	The Advantages of Sonification
	Earcon Sonification
	Parameter Mapping Sonification
	Other Forms of Sonification

	Music++
	Related Work
	CocoViz
	code_swarm
	Orchestrating Change
	Other Applications of Sonification to Software Engineering

	GitSonifier: Sonifying Version History
	Motivation
	Design
	Developer Earcons
	Representing Time with Day Separators
	Conflict Drums

	Implementation
	Architecture
	Implementation Details of the Sonification
	Developer Earcons
	Conflict Drum Earcons
	Tempo

	User Evaluation
	Participant Characteristics
	Study Design
	Threats to Validity
	Number of Participants
	Participant Characteristics
	Task Design
	Testing a Single System

	Results
	RQ1: How well do participants interpret the sounds representing a Git history?
	RQ2: How efficient is the use of sonification for understanding a Git history?
	RQ3: What was the participants' evaluation of sonification?

	Discussion
	Listening to Sonifications
	Incorrect Responses
	Participants' Backgrounds with Music and Version Control
	Sonification Effects
	Exit Questionnaire

	Conclusions

	GitVS: Combining Visualization and Sonification To Display Version History
	Motivation
	Use Case
	Design
	Implementation
	Architecture
	Input
	The Data Collector
	Walking the Git Repository
	Obtaining Conflict Data
	Getting the Directed Graph Representation of the Repository
	Obtaining the Sorted List of Commits to Send to the Data Processor

	The Data Processor
	Processing Sonification Data
	Processing Visualization Data

	The Displayer
	Design of the Displayer
	Final Processing Steps
	Representing Commits Visually
	Showing Details about Individual Commits Visually
	Developer and Conflict Earcons

	Planned User Evaluation
	Participant Demographics
	Using the GitVS Tool
	Training Session
	Experiment Tasks

	Post Study: Filling out a questionnaire about our GitVS tool
	Post Study: Completing an oral exit interview

	Conclusion

	Conclusions and Future Work
	Conclusion
	Future Work
	User Study for GitVS
	Sonifying Additional Layers of Information
	Sonification Design Ideas
	Designing Tools for Additional Use Cases

	Bibliography
	Music++
	Design
	Limitations
	Sonification Design

	Implementation
	Cobertura
	Parser
	Music Generator

	Related Work
	Siren Songs and Swan Songs
	Increasing Fault Detection Effectiveness Using Layered Program Auralization

	Future Work
	Conclusions

	GitSonifier Experiment Materials
	GitVS Experiment Materials

