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ABSTRACT  25 

The origins of HIV-1 have been widely accepted to be the consequence of simian 26 

immunodeficiency viruses from wild chimpanzees (SIVcpz) crossing over to humans. However, 27 

there has not been any in vivo study of SIVcpz infection of humans. Also, it remains largely 28 

unknown why only specific SIVcpz strains have achieved cross-species transmission and what 29 

transmission risk might exist for those SIVcpz strains that have not been found to infect humans. 30 

Closing this knowledge gap is essential for better understanding cross-species transmission and 31 

predicting the likelihood of additional cross-species transmissions of SIV into humans. Here we 32 

show hu-BLT mice are susceptible to all studied strains of SIVcpz, including the inferred 33 

ancestral viruses of pandemic and non-pandemic HIV-1 groups M (SIVcpzMB897) and N 34 

(SIVcpzEK505), also strains that have not been found in humans (SIVcpzMT145 and 35 

SIVcpzBF1167). Importantly, the ability of SIVcpz to cross the interspecies barrier to infect 36 

humanized mice correlates with their phylogenetic distance to pandemic HIV-1. We also 37 

identified mutations of SIVcpzMB897 (Env G411R & G413R) and SIVcpzBF1167 (Env H280Q 38 

& Q380R) at 14 weeks post inoculation. Together, our results have recapitulated the events of 39 

SIVcpz cross-species transmission to humans and identified mutations that occurred during the 40 

first 16 weeks of infection, providing in vivo experimental evidence that the origins of HIV-1 are 41 

the consequence of SIVcpz crossing over to humans. This study also revealed that SIVcpz 42 

viruses whose inferred descendants have not been found in humans still have the potential to 43 

cause HIV-1 like zoonosis. 44 

 45 

 46 

 47 
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IMPORTANCE  48 

It is believed that the origins of HIV-1 are the consequence of SIV viruses from wild 49 

chimpanzees crossing over to humans. However, the origins of HIV-1 have been linked back to 50 

only specific SIVcpz strains. There have been no experiments that directly test the in vivo cross-51 

species transmissibility of SIVcpz strains to humans. This is the first in vivo study of SIVcpz 52 

cross-species transmission. With the humanized-BLT mouse model, we have provided in vivo 53 

experimental evidence of multiple SIVcpz strains crossing over to humans and identified several 54 

important mutations of divergent SIVcpz strains after long-term replication in human cells. We 55 

also found the cross-species transmission barrier of SIVcpz to humans correlates with their 56 

phylogenetic distance to pandemic HIV-1 group M. Importantly, this work provides evidence 57 

that SIVcpz viruses, whose inferred descendants have not been found in humans, still have the 58 

potential to cause a future HIV-1 like zoonotic outbreak.  59 

 60 

INTRODUCTION 61 

HIV-1 infections have claimed millions of human lives since the pandemic began in 1981 and 62 

HIV-1 still infects about 2.3 million people every year (1, 2). Based on comparative phylogenetic 63 

analyses of HIV-1 and SIVcpz, it has been shown that AIDS is a zoonotic disease caused by 64 

cross-species transmissions of simian immunodeficiency viruses from chimpanzee (SIVcpz) to 65 

humans (3, 4). HIV-1 is classified into M, N, O, and P groups and each group is  thought to have  66 

originated from an independent cross-species transmission. The HIV group M is the causative 67 

agent of pandemic HIV/AIDS; in contrast, group N, O, and P viruses only infect a limited 68 

number of individuals (5, 6). There are four subspecies of chimpanzees with distinct  69 

geographical distribution in Africa: P. t. verus in West Africa; P. t. vellerosus in Nigeria and 70 

northern Cameroon; P. t. troglodytes (Ptt) in southern Cameroon, Gabon, and the Republic of 71 
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Congo; and P. t. schweinfurthii (Pts) in the Democratic Republic of Congo and countries to the 72 

East (7). The chimpanzees-Ptt and chimpanzees-Pts harbor SIVcpzPtt and SIVcpzPts 73 

respectively. It has been shown that specific lineages of SIVcpz from the wild chimpanzee 74 

subspecies Ptt in Africa have founded pandemic HIV-1 group M and non-pandemic group N 75 

infections; in contrast, SIVcpz in the wild chimpanzee subspecies Pts or other strains from the 76 

Ptt group have not been found in humans (4-13). However, the reason for this difference is 77 

unknown and cannot be explained simply by geographical isolation, because SIVcpzMT145 also 78 

belongs to Ptt group, but no human infection has been found. 79 

 80 

It is impossible to conduct SIVcpz infection experiments in humans. Moreover, due to the lack 81 

of an in vivo experimental model, until now there is no investigation on the initial interaction 82 

between SIVcpz and humans. Thus, some outstanding questions remain. Can different SIVcpz 83 

strains readily infect humans? Why have only specific SIVcpz strains spilled over to humans?  84 

For those SIVcpz strains that have not been found in humans, do they still have the potential to 85 

cause HIV-like zoonosis? How does SIVcpz adapt in the new human host? However, to date, 86 

there is no way to directly study the in vivo transmission of divergent strains of SIVcpz to 87 

humans.  88 

 89 

The combination of human CD34+ pluripotent hematopoietic stem cell transplantation with 90 

surgical engraftment of human fetal liver and thymic tissues results in improved immune cell 91 

reconstitution, maturation, and selection in humanized bone marrow, thymus, and liver (hu-BLT) 92 

mice. This hu-BLT mouse model is the best available animal model for humans (14, 15). Hence, 93 

hu-BLT mice provide an ideal in vivo model to test the infectivity of different strains of SIVcpz 94 

 on July 22, 2016 by U
N

IV
 O

F
 N

E
B

R
A

S
K

A
-LIN

C
O

LN
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


in humans and recapitulate the critical events of SIVcpz cross-species transmission to humans. In 95 

addition to the inferred ancestral viruses of HIV-1, chimpanzees or other non-human primates 96 

