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Advances in Nuclear Magnetic Resonance for Drug Discovery

Robert Powers*
Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE 68588

Abstract
Background—Drug discovery is a complex and unpredictable endeavor with a high failure rate.
Current trends in the pharmaceutical industry have exasperated these challenges and are contributing
to the dramatic decline in productivity observed over the last decade. The industrialization of science
by forcing the drug discovery process to adhere to assembly-line protocols is imposing unnecessary
restrictions, such as short project time-lines. Recent advances in nuclear magnetic resonance are
responding to these self-imposed limitations and are providing opportunities to increase the success
rate of drug discovery.

Objective/Method—A review of recent advancements in NMR technology that have the potential
of significantly impacting and benefiting the drug discovery process will be presented. These include
fast NMR data collection protocols and high-throughput protein structure determination, rapid
protein-ligand co-structure determination, lead discovery using fragment-based NMR affinity
screens, NMR metabolomics to monitor in vivo efficacy and toxicity for lead compounds, and the
identification of new therapeutic targets through the functional annotation of proteins by FAST-
NMR.

Conclusion—NMR is a critical component of the drug discovery process, where the versatility of
the technique enables it to continually expand and evolve its role. NMR is expected to maintain this
growth over the next decade with advancements in automation, speed of structure calculation, in-
cell imaging techniques, and the expansion of NMR amenable targets.
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NMR; Drug Discovery; Structural Biology; Fragment-Based Screening; Metabolomics

1. INTRODUCTION
A troubling decline (Figure 1) has been observed in the productivity and creativity of the
pharmaceutical industry over the last decade [1–5]. This is a complex issue and a number of
factors are contributing to the observed reduction in new drugs approved by the FDA. One
primary cause is the fact that the drug discovery process is a fundamentally challenging
endeavor with a high failure rate and price tag. Estimates indicate that only one new chemical
entity (NCE) out of 25 NCEs identified from active research projects will become a marketable
drug. The corresponding success rate of clinical trials is only 11% [6,7]. The development of
the average drug costs > $800 million dollars [8], where current industrial trends to minimize
these costs are contributing to the decline in new drugs [5].

Because of these high costs, pharmaceutical companies tend to focus their research efforts in
therapeutic areas with potential profits exceeding a billion dollars a year [9]. These tend to be
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chronic diseases that require potentially life-time treatments for a significant percentage of the
population, such as cardiovascular, oncology and central nervous system disorders. The end
result is a concentrated effort in a very few research areas [10] leading to a high-level of
competition, a limited number of new therapies and a number of redundant drugs [11] serving
the same market [12]. Similar efforts to minimize costs also results in a negative impact on the
discovery of new drugs.

The expanding trend of applying traditional business practices to the drug discovery process
is misguided and having the unintended consequence of diminishing output and eliminating
originality [2,3,13,14]. Current methods being applied to reduce cost and increase efficiency
include outsourcing [15,16], metrics [17,18], and limiting the duration of a research project
[19]. This is despite the obvious fact that drug discovery is a complex, highly interdisciplinary
process [20] and inherently unpredictable [21,22]. Treating each component as simply an
independent step in an assembly line protocol [23] clearly undermines the need for routine
interactions and the exchange of ideas between each essential discipline [24]. In drug discovery,
the whole is clearly greater than the sum of the parts where critical breakthroughs and insights
come from the cross-fertilization of ideas and information between separate research groups.
Outsourcing and metrics isolates these groups and places a high priority on inconsequential
book-keeping: number of compounds synthesized, assays run, spectra collected and structures
solved that creates the illusion of accomplishments [2]. Furthermore, placing artificial time-
limits on research projects simply creates an endless cycle of identifying new therapeutic
targets, generating chemical leads and rapidly abandoning a project when the typical challenges
with bioavailability, stability, toxicity and efficacy are encountered. This focus on project
lifetime evolved from the current drug discovery process that is based on high-throughput
screening (HTS) and structure based drug design [25,26].

HTS is an efficient and effective approach for identifying high-affinity binders to protein
targets, but as recent reports have indicated it has not increased the number of successful drugs
[27]. HTS chemical leads are not routinely translated into new drugs because a preponderance
of inhibitors have undesirable modes of action [28,29]. Misleading compounds that lack a
confirmed correlation between functional activity and a direct binding interaction with the
protein target routinely emerge from HTS [30]. These false leads are a significant factor in the
delay or derailment of drug discovery projects, and they may contribute to clinical failures as
well [28–32]. At the onset of a drug discovery program, it is clearly desirable to identify lead
compounds that interact with the therapeutic target in a biologically relevant mechanism. In
this manner, promising chemical leads can be quickly prioritized for more detailed evaluations,
with an anticipated increase in the development of new drugs.

In the era where time is a critical consideration in the success of a drug discovery project,
nuclear magnetic resonance (NMR) has become an integral component of the process [33–
35]. The diversity of NMR enables the technique to be applied at multiple stages along the
drug discovery pathway and is addressing some of these self-imposed challenges that are
hindering progress in discovering new therapeutics [36]. NMR is being used for lead discovery
and optimization, evaluating in vivo selectivity and efficacy, analyzing drug toxicity profiles
and identifying new drug discovery targets. Recent advances in NMR technology enable NMR
to rapidly determine protein and protein-ligand structures, to efficiently screen fragment-based
libraries to identify biological relevant ligand interactions and identify new therapeutic targets,
and to monitor changes in the metabolome from biofluids and cell lysates to explore in vivo
drug activity. This review will discuss these recent advancements of NMR for drug discovery.
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2. RAPID PROTEIN STRUCTURES
A high-resolution protein structure is a key requirement to evaluate the biological relevance
of potential chemical leads identified from HTS. Validating that the compound binds
specifically to a functional region of the protein structure dramatically increases the likelihood
the compound can be evolved into a drug. Due to the increasingly limited time available for a
research project to produce an NCE, obtaining a rapid protein structure during the early stages
of the drug discovery project is essential. Despite the prevalent use of x-ray crystallography in
the pharmaceutical industry for determining protein structures, NMR and x-ray should be
viewed as complimentary techniques with limited redundancies [37,38]. Recent statistical
analysis indicates that ~20–40% of protein structures determined from structural genomics
may be amenable to analysis by NMR, where a preponderance of protein structures were
determined by NMR only or x-ray only. More importantly, NMR had an equal success rate for
both prokaryote and eukaryote proteins [39], which is an important consideration for drug
discovery.

