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a b s t r a c t

Seagrasses can colonize unstructured mudflats either through clonal growth or seed germination and
survival. Zostera japonica is an introduced seagrass in North America that has rapidly colonized mud-
flats along the Pacific Coast, leading to active management of the species. Growth and physiology have
been evaluated; however, there is little information about the factors influencing seed germination. We
examined the effects of storage and induction temperature (10, 15, 20 ◦C) and salinity (0, 10, 20, 30), and
storage period (1.5 and 26 months) on germination of seeds of the seagrass Z. japonica collected from
Yaquina Bay, Oregon, USA. Seed germination at 15 and 20 ◦C was 1.24 times higher than at 10 ◦C. Cumu-
lative seed germination at salinity 0 during the first 28 days was 6.5 times greater than at a salinity of 10;
similarly, initial seed germination at a salinity of 10 was 7.3 times greater than that observed for salinity
20 and 30. The proportion of germinated seeds collected in 2011 and stored for 26 months was 1.24 times
greater than seeds collected in 2013 that were stored for only 6 weeks. Overall average germination rates
were 21.6% and 17.1% for 2011 and 2013, respectively. Our experimental results indicate that salinity
had a much stronger control over Z. japonica germination than temperature, and the long storage period
suggests that Z. japonica is capable of developing a persistent seed bank. We hypothesize that Z. japonica
uses seasonal variations in temperature and salinity to avoid competition between generations favoring
germination under conditions that are not optimal for the growth of mature plants.

Published by Elsevier B.V.

1. Introduction

Seagrass beds are often considered to be primarily clonal;
however, recent work indicates that many species have greater
genetic diversity than would be expected based on clonal growth
(Ruckelshaus, 1996; Reusch et al., 2000; Procaccini et al., 2007;
Hughes and Stachowicz, 2009), highlighting the importance of
sexual reproduction. Recent work has also highlighted the under-
appreciation of seagrass “movement ecology” including the role of
animal vectors, seed dispersal, clones, etc. (Kendrick et al., 2012;
McMahon et al., 2014). Likewise, increased genetic variation has
been linked with increased population resilience and vigor (Hughes
and Stachowicz, 2004; Ehlers et al., 2008; Reynolds et al., 2012).
Despite the potential importance of seeds to the growth and main-
tenance of seagrass populations and genetic diversity, relatively
little work has focused on factors influencing seed banks, dormancy

∗ Corresponding author.
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and germination (Baskin and Baskin, 1998; Orth et al., 2000, 2006;
Jarvis et al., 2014).

In theoretical plant population ecology, successful seed ger-
mination has been described by analogy as the result of passing
through an “environmental sieve” to reach a “safe site” where,
appropriate stimuli and resources trigger germination (Harper,
1977). Seed dormancy can be viewed as an adaptation that gives
a seed time to pass through the environmental sieve and reach a
safe site (Harper, 1977). Likewise, it is fairly well established that
differences between what is beneficial for the parent and what is
beneficial for the offspring lead to “parent-offspring conflict” (sensu
Trivers, 1974). The specific conditions required to break dormancy
(e.g., stratification and stimulation of germination) can be viewed
as a mechanism to minimize competitive interactions (e.g., con-
flict) between successive generations (Ellner, 1986; Schupp, 1995;
Starrfelt and Kokko, 2010). For marine angiosperms, relatively lit-
tle is known about either the stimuli that trigger seed germination
or the mechanisms used to minimize parent-offspring competitive
interactions.
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Fig. 1. Mature fruits of Z. japonica each containing a seed (scale in mm).