(NHPs) in Africa harbor other viruses which potentially can cause another pandemic zoonotic 97 

disease like HIV-1 in the future. Furthermore, there are more than 30 African NHP species that 98 

are infected with more than 40 different strains of simian immunodeficiency viruses (SIVs) (16). 99 

The conceptual framework and experimental system developed in this study can also be used to 100 

evaluate the potential risk of other emerging pathogens from non-human species, especially the 101 

great apes, to infect humans by cross-species transmission. 102 

 103 

MATERIALS AND METHODS 104 

Virus stock preparation. To generate virus, infectious molecular clones of SIVcpz 105 

(SIVcpzMB897, SIVcpzMB897-M30R, SIVcpzEK505, SIVcpzEK505-M30R, SIVcpzMT145, 106 

and SIVcpzBF1167) and HIV-1SUMA were transfected into 293T cells. Briefly, 60 ug of plasmid 107 

DNA diluted into 120ul lipofectamine 2000 (Life Technologies) were used to transfect 293T 108 

cells. After 48 hours of transfection, culture supernatant was collected and filtered through a 109 

0.45-micron filter from each flask. 35ml of filtered medium was loaded into each Ultra-Clear™ 110 

Tube (Beckman coulter) for ultracentrifugation. Virus ultracentrifugation was conducted with 111 

Optima L-100X ultracentrifuge and SW 32 Ti rotor (Beckman coulter) at 25,000 rpm, 90min at 112 

4°C. Supernatant was discarded and the pellet was resuspended into 1ml fresh medium. 113 

Aliquoted into 200ul in each sterile screw-cap vial and stored at -150°C. Virus stocks were 114 

titrated on the TZM-bl reporter cell line with X-Gal Staining Kit (Genlantis). Titers are 115 

expressed as TZM-bl infectious units (IU) per ml. 116 

 117 
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Generation of hu-BLT mice. Hu-BLT mice generation and assessment of human immune cell 118 

reconstitution was conducted as we previously reported (17, 18) at the University of Nebraska-119 

Lincoln Life Sciences Annex according to Institutional Animal Care and Research Committee-120 

approved protocols. Briefly, 6- to 8-week-old female NSG mice (NOD.Cg-Prkdcscid 121 

Il2rgtm1Wjl/SzJ,  Cat# 005557, the Jackson Laboratory) were housed and maintained in 122 

individual micro-isolator cages in a rack system capable of managing air exchange with pre-123 

filters and HEPA filters (0.22 um). Room temperature, humidity, and pressure were controlled 124 

and air was also filtered. On the day of surgery, mouse received whole-body irradiation at the 125 

dose of 12 cGy/gram of body weight with RS200 X-ray irradiator (RAD Source Technologies, 126 

Inc., GA) and was then implanted with one piece of thymic tissue fragment sandwiched with two 127 

pieces of human fetal liver tissue fragments under the murine left renal capsule. Within 6 hours 128 

of surgery, mice were injected via tail vein with 1.5-5×105 CD34+ hematopoietic stem cells 129 

isolated from human fetal liver tissues. Human fetal liver and thymus tissues were procured from 130 

Advanced Bioscience Resources (Alameda, CA).  After 9 to 12 weeks, human immune cell 131 

reconstitution in peripheral blood was measured by FACS Aria II flow cytometer (BD 132 

Biosciences, San Jose, CA) using antibodies against mCD45-APC, hCD45-FITC, hCD3-PE, 133 

hCD19-PE/Cy5, hCD4-Alexa 700, and hCD8-APC-Cy7 (Cat#103111, 304006, 300408, 302209, 134 

300526, and 301016, respectively, BioLegend, San Diego, CA). Raw data were analyzed with 135 

FlowJo (version 10.0, FlowJo LLC, Ashland, OR). All mice used in this study had high human 136 

immune reconstitutions with a ratio of hCD45+ cells versus a combination of  hC45+ cells and 137 

mCD45+ cells in peripheral blood higher than 50% The mice were randomly assigned into 138 

experimental groups with similar immune reconstitution levels (Table 1).  139 

 140 
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High-dose SIVcpz infections of hu-BLT mice. To test human susceptibility to SIVcpz, 25 141 

female hu-BLT mice with high immune reconstitution were randomly divided into 5 groups 142 

(Table 1) and each mouse was inoculated intraperitoneally (IP) with a high-dose (3±0.2×104 IU) 143 

of SIVcpzMB897, SIVcpzEK505, SIVcpzMT145, SIVcpzBF1167, or HIV-1SUMA respectively. 144 

Peripheral blood was collected weekly in the first 4 weeks post inoculation (wpi) and once every 145 

two weeks thereafter. At 16 wpi, mice were euthanized and the tissues of spleen, lymph node, 146 

kidney lymphoid organoid, and jejunum were collected and fixed in 4% paraformaldehyde (PFA) 147 

and SafeFix II (Fisher Scientific) for in situ tissue analyses. A few hu-BLT mice developed graft-148 

versus-host disease before 16 weeks were sacrificed for humane reason. Fresh tissue was 149 

immediately frozen into liquid nitrogen for RNA extraction.  150 

 151 

Cross-species transmission barrier of SIVcpz. To quantify the cross-species transmission 152 

barrier of SIVcpz to infect humans, each of the SIVcpz strains and HIV-1SUMA was titrated based 153 

on viral reverse transcriptase (RT) activity, which is the best available method (19). The RT was 154 

measured in triplicate using the EnzChek Reverse Transcriptase Assay Kit (Invitrogen, Eugene, 155 

Oregon, USA).  The virus strains were lysed using 10% Triton X-100 (1% final concentration) in 156 

RPMI medium supplemented with 10% FBS, and HIV-1 Reverse Transcriptase (CHIMERx, 157 

