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Abstract
In this study, extracellular polymeric substances (EPSs) producing strain was isolated from municipal wastewater 

sludge (MWWS). Growth profile and the EPS production by Cloacibacterium normanense using wastewater sludge 
as raw material in shake flask fermentation for 96 h were investigated. The highest concentration of S-EPS (13.0 ± 
0.8 g/L) and C-EPS (0.3 ± 0.1 g/L) were attained at 48 h of fermentation. S-EPS revealed higher flocculation activity 
(94.2%) and dewaterability (59.9%) than other types of EPS in kaolin suspension. The dewaterability of MWWS with 
2 g suspended solids (SS)/L was improved by 37.6% using 0.02 ± 0.01 g/L of S-EPS and 600 mg/L of Al2(SO4)3. The 
study showed a promising approach of new isolated strain to produce high concentration EPS in sludge with high 
flocculation activity as well as good settling. 
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Introduction
Sludge settling and dewatering are the most important steps of 

wastewater treatment and sludge management. Better dewaterability 
leads to a sludge economical disposal, reuse as a soil conditioner in 
agriculture, bricks for construction, and raw material for growing 
industrial microorganisms [1]. In recent years, researchers have been 
venturing into bioflocculation of sludge using microorganisms [2]. 
Bioflocculation is defined as an aggregation of bacterial flocs and it is 
utmost important for efficient separation of microorganisms from the 
treated effluent. A typical floc is formed by different types of bacteria 
together with other microorganisms (protozoa, fungi, filamentous 
microorganisms etc) and viruses along with some abiotic suspended 
materials. Flocs are held together in a polymeric network of extracellular 
polymeric substances (EPSs). The microbial EPS plays an important 
role in bioflocculation by interacting with the sludge solids [3]. The 
bacterial growth is often accompanied by the production of EPS, 
which has ecological and physiological functions [4]. EPSs are organic 
macromolecules that are formed by polymerization of similar or 
identical building blocks that may be arranged as repeated units within 
the polymer. The major organic fractions of EPS are carbohydrates 
and proteins [5]. EPSs also act as excellent emulsifying agents and this 
property is attributed to the diversity in bacteria [6]. The bacterial EPSs 
are usually acidic heteropolysaccharides possessing different functional 
groups (e.g., hydroxyl, carboxyl and phosphoric acid), which exhibit 
high affinity towards certain metal ions. Many physical and chemical 
properties of microbial EPSs have led to a wide range of field applications, 
e.g., adhesion, chelation of heavy metals, coagulation and flocculation, 

detoxification of toxic compounds, nutrient sequestration, protection 
against osmotic shock, stabilizers, thickeners, gelling, film-forming and 
water-retention capability (in detergents, textiles, adhesives, paper, 
paint, food and beverage industries), oil recovery, mining industry 
and petroleum industries [2]. A wide range of bacteria from various 
environmental habitats are known to produce complex and diverse 
EPS occurring as capsular polysaccharides (C-EPS, strongly associated 
with the cell surface) or as slime polysaccharides (S-EPS, loosely 
associated with the cell). Recently, there has been growing interest 
in the isolation and characterization of microbial EPS owing to their 
practical importance. Different microorganisms produce various types 
of EPS with diverse characteristics and concentration. For economic 
reasons it is essential to find a high EPS yielding microbial strain with 
high flocculation activity per unit weight of EPS. Therefore, the present 
study aimed at: i) isolation and identification of high concentration 
EPS producing bacteria, ii) chemical and physical characterization 
of the EPS produced by the strain and iii) to evaluate the potential of 
produced EPS with respect to flocculation activity and dewaterability.