In just over 50 years since the discovery of the introduced
seagrass Zostera japonica in Willapa Bay, WA, this species has
spread and is now established from Johnstone Strait and Vancouver
Island in Canada, to Humboldt Bay in northern California (Wyllie-
Echeverria and Ackerman, 2003; Shafer et al., 2014). Z. japonica is
believed to have been unintentionally introduced with aquaculture
products, and occupies previously unvegetated intertidal habitat;
likely mechanisms of propagule transport include avian and human
vectors (see reviews by Shafer et al., 2014; Mach et al., 2014). Recent
research has concluded that Z. japonica is eurythermal with opti-
mal growth at 20 ◦C (Shafer et al., 2008) and a lethal threshold at
35 ◦C (Kaldy and Shafer, 2012). North American Z. japonica popula-
tions have optimal growth at salinity 20 but are euryhaline, even
tolerating daily freshwater immersion (Kaldy, 2006; Shafer et al.,
2011). Based on laboratory studies, vertical zonation patterns are
controlled by temperature not light (Shafer and Kaldy, 2014; Kaldy
et al., 2015). However, factors controlling reproductive biology and
colonization success are poorly characterized. Understanding the
reproductive biology of this non-native seagrass that is rapidly
colonizing unstructured (e.g., unvegetated) mudflat is critical to
developing appropriate management strategies based on ecological
effects (Mach et al., 2014).

The frequency and intensity of reproductive effort varies among
Z. japonica populations from north to south within the species’
range in North America. Near the northern limits of its range
in British Columbia, Z. japonica is considered to be an annual or
short-lived perennial and rarely over-winters; new populations are
initiated each year from seed produced the previous year (Harrison,
1979, 1982a, 1982b; Harrison and Bigley, 1982). In Canada, flower-
ing shoots begin to appear in May, with peak flowering occurring in
late July and August (Harrison, 1979; Bigley, 1981; Harrison, 1982a,
1982b; Ruesink et al., 2010). In Padilla Bay, Washington, Z. japon-
ica flowering shoots were observed in late June (Shafer, 2007). A
Yaquina Bay, OR population of Z. japonica was perennial, persist-
ing throughout the year; flowering began in July, reached a peak in
September–October, and continued into December (Kaldy, 2006).
Recent work concluded that disturbance can increase Z. japonica
flowering (Park et al., 2011).

Z. japonica inflorescences consist of a one-sided spadix with 4–7
female flowers and 4–5 male flowers (den Hartog, 1970; Bigley,
1981). Seeds develop from ovules produced within an ovary, which
when mature becomes the fruit. In many seagrasses, both seed
and fruit are closely associated, comprising a single entity at the
time of dispersal. Z. japonica fruits (Fig. 1) are reddish-brown in
color, with a thin pericarp (den Hartog, 1970). Seeds are ellipti-
cal, ranging between 1.9 and 2.6 mm in length (Wyllie-Echeverria
et al., 2006); the testa is dark brown, smooth, and shiny with fine
striations (Bigley, 1981).

Although, seeds are likely to play an important role in the
establishment and spread of Z. japonica along the Pacific coast of
North America, relatively little is known about the factors that con-
trol germination or seedling establishment. The climate of Pacific

Northwest coastal estuaries is characterized as Mediterranean,
with warm, dry summers and cool wet winters (Emmett et al.,
2000; Lee and Brown 2009). This climate, coupled with Z. japon-
ica colonization at high elevation in the intertidal zone (+1 to +
2.3 m MLLW) where they are periodically exposed to air during
low tide, results in plants that are subject to extreme thermal
and salinity variations. We postulate that winter temperatures
provide cold stratification and subsequent precipitation induced
low salinity stimulates germination while the return to marine
salinity favors seedling development. Consequently, temperature
and salinity cues may be important triggers for Z. japonica seed
germination. Although Z. japonica seed germination in Japan is
known to be strongly influenced by cold stratification (e.g., artificial
cold exposure to mimic winter) and induction temperature (Abe
et al., 2009; Morita et al., 2011), those experiments did not address
salinity effects. Additionally, reviews highlighting factors known to
influence seagrass seed germination call for further evaluation of
the role of salinity in breaking dormancy (Orth et al., 2000, 2006).
Therefore, we were specifically interested in the roles of temper-
ature, salinity and their interaction in regulating Z. japonica seed
germination. We tested the role of seasonal exposure to low salin-
ity conditions in stimulating Z. japonica seed germination, which
may reduce inter-generational competition. Since seagrasses in the
genus Zostera are generally believed to have a transient (<1 year)
rather than a persistent (>1 year) seed bank (Orth et al., 2000,
2006; Jarvis et al., 2014), we also evaluated the potential longevity
of Z. japonica seeds in storage as a proxy for potential seed bank
longevity. To complete this work, we used previously established
protocols optimized for aquatic plants to assess seed germination
success (Ailstock et al., 2010).