Milwaukee, WI, USA) was used as standard curve. Hu-BLT mice with good immune 158 

reconstitution were divided into 5 groups (n=6 for SIVcpzMB897 and n=5 for other strains), 159 

from which each mouse was inoculated via IP with a low-dose (0.52U/mouse) of  SIVcpz or 160 

HIV-1SUMA, respectively (Table 1). At 2 and 4 wpi, pVL was measured to determine infection 161 

status; If pVL was negative at 4wpi, the animal was considered uninfected and would receive 162 

another round of virus inoculation and pVL measurement at 2 and 4 wpi, until all the animals 163 
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were infected. To determine the interspecies barrier, the Kaplan-Meier plots for conversion to 164 

infected status for each SIVcpz group was compared to HIV-1SUMA and Kaplan-Meier plots for 165 

conversion to infected status between different SIVcpz strain groups were also compared.   166 

 167 

Competition of wild-type SIVcpz vs Gag M30R mutant. To compare the in vivo fitness of 168 

wild-type SIVcpz and its Gag M30R mutant counterpart, hu-BLT mice (n=6/group) were 169 

inoculated with a 1:1 mix of wild-type SIVcpzMB897 or SIVcpzEK505 with its Gag M30R 170 

mutant counterpart, respectively. We used inoculum containing both equal copy wild-type and 171 

mutant mix (n=3) or equal infectious units of wild-type and mutant mix (n=3), since the latter 172 

would eliminate the possibility that equal copy number inoculum may contain an unequal 173 

number of infectious viruses. The dose of equal copy mix for each wild-type and mutant was 174 

1.53x109 for SIVcpzMB897) and 4.1x108 for SIVcpzEK505 copies/mouse respectively; and the 175 

dose of equal infectious unit mix for SIVcpzMB897 and SIVcpzEK505 was 1.5x104 and 1.4x104 176 

IU/mouse, respectively (Table 1). At 4 wpi, the mice were euthanized and full-length gag 177 

sequences from plasma were amplified and sequenced using Sanger’s method.  178 

 179 

Plasma viral load. Plasma viral RNA (vRNA) was extracted using a QIAamp Viral RNA Mini 180 

kit (Qiagen). Plasma viral load (pVL) was conducted using qRT-PCR on a C1000 Thermal 181 

Cycler and the CFX96 Real-Time system (Bio-Rad) and TaqMan Fast Virus 1-Step Master Mix 182 

(Life technologies). SIVcpz strain-specific primers and probes (Table 2) were designed and no 183 

crossover signal was found among different strains. The detection limit of pVL was 200 184 

copies/ml, which was determined through repeating end point detection of serial dilution of the 185 

AcroMetrix HIV-1 Panel (Life technologies). 186 
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 187 

In situ hybridization and immunohistochemical staining. Viral RNA in tissues were detected 188 

using in situ hybridization (ISH) by following our previously reported protocol (20). To generate 189 

sense and anti-sense SIVcpz strain-specific probes, the full-length gag and env genes of SIVcpz 190 

were amplified using RT-PCR with strain specific primers (Table 2). The amplicons were cloned 191 

into the pCR®4 Blunt-TOPO® vector (Thermo Fisher Scientific). Insert orientation was 192 

determined by sequencing with T3 and T7 primers at Sequetech (Mountain View, CA) and 193 

plasmid DNA was linearized with restriction enzyme Not I or Pme I (New England Biolabs), 194 

from which 35S-labeld anti-sense and sense probes were synthesized in vitro. Sense probe was 195 

used as negative control. After 14 days of exposure, in the developed radioautographs viewed 196 

with transmitted light, the vRNA+ cells appear black dots; viewed with epipolarized light, the 197 

vRNA+ cells appear blueish or greenish dots because of the large numbers of silver grains 198 

overlying the cell. To define SIVcpz infected cell type, the combined ISH and IHC staining was 199 

conducted as previously reported (20). Overnight exposure was used. Anti-CD4 rabbit 200 

monoclonal antibody (EPR6855, 1:100 dilution, Abcam) and a cocktail of mouse monoclonal 201 

anti-CD68 (KP1, 1:100 dilution, Leica), anti-Ham56 (HAM56, 1:100 dilution, Dako), and anti-202 

CD163(10D6, 1:100, Leica) antibodies were used to identify CD4+ T cells and macrophages, 203 

respectively.  We manually counted about 200 viral RNA+ cells to determine the percentage of 204 

colocalization of viral RNA with CD4+ T cells or macrophages.  205 

 206 

Sequencing of viral genes. To assess the in vivo adaptions of SIVcpz, vRNA was extracted from 207 

plasma with RNeasy Plus Mini Kit (Qiagen) from SIVcpzMB897 and SIVcpzBF1167 infected 208 

hu-BLT mice at 14 wpi (n=2 and 3 respectively). The cDNA was synthesized using strain-209 
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specific primer (Table 2) and Superscript III reverse transcriptase (Life Technologies). The 210 

cDNAs were amplified using Q5 Hot Start High-Fidelity DNA Polymerase (New England 211 

Biolabs) with strain- and gene-specific primers (Table 2). The amplicons were confirmed by 1.0% 212 

agarose gel stained with ethidium bromide and bands were cut and purified by using the 213 

GeneJET gel extraction kit (Thermo Scientific). The amplicons of full-length gag, pol, and env 214 

regions for each sample were directly sequenced using Sanger’s method at Sequetech (Mountain 215 

View, CA) or by next-gen sequencing (Illumina Genome Analyzer IIx) at the University of 216 

Nebraska Genomics Core (Lincoln, NE). PCR amplicons of some genes were also cloned into 217 

the pCR®4 Blunt-TOPO® vector (Thermo Fisher Scientific) for cloning sequencing at 218 

Sequetech (Mountain View, CA). Sequencing primers were designed based on primer walking. 219 

The sequences were manually examined peak by peak and assembled individually using 220 