Materials and Methods 
Bacterial strain isolation and identification 

Wastewater sludge samples were collected from Communauté 
Urbaine du Québec (CUQ, Québec, Canada). EPS producing strain 
Cloacibacterium Normanense (NK6, accession number KF675204) 
was isolated from sludge samples using standard plate Count Agar 
(PCA). The strain was identified based on 16S rDNA sequencing. 

http://dx.doi.org/10.4172/2165-784X.1000191
proyster2
Highlight



Volume 5 • Issue 6 • 1000191J Civil Environ Eng
ISSN: 2165-784X JCEE, an open access journal

Citation: Nouha K, Hoang NV, Song Y, Tagi RD, Surampalli RY (2015) Characterization of Extracellular Polymeric Substances (Eps) Produced 
by Cloacibacterium normanense Isolated from Wastewater Sludge for Sludge Settling and Dewatering. J Civil Environ Eng 5: 191. 
doi:10.4172/2165-784X.1000191

Page 2 of 8

Isolated genomic DNA from the individual bacterial strains was 
subjected to PCR amplification of 16S rDNA using universal primers 
[7]. Amplified products were purified using the Qiagen gel extraction 
kit and subsequently were sequenced [8]. The obtained 16S rDNA gene 
sequences were submitted into the internet for similarity search.

EPS production

The sludge was first settled by gravity for 1 h and the settled 
(concentrated) sludge was collected by discarding the supernatant. 
Cloacibacterium normanense was inoculated in Tryptic soy broth (TSB) 
(100 mL sterilized TSB in 500 mL flask) and incubated for 48 h. After 
48 h incubation, the culture broth was used as inoculum to inoculate 
the sterilized (12°C for 30 min) sludge (25 g suspended solids-SS/L, pH 
7, 150 mL sludge in a 500 mL capacity flask). The flask was incubated 
in a shaking incubator at 180 rpm and 30°C for 24 h. This culture (with 
an approximate cell concentration 6.7 × 106 colony forming units-
CFU/mL) was used to inoculate (3% v/v) flask containing sterilized 
sludge (25 g/L SS, 150 mL sludge, pH 7). The flasks were incubated in 
a shaker at 180 rpm and 30°C for 96 h for EPS production. Samples 
were withdrawn at each 12 h interval to measure the cell concentration, 
and each 24 h to measure the EPS concentration, flocculation activity 
and dewaterability. All the samples were serially diluted with saline 
solution and the cell concentration was measured as CFU employing 
standard agar-plate technique. All the measurements were carried out 
in triplicates and the average of the results was presented. 

Extraction of EPS 

After incubation, the fermented broth was centrifuged at 6000 g, 
4°Cfor 20 min to obtain supernatant (containing Slime- EPS (S-EPS) 
and the biomass pellet was re-suspended in deionized water to the initial 
volume (containing Capsular (C-EPS) [9,10]. To determine dry weight 
of S-EPS, the supernatant and ethanol (95% v/v) were mixed in 1:2 ratio 
and kept at -20°C for overnight to precipitate the EPS. The precipitated 
EPS was collected (as a pellet) by centrifugation (6000 g, 4°C, 20 min). 
The dry weight of the pellet corresponding to the EPS concentration 
(S-EPS) was measured by drying the precipitates at 60°Cto a constant 
weight [9]. To determine dry weight of Capsular- EPS (C-EPS), the re-
suspended biomass pellet was first heated at 60°Cin a water bath for 30 
min to release C-EPS into the liquid phase followed by centrifugation 
at 6000 g, 4°Cfor 20 min [11]. The supernatant containing C-EPS was 
used to measure dry weight using the same procedure as for S-EPS. The 
EPS concentration was estimated by the following formula:

[ ]( ) W2 W1EPS g / L
V
−

= 

Where, W1: Initial dry weight of the empty aluminium dish 
without a sample in g

W2: End dry weight of the aluminum dish with dried sample in g

V: volume of the sample in L

The total EPS (B-EPS) contained in the broth was calculated as sum 
of S-EPS and C-EPS.

All the measurements were carried out in triplicates and the 
average was presented. 