The application of NMR has also been unnecessarily curtailed because of the general upper
weight limitation of ≤ 25 kDa. Nevertheless, the average domain size for eukaryotic proteins
is ~150 residues or ~17 kDa, which is within the MW range for NMR. Additionally,
advancements in NMR methodology has significantly expanded this upper limit, where the
NMR analysis of large MW complexes are becoming common place: 900kDa GroEL-GroES
complex, 300-kDa cylindrical protease ClpP [40], 95 kDa homotrimeric complex of the
acyltransferase protein [41], 82.4 kDa of malate synthase [42,43], 69 kDa α1-proteinase
inhibitor Pittsburgh-trypsin covalent complex [44], the 45.3 kDa catalytic domain of human
BACE-1 [45], the 44 kDa nucleotide-binding domain [46], the 486 kDa TET2 aminopeptidase
protein [47] and the 441 residue tau protein [48], among others. Obtaining these results required
advanced labeling and NMR techniques that includes deuterium labeling [49], selective residue
labeling [50], selective methyl labeling [51] and TROSY-based experiments [52]. This requires
a robust expression system (e.g., E. coli or a cell-free system) to obtain milligram quantities
of various labeled protein for multiple NMR samples [53–56]. Also, it is important to note that
these studies did not yield high-resolution solution structures of the indicated large MW
proteins. Generally, specific insights regarding the structure and dynamics of the proteins or
complexes related to its biological function were obtained. This requires using existing x-ray
structures. Chemical shift perturbations, residual dipolar coupling constants (RDCs) [57] and/
or 13C-labeled methyl probes are typically used to model protein-protein complexes (from
existing NMR or x-ray structures of each monomer), identify protein-ligand interactions or
monitor the dynamics of domain or ligand interactions. Low-resolution structures may also be
obtained from a minimal NOE dataset [58,59] combined with other structural constraints such
as RDCs [57] and pseudocontact shifts [60].

Similarly, significant improvements have been made to increase the throughput of NMR
structure determination. This has occurred, in part, due to the Protein Structure Initiative (PSI)
that has provided the incentive to develop the infrastructure and technology for high-throughput
structure determination [61]. First, robotic systems have been developed for the automated
production of protein samples for both NMR and x-ray [62]. Second, advancements in NMR
pulse sequences and protocols for rapid data collection has shorten the time required to collect
a complete set of NMR spectra for a protein structure. These methods include automated
projection spectroscopy (APSY) [63], G-matrix Fourier transform NMR (GFT-NMR) [64,
65], high-resolution iterative frequency identification (HIFI-NMR) [66], projection-
reconstruction NMR (PR-NMR) [67], and reduced-dimensionality NMR (RD-NMR) [68,69].
The primary goal of these methods is to reduce the dimensionality of traditional multi-
dimensional triple resonance experiments, and thus shorten the acquisition time, by joint
sampling of multiple chemical shifts in a single indirect dimension. Generally, a series of low-
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dimensional NMR spectra are collected that are either linearly combined or used to reconstruct
the desired higher-dimensionality spectrum. A general concern with reduced dimensionality
experiments is the potential loss of information or resolution by projecting n indirect
dimensions into a 2D spectrum. The encoding of multiple chemical shifts within a single
resonance results in peak multiplicity with distinct phasing. As the size of the protein increases,
peak overlap and the canceling of anti-phase peaks becomes an issue. Of course, reduced
dimensionality experiments have been successfully applied to proteins with MW up to 20 kDa
[64].

An alternative approach to reduce the acquisition time of multidimensional NMR experiments
for protein structure determination is the application of sparse data collection or non-uniform
sampling (NUS) [70–72]. The major factor that contributes to the long (~1–3 days) acquisition
times for typical triple resonance experiments is the requirement to collect a uniform series of
data points to properly represent the free induction decay (FID) along each indirect dimension
of the multidimensional experiment. Even for a 3D experiment with modest resolution
(512×128×32 complex points), the complete matrix of FIDS expands exponentially. The
uniform sampling of each FID is necessary for the discrete fast Fourier transformation (FFT)
algorithm to correctly convert the NMR data from the time-domain to the frequency domain
for further analysis. But, acquiring the complete FID matrix overly defines the system and
unnecessarily wastes instrument time and prolongs data collection. A simple solution is to
randomly sample the FID matrix, usually at a >30% sampling rate, with a bias towards the
early time points that have a higher-signal-to-noise [72]. This generally results in a 2- to 3-fold
reduction in acquisition time along each indirect dimension. The incomplete FID matrix is then
processed using non-FFT methods: filter diagonalization [73], maximum entropy techniques
(MEM) [70,74], multidimensional decomposition (MDD) [75,76] or non-linear FT techniques
[77–79]. The use of non-uniform sampling does introduce artifacts in the NMR spectra [71,
80], which includes ridges, aliasing artifacts, baseline artifacts and folding artifacts that may
make it difficult to detect weak signals. The signal to artifact ratio increases as the square-root
of the number of data points and artifacts are minimized using a random sampling scheme
[72].

In addition to reducing the absolute number of FIDs that are collected, the overall experimental
time can also be shortened by decreasing the time required to collect each individual FID
[81]. The SOFAST-HMQC [82] pulse scheme permits the collection of a 2D 1H-15N HMQC
spectrum in a few seconds by dramatically reducing the recycle time and allowing for high
repetition rates. BEST-NMR (Band-selective Excitation Short-Transient) applies the same
general concept within standard triple-resonance pulse sequences [81]. Rapid repetition rates
are obtained by ensuring efficient T1 relaxation during the significantly shortened recycle delay
(50–150 ms) relative to typical recycle delays of 0.75 to 1 second. A further decrease in
experimental times could be gained by combining the BEST-NMR technique with non-uniform
sampling or reduced dimensionality methods.

Third, the development of software for the semi-automated assignment of NMR spectra and
the calculation of protein structures has greatly reduced the time required to generate a NMR
protein structure. A number of software packages exist for the semi-automated assignment of
protein NMR spectra (see [83] for a detailed review). These include: AutoAssign [84], BATCH
[85], GARANT [86], DYNASSIGN [87], GANA [88], MATCH [89], and PISTACHIO [90],
among others. Basically, theses programs implement a set of rules that mimic an expert’s
approach to the analysis of spin-systems from a standard set of triple-resonance experiments
[91]. The spin-systems are then joined by two or more overlapping Cαi, CαHi, C′i, Cβi and
Cαi−1, CαHi−1, C′i−1, Cβi−1 chemical shifts. The primary challenge to the approach is due to
incomplete data sets (missing peaks), noisy spectra (false peaks) and degeneracy (overlapping
peaks). An expert deals with these problems through an iterative visual inspection of the NMR
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spectra. Conversely, an automated approach is either limited to peak lists or attempts to
differentiate between a real peak and noise in the original spectra. Thus, the various software
packages apply distinct approaches including exhaustive search algorithms, genetic algorithm,
graph theory, heuristic algorithms neural networks, simulated annealing, system energy
function or Monte Carlo algorithms in an attempt to overcome incomplete and noisy data. In
general, these approaches tend to correctly assign backbone residues 70% to 100% of the time.