Sequencher 5.0 (Gene Codes CorP. Ann Arbor, MI) after the ends of sequences containing 221 

ambiguous nucleotides were trimmed. The sequences were confirmed by overlapping identical 222 

regions. All the data obtained by bulk, cloning, and next-gen sequencing were analyzed and 223 

compared. 224 

 225 

Bioinformatics analysis. The phylogenetic tree showing the evolutionary relationship between 226 

strains of SIVcpz and HIV-1 in Fig. 1 was made from pol sequences of SIVcpz, SIVgor, and 227 

HIV-1 group M, N, O, and P. The coordinates of pol gene are 3887-4778 on the HIV-1/HXB2 228 

genome. The pol sequences were aligned using MUSCLE 3.8 to generate multiple sequence 229 

alignment in PHYLIP interleaved format(21). The alignment used maximum iteration to get the 230 

highest accuracy. Phylogenetic analysis was performed using PHYML 3.0(22), an 231 

implementation of the maximum likelihood method. The tree was visualized by FigTree 1.4.2 232 
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(23). The sequences of env, gag, and pol genes from hu-BLT-mouse samples were processed 233 

using an in house developed pipeline to identify the mutation sites that had greater than 5% 234 

mutation rate in order to reduce background noise. To exclude random mutations, we used the 235 

following criteria to identify significant mutations. The nucleotide changes are nonsynonymous 236 

which resulted in the same amino acid change in all sequenced animals of each group. 237 

Meanwhile, the average nucleotide substitution must be above 20%. The identified nucleotide 238 

changes were converted into amino acid mutations. The corresponding positions for these 239 

mutations were mapped to and annotated on HIV-1 GP160 trimer using UCSC Chimera 1.10.2 240 

(23). A PDB file 3J5M for the trimer structure was downloaded from the RCSB Protein Data 241 

Bank.  The sequence logos for these identified Env AA mutations were generated from 55 HIV-1 242 

M group and 23 available SIVcpz sequences using WebLogo 2.8.2 (http://weblogo.berkeley.edu) 243 

(24).   244 

 245 

Statistics. Logrank and Gehan-Breslow-Wilcoxon(25) were used to test statistical significance of  246 

the Kaplan-Meier plots for conversion to infected status between SIVcpz and HIV-1SUMA group 247 

and between different SIVcpz groups. Two-way ANOVA was used to test statistical difference 248 

of pVL of SIVcpz and HIV-1SUMA at different time points post inoculation. Both tests were 249 

performed by using Graphpad Prism software (Graphpad software, San Diego, CA, USA). 250 

P<0.05 was considered significant. 251 

 252 

Data availability. All sequencing data have been submitted to NCBI BioSample database under 253 

the accession numbers SAMN04569153 to SAMN04569164. 254 

 255 
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RESULTS AND DISCUSSION 256 

Four SIVcpz strains all infect hu-BLT mice. We first tested whether divergent strains of 257 

SIVcpz can infect hu-BLT mice. We selected 4 phylogenetically divergent SIVcpz strains to 258 

represent the inferred ancestral viruses of pandemic HIV-1 group M (SIVcpzMB897) and non-259 

pandemic HIV-1 group N (SIVcpzEK505) (6, 26), as well as SIVcpzMT145 (6) and 260 

SIVcpzBF1167 (27) whose viral lineages have not been found in humans (4, 8) . We included 261 

HIV-1SUMA, a clade B founder virus derived from an HIV-1 acutely infected individual (28), 262 

representing the pandemic HIV-1 group M (HIV-1/M). Hu-BLT mice with high human immune 263 

reconstitution were randomly divided into 5 groups (n=5/group, Table 1), from which each hu-264 

BLT mouse was inoculated intraperitoneally (IP) with the dosage of 3±0.2x104 infectious 265 

units/mouse (IU). It has been reported that the simian-to-human cross-species transmissions of 266 

SIVcpz in Africa mainly occurred through human contact with infected chimpanzee blood 267 

through events such as hunting, bush meat preparation, and bites from infected apes (4, 8, 9), we 268 

thus did not inoculate virus through a mucosal route. Peripheral blood was collected weekly in 269 

the first 4 weeks post inoculation (wpi) and once every 2 weeks thereafter for a total of 16 weeks. 270 

Plasma viral loads (pVL) were quantified using qRT-PCR with strain-specific primers and 271 

probes (Table 2). As expected, pVL in HIV-1SUMA infected mice reached a plateau (~106 copies 272 

/ml) from 2 to 16 wpi (Fig. 2E). Strikingly, all four SIVcpz strains can infect and replicate in hu-273 

BLT mice with similar kinetics to HIV-1, regardless of whether they come from chimpanzee Ptt 274 

or Pts, including SIVcpzBF1167 and SIVcpzMT145, whose viral lineages have not been found in 275 

humans (Fig. 2A-D). Of note, the timing of reaching the pVL plateau for SIVcpzBF1167 was 276 

delayed compared to HIV-1SUMA (p<0.01 at 2 wpi, p<0.001 at 3, 4, 6 wpi) (Fig. 2F).  277 

 278 
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Lymph node tissues were collected after euthanasia at 16 wpi. Using in situ hybridization (ISH) 279 

with 35S labeled strain specific anti-sense probes, we detected viral RNA+ cells in these tissues 280 

from all hu-BLT mice that were infected with each different SIVcpz strain (Fig. 3A, 281 

SIVcpzEK505 infected animal as a representative) as compared with the negative control using 282 

sense probes (Fig. 3B). We found that humanized mice are susceptible to all 4 divergent strains 283 

of SIVcpz infection in vivo, suggesting that SIVcpz strains that have not been found in humans 284 

have the ability to infect human cells, which may generate a HIV-1 like zoonosis. SIVcpz 285 

infected cell types in vivo were determined by using a combination of ISH and 286 

immunohistochemical staining (IHC) and we demonstrated that the majority of detectable 287 