Chemical characterization of EPS

After precipitation, the extracted C-EPS and S-EPS were dissolved in 
deionized water to the initial volume (100 mL of the broth) and protein 
and carbohydrate content were measured. Protein was determined 
using bovine serum albumin as the standard [12]. The carbohydrate 
content was measured by Phenol-Sulfuric acid method [13] at 490 

nm and glucose was used as the standard. The sample concentration 
was calculated by the linear equation between absorbance and 
concentration of the standard solution. All measurements were carried 
out in triplicates and the average was presented. The protein and 
carbohydrate ratios were calculated for B-EPS, C-EPS and S-EPS and 
the control sample (EPS extracted from sterilized sludge) by dividing 
the protein content by the carbohydrate content of each EPS.

Flocculation activity of different EPS

The flocculation activity of EPS was determined by jar test method 
[14] with minor modification. Kaolin solution (5 g/L) was suspended 
in distilled water, 150 mg/L of Ca2+ was added to the kaolin suspension 
and pH was adjusted to 7. The desired concentration of different types 
of EPS was added (in terms of volume of the sample range from 0.25 
mL to 4 mL collected at different times of fermentation) to kaolin 
suspension and rapidly mixed at 180 rpm for an initial 5 min then 
slowly mixed at 70 rpm for an additional 30 min. After mixing, samples 
were transferred to a 500 mL cylinder where they were allowed to 
settle for 30 min. The supernatant of each sample was then collected 
to measure the turbidity using turbidimeter (Micro 100 turbidimeter, 
Scientific Inc.). Flocculation activity was measured using the formula 
[100*(B-A)/B] where ‘A’ is the turbidity of the sample (treated with 
S-EPS, C-EPS or B-EPS) and ‘B’ is the turbidity of the control sample 
(in which equal volume of EPS solution was replaced with distilled 
water). All the tests were conducted in triplicates and the average 
values were presented.

Sludge volume index (SVI) study using S-EPS 

SVI was measured to determine the kaolin and sludge settling 
efficiency using the produced EPS. S-EPS was selected because of high 
concentration obtained during production and a very good flocculation 
activity observed in kaolin solution. Sludge samples (24 h stored at 4°C) 
collected from the municipal wastewater treatment plant and pulp 
and paper industry sludge (PPS) was used. SVI was measured using 
different sludge SS concentrations (1 g/L, 2 g/L, 5 g/L and 7 g/L). The 
well mixed sludge samples (1 L) were transferred into beakers followed 
by the addition of 600 mg/L of Al2 (SO4)3 as well as S-EPS and another 
beaker served as the control (no addition of EPS). After addition of 
EPS, the samples were mixed at 120 rpm for first 5 min (which enables 
the biopolymers to mix and bring them in contact with the sludge 
particles) followed by mixing at 50 rpm for 25 min (that enables flocs 
formation). Each mixed sludge sample was then transferred into 1 
L graduated measuring cylinder for SVI measurement [15]. Sludge 
settling efficiency in each cylinder was monitored at 5, 10, 20 and 30 
min. Similarly, the sample of kaolin was prepared; 150 mg of Ca2+ was 
added in place of 600 mg/L of Al2 (SO4)3.

Sludge dewaterability 

The capillary suction time (CST) was used to evaluate the 
dewaterability of the flocs in kaolin solution, MWWS and PPS using 
S-EPS produced by Cloacibacterium normanense. The CST of the 
control (without addition of the S-EPS) was also measured. The 
samples were prepared similar to SVI measurement. The sediment 
from each flocculation activity test was used to measure the CST by a 
CST instrument (Triton, Model 304 M, UK) [9]. A high value of CST 
usually implies a poor filterability and dewaterability. 