2. Methods

2.1. Seed collection and processing

Protocols for seed collection, processing, storage, and statistical
analysis were similar to those described in Ailstock et al. (2010).
In August 2011 and September 2013, reproductive and vegetative
Z. japonica leaf material was collected by hand from the Sally’s
Bend portion of the Yaquina Estuary in Newport, OR (44.627 N Lat.,
124.013 W Lon.), leaving the rhizome and root structures in place.
Environmental characteristics were similar to previous descrip-
tions (Kaldy, 2006; Lee and Brown, 2009). No attempt was made
to separate reproductive shoots (with flowers and seeds) from
vegetative material. Reproductive structures in the collected leaf
material occurred in various stages of development and ranged
from immature flowers to stalks from which mature fruits had
already detached. Leafy material was placed in coolers and trans-
ported to the lab for processing within 2 h of collection.

Processing was defined as the method of isolating the mature
fruits from the stems and other less developed reproductive struc-
tures (Raghavan, 2000; Benech-Arnold and Sanchez, 2004). In the
lab, plants were rinsed with seawater over a 1 mm sieve to remove
excess sediment and epiphytes. Plants were then placed into two
tanks (90 cm × 60 cm × 60 cm) with flowing seawater from Yaquina
Bay and aerated vigorously to prevent anoxia. Saturating light
levels were provided to plants in order to support developing
embryos with maternal photosynthate. Photosynthetically active
radiation (PAR; 400–700 nm �) was measured using a LI-1400 dat-
alogger and LI-192 cosine corrected underwater sensor (LI-COR,
Lincoln, Nebraska, USA). In 2011, PAR was supplied by 1000 W
metal halide lamps (400 �mol photons m−2 s−1), while in 2013
PAR was provided by LED lights (∼200 �mol photons m−2 s−1).
Each LED panel contained 119 diodes in a 6:1:1:1 ratio of red
(660 nm �), blue (465 nm �), orange (620 nm �), and white
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(6000 k) diodes. Z. japonica is photosynthetically saturated at
about 80–160 �mol photons m−2 s−1 with no evidence of photo-
inhibition at irradiance up to 800 �mol photons m−2 s−1 (Shafer
and Kaldy, 2014). The light:dark cycle was 12:12 in both years.
Seeds were allowed to mature and settle to the bottom of the tanks
for 2–3 weeks. Floating leaf material was removed and discarded,
while seeds and accumulated detritus were siphoned out of the
tank and retained. Siphoned materials were passed over a 4 mm
sieve to remove large debris, while seeds and detrital material
retained on a 0.5 mm sieve were held for further processing. Fine
detrital material was separated from the Z. japonica seeds by “win-
nowing”. Water was added to the seed slurry in a 1 l beaker, agitated
and the dislodged detritus was poured off with the supernatant.
This process was repeated until only seeds remained. Subsequently,
seeds were held in flow through seawater with vigorous aeration
until shipment. Z. japonica seeds were shipped cold via overnight
courier from Oregon to the laboratory in Maryland.

All seeds were stored in the dark at 4 ◦C at a salinity of 34 (Hawai-
ian Marine Salts, Houston, Texas) without aeration until initiation
of germination tests. Volume and salinity were adjusted monthly as
needed, but there was no complete water exchange during storage.
Seeds collected in 2011 were stored for a period of 26 months prior
to testing; prematurely germinated and rotten seeds were culled
prior to germination testing. Seeds collected in 2013 were stored
for a period of 6 weeks prior to testing. For the 2011 seed collection,
seed germination in storage was assessed at intervals of 6 and 14
months.

2.2. Germination tests

Germination tests were initiated in November 2013. Germina-
tion was explicitly defined as the emergence of the cotyledon from
the seed coat; while dead/rotten seeds were characterized as soft
and yielding to pressure. Seeds were removed from storage and
placed in plastic Petri dishes containing 30 ml of de-ionized water
adjusted to initial test salinities (0, 10, 20, and 30). To examine
the effect of induction temperature on seed germination, repli-
cate plates were incubated in water adjusted to test salinities as
described above at temperatures of 10, 15, and 20 ◦C. Five replicate
Petri dishes containing 50 seeds each (n = 250 seeds) were exposed
to each combination of induction salinity and temperature for a
period of 28 days. Induction temperatures were selected to simu-
late the range of temperatures observed during the time of release
from the plants (Kaldy, 2006). Petri dishes were incubated on a
12:12 light:dark cycle at 70 �mol photons m−2 s−1 photosyntheti-
cally active radiation (PAR). The number of germinated Z. japonica
seeds in each replicate dish was counted at intervals of 7, 14, 21, and
28 days. This will be referred to as the initial germination period.