SIVcpz infection occurs in CD4+ T cells for all studied SIVcpz strains (88.64+1.89%, Table 3) 288 

(Fig. 3C & D, SIVcpzBF1167 infected animal as a representative, blue arrows), and some of 289 

detectable SIVcpz infection occurs in macrophages (12.88+1.91%, Table 3) (Fig. 3E & F). The 290 

infected cell types are similar among 4 strains of SIVcpz infected hu-BLT mice,  which is 291 

consistent with HIV-1 infection in humans (20).  292 

 293 

The cross-species transmissibility of 4 divergent strains of SIVcpz viruses to humans. 294 

Because SIVcpzMT145 (Ptt) and SIVcpzBF1167 (Pts) inferred descendant viruses have not 295 

been found in humans, our hypothesis is that different SIVcpz strains have diverse cross-species 296 

transmissibility to infect humans. We first sought to normalize the inoculum of the 4 SIVcpz 297 

strains and HIV-1SUMA. Since a dose based on IU or TCID50 may be biased due to the human-298 

origin indicator cells, we used reverse transcriptase activity to normalize the dose of inoculum 299 

(19). We then reduced the inoculation dose to 0.52 RT units, which is significantly lower (9.42 300 

fold reduction of IU on average) than the high-dose inoculum we used in initial infections of hu-301 
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BLT mice. We inoculated hu-BLT mice with a repeated, low-dose of SIVcpz through the IP 302 

route. Hu-BLT mice were divided into 5 groups (n=5 or 6 for each group, Table 1), from which 303 

each mouse was inoculated with each respective virus strain. Plasma VL was measured at 2 and 304 

4 wpi to determine infection status. If pVL was negative at 4wpi, the animal was considered 305 

uninfected and re-inoculated followed by pVL measurement until all animals were demonstrably 306 

infected. The Kaplan-Meier plots for conversion to infected status for each SIVcpz group were 307 

compared to the HIV-1SUMA group to quantify the barrier of cross-species transmission for each 308 

strain. There are significant differences in the number of inoculations needed for infection 309 

between SIVcpzMT145 (Fig. 4C) and SIVcpzBF1167 (Fig. 4D) compared with HIV-1SUMA 310 

(P=0.0495 and P=0.0027 respectively). Although differences are not significant, SIVcpzMB897 311 

(Fig. 4A) and SIVcpzEK505 (Fig. 4B) required a higher number of inoculations than HIV-1SUMA 312 

to infect all of the hu-BLT mice (P=0.3613 and P=0.3173 respectively). We then tested the 313 

differences between SIVcpz strains in the number of inoculations needed for infection. There are 314 

significant differences between SIVcpzMB897 and SIVcpzBF1167 (P=0.0076) as well as 315 

between SIVcpzEK505 and SIVcpzBF1167 (P=0.0131); however there are no significant 316 

differences between SIVcpzMB897 and SIVcpzEK505 (p=0.9818) or between SIVcpzMT145 317 

and SIVcpzBF1167 (p=0.7317).  Thus, the cross-species transmission barriers of different 318 

SIVcpz strains  are correlated with their phylogenetic distance to HIV-1/M (Fig. 1). Our study 319 

revealed that the different cross-species transmission barriers of SIVcpz play an important role in 320 

determining the establishment and spatial dissemination of pandemic HIV-1. It is also plausible 321 

that the different cross-species transmission barriers of SIVcpz may have also impacted the 322 

efficiency of initial human-to-human transmission. 323 

 324 
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Mutations of SIVcpz in vivo. It has been proposed that viral adaptation was required to 325 

overcome host specific innate restriction factors found between chimpanzees and humans (29-326 

32). To assess the in vivo mutations of SIVcpz, we sequenced the major viral genes (gag, pol, 327 

and env) at 14 wpi of SIVcpzMB897 and SIVcpzBF1167 in hu-BLT mice. The following criteria 328 

were used to identify each significant mutation: nucleotide (nt) changes had to be 329 

nonsynonymous, resulting in the same amino acid change for all sequenced animals and the 330 

average nt substitution rate from all sequenced animals had to be above 20%. We did not find 331 

any cross-animal mutation in gag or pol that accumulated more than 10% on average at 14 wpi 332 

compared with the inoculum. However, as shown in Fig. 5A, next-generation sequencing (NGS) 333 

of SIVcpzMB897 env gene revealed a consistent G to A change at position 1231 (24.45% on 334 

average) and 1237 (53.53% on average) in two sequenced animals as compared with sequences 335 

in the inoculum. The detected nt changes correspond to G411R and G413R, respectively. As 336 

shown in Fig. 5B, NGS of SIVcpzBF1167 env gene revealed a consistent T to A/G change (A/G 337 

is synonymous) at position 840 (41.20% on average) and an A to G change at position 1129 338 

(58.23% on average) in all three sequenced animals. The detected nt changes correspond to 339 

H280Q and Q380R, respectively. We also checked whether the observed SIVcpz mutations exist 340 

in HIV-1 Env, as shown in the mutation sequence logos (Fig. 6), we found that all the mutated 341 

amino acids exist in HIV-1, three of them are absent in SIVcpz (SIVcpz BF1167 H280Q and 342 

Q380R；MB897 G413R). For the SIVcpz BF1167 H280Q mutation, Q is absent in SIVcpz but 343 

present in HIV-1 with low frequency.  Similarly, for the mutation Q380R, R is absent in SIVcpz 344 

but present in HIV-1 with low frequency.  For the MB897 G411R mutation, R is present in both 345 

SIVcpz and HIV-1; for the MB897 G413R mutation, R is absent in SIVcpz but present in HIV-1. 346 