There is also a variety of software packages used to automate the calculation of a protein
structure from NMR data (see [92] for a detailed review). This includes: AutoStructure [61,
93], ARIA [94], CLOUDS [95], CYANA [96], PASD [97], FLYA [98], and Rosetta [99], to
name a few. One primary difference between these programs is the choice of the molecular
mechanics/dynamics engine, XPLOR/CNS [100] or DYANA [101]. XPLOR/CNS refines the
protein structure in distance space and tends to be significantly slower, but more accurate than
DYANA that refines in torsion angle space. Again, the automated approach to refining a protein
structure is basically achieved by incorporating rules to simulate the manual analysis of NMR
structural data by an expert along with well-defined structural characteristics. For example,
secondary structure elements α-helices, β-strands and turns have expected patterns of NOEs.
Similarly, there are distinct regions of allowable backbone and side chain dihedral angles.
Additionally, long-range contact or distance maps are generally self-consistent. The
unambiguous assignment of a long-range NOE between non-sequential residues increases the
likelihood that other NOEs between the same two residues or sequential neighbors of the two
residues are observed.

Again, a primary challenge to the automated analysis of NMR spectra to generate a protein
structure is incomplete and noisy data. Furthermore, the success of a structure determination
is predicated on the completeness of the chemical shift assignments, since these assignments
are required to correctly annotate the structural NOEs. It has been estimated that 90%
completeness of chemical shift assignments are required for an accurate protein structure
[102,103]. Structure determination is an iterative process, where an initial structure is
calculated based on a sub-set of unambiguous NOEs and other readily available structural
constraints (torsion angles, chemical shifts, coupling constants, residual dipolar coupling
(RDC) constants, etc). A consistency with the initial protein structure is then used to filter
ambiguous NOEs. The success of the protocol is thus highly dependent on obtaining a correct
fold for the initial structure, where either a significant lack of chemical shift assignments or
unambiguous NOEs will result in failure [104]. To address these problems, ambiguous NOE
methods [94,96,97], assignment-free methods [95], RDC-based methods [105,106], and
chemical shift-based methods (CS-ROSETTA) [107] are actively being developed. Protein
structures determined solely by chemical shift information is particularly promising and
exciting, since the chemical shift information is rapidly obtained and eliminates the need for
additional NMR experiments to measure NOEs, coupling constants and RDCs. Protein
structures calculated using CS-ROSETTA tend to yield a backbone root-mean squared
deviation (rmsd) ≤ 2Å relative to original NMR structures using complete NOE datasets. CS-
ROSETTA is currently limited to proteins < 130 residues. Similarly, assessments of protein
structures emerging from structural genomics centers, which primarily utilize automated
techniques, indicate a higher structure quality relative to NMR structures solved by traditional
techniques [39,108].

The availability of automated software and rapid NMR data collection schemes have resulted
in a significant improvement in the throughput of NMR structure determination. This is
illustrated by the >300 protein NMR structures generated as part of the Protein Structure
Initiative and by a recent example (Figure 2) of eight NMR structures that required, on average,
1–2 weeks to complete each structure. The high-throughput generation of protein NMR
structures is still generally restricted to proteins with MW < 30 kDa. But, expanding this limit
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beyond 50 kDa in the near future appears promising, especially since obtaining backbone
chemical shift assignments have been demonstrated for a number of large MW proteins [42,
45,46]. Obtaining a structure for high MW proteins may be achieved by expanding the CS-
ROSETTA methodology to include additional structural constraints such as RDCs,
pseudocontact shifts [60], minimal NOE constraints [59] and chemical crosslinking data
[109].

3. RAPID PROTEIN-LIGAND COMPLEX STRUCTURES
Obtaining a rapid protein structure provides an important foundation for a drug discovery
project. It enables the validation of chemical leads through the determination of a protein-ligand
co-structure. Confirmation that the compound binds in a biologically relevant region of the
protein or induces a conformational change that affects the biological activity of the protein
infers a viable lead compound. Again, obtaining this information rapidly is critical to the
success of the drug discovery program especially since an iterative series of structures are
required to optimize the chemical lead and a limited amount of time is available before the
project is terminated. A number of recent techniques have been developed that enable NMR
to rapidly determine a structure for a protein-ligand complex.

NMR chemical shift perturbations (CSPs) are routinely used to identify ligand bindings sites
based on a clustering of residues on the proteins surface that incur CSPs. Generally, two-
dimensional (2D) 1H-15N HSQC/HMQC or 2D 1H-13C HSQC/HMQC spectra are rapidly
acquired in minutes (FHSQC) [110] or (SOFAST-HMQC) [82] for both the free protein and
the protein-ligand complex. An overlay of the two spectra readily identifies the residues that
incur CSPs, which are then simply mapped onto the protein’s surface. Thus, a ligand-binding
site is obtained extremely rapidly and the process is automatable with the addition of robotic
sample-changers or flow-probes to an NMR spectrometer [111]. It was recently demonstrated
that a high-quality protein-ligand complex model can be obtained rapidly by combining
traditional in situ ligand docking software with experimental NMR CSPs [112]. Specifically,
the CSP identified ligand binding site is used to define a three-dimensional (3D) search-grid
for AutoDock 4, which is the highest-cited ligand docking software package [113,114].
AutoDock searches the 3D grid using a Lamarckian genetic algorithm to explore different
translational, rotational, and torsional orientations for the ligand and estimates a free energy
of binding. AutoDock is optimized for ligand-binding energetics and includes numerous terms
related to dispersion/repulsion, directional hydrogen bonding, electrostatics, desolvation, and
conformational energy. Typically, 120 different ligand conformations are calculated within the
3D search-grid, where the program AutoDockFilter (ADF) is used to select the best conformers
based on a consistency with the experimental CSPs. ADF uses an NMR energy function based
on the magnitude of the CSPs and the proximity of the ligand to amino-acid residues with a
CSP. Simply, the ligand is expected to be closer to amino acids residues that incurred large
CSPs. On average, the approach takes ~ 40 minutes to obtain a protein-ligand co-structure,
where the resulting structure exhibits an average rmsd of 1.17 ± 0.74 Å relative to the original
x-ray structure. Figure 3A illustrates the high similarity between the CSP-guided docking of
thymidine 3′,5′-bisphosphate to S. aureus nuclease relative to the original x-ray structure (PDB-
ID: 1SNC) [115].