At the end of the initial germination period (day 28), all decayed
and germinated seeds were removed, and the number of remaining
seeds in each replicate Petri dish was counted. The liquid in each
Petri dish was removed, seeds were blotted dry, and placed in clean
dishes containing 30 ml of de-ionized water. Plates were incubated
under the conditions described previously. The number of germi-
nated Z. japonica seeds in each replicate dish was counted after
35, 42, 49, and 56 days. This will be referred to as the secondary
germination period. The secondary germination period was used
to evaluate germination in response to the simulation of winter
field conditions associated with precipitation events and reduced
salinity.

2.3. Data analysis

The number of germinating seeds in each treatment repre-
sents count data, which obey the Poisson distribution (Freund
and Wilson, 1993). For the Poisson distribution, the mean and the

variance are equal; hence, as the mean increases so does the vari-
ance, thus violating the assumption of homogeneity of variances
required for traditional linear models (Zar, 1996). Poisson regres-
sion techniques are well-suited for the analysis of relationships
between an observed count (e.g., numbers of germinating seeds)
and a set of explanatory variables (Koch et al., 1986). If the total ini-
tial number of seeds is N, the mean germination rate can be modeled
as: log (�/N) = ˛ + xˇ, which can be rearranged as � = N e˛exˇ.

Poisson regression modeling techniques were applied to estab-
lish the relationships between cumulative germination of Z.
japonica seeds over time and various parameters, (e.g., collection
date, induction temperature and salinity). The same technique
was also applied to examine the effect of treatment conditions
on the numbers of ungerminated (rotten) seeds. If the main
effects were significant, linear contrasts and incidence ratios were
used to provide estimates of the differences in seed germination
between levels of the main effects. Incidence ratios are estimated
by exponentiating the coefficients of the Poisson model or by
exponentiating the value of linear contrasts of the main-effects
coefficients in the effects model (Stokes et al., 2000).

3. Results

3.1. Seed germination in storage

After 6 months of cold (4 ◦C) storage in the dark at a salinity
of 34, germination of Z. japonica seeds collected in 2011 was rela-
tively low (9%). However, after 14 months of continuous exposure
to the storage conditions, more than half (52%) of the seeds had
germinated; suggesting that a portion of the seed appears to be
capable of germinating under low temperature and high salinity
conditions. Germinated seeds were discarded, and the remaining
un-germinated seeds were used for subsequent germination tests.
Germination of seeds collected in 2013 was not noted during the 6
week storage period prior to testing.

3.2. Initial seed germination (day 1–28)

The Poisson regression model predicting the cumulative num-
ber of Z. japonica seeds germinating as a function of collection date
was not significant (Table 1), indicating that there were no dif-
ferences in the germination of seeds collected in 2011 and 2013.
Because year was a blocking factor, the model effects can be inter-
preted directly.

Table 1
Results of the poisson regression analysis of Z. japonica seed germination and inci-
dence of rotten seeds as a function of collection year, induction temperature and
salinity.

Effect tests DF Chi-square Probability > chi-square

Initial germination period (days 1–28)
Year 1 2.067 0.151
Temperature 2 9.844 0.007
Salinity 3 469.370 <0.0001
Temperature × salinity 6 14.830 0.022

Secondary germination period (days 28–56)
Year 1 30.513 <0.0001
Temperature 2 39.888 0.0002
Salinity 3 85.790 0.0885
Temperature × salinity 6 67.085 <0.0001

Incidence of rotten seeds after 28 days
Year 1 19.468 <.0001
Temperature 2 2.434 0.2962
Salinity 3 9.884 0.0196
Temperature × salinity 6 14.028 0.0293
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Fig. 2. Mean cumulative numbers of Z. japonica seeds germinating as a function of induction salinity and temperature. Fruits were harvested in the summer of 2011 and
2013 and stored at 4 ◦C at a salinity of 34 prior to testing. Germination tests consisted of 5 replicates of 50 mature fruits each for each treatment combination, incubated for
8 weeks under a 12 h:12 h light:dark cycle (70 �mol/m2/s−1 photosynthetically active radiation (PAR)). Error bars indicate standard error of the mean.