 347 
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Since SIVcpz Env 3D structures are not available, the locations of these mutations were mapped 348 

to the corresponding position on the HIV-1 gp160 trimer (Fig. 5C). The G411R, G413R, H280Q, 349 

and Q380R mutations were located at the interface between gp41 and gp120, adjacent to or 350 

within the CD4 binding loop, respectively (Fig. 5C). The CD4 binding loop of HIV-1 gp120 is 351 

essential for interacting with the primary CD4 receptor during viral entry and a site of 352 

vulnerability for broadly neutralizing antibodies to target (33, 34).  353 

 354 

Previously, it was reported that all known strains of SIVcpz at position Gag 30 encode a Met (M) 355 

or Leu, but many current pandemic HIV-1 strains encode Arg (R) or Lys at that position (35, 36). 356 

Moreover, SIVcpz Gag M30R has a fitness advantage over its wild-type counterpart as observed 357 

in a replication competition assay using human cells and tonsillar explant cultures (35, 36). Thus, 358 

we compared the fitness of Gag M30R mutants of SIVcpzMB897 and SIVcpzEK505 to their 359 

wild-type counterparts in an in vivo competition study. To eliminate the possibility that equal 360 

copy number may have unequal infectious units, an equal infectious units (IU) mixture 361 

competition was also conducted, this was not done in previously reported explant tonsil culture 362 

studies. Four groups of hu-BLT mice (n=3/group) were used (Table 1) and each mouse was 363 

inoculated with an equal copy or equal IU mix of wild type and mutant virus. At 4 wpi, the 364 

SIVcpzMB897 M30R mutant virus was dominant in 5 (3 in equal copy group and 2 in equal IU 365 

group) of 6 animals (Fig. 6A & 6B). Interestingly, one animal showed the opposite selection 366 

(wild-type dominant) after 4 weeks of competition (Fig. 6B). The SIVcpzEK505 M30R mutant 367 

was dominant in all 6 mice (Fig. 6C & 6D). From these in vivo competition assays, we conclude 368 

that the GagM30R mutation confers a fitness advantage over its wild-type counterpart in most 369 
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cases. However, we did not detect this Gag M30R mutation after 14 weeks of infection in the hu-370 

BLT mice; one plausible explanation is this de novo adaptation may need more time.  371 

 372 

A previous report showed that the vpu is also important in the evolution of SIVcpz to HIV-1 to 373 

antagonize tetherin function (31). Thus, we also sequenced the full-length vpu gene of 4 SIVcpz 374 

strain infected hu-BLT mice (n=3/group) at 14 wpi using bulk sequencing. The vpu sequences of 375 

all 12 samples at 14 wpi are identical to the inoculum sequences, which may indicate that the de 376 

novo generation of this adaptation of vpu may also need additional time or the selective pressure 377 

that would have led to those substitutions may not be present in hu-BLT mice.  378 

 379 

In short, using the hu-BLT mice model, our results for the first time clearly demonstrate that hu-380 

BLT mice are susceptible to all studied SIVcpz strains in vivo, including the inferred ancestral 381 

viruses of pandemic and non-pandemic HIV-1 groups M (SIVcpzMB897) and N 382 

(SIVcpzEK505), as well as the strains that have not been found in humans (SIVcpzMT145 and 383 

SIVcpzBF1167). Importantly, the transmissibility of different SIVcpz strains crossing the 384 

interspecies barrier to infect humanized mice is inversely correlated with their phylogenetic 385 

distance to pandemic HIV-1. We also identified in vivo mutations of SIVcpzMB897 (Env G411R 386 

and G413R) and SIVcpzBF1167 (Env H280Q and Q380R) at 14 weeks post inoculation. 387 

Together, our results recapitulated the events of SIVcpz cross-species transmission to humans 388 

and identified in vivo mutations that occurred in the first 16 weeks of infection, providing in vivo 389 

experimental evidence that the origins of HIV-1 are the consequence of SIVcpz crossing over to 390 

humans. This study also revealed that SIVcpz viruses whose lineages have not been found in 391 

humans, although with lower cross-species transmissibility, still have the potential to cause HIV-392 
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1 like zoonosis. Since wild NHPs, especially our closest relatives the great apes, still harbor 393 

many SIV strains, these reservoirs may continue to pose a risk for potential zoonotic outbreak in 394 

humans.   395 
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Figure legends 514 

FIG 1. The phylogeny of SIVcpz, SIVgor and HIV-1. The evolutionary relationship of SIVcpz, SIVgor, 515 

and HIV-1 group M, N, O, and P is based on pol sequences, whose coordinates are 3887-4778 on the 516 

HIV-1/HXB2 genome. The viruses used in this study are highlighted in boxes and virus host species are 517 

indicated at the right. The scale bar represents 0.06 amino acid replacements per site. 518 

 519 

FIG 2. SIVcpz pVL kinetics. Plasma VL over the course up to 16 wpi in 5 groups of hu-BLT mice 520 

inoculated with a high-dose of each virus. (A) SIVcpzMB897. (B) SIVcpzEK505. (C) SIVcpzMT145. (D) 521 

SIVcpzBF1167. (E) HIV-1SUMA. (F) Plasma VL kinetics of all 5 groups based on the mean values. 522 

Dashed line indicates the detection limit of pVL. 523 

 524 

FIG 3. SIVcpz RNA+ cells and infected cell types in lymphoid tissues. Representative images of 525 

lymph node tissues of hu-BLT mice at 16 wpi detected using in situ hybridization (ISH) with  35S-labeld 526 

probes (A & B) and a combination of ISH and IHC staining (C-F). Viral RNA+ cells in SIVcpzEK505 527 

infected hu-BLT mouse detected with anti-sense probe (A) or with sense probe as a negative control (B). 528 

The majority of viral RNA+ cells are colocalized with CD4+ T cells (C-D, blue arrows) and some of viral 529 

RNA+ cells are colocalized with macrophages (E-F) in  SIVcpzBF1167 infected hu-BLT mouse.  Viral 530 

RNA+ cells that are not colocalized with macrophages are indicated with red arrows(F). 531 