Similarly, the program HADDOCK takes advantage of this relationship between CSPs and
ligand binding to generate biomolecular complexes (protein-protein, protein-DNA, protein-
RNA) [116]. HADDOCK utilizes ambiguous interaction constraints (AIR) [117] to refine a
biomolecular complex using a three stage refinement: (i) a rigid body docking and energy
minimization, (ii) a semirigid simulated annealing in torsional angle space and (iii) a final
refinement with explicit solvent. Basically, HADDOCK defines an ambiguous intermolecular
distance (≤ 3Å) between all sets of residues that incurred a CSP from molecule A to molecule
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B in the complex. HADDOCK has recently been applied to the docking of small molecular-
weight compounds to proteins [64]. A clear advantage of the HADDOCK approach is the fact
that the resulting co-structure is a result of a direct refinement against the experimental CSPs.
But, HADDOCK uses XPLOR/CNS [100], which is optimized for protein refinement and
dynamics, making it challenging to properly parameterize each new compound that is docked.
Also, HADDOCK applies a more robust, multistage minimization and dynamics protocol
resulting in a significantly longer computational time (~ 2 days) compared to AutoDock/ADF.
Figure 3B illustrates the application of HADDOCK for the determination of the structure of
human arylamine N-acetyltransferase (NAT) complexed with p-aminobenzoic acid (PABA)
[118]. The clear advantages of the CSP approaches to determining a protein-ligand model is
the speed, ease and relative simplicity of the techniques. But, these modeled structures should
not be viewed as a replacement for traditional high-resolution protein-ligand complexes
obtained by either NMR or x-ray crystallography for drug discovery. Instead, these CSP
modeled structures provide a rapid approach to evaluate potential drug discovery targets before
pursuing the more time-consuming and resource intensive experimental structures.
Importantly, the CSP methods are restricted to proteins that do not undergo significant
conformational changes upon ligand-binding. This is especially valid if only the apo-structure
of the protein is available for modeling, since either a static version of the protein structure or
a structure with limited side-chain mobility is used for ligand docking.

In addition to AutoDock/ADF and HADDOCK, other NMR approaches have been described
to shorten the time-frame to determine a protein ligand co-structure. These methods are, in
general, significantly slower, more complex to execute (requiring a variety of experiments and/
or labeled samples), or limited in scope (requiring multiple known binders or unique site-
specific labeling). But, the relative resolutions of some of these structures are increased
compared to CSP-based structures. Again, these techniques are typically limited to protein
structures that do not undergo significant conformational changes upon ligand binding since a
static protein structure is used to model the protein-ligand complex. These alternative methods
include NOE based protein-ligand models [119,120], paramagnetic shifts [121], differential
chemical shift perturbations [122], SOS-NMR [123], NMR-SOLVE [124], and NMR-DOC
[125]. The NOE based protein-ligand model utilizes a refined NMR apo-protein structure and
a minimal NMR dataset to assign intermolecular NOEs. Recent techniques minimize the need
to re-assign the protein NMR spectra in the complex [126]. These NOEs are simply added to
the complete set of structural constraints used to solve the apo-structure in order to solve the
complex structure. The differential chemical shift approach uses a series of structurally similar
ligands known to bind the protein. The differences in structure and CSPs are expected to
correlate, which then identifies each ligand’s orientation within the similar binding pocket. The
NMR-DOC approach is essentially identical, but simplifies the protein NMR spectra by using
a series of residue-specific 13C-methly labeled protein samples. The NMR-SOLVE method is
also very similar, it uses a reference ligand (natural cofactor) to identify chemical shifts
associate with the ligand binding site. This information is then used to map the location and
orientation of novel compounds.

The paramagnetic shifts and SOS-NMR methods also utilize selective labeling to identify the
structure of the protein ligand complex. The SOS-NMR method uses a series of residue specific
labeling to identify which residues are proximal to the ligand similar in concept to chemical
shift perturbations. Every residue type except one is deuterium labeled. If a saturation transfer
difference is still observed, the unlabeled residue is proximal to the ligand. The process is
repeated for each relevant amino-acid. The paramagnetic shifts approach requires a site-
specific lanthanide label proximal to the ligand binding site. The lanthanide binding site is
identified from an x-ray crystal structure and Δχ tensors are determined from chemical shift
changes in 2D 1H-15N HSQC spectra for the protein complexed to paramagnetic and
diamagnetic lanthanides. Pseudocontact shifts (PCSs) are then measured for the ligand in the
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presence of the protein-lanthanide complex from 1D 1H and 13C NMR spectra. The PCSs are
used to position the 1H and 13C nuclei from the ligand relative to the Δχ tensors to dock the
ligand.

4. FRAGMENT-BASED LIGAND SCREENS
Traditional HTS is routinely used in the pharmaceutical industry to screen hundreds of
thousands to millions of compounds against a therapeutic protein target [26]. But, HTS has an
extremely high failure rate. Only 0.1 to 0.5 percent of the compounds in the screening library
will be “active” in a particular screen [127]. A significant percentage of the best “hits”, highest
observed inhibition, are false positives [30]. These compounds generate an HTS response
through a number of undesirable mechanisms, such as: protein aggregation, protein
denaturation, protein precipitation, micelle formation, chemical modification of the protein,
non-specific binding, promiscuous binders or interfering with other reagents of the assay
[28–31,128]. These problematic chemical leads inevitably results in a significant amount of
wasted resources and time.

Intrinsically linked to the success of HTS is the composition of the screening library.
Obviously, the quality of “hits” identified from an HTS assay is dependent on the quality of
compounds present in the library [32]. The accumulation of corporate chemical libraries occurs
over years if not decades where the composition of the library is inherently biased to previous
drug discovery projects. The analysis of typical large, random chemical libraries compared to
the collection of known drugs identified a number of problems associated with corporate
libraries while identifying a set of structural properties or Lipinski’s “rule of 5” that are
exhibited by known drugs [129,130]. Lipinski’s “rule of 5” is a general predictor for compound
solubility and permeability that is related to bioactivity and bioavailability [131]. In contrast,
compounds in chemical libraries have a tendency to trend toward higher molecular weight,
higher lipophilicity and/or higher H-bond properties resulting in either poor solubility or
permeability.

