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Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs
(small RNAs) that are 20–24nt in length and predominantly
repress gene expression at post-transcriptional levels. They
regulate many biological processes including development,
metabolism and physiology. Numerous studies have revealed
that the steady-state levels of miRNA are under sophisticated
control to ensure their proper function. In this review, we
summarize recent advances on regulation of miRNA processing
and stability in plants.

Plants use multiple mechanisms to refine gene expression in order to
maintain their normal development and physiology. miRNAs are repressors
of gene expression in plants. They associate with and guide the Agronaute
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(AGO) protein to cleave and/or inhibit translation of mRNAs containing

their complementary sequences. Since first isolated in 2002,1-3 hundreds of
plant miRNAs have been identified. Some miRNAs are highly conserved

among different plant species.4 These miRNAs regulate the expression of
hundreds of genes, most of which are transcription factors involved in
various biological processes such as development, metabolism and plant

responses to biotic and abiotic stresses.5,6

miRNAs are derived from primary transcripts called pri-miRNAs, which are
encoded by miRNA genes. Many miRNA genes are located in intergenic
regions while a few reside in the introns of host genes. Like mRNAs, pri-
miRNAs are mainly transcribed by RNA polymerase II, which are followed

by 5′ capping, 3′ polyadenylation and/or splicing.7,8 A characteristic feature
of pri-miRNAs is the presence of imperfect stem-loop structure with long
flanking arms (also termed hairpin structure), which can be recognized by

RNase III family enzymes.9 The framework of plant miRNA biogenesis has
been established in model plant Arabidopsis thaliana (Fig. 1A). In
Arabidopsis, RNase III enzyme DICER-LIKE 1 (DCL1) releases miRNA
duplex from pri-miRNAs. The miRNA duplex contains a miRNA strand and

a passenger strand called miRNA*.10 DCL4, a homolog of DCL1, is

responsible for the generation of some miRNAs as well.11 After production,
miRNAs are loaded into AGO1 to form an active RNA-induced silencing

complex (RISC), while the miRNA* is degraded.12-14 RISC formation is an
ATP-dependent process and requires CYCLOPHILIN 40 (CYP40) and

HEAT SHOCK PROTEIN 90 (HSP90)15-17 (Fig. 1A). Studies have
established that miRNA levels depend on the combination effect of
biogenesis, RISC loading and degradation. Due to space limitation, we focus

2



on the regulatory mechanisms on pri-miRNA processing and miRNA turn
over in this mini review.

View larger version
Figure 1. The miRNA pathway in Arabidopsis. A. miRNA
biogenesis. MIR genes are transcribed by Pol II. Like mRNAs,
primary transcripts of miRNAs (pri-miRNAs) are 5′ capped and
3′ polyadenylated. The DCL1 complex recognizes hairpin

structure of pri-miRNA and catalyzes sequential cleavage to release miRNA/miRNA*
duplex. The duplex is then exported to the cytoplasm by HASTY (HST) and loaded into
an AGO1 complex to form a functional RISC complex. HEN1 prevents small RNA
degradation by the addition of a methyl group to the last nucleotide of miRNA/miRNA*
duplex. B. Two ways of pri-miRNA processing in plants. Most pri-miRNAs use a
conical “base” to “loop” processing pathway. Instead, a few pri-miRNAs containing
unusual long stem structure may employ a nonconical “loop” to “base” processing
pathway. C. Autoregulation and feedback regulation of DCL1. DCL1 is required for
miR162 maturation, which in turn guides DCL1 mRNA cleavage to repress DCL1
expression. In addition, DCL1 acts on its own pre-mRNA to produce miR838, resulting
in aberrant DCL1 RNA that fails to produce functional DCL1.

Regulation of Pri-miRNA Processing

DCL1 forms a complex with the dsRNA-binding protein HYPONASTIC
LEAVES1 (HYL1) and zinc-finger protein SERRATE (SE) to process pri-

miRNAs.18-20 HYL1 and SE are required for efficient and accurate

processing of pri-miRNAs.21-25 A majority of pri-miRNAs are first cleaved
by the DCL1 complex to release the stem-loop precursors (pre-miRNAs),
which are further processed by DCL1 to generate the miRNA duplexes

(Fig. 1B).26,27 This conventional “base” to “loop” processing is similar to

those in animals.28 Studies on several miRNAs reveal that a double strand to
single strand transition at 14–17 nt proximal to the mature miRNA:miRNA*

duplex is essential for the accurate processing.26,27,29,30 This stem segment
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is believed to be the docking site for DCL1 to execute a first cut, and then a
second cut is made by measuring 21nt from the first cut. However, pri-

miR159 and pri-miR319 are not processed from “base” to “loop”31,32

(Fig. 1B). Their processing starts with a cut just below the terminal loop,

which is followed by three additional cleavages.31,32 This variation may be

caused by their long upper stem structure.32 In Arabidopsis, like pri-miR159
and pri-miR319, 17 additional pri-miRNAs contain long stem loop structure

and generate two or more miRNAs from the same precursor.33 It is possible
that these precursors may also utilize this non-conical mechanism.