The data analysis further indicates that there were significant
differences observed between temperature levels, salinity levels
and their interaction term (Table 1). Examination of the interac-
tion profiles revealed a pattern of orderly interactions, e.g., the
means for the levels on one factor remain the same even though
the magnitude of the differences between the level of the second
factor may change from level to level of the first factor (Ott and
Longnecker, 2001). Ott and Longnecker (2001) state “When the
interaction is orderly, a test on main effects can be meaningful; a
disorderly interaction can obscure the main effects.” Hence, in this
case, the main effects can be interpreted; the main effects of both
temperature and salinity were significant (Table 1). The proportion
of seeds that germinated was higher at 15 and 20 ◦C than at 10 ◦C
(Fig. 2). The average percent germination for the three temperature
levels was 14.1%, 19%, and 18.1%, for 10, 15, and 20 ◦C, respec-
tively. The incidence ratios computed from the contrasts indicate
that seed germination during the first 28 days at 15 ◦C was 1.24
times greater than at 10 ◦C; there were no differences in seed ger-
mination between 15◦ and 20 ◦C, when all other factors were held
constant.

The number of germinated seeds decreased with increasing
salinity (Fig. 2). The average germination rates were 55.3%, 10.2%,
1.8%, and 0.73%, for salinity levels of 0, 10, 20, and 30, respec-
tively. The incidence ratios computed from the contrasts indicate
that cumulative seed germination at salinity 0 during the first 28
days was 6.5 times greater than at a salinity of 10; similarly, ini-
tial seed germination at a salinity of 10 was 7.3 times greater
than that observed for the average of the 20 and 30 salinity lev-
els.

The number of rotten seeds found at the end of day 28 was
significantly different depending on the year in which they were
collected (Fig. 3; Table 1). Seeds collected in 2011 had significantly
fewer rotten seeds compared to the seeds collected in 2013; likely
because seeds that had rotted or prematurely germinated during
storage were removed prior to germination tests. Because the inter-
action term was disorderly, a series of contrasts were performed
to compare treatments. At all temperatures, the number of rotten
seeds observed after day 28 was significantly larger in freshwater
treatments than in the non-freshwater (salinity) treatments (Fig. 3).
At 10 ◦C, the number of rotten seeds in freshwater was 1.95 times
greater than that observed at salinity 10, 20 and 30, which were
similar. The same pattern was observed for the 15 ◦C treatment
level; at 15 ◦C the number of rotten seeds observed in the fresh-
water treatment group was 1.91 times greater than that observed
in the salinity treatment groups (Fig. 3). At 20 ◦C, not only did the
freshwater group display the largest number of rotten seeds, but
there were significantly greater numbers of rotten seeds in the
salinity 10 treatment than in the salinity 20 treatment. At all tem-
peratures, there was insufficient evidence to detect differences in
the number of rotten seeds after day 28 between the 20 and 30
salinity treatments (Fig. 3).

3.3. Secondary seed germination (day 28–56)

In contrast to the first germination period, the effect of year was
highly significant during the second germination period (Table 1).
Because year was a blocking factor, the model effects can be inter-
preted directly. The average germination rates were 21.6% and
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Fig. 3. Mean (± se) dead/rotten Z. marina seed counts as a function of temperature
and salinity treatments after 28 d.

17.1% for 2011 and 2013, respectively. The proportion of germi-
nated seeds collected in 2011 and stored for 26 months was 1.24
times greater than seeds collected in 2013 that were stored for only
6 weeks.