An outcome of these studies has been an extensive effort to design or reconfigure chemical
libraries based on the Lipinski’s “rule of 5” or similar predictors of “drugability” [32,132–
135]. Concurrent with drug-like features are additional approaches to build in structural
diversity in the design of chemical libraries [134,136–140]. But, estimates indicate that
approximately 1010 to 1050 compounds would be needed to properly cover structural space
[141]. Regardless of the size of the chemical library, the number of compounds that can be
practically screened represents an infinitesimally small fraction of the total number of potential
compounds (1060) [142]. Concurrent with any effort to increase the size of the library, will be
a proportional increase in the total number of troublesome false leads. From a practical
perspective, it is not possible to follow-up all the hits identified from an HTS assay. Since false
positives tend to over-populate the best inhibitors identified from an HTS assay, more effort
is spent chasing after false leads [143]. Another practical consideration is that the integrity of
individual compounds used in the HTS screen may be suspect because of issues associated
with long-term storage of compounds in conditions amenable to HTS [144,145]. Given these
challenges, the decline in the productivity of the pharmaceutical industry has been attributed,
in part, to the heavy reliance of HTS in the drug discovery process [146]. Fragment-based
ligand screens provide an alternative to HTS and address a number of these problems [147].
NMR is the primary method being used to screen fragment-based libraries [148].

4.1 Library Design
Chemical libraries used for fragment-based screening are significantly different from the
typical library used in a traditional HTS assay. This is because the goals are fundamentally
different. In an HTS assay, the aim is to identify 3–5 chemical classes with the best binding

Powers Page 8

Expert Opin Drug Discov. Author manuscript; available in PMC 2010 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



affinity (KD ≤ μM) to the therapeutic target. These compounds go through an iterative series
of chemical modifications to maximize binding affinity. Unfortunately, this process generally
results in an increase in hydrophobicity and molecular-weight and a decrease in solubility
[149]. Both factors are detrimental for evolving the lead compound into a drug. Critical
absorption, distribution, metabolism, and excretion (ADME) and pharmacokinetic (PK)
[150,151] issues are typically dealt with at a later point in the drug discovery process [152,
153]. Conversely, the goal of a fragment-based screen is to identify a number of weak binders
(KD ~μM to mM) that bind in separate but proximal sub-regions of a functionally relevant
ligand binding site. In effect, the ligand-binding site is chemically mapped with low molecular-
weight compound fragments (≤ 200–300 Da) [154,155]. Chemical linking and optimization of
the individual fragments generally results in a substantial improvement in binding affinity,
where KDs in the nM range are commonly observed [156]. Importantly, an additional goal of
the fragment-based approach is to maintain drug-like ADME and PK characteristics. This is a
fundamental consideration in the design of the fragment-based screening library.

A number of reviews have discussed in detail the underlying theory in the construction of a
fragment-based chemical library [154,155,157–159]. Basically, the objective is to identify
small molecular-weight compounds (≤ 200–300 Da) that correspond to fragments of known
drugs, adhere to the Lipinski “Rule of 5” and exhibit high aqueous solubility. A comparable
approach is using a fragment-based library composed of biologically active compounds
[160]. The relatively small libraries are usually composed of hundreds to thousands of
compounds. Maintaining a chemical library of small molecular-weight compounds has a
number of advantages that address common problems associated with HTS. First, it maximizes
ligand efficiency (LE), the number of nonhydrogen atoms relative to free energy of binding
[161]. The estimated maximum affinity per atom is ~1.5 kcal mol−1, which is approached by
known drugs and fragments. Conversely, typical HTS leads exhibit an LE of ~ 0.3 kcal
mol−1 [159]. Second, fragment-based libraries have a 10–1,000 times higher hit rate relative
to traditional HTS corporate libraries [154]. Third, fragment-based libraries more efficiently
cover structural space. This occurs because the number of low molecular-weight compounds
is significantly reduced. Instead of a potential 1060 compounds that a HTS library is compared
against, there are only ~ 14 million compounds with molecular-weights below 160 Da [162].
Thus, even a few thousand compounds represent a significant percentage of the possible
number of compounds for a fragment-based library, which cannot be reasonably approached
with higher-molecular weight HTS libraries. Additionally, since fragments are commonly
linked to generate chemical leads, a fragment-based screen is actually examining a
combinatorial number of compounds relative to the actual size of the library that is
experimentally tested [163]. Fourth, smaller chemical libraries are significantly easier to
handle, store, replenish and maintain quality control. Finally and most importantly, fragment-
based libraries generate better-quality leads with a higher success rate [164]. This results from
the smaller size of the fragments and the associated “drug-like” features. The smaller structures
permit a greater flexibility to “grow” the fragments to improve binding affinities before
inducing detrimental physiochemical characteristics that is common with HTS leads.

4.2 NMR Ligand Screening Methodologies
High-throughput NMR (HTS-NMR) ligand affinity screens cannot compete with the efficiency
of traditional HTS that routinely assay millions of compounds in a few weeks [165].
Nevertheless, HTS-NMR is perfectible amenable to screening a fragment-based library
composed of hundreds to thousands of compounds [148,164,166]. The value of NMR for HTS
is its uniquely capability of providing direct evidence for binding between the ligand and
protein target while subsequently being able to identify the binding site and determining a co-
structure of the protein-ligand complex [91,167–170]. An important advantage of NMR is the
versatility of the technique to monitor protein-ligand interactions through a variety of physical
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measurements. Observation of a binding event may occur through changes in line-width and/
or peak intensity (T1 and T2 relaxation changes) [171,172], change in the measured diffusion
coefficient for the ligand [173–175], chemical shift perturbations for either the ligand or protein
[176–178], induced transferred NOE (trNOE) for the ligand [179,180], a saturation transfer
difference (STD) between either the protein or bulk solvent to the ligand [181,182], or the
appearance of new NOEs and/or intermolecular NOEs between the ligand and protein [167,
183]. Correspondingly, a variety of different NMR-based screens have been described (Table
1). The various HTS-NMR methods have a range of distinct advantages that include: (i)
eliminating a need for isotopically labeled proteins, (ii) reducing the amount of protein required
for the screen, (iii) increasing the throughput of the assay, (iv) identifying the ligand-binding
site, (v) determining a protein-ligand co-structure, and (vi) eliminating the protein MW
limitation. NMR fragment-based screens have resulted in a number of chemical leads that have
advanced to clinical studies [164]. A recent example is the discovery of novel β-secretase
inhibitors [184]. Cyclic amidine with an isocytosine core fragments were identified from an
NMR screen as a lead hit. The further optimization of these fragments is illustrated in Figure
4a, which lead to a unique dihydroisocytosine inhibitor with a cellular activity of 470 nM
(Figure 4b).