Analysis of pri-miRNA levels using dcl1, hyl1 and se mutants implicates

tissue- and precursor-specific patterning of pri-miRNA processing,34

indicating that the activity of DCL1 complex is regulated.34 The core
component, DCL1 itself is under stringent feedback regulation by one of its

product, miR16235 (Fig. 1C). In addition, DCL1 can act on its own pre-
mRNA to release pre-miR838, which produces nonfunctional DCL1 pre-

mRNA and therefore, regulates the levels of DCL111 (Fig. 1C). The Short
Interspaced Elements-Derived RNAs (SINE RNAs) have been shown to

control the HYL1 activity.36 Because SINE RNAs are structurally similar to
pri-miRNAs, they will compete with pri-miRNAs for HYL1 and therefore
modulate the processing of pri-miRNAs through tissue- or developmental

stage-specific expression.36

The activity of DCL1 is also controlled by factors other than HYL1 and SE.
Gel filtration analysis revealed that the DCL1 complex is about 660kDa in

size, suggestive of the existence of additional components.13 Indeed, the
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RNA-binding proteins DAWDLE (DDL) and TOUGH (TGH) are identified

as DCL1 interacting proteins37,38 (Fig. 1A). DDL is a forkhead-associated
domain-containing protein and is required for the accumulation of

miRNAs.38 DDL interacts with DCL1 and binds pri-miRNA162b in vitro,
supporting its role in facilitating pri-miRNA processing. However, DDL
seems to have additional roles in the miRNA pathway, because pri-miRNA
levels are reduced in ddl while they are increased in dcl1. However, DDL
does not affect the transcription of MIR genes, suggesting that DDL may
stabilize pri-miRNAs. TGH contains a G-patch and a SWAP domain in its
N-terminus, which are often found in RNA binding and/or processing

related proteins.39 TGH binds both pri-miRNAs and pre-miRNAs and

interacts with DCL1, HYL1 and SE.37 Mutation of TGH impairs DCL1

activities in vitro and reduces the accumulation of miRNAs.37 In addition,

tgh-1 reduces the amount of pri-miRNAs in the DCL1 complex.37 These
facts suggest that TGH may promote DCL1 activity and facilitate the
recruitment of pri-miRNAs to the DCL1 complex. Unlike SE and HYL1,
TGH may not contribute to the DCL1 processing accuracy as revealed by

small RNA deep sequencing analysis.37 5′ capping and 3′ adenylation of pri-
miRNA may play important roles for miRNA processing. Disruption of
either 5′ capping or 3′ adenylation in cdkf;1 or cdkd123 mutant,

respectively, leads to the less accumulation of mature miRNAs.40 In
addition, two cap-binding proteins, CBP20/80 have been shown to

participate in pri-miRNA processing.41,42

miRNA Stability Control

After generation, miRNAs are 2’-O-methylated at 3′ terminal ribose by an
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RNA methyltransferase named HUA ENHANCER 1 (HEN1).43 HEN1
methylates 21–24 nt RNA duplexes with 2 nt overhangs but not single-

stranded RNAs (ssRNAs) in vitro.43,44 Crystal structure analyses of HEN1
reveal that the coordinated action of multiple RNA binding domains and the
methyltransferase domain measures the length of the RNA duplex and

determines the substrate specificity.45 In hen1 mutant, miRNAs and small
interfering RNAs (siRNAs, another class of endogenous non-coding small
RNAs represses gene expression) are reduced in abundance and become

heterogeneous in size.46 Furthermore, siRNAs compete with miRNAs for
HEN1 mediated methylation since depletion of siRNAs in weak alleles of

hen1 increases overall methylated miRNAs levels.47 The heterogeneity is
caused by trimming and tailing activities at 3′ ends of the unmethylated

small RNAs, while the 5′ ends are not affected by hen1 mutation.46 Uridine
is preferentially used for the addition of untemplated nucleotides and thus