 532 

FIG 4. Cross-species transmission barrier of SIVcpz. Five groups of hu-BLT mice were inoculated 533 

with a low-dose of SIVcpz or HIV-1SUMA normalized through RT activity (n=5 or 6). The Kaplan-Meier 534 

plots for  conversion to infected status for HIV-1SUMA is in red, SIVcpzMB897 in dark blue (A), 535 

SIVcpzEK505 in light blue (B), SIVcpzMT145 in dark green (C) and SIVcpzBF1167 in light green (D). 536 

P value indicates the significance comparing the two curves, and P<0.05 was considered significant. 537 

 538 
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FIG 5. Env sequencing revealed the mutation of SIVcpz in vivo at 14 wpi. The coverage and depth 539 

(square brackets) of next-gen sequencing of SIVcpzMB897 and SIVcpzBF1167 are shown. The expanded 540 

images highlight the mutation positions and ratios. A in green, T in red, G in orange and C in blue. (A) 541 

SIVcpzMB897 cross-animal mutations at position 1231 & 1237 in hu-BLT mouse 273 and 308. (B) 542 

SIVcpzBF1167 cross-animal mutations at position 840 and 1129 in hu-BLT mouse 480, 482 and 483. (C) 543 

Amino acid mutations mapped to the corresponding positions on HIV-1 Env trimer. GP120 is in light 544 

brown, GP41 is in light grey, the CD4 binding loop in yellow, SIVcpzMB897 G411R & G413R are in 545 

purple, SIVcpzBF1167 H280Q is in green and Q380R is in red. 546 

 547 

FIG 6. The sequence logos for the identified Env AA mutations. For the SIVcpz BF1167 H280Q 548 

mutation, Q is absent in SIVcpz but present in HIV-1 with low-frequency; similarly for the mutation 549 

Q380R, R is absent in SIVcpz but present in HIV-1 with low-frequency.  For the MB897 G411R 550 

mutation, R is present in both SIVcpz and HIV-1; and for the MB897 G413R mutation, R is absent in 551 

SIVcpz but present in HIV-1. Star indicates the original AA in the SIVcpz viruses and arrow indicates 552 

mutated AA in HIV-1 at their corresponding positions.     553 

 554 

FIG 7. Gag M30R mutant and wide-type in vivo competition at 4 wpi. Red circle indicates the 555 

position of Gag 30. (A) SIVcpzMB897 in vivo equal copy competition. (B) SIVcpzMB897 in vivo equal 556 

IU competition. Red line highlighted the only animal with opposite selection. (C) SIVcpzEK505 in vivo 557 

equal copy competition. (D) SIVcpzEK505 in vivo equal IU competition. 558 

 559 
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Table 1. Hu-BLT Mice Used in the Experiments 
High-dose  Virus Infectivity Study 

Animal ID % hCD45+ /(hCD45+ and 
mCD45+ cells) 

%hCD3+ in 
hCD45+  

%hCD8+ in 
hCD45+hCD3+ cells 

%hCD4+ in hCD45+ 

hCD3+ cells 
Experiment 

Group 
272* 67.60 82.60 16.40 80.90 

MB897 
273* 71.70 73.80 17.30 80.40 
299 58.00 48.10 35.80 62.80 
308* 63.50 40.40 22.20 73.50 
316 57.20 30.50 37.70 56.30 
281 85.80 45.10 14.30 82.60 

EK505 
300* 58.80 52.20 20.30 76.30 
310 65.50 23.40 28.70 64.80 
312* 57.30 25.00 35.10 58.60 
314* 86.80 8.67 37.90 42.20 
321* 87.30 66.80 12.90 83.40 

MT145 
331 62.60 68.40 12.50 83.90 
336* 68.40 50.70 13.50 82.40 
337 78.40 54.40 14.40 82.30 
339* 64.70 70.00 13.60 81.70 
480* 85.90 49.00 16.40 82.00 

BF1167 
481 89.20 54.80 15.50 82.70 
482* 80.10 64.40 11.00 85.20 
483* 88.50 57.70 12.80 84.60 
484 84.40 44.70 18.60 79.80 
564 91.70 37.10 21.00 75.70 

SUMA 
565 86.30 46.80 13.90 84.00 
567 94.30 69.70 14.60 83.30 
569 91.60 36.20 14.80 82.40 
570 93.50 33.30 21.30 75.90 

*indicates the animals whose viral genes have been sequenced.
Low-dose Cross-species Transmission Barrier Study

Animal ID % hCD45+ /(hCD45+ and 
mCD45+ cells) 

%hCD3+ in 
hCD45+  

%hCD8+ in 
hCD45+hCD3+ cells 

%hCD4+ in hCD45+ 

hCD3+ cells 
Experiment 

Group 
585 94.40 6.84 39.30 55.50 

SUMA 
587 81.20 30.00 29.90 65.10 
588 92.80 62.90 19.50 77.60 
592 76.80 35.00 28.80 68.60 
593 89.10 49.60 20.30 77.30 
AVG 86.86 36.87 27.56 68.82 
566 80.20 29.40 28.00 69.00 

MB897 

578 87.90 32.40 19.90 76.80 
584 87.40 9.81 48.40 48.20 
590 84.40 49.20 17.20 80.00 
613 80.80 86.90 10.40 88.80 
619 82.60 66.90 11.10 88.10 
AVG 83.88 45.77 22.50 75.15 
581 88.70 11.50 36.10 58.90 

EK505 
586 82.40 85.10 13.40 84.90 
589 89.80 28.30 23.30 72.50 
591 94.80 48.80 23.00 73.50 
597 75.80 38.60 15.50 81.20 
AVG 86.30 42.46 22.26 74.20 
530 54.40 36.20 20.20 76.50 

MT145 
562 79.80 12.90 26.00 69.50 
568 95.80 54.00 13.20 83.20 
574 95.00 47.30 21.60 74.40 
596 82.30 26.80 24.60 72.50 
AVG 81.46 35.44 21.12 75.22 
575 90.60 26.40 18.60 77.70 