5. METABOLOMICS
The discovery of a compound with a high-affinity to a therapeutic target does not necessarily
lead to a marketable drug. Chemical leads routinely fail in pre-clinical and clinical trials
because of problems with bioavailability, efficacy and toxicity [6,7]. Typically, in vivo assays
and animal studies attempt to identify these problems prior to proceeding with clinical trials.
But, animal studies also have significant practical limitations [185–187]. They are
fundamentally low-throughput, requiring kilogram quantities of the lead compound and weeks
to months to complete a single study. Furthermore, there is typically little SAR or feed-back
when a negative result is encountered, since such a small number of compounds are routinely
evaluated. NMR-based metabolomics is providing drug-discovery with a filter to identify in
vivo activity, selectivity and toxicity problems before proceeding with animal trials.
Furthermore, NMR metabolomics techniques can be used as part of an animal study to identify
and evaluate the mechanisms of drug induced toxicity. Similarly, mass spectrometry is also
routinely used to monitor the metabolome [188,189] and is complimentary to NMR [190]. MS
is significantly more sensitive than NMR, but requires the inclusion of separation techniques
because of the low molecular-weight diversity of metabolites and is limited to detecting
metabolites that readily ionize. Conversely, NMR typically only observes the most abundant
metabolites, but requires minimal sample preparation and can readily identify each metabolite
from the multiple distinct peaks in its NMR spectra. Correspondingly, a number of techniques
have been proposed that combine NMR and MS data for the analysis of metabolomic samples
[190–195]. The application of NMR metabolomics in drug discovery has been recently
reviewed [196–198] and will only be briefly summarized here.

Basically, a 1D 1H NMR spectrum of a lysed cell captures its metabolic state. The metabolome
directly measures the biological activity of the proteome since relative concentrations of
various metabolites are dependent on enzymatic activity. Peak intensities in an NMR spectrum
reflect both the abundance and the presence of specific metabolites and the corresponding
activity of an enzyme. Environmental stress and drug activity will perturb protein activity
resulting in changes in the metabolome that can be monitored by NMR. Principal component
analysis (PCA) is a well-established statistical technique that is commonly used to analyze
1D 1H NMR spectra to monitor these perturbations in the metabolome [199]. The multivariate
NMR spectrum is converted to a single point in PC-space that is usually represented by a 2D
scores plot. Similar NMR spectra will cluster together in a 2D scores plot. The differential
NMR metabolomics approach [200,201] uses comparative clustering patterns in a 2D scores
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plot to monitor the in vivo activity and selectivity of a chemical lead. Simply, four different
cell cultures are prepared with ten replicates each for a total of forty NMR samples. The four
cultures correspond to: (i) wild-type cells, (ii) wild-type cells treated with the chemical lead,
(iii) mutant cells where the protein target of the chemical lead has been inactivated, and (iv)
mutant cells treated with the chemical lead. The metabolome for the wild-type cells and mutant
cells will be different because of the inactivated protein resulting in distinct clustering in a 2D
scores plot. The relative clustering of the wild-type cells and mutant cells treated with the
chemical lead will determine the compound’s in vivo activity and selectivity. Specifically, if
the wild-type cells treated with the chemical lead cluster together with the mutant cells with
and without the addition of the chemical lead, this would then indicate that the chemical lead
is active and selective in vivo. Inhibiting the cellular activity of the therapeutic target either
chemically or genetically results in the same change in the metabolome. Different clustering
patterns occur in the 2D scores plot if the chemical lead is inactive, inhibits multiple proteins
or inhibits a different protein from the expected protein target [201]. Any of these outcomes
would clearly indicate a problem, suggesting that other compounds with a positive response
from the differential NMR metabolomics method should be prioritized for follow-up animal
studies. The method has been successfully applied to demonstrate the selective activity of 8-
azaxanthine against urate oxidase in Aspergillus nidulans (Figure 5A) and the promiscuous
activity of D-cycloserine in Mycobacterium smegmatis (Figure 5B).

The differential NMR metabolomics method is limited to disease states that can be model by
a cell system. Also, the technique requires generating a viable mutant cell line where the activity
of the target protein has been eliminated. This may be challenging if the protein is critical or
essential to the cell’s viability. In these cases, a number of alternate strategies can be employed
instead of simply generating a knock-out mutant. These include: a mutant protein with only
diminished activity, supplementing the cell media or growth conditions to compensate for the
inactive protein, treating the cells with sub-lethal dosages of siRNA or a known inhibitor of
the target protein. The differential NMR metabolomics method is also predicated on the
assumption that inactivating the target protein will perturb the metabolome in a manner that is
detectable by NMR. It is plausible that eliminating the biological activity of a particular protein
will not disturb the cellular metabolome or it may affect the relative flux of metabolites in a
concentration range that is too low to be detectable by NMR.

NMR metabolomics can also be used to monitor body fluids (blood, urine, saliva, etc) to
identify drug induced toxicity in animal trials. This can be achieved by the identification of
metabolites known to be associated with toxicity, such as trimethylamine N-oxide and renal
dysfunction or lipids and phospholipidosis [202–205]. Alternatively, a comparative analysis
with compounds known to induce toxicity with other compounds with no known side-effect
can be used to generate a predictive model for unknown compounds based on the correlated
changes in the metabolome and NMR spectrum [202,206]. Again, the method assumes that the
metabolites associated with a toxic event are in a concentration range observable by NMR and
present in the body fluid being examined. Thus, a lack of a change in the metabolite composition
and concentration in a body fluid would only eliminate toxicities previously demonstrated to
be observed by NMR for compounds with known toxic side-effects. Additionally, the
metabolome is not completely defined and a reference spectrum for every observable
metabolite is not currently available. Therefore, identifying every metabolite that is perturbed
by treatment with a drug candidate may not be readily obtained. Nevertheless, there is an
ongoing effort to catalog the NMR observable metabolites and there are a number of NMR
metabolomic databases currently available [207–209].

NMR-based metabolomics have two important contributions to the current drug discovery
protocol. First, the differential NMR metabolomics method could serve as a filter before
proceeding with in vivo animal trials with lead candidates. Only compounds that proved to be
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active and selective for the desired protein target would continue on for animal testing. Other
compounds would be eliminated or proceed through further rounds of chemical optimization.
Changes in the structure that do not affect binding affinity, but are correlated with preferred
activity in the differential NMR metabolomics screen could be pursued. Second, NMR-based
metabolomics would augment animal studies. Initially, in vivo animal models are primarily
focused on efficacy. The efficiency of these assays would be greatly improved by
simultaneously analyzing animal biofluids by NMR for toxicity. Animal-based studies are
typically time intensive assays requiring weeks to complete and usually result in sacrificing
the animals. Furthermore, a detailed autopsy may be required to analyze the efficacy of the
drug and identify any potential toxicity issues. NMR-based metabolomics may effectively
identify a toxicity problem early enough in the study to stop the test, saving valuable time and
resources. Alternatively, the lack of any observable toxicity problem by NMR in combination
with an overall positive outcome for a particular lead candidate in an animal assay would
support proceeding with NCE and clinical trials.