the tailing process is sometimes referred to as uridylation.46 These results
demonstrate that methylation protects miRNAs and siRNAs from 3′

degradation and uridylation.46 Recently, both forward and reverse genetics
identified HEN1 SUPRESSOR1 (HESO1) as an enzyme uridylating miRNAs

in hen1.48,49 The facts that miRNA abundance is increased in heso1 hen1
and decreased in hen1 overexpressing HESO1 demonstrate that uridylation
promotes degradation. The degradation should be highly processive as no
degradation intermediates is detected in vivo. It’s worth noting that
additional enzyme(s) responsible for miRNA uridylation must exist since
miRNA U-tail is not abolished in hen1 heso1. However, T-DNA mutants of
all other nine putative terminal nucleotidyl transferases failed to rescue
hen1–8 phenotype, indicating that they may only play a minor role and their
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function in miRNA uridylation may be only detectable in the absence of
HESO1. One effective way to test this is to introduce one or more of these
mutations into hen1heso1. Also, a role of HESO1 in HEN1 competent
background is unknown. It is possible that HESO1 acts on some small RNAs
to regulate their stability and/or function. In addition, HESO1 may have
RNA substrates other than small RNAs. In support of these, MUT68, also
encodes a terminal nucleotidyl transferase, has dual roles in adenylating 5′
fragment of target RNA generated by AGO cleavage and uridylating

unmethylated miRNAs in green algae Chlamydomonas reinhardtii.50,51

In hen1, the 3′-to-5′ truncated miRNAs are also observed. Their abundance
is increased in hen1 heso1 relative to hen1. This result suggests that the 3′-
to-5′ trimming activity most likely competes with U-tailing activity for
unmethylated small RNAs. The enzymes responsible for 3′-to-5′ trimming
in hen1 are currently unknown. A potential candidate is the small RNA-
degrading nuclease (SDN), which degrades small RNAs from 3′-to-5′ in

vitro.52 Arabidopsis encodes a total of four SDN family proteins.
Simultaneously knock-down of several SDN genes causes elevated miRNA
levels and pleiotropic phenotypes, demonstrating that SDN has a role in

miRNA turnover.52 Another potential candidate for 3′-to-5′ trimming of
miRNAs is homolog protein of Nibbler. Nibbler catalyzes 3′-to-5′ trimming

of miRNAs in animals.53,54

Future Perspective

The core question in pri-miRNA processing is how DCL1 recognizes and
processes pri-miRNAs precisely and efficiently. Analyses of the detailed
function of DCL1 complex components will help us address this. A
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characteristic feature of DCL1 complex components is their ability of RNA
binding. High-throughput sequencing of RNAs isolated by cross-linking

immunoprecipitation (HITS-CLIP)55 is a powerful tool for the whole
genome identification of binding sites by these proteins. Recent studies have
also uncovered diverse miRNAs modifications and their roles in stability
control. A key challenge in the identification of enzymes in miRNA decay is
that multiple enzymes often function in parallel and/or redundantly. In
addition, some of the decay enzymes may be essential for multiple RNA
degradation and knockout mutants may be non-viable, which makes them
difficult to be discovered. In conclusion, the knowledge on the regulation of
miRNA abundance will undoubtedly increase our ability to manipulate RNA
silence and gene regulation for both agronomic and therapeutic purposes.
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Figure 1. The miRNA pathway in Arabidopsis. A. miRNA biogenesis. MIR genes are
transcribed by Pol II. Like mRNAs, primary transcripts of miRNAs (pri-miRNAs) are
5′ capped and 3′ polyadenylated. The DCL1 complex recognizes hairpin structure of
pri-miRNA and catalyzes sequential cleavage to release miRNA/miRNA* duplex. The
duplex is then exported to the cytoplasm by HASTY (HST) and loaded into an AGO1
complex to form a functional RISC complex. HEN1 prevents small RNA degradation
by the addition of a methyl group to the last nucleotide of miRNA/miRNA* duplex. B.
Two ways of pri-miRNA processing in plants. Most pri-miRNAs use a conical “base”
to “loop” processing pathway. Instead, a few pri-miRNAs containing unusual long
stem structure may employ a nonconical “loop” to “base” processing pathway. C.
Autoregulation and feedback regulation of DCL1. DCL1 is required for miR162
maturation, which in turn guides DCL1 mRNA cleavage to repress DCL1 expression.
In addition, DCL1 acts on its own pre-mRNA to produce miR838, resulting in
aberrant DCL1 RNA that fails to produce functional DCL1.
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