Results and Discussion
EPS production and characterization

Growth and EPS production profiles of Cloacibacterium 
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normanense sp. are presented in Figure 1. Exponential growth 
phase was observed between 12 h and 24 h of fermentation. The 
maximum cell concentration (7.5 x 108 CFU/mL) reached at 48 h. 
The concentration of B-EPS increased with the fermentation time and 
reached maximum (13.3 ± 0.9 g/L) at 48 h where the cell concentration 
was also maximum (Figure 1). The EPS concentration increased from 
1.9 to 2.8 g/L during lag phase (from 0 to 12 h). The EPS production 
occurred mainly during the exponential growth phase but significant 
EPS production was also observed during declining phase i.e., between 
36 h and 48 h of fermentation (Figure 1). The research of More et. al. 
[2] investigated the effect of fermentation time on EPS production in 
activated sludge and found that the EPS content was proportional to 
the bacterial growth. A decrease in B-EPS concentration (from 13.3 
to 11.4 g/L) was observed between 48 and 96 h. This decrease could 
be due to the fact that the bacteria may have consumed EPS when 
carbon limitation occurred in the medium. This phenomenon was also 
observed by other researchers using pure or mixed culture in sludge 
or synthetic medium [2,16]. According to More et. al. [17], the highest 
EPS concentration achieved was 3.4 g/L in 72 h with sterilized sludge as 
a growth medium employing Serratia sp., which was much lower than 
the B-EPS concentration (13.3 g/L) observed in the present study (Table 
1). The EPS synthesis by microorganisms depends on the carbon and 
nitrogen availability in the culture medium. Most of the EPS producing 

microorganisms use carbohydrates as their carbon and energy source 
and either ammonium salts or amino acids or both as their nitrogen 
source [18]. Therefore, the higher EPS concentration obtained in this 
work than those reported in the literature can be due to the fact that 
Cloacibactérium normanense strain may have a wider range of carbon 
and nitrogen utilization ability that eventually helped it to use available 
complex carbon and nitrogen sources present in sludge for its growth 
and EPS production. 

Protein and carbohydrate content 

Carbohydrate and protein content of S-EPS (LB-EPS) and C-EPS 
(TB-EPS) and their concentrations in the broth are presented in Figures 
2a-2d. The total protein (TP) and the total carbohydrate (TC) content 
of the EPS and their concentration in the medium increased with 
fermentation time and reached maximum at 48 h. The protein content 
(219.9 ± 5.3 mg BSA/g of extracted EPS) and carbohydrate content 
(128.5 ± 6.3 mg carbohydrate/g of extracted EPS) of S-EPS was higher 
than the protein content (145.6 ± 4.7 mg of BSA/g of extracted EPS) 
and carbohydrate content (104.0 ± 5.5 mg carbohydrate/g of extracted 
EPS) of C-EPS at 48 h fermentation. The protein and carbohydrate 
content of the EPS produced by the strain was higher than the control 
sample or the EPS extracted from the sterilized sludge (72.9 ± 1.1 mg 
BSA/g of S-EPS and 28.0 ± 2.1 mg carbohydrate/g of S-EPS). 

The protein and carbohydrate content of the EPS increased in 
exponential and declining phase (i.e., until 48 h) followed by a decrease 
during the stationary phase (after 48 h). The decrease in B-EPS 
concentration after 48 h (Figure 1) was due to degradation of proteins 
and carbohydrate of EPS by the bacterial strain. The stationary phase 
corresponded to the beginning of nutrient depletion in the medium and 
the accumulation of waste products limiting the growth. The culture 
grew exponentially followed by a slow growth until the maximum cell 
density was reached (at 48 h), and eventually the growth ceased due 
to the cell lysis caused by the decrease in the integrity and stability of 
the cell surface. This process leads to a reduction or even complete 
cessation of extracellular product synthesis by microorganisms. Under 
this condition, the microorganism shift to use the carbohydrates and 
proteins of EPS to fulfill the demand of carbon and nitrogen sources. 
Zhang and Bishop [19] performed a comparative study to examine the 
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Figure 1: Growth and EPS (C-EPS and S-EPS) production profiles of 
Cloacibacterium normanense (NK6) using wastewater sludge as sole raw 
material.