6. FUNCTIONAL ANNOTATIONS AND NEW THERAPEUTIC TARGETS
To date, 916 genomes have been completely sequenced with an additional 3,454 in progress
resulting in ~6.5 million protein sequences [210–214]. Sequence similarity techniques may
provide functional information for, at most, 50% of these proteins [215–217]. Valuable
therapeutic targets are inevitably hidden within these vast numbers of unannotated proteins,
providing an indispensable wealth of information for developing novel drugs [218–220].
Assigning a function is an essential first step for determining the potential utility of an
unannotated protein in treating human disease; but this is an extremely challenging and time-
consuming endeavor. Drug discovery cannot simply focus on the crucial or essential proteins
since non-essential proteins play important roles in antibiotic resistance, cancer and tumor
differentiation and metastasis, and the long-term development of Alzheimer, cardiovascular
disease, diabetes and Parkinson disease. NMR is also making a significant contribution to the
functional assignment of these unannotated proteins to identify new drug discovery targets.

The Functional Annotation Screening Technology using NMR (FAST-NMR) [221,222]
combines the NMR methodology described above in a single assay to assign a function through
similarities in functional epitopes or ligand binding sites. This is based on the premise that
amino-acid residues associated with active-sites are evolutionary stable relative to the
remainder of the protein’s sequence [223–225]. Essential to this understanding is the
knowledge that a protein’s active-site has been optimized by nature to interact with a unique
and specific set of targets. Protein surfaces are exquisitely selective and only bind ligands at
very specific locations [226–229]. Binding promiscuity is inherently detrimental to the overall
biological process, which is evident by the high specificity of interactions that have been well-
documented in numerous metabolic and signaling pathways [230–232]. This understanding is
also an essential aspect of drug discovery and supports the observed rationale that high-affinity
and selective compounds targeting a specific protein can be developed and used therapeutically
[233–236].

FAST-NMR combines fragment-based ligand affinity screens with rapid determination of
protein-ligand co-structures and bioinformatics. Specifically, a chemical library containing
only biologically active compounds (co-factors, drugs, metabolites, inhibitors, substrates, etc)
[160] are screened by NMR using a tiered approach [237]. Potential ligands are rapidly
identified by a 1D 1H line-broadening experiment. These hits are then confirmed by chemical
shift perturbations in a 2D 1H-15N HSQC spectrum, where the CSPs cluster together to identify
a specific ligand binding site. The CSPs are then used to quickly determine a protein-ligand
co-structure [112] that provides the input for the CPASS (Comparison of Protein Active-Site
Structures) software and database [238]. CPASS compares the experimentally determined
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ligand-defined binding site against a database of ~35,000 unique ligand binding sites identified
from the Protein database (PDB). A similarity in the sequence and structural characteristics of
the ligand-defined binding site from the unannotated protein with a ligand-binding site for a
protein of known function is then used to leverage a functional assignment.

FAST-NMR and CPASS were used to assign a function to hypothetical proteins SAV1430
from S. aureus [222] and PA1324 from Pseudomonas aeruginosa [239]. This analysis suggests
SAV1430 is similar to an SH2 domain and may function as part of a multi-protein complex
within the [Fe-S] cluster assembly network. SAV1430 may exhibit activity comparable to NifU
or may regulate NifU activity. PA1324 may be involved in the binding and transport of sugars
or polysaccharides as part of the peptidoglycan matrix required for biofilm formation. FAST-
NMR has also been used to identify an evolutionary relationship between the bacterial type III
secretion system and eukaryotic apoptosis [240]. This is based, in part, on the similarity in
ligand-binding sites between PrgI (forms the needle complex in the type III secretion system)
and Bcl-xL (involved in eukaryotic apoptosis).

7. EXPERT OPINION
The quantity of new drugs emerging from the pharmaceutical industry has declined
dramatically. A number of self-inflicted factors have contributed to this decrease in
productivity that has resulted from a need to decrease cost and, ironically, from a need to
increase efficiency. Traditional business practices that include outsourcing, metrics and short
timelines have been implemented into the drug discovery process. Scientific discovery is
effectively being forced to adhere to an assembly-line protocol [23], isolating disciplines,
diminishing creativity and negatively affecting morale [5]. This is antithesis to a successful
drug discovery effort, which is fundamentally interdisciplinary, complex and unpredictable.
Resolving these serious problems will require a major paradigm shift in the culture of the
pharmaceutical industry, nevertheless evolving drug discovery technologies are providing
avenues to improve the success rate [164] within these self-imposed limitations.

In this context, recent developments in NMR are greatly expanding its value to the drug
discovery process. Specifically, NMR is a valuable and complimentary technique to x-ray for
the high-throughput structure determinations of protein and protein-ligand complexes. It has
been recently demonstrated that a significant percentage (20–40%) of protein structures are
only solvable by NMR. Also, rapid (30–45 minute) protein-ligand co-structures are routinely
obtainable by NMR as part of an iterative drug design program. This speed is essential given
the short timelines imposed on a drug discovery project. Additionally, fragment-based NMR
affinity screens are providing a more efficient and productive alternative to traditional HTS
for lead generation. A fundamental advantage of NMR affinity screens is the direct knowledge
of the chemical lead’s mechanism of action. This occurs because an NMR affinity screen
identifies a specific binding interaction between the ligand and protein target, where the ligand
binding site can be correlated with the functionally relevant regions of the protein. Furthermore,
NMR-based metabolomics can assisted in the most challenging and problematic stage of the
drug discovery process, turning a high-affinity ligand into a drug. This requires verification of
in vivo efficacy with a corresponding lack of toxic side-effects and acceptable ADME profiles.
Animal models are the primary source of this information, but are extremely costly and time
consuming significantly limiting the number of leads that can be practically evaluated.
Differential NMR metabolomics provides a simple, cheap and fast approach to filter-out
problematic compounds and prioritize leads that demonstrate cellular activity and specificity
while confirming the in vivo target(s) of the compound. Similar, NMR metabolomics can be
incorporated as part of the animal trials to monitor body fluids and ascertain possible toxic
side-effects of chemical leads. NMR is also being used to functionally annotate the proteome
and identify novel drug discovery targets.
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Despite the obvious important contributions of NMR to the drug discovery process, the
pharmaceutical industry has reduced or completely eliminated biomolecular NMR groups over
the last number of years. Again, this short-sighted decision has been primarily driven by cost
and mergers, by the incorrect perspective that NMR is a redundant, but costlier and limited
version of x-ray crystallography, and by the large financial investment in HTS robotics along
with the perspective that weak-binding fragments are not viable drug leads. The pharmaceutical
industry, like other businesses, is cyclical and responds to short-term needs instead of long-
term goals. Thus, I believe the reduction in biomolecular NMR has bottom-out and this trend
will begin to reverse. This will be driven, in part, by the growing acceptance and success of
fragment-based ligand screens. Furthermore the achievements from structural genomics and
the NIH Protein Structure Initiative along with the new NMR metabolomics technologies will
further stimulate a renewed interest in biomolecular NMR by the pharmaceutical industry.