During the secondary germination period (day 28–56), when all
seed lots were exposed to fresh water, there was little increase
in the total number of germinated seeds in the initial freshwa-
ter treatment (Fig. 2). However, there were dramatic increases

in the number of germinated seeds in those that had previously
been exposed to higher salinity conditions (Fig. 2). Due to the non-
orderly nature of the highly significant temperature and salinity
interaction effect (Table 1), the main effects were not interpreted
and a series of linear contrasts were used to compare treatments.
Germination of seeds that were exposed to fresh water for the first
28 days was significantly lower than seeds that had been placed in
salinity 10, regardless of temperature. At 15◦ and 20 ◦C, seeds that
were exposed to salinity 20 for the first 28 days exhibited 30–40%
higher germination than seeds that had been exposed to salinity
10. For all temperatures, there were no differences in seed germi-
nation between seed lots that were exposed to salinities of 20 and
30 for the first 28 days.

4. Discussion

Although the germination ecology of a few seagrass species has
been studied, it appears that about half of them have seeds that are
not dormant at maturity (Baskin and Baskin, 1998 Orth et al., 2000).
Of those seagrasses whose seeds exhibit some form of dormancy,
most are thought to be physiological dormant (Baskin and Baskin,
1998; Orth et al., 2000, 2006). Physiological dormancy in Zostera
marina may be broken by warm or cold stratification treatments,
depending on where the seeds were collected (Baskin and Baskin,
1998; Orth et al., 2000). In contrast, Zostera noltii does not appear to
exhibit seed dormancy (Alexandre et al., 2006). Most mature seeds
of Z. japonica appear to have a physiological dormancy which may
be overcome by cold stratification under normal in situ conditions.
In British Columbia, Z. japonica seedlings appear in March (Bigley,
1981; Harrison, 1982b). Freshly collected Z. japonica seeds from
Japan exhibited low germination rates when placed in seawater
at 10–23 ◦C without cold pre-treatment; subsequent exposure to
fluctuating temperatures stimulated germination (Abe et al., 2009;
Morita et al., 2011). However, a small proportion of the seeds may
be non-dormant when shed and are capable of germinating in the
absence of cold stratification, particularly under low salinity con-
ditions (Morita et al., 2011).

We observed fairly high levels of Z. japonica seed germination
(up to 60%) under experimental conditions, which compares well
with field observations indicating that a maximum of 45–57% of
new shoots develop from seed (Ruesink et al., 2010). Germination
of Z. japonica seed was inhibited at salinities of 20 and above, but
germination resumed when seeds were placed in distilled water
(Bigley, 1981; this study). Stimulation of seed germination by fresh
or low salinity water is well known for a variety of Zostera species
(Hootsmans et al., 1987; Orth et al., 2000). The effect of salinity on
seed germination may also be influenced by the seed’s dormancy
state at the time of testing. For example, cold stratified seeds of
Z. marina show increased ability to germinate at high salinities
(Hootsmans et al., 1987; Harrison, 1991), which may explain the
high rates of premature germination in storage for seeds collected
in 2011 observed in this study. In contrast to some terrestrial seeds
which are stimulated by red light, the exposure of plants and seeds
to red dominated light field in 2013 did not result in premature
germination.

Our results suggest that seasonal pulses of cold temperatures
coupled with low salinity may stimulate Z. japonica seed germi-
nation. This conclusion is supported by a recent 2 year study that
reported finding Z. japonica seedlings only during the winter wet
season at six sites in Yaquina Bay, OR, USA (Henderson, 2014).
However, prolonged exposure to freshwater is likely to result in
increased incidence of rotten seeds and poor subsequent seedling
survival. Consequently, it would appear that optimum conditions
for Z. japonica seed germination consist of cold temperature stratifi-
cation with brief pulses of low salinity (<10) conditions followed by
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a gradual return to higher salinity conditions that favor the devel-
opment of seedlings and adult plants. This is similar to estuarine
salinity dynamics following significant storm events during the wet
season in Oregon coastal systems. Because Z. japonica occupies the
high intertidal (Shafer et al., 2014), precipitation falls directly on
Z. japonica beds exposed at low tide during the winter wet season
(J. Kaldy personal observation). Flooding from storm events in the
watershed can reduce salinity in Yaquina Bay to near zero and have
been shown to influence oyster survival (Burt and McAlister, 1959).
Loques et al. (1990) also observed that although germination of Z.
nolti seeds was greatest at a salinity of 1, the highest initial survival
was exhibited by those germlings that germinated and developed
at a salinity of 10. We suggest that the combination of cold strat-
ification combined with the low salinity germination stimulation
effectively acts as an indicator that a “safe site” for germination
has been reached after passing through an “environmental sieve”
(sensu Harper, 1977; Orth et al., 2003). The subsequent return to
higher salinity conditions would likely favor establishment and
maturation of recently germinated seedlings.