Strains Name Medium type B-EPS (g/L) Fermentation condition
(shake flask)

References

Bacillus sp.2 Sludge (10 g/L) 1.27 250 rpm, 25°C, 72 h More et al., [31]
Bacillus sp.3 Sludge (10 g/L) 1.68 250 rpm, 25°C, 72 h More et al., [31]
Bacillus sp.4 Sludge (10 g/L) 1.28 250 rpm, 25°C, 72 h More et al., [31]
Bacillus sp.5 Sludge (10 g/L) 1.24 250 rpm, 25°C, 72 h More et al., [31]
Bacillus sp.6 Sludge (10 g/L) 1.45 250 rpm, 25°C, 72 h More et al., [31]
Bacillus sp.7 Sludge (10 g/L) 1.56 250 rpm, 25°C, 72 h More et al., [31]
Bacillus sp.8 Sludge (10 g/L) 1.65 250 rpm, 25°C, 72 h More et al., [31]
Bacillus sp.9 Sludge (10 g/L) 1.23 250 rpm, 25°C, 72 h More et al., [31]
Serratia sp.1 Sludge (17 g/L) 3.4 250 rpm, 25°C, 72 h More et al., [2]

Pseudomonas Mineral medium (25 g/L glucose, 0.2 g/L MgSO4) 2.3 250 rpm, 25°C, 72 h Bala subramanian et al., [10]
Serratia sp BS8 Mineral medium (25 g/L glucose, 0.2 g/L MgSO4 ) 3 250 rpm, 25°C, 72 h Bala subramanian et al., [10]
Bacillus sp BS9 Mineral medium (25 g/L glucose, 0.2 g/L MgSO4) 2.4 250 rpm, 25°C, 72 h Bala subramanian et al., [10]

Yersinia sp BS11 Mineral medium (25 g/L glucose, 0.2 g/L MgSO4 ) 2.5 250 rpm, 25°C, 72 h Bala subramanian et al., [10]
Microbacterium (BS15) Mineral medium (25 g/L glucose, 0.2 g/L MgSO4) 2.1 250 rpm, 25°C, 72 h Bala subramanian et al.,  [10]

Staphylococcus aureus (A22) Glycerol and Ethanol 10.8 150 rpm, 28°C, 48 h Buthelezi et al.,  [32]
Pseudomonas

plecoglossicida (A14)
Glycerol and Ethanol 8.3 150 rpm, 28°C, 48 h Buthelezi et al., [32]

Cloacibacterium normanense Sludge (25g/L) 13.3 180 rpm, 30°C, 48 h Present work

Table 1: Production of B-EPS by different strains in present study and reported in the literature.
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biodegradability of EPS by microorganisms from the original biofilm 
(its own producers) and it was found that the cells consumed the newly 
produced EPS and microbial activity gradually stopped. Similarly, the 
present study also suggested that the EPS (protein and carbohydrate) 
could be used as a substrate. The protein content of the EPS was 
higher than the carbohydrate content (Figure 2) as observed by other 
researchers [20]. According to these authors, the protein was the main 
component and polysaccharides or carbohydrates were the secondary 
component of the EPS matrix in sludge. The bacterial strain used in 
this study was isolated from sludge and also grown in sterilized sludge 
(as raw material), therefore, EPS contained higher protein similar 
to that observed in activated sludge process. The total protein/total 
carbohydrate ratio of B-EPS varied from 1.48 to 1.85 with fermentation 
time (Figure 2e). This variation can explain the distinct nature of B-EPS 

produced at different times of fermentation. The total protein/total 
carbohydrate ratio of B-EPS observed in this study was higher than 
reported in previous studies (0.34) in case of Serratia sp.1 [17] (Table 
2). Thus, the EPS composition (i.e., protein and carbohydrate content) 
synthesised by the new strain was different than those reported by 
others [17]. In general, the composition of EPS is heterogeneous and 
varies based on many factors such as bacterial strain, growth phase, 
the EPS extraction method and different EPS production process 
parameters (temperature, pH, agitation speed, cultivation time, 
medium composition, medium pre-treatment etc.) [16]. 