Finally, our basic understanding of the mechanism for generating a protein-ligand complex is
undergoing a dramatic shift from the current induced-fit model or two-state model [241]. The
recent application of relaxation dispersion NMR spectroscopy [242,243] and RDCs [244] has
supported the selected-fit model of ligand binding, where protein structures exist as an
ensemble of conformations that includes sampling a higher-energy ligand bound form in the
apo-state. The role of both protein and ligand dynamics [245–247] have been recognized as
important factors in drug discovery, but have been rarely utilized [248]. Clearly, structure-
focused drug discovery efforts will greatly benefit from the inclusion of a detailed NMR
analysis [249] of the flexibility-function relationship. The growing recognition of the role
dynamics plays in ligand binding is also expected to contribute to a revitalize interest and an
improved appreciation by the pharmaceutical industry of the vital role for NMR in drug
discovery.

A reversal in the decade-long decrease in the productivity of the pharmaceutical industry will
obviously require more than the just the simple adoption of these recent advances in NMR. A
major philosophical shift in the current approach to drug discovery is necessary. One potential
avenue is for the pharmaceutical industry to move beyond the target-focused approach to drug
discovery [1] and to adopt system biology techniques [250]. Basically, chemical genetics
[251] is used to identify desirable phenotypic responses in cell-based disease models followed
by the identification of the molecular target of the chemical probes. Once the target is identified
and verified, traditional drug optimization techniques would be applied in an iterative fashion
using positive feed-back from the original cell-based assays. NMR-based metabolomics would
play an integral component of chemical genetics as an approach to classify and differentiate
between different cellular phenotypes. NMR ligand affinity screens and NMR structural
biology techniques would continue to play important roles in the drug optimization stage of
the process. Thus, the diversity and flexibility of NMR will enable the technique to continually
expand its contribution to drug discovery as the pharmaceutical industry responds to business
pressures and progresses beyond current drug discovery paradigms.

Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

ADF AutoDockFilter

ADME absorption, distribution, metabolism, and excretion

AIR ambiguous interaction constraints
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APSY automated projection spectroscopy

AZA 8-azaxanthine

BACE-1 β-secretase

CDA chenodeoxycholic acid

cL-BABP chicken liver bile acid binding protein

CPASS comparison of protein active-site structures

CSPs chemical shift perturbations

DCS D-cycloserine

FAST-NMR functional annotation screening technology using NMR

FDA US food and drug administration

GFT-NMR G-matrix Fourier transform NMR

HIFI-NMR high-resolution iterative frequency identification

HMQC heteronuclear multiple quantum coherence

HSQC heteronuclear single quantum coherence

HTS high-throughput screening

HTS-NMR high-throughput NMR

LE ligand efficiency

mut mutant

MW molecular weight

MS mass spectrometry

NCE new chemical entity

NMR nuclear magnetic resonance

NOE nuclear Overhauser effect

PC principal component

PCA principal component analysis

PCSs pseudocontact shifts

PDB Protein database

PK pharmacokinetic

PR-NMR projection-reconstruction NMR

PSI Protein Structure Initiative

RDC residual dipolar coupling

RD-NMR reduced-dimensionality NMR

RMSD root-mead square deviation

SAR structure-activity relationship

STD saturation transfer difference

trNOE transferred NOE
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Figure 1.
The number of new drugs approved by the U.S. Food and Drug Administration on a yearly
basis. The straight line highlights the negative trend in drug approval rates.
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Figure 2.
High-quality NMR solution structures of Northeast Structural Genomics (NESG) consortium
target proteins. A methodology for semiautomated data analysis was used to solve the eight
NMR protein structures. NMR data collection was accomplished in ~1–9 days per structure
and ~1–2 weeks of an expert’s time was required for semiautomated data analysis and structure
calculation. For each structure, a ribbon drawing is shown on the left and a “sausage”
representation of the backbone is shown on the right where the thickness reflects the precision
achieved for the determination of the polypeptide backbone conformation. (Reprinted with
permission from reference [64], Copyright 2005 by the National Academy of Sciences of the
United States of America)
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Figure 3.
(a) Superposition of the CSP-guided docking with ADF filtering conformers (blue) with the
original x-ray structures (yellow) for S. aureus nuclease complexed to thymidine 3′,5′-
bisphosphate (PDB-ID: 1SNC) (Reprinted with permission from reference [112], Copyright
2008 by American Chemical Society). (b) Expanded view of the HADDOCK model of human
NAT1 bound to its substrate PABA. Carbon, nitrogen, oxygen, sulfur, and hydrogen atoms are
colored white, blue, red, yellow, and pink, respectively. The lengths of several hydrophobic
contacts are provided and the hydrogen bonds to the carboxylic acid group of PABA are
indicated in red. (Reprinted with permission from reference [118], Copyright 2006 by Elsevier
Ltd.)
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Figure 4.
(a) General fragment-based scheme using a novel cyclic amidine-based aspartyl protease
pharmacophore to generate BACE-1 inhibitors. (b) BACE-1 inhibitor complex. (Reprinted
with permission from reference [184], Copyright 2007 by American Chemical Society)
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Figure 5.
(a) Analysis of the in vivo activity of 8-azaxanthine (AZA) in A. nidulans targeting urate
oxidase. The PCA scores plot comparing A. nidulans inactive urate oxidase mutant (uaZ14)
( ), wild-type with AZA ( ), uaZ14 mutant with AZA ( ), and wild-type cells (◆). Results
clearly demonstrate the selective activity (see Figure 7b) of AZA (Reprinted with permission
from reference [201], Copyright 2006 by American Chemical Society). (b) Analysis of the in
vivo activity of D-cycloserine (DCS) in mycobacteria targeting alanine racemase. PCA scores
plot comparing wild-type (mc2155) ( ), inactive D-alanine racemase mutant (TAM23) (●),
DCS resistant mutants (GPM14 ( ), GPM16 ( )), restored D-alanine racemase activity mutant
(TAM23 pTAMU3) ( ) mc2155 with DCS ( ), and TAM23 with DCS ( ), GPM14 with DCS
( ), GPM16 with DCS ( ), and TAM23 pTAMU3 with DCS ( ). The results clearly
demonstrate the active, non-selective inhibition of DCS (see Figure 7c). The secondary target
of DCS is predicted to be D-alanine-D-alanine ligase (Reprinted with permission from
reference [200], Copyright 2006 by American Chemical Society).
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