BF1167 
594 78.90 50.50 28.30 68.90 
595 88.00 32.30 15.30 82.40 
598 93.50 45.50 19.40 77.50 
599 79.80 13.10 53.00 41.80 
AVG 86.16 33.56 26.92 69.66 

            
M30R in Vivo Competition Study 

Animal ID % hCD45+ /(hCD45+ and 
mCD45+ cells) 

%hCD3+ in 
hCD45+  

%hCD8+ in 
hCD45+hCD3+ cells 

%hCD4+ in 
hCD45+ hCD3+ 

cells 
Experiment 

Group 
494 81.10 27.40 12.50 85.00 

MB897 

492 87.30 42.70 17.00 78.50 
501 86.70 56.80 13.20 84.30 
488 81.20 32.60 14.70 82.90 
487 87.50 45.80 15.60 80.80 
503 91.80 58.30 12.70 84.30 
AVG 85.93 43.93 14.28 82.63 
486 94.30 42.50 12.00 85.30 

EK505 

496 90.80 58.90 10.70 87.50 
500 90.40 21.90 22.50 73.20 
490 87.30 31.20 10.90 86.30 
491 86.00 33.60 11.90 85.80 
504 86.10 62.70 11.10 87.30 
AVG 89.15 41.80 13.18 84.23 
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Table 2.  Primers and Probes Used in This Study

                                                                 Plasma Viral Load 
Virus Strain Forward Reverse Probe 

SIVcpzMB897 GCCTCAATAAAGCTTGCCTGAG GGGCGCCACTGCTAGAGA /56-FAM/CCAGAGTCA/ZEN/CAAATTGGATGGGCACA/3IABkFQ/ 

SIVcpzEK505 GCCTCAATAAAGCTTGCCTTGA GGGCGCCACTGCTAGAGA /56-FAM/CCAGAGTTA/ZEN/CCGAATGGATGGGCACA/3IABkFQ/ 

SIVcpzMT145 GCCTCAATAAAGCTTGCCTTGA GGGCGCCACTGCTAGAGA /56-FAM/CCAGAGTCA/ZEN/CTGAATAGACGGGCACA/3IABkFQ/ 

SIVcpzBF1167 CGCTCAATAAAGCTTGCCTGAG GGGCGCCACTGGTAGAGA /56-FAM/GCGGAATGA/ZEN/GATGGGCACACACTGAT/3IABkFQ/ 

HIV-1 GCCTCAATAAAGCTTGCCTTGA GGGCGCCACTGCTAGAGA /56-FAM/CCAGAGTCA/ZEN/CACAACAGACGGGCACA/3IABkFQ/ 

                                                                    RT Primers
SIVcpzMB897                                                                                    AGGCAAGCTTTATTGAGGCTTAAGCAG 

SIVcpzEK505                                                                                    AGGCAAGCTTTATTGAGGCTTAAGCAG 

SIVcpzMT145                                                                                    AGGCAAGCTTTATTGAGGCTTAAGCAG 

SIVcpzBF1167                                                                                    AGGCAAGCTTTATTGAGCGTTAAGCAG 

                                                                     PCR Primers
                                                     Gag-F Gag-R 

SIVcpzMB897 ATGGGTGCGAGAGCGTCAGTATTAACGGGAG      CTATTCTTGCTGCGACAACGGGTCGTTGCCA 

SIVcpzBF1167 ATGGGTGCGAGAGCGTCAGTATTGAGGGGAG      TCATTGGTCGCTGCCAAAGATGGATTTCAGG 

Pol-F Pol-R 
SIVcpzMB897 TTTTTTAGGGAAAATCTGGCCTCCCCGCAA TTAACTCTCATCCTGTCTATCTGCCAGACAATCATTACC 

SIVcpzBF1167 TTTTTTAGGGAAACGCACCCCCTGGTGGG CTAATCCTCATTCTGTCTATCTGCCACACCACCCGCAC  

Env-F Env-R 

SIVcpzMB897 ATGAAAGTGATGGGGACACAGAGGAGTTGGAAGC TTATAGCAAAGCTCTTTCTAAACCTTGTCTAATTCTTCTAG 

SIVcpzBF1167 ATGAAAATGGCCTTATTAATTGGATGGATCCTGAC TTAGTTTAGAGCAATTTCTAATCCCTGCCTGATTCTAGTTG 

Vpu-F Vpu-R 
SIVcpzMB897 ATGGAAATATTCATAATCTT  CTAATAACCCCTAATAGC  

SIVcpzEK505 ATGTTGTTGCTTATAAAG  TCAGACCCAATTATCTT 

SIVcpzMT145  ATGCAGCTAGAAATTG TCACCAAAACAGGAT 

SIVcpzBF1167 CTGTGGCAATTTTTACA TTACAACAGAAAATAATTGT 
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          Table 3.  SIVcpz Infected Cell Types  
 

SIVcpz 
Colocalization of 
vRNA and CD4+ 

Cells (%) 

Colocalization of 
vRNA and 

macrophages (%) 

MB897 88.95 14.29 

EK505 89.29 10.07 

MT145 90.37 13.85 

BF1167 85.96 13.3 

Mean ± S.D. 88.64 ± 1.89 12.88 ± 1.91 

 

 on July 22, 2016 by U
N

IV
 O

F
 N

E
B

R
A

S
K

A
-LIN

C
O

LN
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2016

	Recapitulating Cross-Species Transmission of SIVcpz to Humans Using Humanized-BLT Mice
	Zhe Yuan
	Guobin Kang
	Fangrui Ma
	Wuxun Lu
	Wenjin Fan
	See next page for additional authors
	Authors


	Recapitulating Cross-Species Transmission of SIVcpz to Humans Using Humanized-BLT Mice