The contrasting salinity conditions that favor seed germina-
tion and subsequent development of the seedling to the adult
stage suggests that these plants may exploit seasonal variations to
minimize competitive interactions (e.g., conflict) between succes-
sive generations. Plant population ecologists recognize the role of
parent-offspring conflict as an important force shaping the recruit-
ment of new individuals to populations (Uma Shaanker et al., 1988).
These conflicts imply that there are differences between what is
beneficial to a parent and what is beneficial to an offspring (Uma
Shaanker et al., 1988; Schupp, 1995). Within-individual conflicts
can also occur when conditions that favor one life history stage
are disadvantageous for another stage; however, this concept has
received little attention (Schupp, 1995). Patterns of differential
patch or environmental suitability can be described as a continuum
from fully concordant to fully discordant. Fully discordant describes
the case where the environment most suitable for the seed is the
least suitable for seedling success (Schupp, 1995). The greater the
extent of discordance, the greater the level of seed-seedling con-
flict. We suggest that the contrasting salinity conditions that favor
Z. japonica seed germination and subsequent development of the
seedling to the adult stage is an example of discordant habitat suit-
ability and that it effectively minimizes parent-offspring conflict
(Ellner, 1986; Schupp, 1995; Starrfelt and Kokko, 2010). Further
research is recommended to determine the conditions that pro-
mote optimum survival and development of seedling stages of Z.
japonica.

The results of this study have important implications for
resource managers in North America who are engaged in programs
to control or remove this non-native species. Seagrasses in the
genus Zostera are generally thought to have a transient (<1 year)
rather than a persistent (>1 year) seed bank (Orth et al., 2000; Jarvis
and Moore, 2010; Jarvis et al., 2014). However, Z. noltii in Germany
has been shown to have a persistent seed bank for at least 2–3 years
(Zipperle et al., 2009). Recent work demonstrated that under labo-
ratory storage conditions, about 30 % of Z. marina seeds remained
viable after 3 years of storage as determined by vital staining meth-
ods, but only 15% of seeds actually germinated after this extended
storage period (Dooley et al., 2013). The results presented here indi-
cate that Z. japonica seeds can remain viable in storage for at least
26 months, suggesting that they may be capable of developing a
persistent seed bank in situ. This inference is supported by Bigley
(1981) who found that 75% of “old seed” (obtained from the top
20 cm of sediment) was still viable after almost a year in storage at
5 ◦C and salinity 27. Additionally, he noted that seed bank Z. japon-
ica germination primarily occurred at sediment depths of 4–7 cm
during the March–June time frame. If Z. japonica is capable of devel-
oping a persistent seed bank in situ, then management strategies

aimed at control or removal of existing populations may need to
be continued for several years to prevent re-establishment of new
populations from existing seed banks.

We theorize that, there may be several patterns in the genetic
structure of Z. japonica in North America. First, we would expect
genetic analysis to reveal high levels of diversity within a pop-
ulation given the apparently heavy reliance on seed production
(Kendrick et al., 2012). Although Kaldy (2006) documented low
flowering rates in Yaquina Bay, this may have been biased by
limited spatial sampling or interannual variability; more recent
work appears to suggest larger reproductive events at some sites
within the Yaquina estuary (Henderson, 2014). Secondly, if latitu-
dinal patterns in the proportion of flowering hold true (e.g., annual
populations in BC, perennial, low flowering in Oregon) then we
might expect a North–South gradient in the degree of genetic diver-
sity. Thirdly, based on work done with other species (Hughes and
Stachowicz, 2004; Ehlers et al., 2008; Reynolds et al., 2012) we
might expect that high genetic diversity in Z. japonica would cause
these beds to be resilient to environmental perturbations and may
promote continued population expansion in the region (Kendrick
et al., 2012).
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