Flocculation activity

The results of flocculation activity (FA) of B-EPS, S-EPS and C-EPS 
are presented in Figure 3. The flocculation activity for B-EPS and 
S-EPS decreased with an increase in EPS concentration. The highest 
FA (48 h sample) was 94.2% ± 1.3 for S-EPS (1.3 ± 0.1 mg S-EPS/g 
kaolin, Figure 3b), 86.8% ± 3.5 for B-EPS (2.6 ± 0.2 mg B-EPS/g kaolin, 
Figure 3c) and 79.4% ± 1.4 for C-EPS (0.50 ± 0.02 mg C-EPS /g of 
kaolin, Figure 3a). After attaining maximum value, a decrease in FA 
with EPS concentration was due to an over dosage of the polymer 
that caused re-suspension or instability of kaolin particles (flocs) 
leading to a high turbidity [21]. An equal volume of the samples 
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different incubation time: (a) Total carbohydrates (mg/L) in the medium; (b) 
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in the medium; (d) Protein content of EPS (mg BSA/g EPS), (e) Total protein/ 
Total carbohydrates ratio of B-EPS, S-EPS and C-EPS.
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Figure 3: Effect of EPS concentration (mg EPS/g kaolin) on flocculation activity 
(a) C-EPS, (b) S-EPS and (c) B-EPS, respectively.
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taken at different fermentation time exhibited different FA because of 
the variation in EPS concentration (Figure 3). The maximum FA of 
86.8% ± 3.5 using 2.6 ± 0.2 mg B-EPS/g Kaolin observed in the present 
study was higher than the maximum FA (79.1%) obtained using 0.7 
mg B-EPS/g kaolin in case of Serratia sp.1[17] Higher FA achieved 
using S-EPS in the present study is due to the specific structure of 
EPS. The difference in results of FA for different types of EPS (B-EPS, 
S-EPS and C-EPS) could be due to the presence of diverse nature of 
proteins and carbohydrates. Proteins and carbohydrates are complex 
materials and may contain structurally different components (or 
functional groups), which may change with fermentation time (Figure 
2) and thus affecting the FA of the EPS [22]. The protein content and 
type could play a dominant role in flocculation through hydrophobic 
interactions and polyvalent cations bridging, which increases the floc 
binding strength and hence enhancing the stability of the biopolymer 
network. Moreover, the hydrogen bonding capacity of carbohydrates 
also helps in flocculation [23]. The flocculation activity of B-EPS was 
lower than S-EPS. The difference in flocculation activity between 
S-EPS and B-EPS could be due to the fact that B-EPS contains both 
the C-EPS and S-EPS. C-EPS could hamper the efficiency of the S-EPS 
when two EPS were present together in the broth. C-EPS contained 
abundant hydrophilic compounds (hydroxyl group) that interacted 
with molecules of water hindering the combination of S-EPS (which 
contain hydrophobic compounds) with C-EPS or other hydrophilic 
particles [24]. Moreover, B-EPS have the negative surface charge and 
contains both EPS (S-EPS & C-EPS) as well as other substances such 
as colloidal and residual matter (cells, organic and inorganic material 
etc.). Increase in volume of the B-EPS in kaolin solution (the assay 
solution) also increases the negative surface charge due to increase in 
colloidal content, which could destabilize the flocs and thus decreases 
the flocculation activity. The charge of EPS can affect the flocculation 
activity. The zeta potential of S-EPS (-47.9 ± 0.4 mV) is higher than 
that of C-EPS (-62.7 ± 0.9 mV) and that of B-EPS (-71.9 ± 1.2 mV). The 
higher zeta potential of S-EPS implies the degree of repulsion between 
the EPS molecules is less, which tend to improve the bio-flocculation. 
The zeta potential of fresh sludge was -89.1 ± 0.8 mV, with the addition 
of Ca2+, zeta potential increased to -45.9 ± 1.4mV. The zeta potential 
of kaolin suspensions (5 g/L) without Ca2+ and EPS was -38.4 ± 1.5 
mV, and it was increased to -17.1 ± 0.5 mV by the addition of 150 
mg of Ca2+/L. The addition of EPS, after Ca2+, to kaolin suspension had 
very small change in the charge. Therefore, charge neutralization of the 
kaolin particles was achieved mostly by the addition of Ca2+. However, 
the EPS addition after Ca2+ revealed high flocculation activity and 
enhanced dewaterability (discussed in the next section). These results 
suggest that the specific interactions of EPS and calcium with kaolin 
particles can be supported by adsorption and bridging mechanism. 

Sludge settling 

S-EPS exhibited better kaolin FA than other types of EPS. Therefore, 
S-EPS was used to estimate the sludge settling characteristics of pulp 
and paper industry activated sludge (PPS) (Figure 4) and municipal 
wastewater secondary sludge (MWWS) (Figure 5) at different 
suspended solids concentrations (1, 2, 5 and 7 g/L). The SVI was below 
100 ± 1.5 mL/g after 30 min settling. For a good sludge settling, SVI 
≤100 is required (APHA, 2005). The addition of cations (600 mg/L of 
Al2(SO4)3) without EPS slightly improved the SVI value of the control 
samples (SVI decreased from 140 to 110 mL/g in case of PPS with 7 g 
SS /L; and SVI decreased from 200 to 40 mL/g in case of MWWS with 5 
g SS /L). The reduction of SVI in control is due to the coagulation effect 
of Al2 (SO4)3 in combinations with the native EPS of sludge (1.6 ± 0.3 g 
EPS/L in fresh PPS and of 1.2 ± 0.5 g EPS/L in MWWS). Further, SVI 
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Figure 4: Effect of EPS on pulp and paper sludge settling (SVI) at different 
solids (SS) concentrations; (a) SS: 7 g/L, (b) SS: 5 g/L, (c) SS: 2 g/L and (d) 
SS: 1 g/L.
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Figure 5: Effect of EPS on MWWS settling (SVI) at different solids concentrations 
of (a) 5 g/L (b) 2 g/L (c) 1 g/L.
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was substantially improved by the addition of S-EPS (Figures 4 and 5). 
The SVI varies with the concentration of sludge SS, the type of sludge 
and the added concentration of S-EPS. In this study, different volumes 
of S-EPS were used to obtain different concentrations of EPS. It was 
found that 1.5 mL (or 0.02 ± 0.01 g S-EPS/L) of S-EPS revealed the best 
settling compared to a lower or higher concentration of the EPS. An 
increase in SVI value with EPS concentration greater than 0.02 g/L (4 
mg of S-EPS/g SS) was due to bound water increase into the aggregates, 
which produced highly porous flocs with low density [25]. Therefore, 
0.02 g/L S-EPS concentration was used to evaluate the variation of SVI 
at different SS concentrations. In case of PPS at SS 5 g/L, the lowest 
SVI value was 20 ± 2 mL/g with an optimum concentration of EPS 
(1.5 mL or 0.02 ± 0.01 g S-EPS/L) and SVI of the control was 50 ± 1 
mL/g. In case of MWWS at SS 5 g/L and same concentration of the 
EPS, the SVI value (20 ± 2 mL/g) was similar to the SVI value of the 
PPS; however, SVI of the control was different (40 ± 2.5 mL/g). The 
different SVI of the control of PPS and MWWS could be because of the 
difference of organic matter present in different sludges, which affected 
the bioflocculation process. These results of SVI are better than those 
reported by Bala subramanian et. al. [10] (Table 3). In case of MWWS 
at SS 5 g/L, the lowest SVI was 60 mL/g using S-EPS concentration of 2 
g/L (400 mg S-EPS/g SS) produced by the bacterial strain BS8 (Serratia 
sp.). Thus, the biopolymer produced by Cloacibacterium normanense 
strain (present study) was more effective in sludge settling at a very 
low concentration (0.02 g/L or 4.0 ± 0.5 mg S-EPS/g SS) than the 
biopolymer produced by BS8 (Serratia sp.) [10]. The carbohydrate and 
protein contents of EPS were found to have a positive relationship with SVI 
[20]. The protein probably is more important than the carbohydrates; the 
high protein content of S-EPS would improve bioflocculation and settling 
property of activated sludge [26]. The higher protein content of the EPS 
produced by the present strain than that produced by Serratia sp. [17] 
could explain the lower value of SVI at lower concentration of S-EPS.

Sludge dewaterability 

The minimum CST value of kaolin solution was 23.2 ± 0.3 s (∆CST 

= 16.7 ± 0.4 s), 21.4 ± 2.4 s (∆CST =18.5 ± 0.9 s) and 22.7 ± 0.7 s (∆CST= 
17.2 ± 1.2 s) with the addition of 2.6 ± 0.2 mg B-EPS/g Kaolin, 1.3 ± 0.1 
mg S-EPS/g Kaolin and 0.03 ± 0.01 mg C-EPS/g Kaolin, respectively. 
These values were lower compared to the control sample (without 
addition of EPS) (39.9 ± 0.8 s). This result is better than that reported 
by other researchers [27] who found that the minimum CST value of 
the kaolin solution was 23.7 s (∆CST = 6.8 s) and 24.5 s (∆CST = 8.1 
s) with the addition of B-EPS and S-EPS, respectively with a dose of 
3.44 ± 0.05 B-EPS/g kaolin and 1.70 ± 0.05 S-EPS/g kaolin, respectively. 
However, the required CST value for a good dewaterability is 20 s [10]. 
The CST value increased with the increase in EPS concentration. The 
CST value did not vary much (changed from 21.4 ± 0.3 s to 21.9 ± 0.1 
s) by increasing the S-EPS concentration from 1.3 ± 0.1 mg S-EPS/g 
Kaolin to 3.9 ± 0.5 mg S-EPS/g Kaolin; whereas the CST value increased 
from 23.2 ± 0.2 s to 29.4 ± 0.3 s by increasing the B-EPS concentration 
from 2.6 ± 0.2 mg B-EPS/g kaolin to 4.0 ± 0.5 mg B-EPS/g kaolin. 
Thus, S-EPS was more efficient than B-EPS. Poor dewaterability was 
observed in case of C-EPS. The CST value increased from 22.7 ± 0.5 
s to 26.2 ± 0.4 s by increasing C-EPS concentration from 0.03 ± 0.01 
mg C-EPS/g Kaolin to 0.09 ± 0.02 mg C-EPS/g Kaolin. Excessive EPS 
concentration might deteriorate cell attachment and weaken the floc 
structure, which in turn lead to a poor sludge settling and dewaterability 
[11]. In this work, S-EPS and B-EPS exhibited higher dewaterability 
than C-EPS in kaolin solution. This was due to the formation of bigger 
flocs caused by higher protein content of S-EPS and B-EPS (sample 
collected at 48 hr) compared to C-EPS. It was widely reported that an 
increase of EPS concentration would lower the sludge dewaterability 
[25,28]. Houghton et. al. [29] found that an increase in dewaterability 
with EPS (at low concentration of EPS) was due to the enhancement 
of flocculation. The increase in flocculation resulted in an increase in 
floc size and thus improved the sludge dewaterability. In the present 
case, an increase in EPS concentration above 1.3 ± 0.1 mg EPS/g of 
kaolin increased the amount of surface bound water by EPS, and thus 
decreased the kaolin dewatrability. Contrary to these findings, Jin et. 
al. [30] found that the concentration of the individual polymers and 

Strains B-EPS (g/L) Medium TC (%)a TP (%)b Car/Protein ratioc References
Bacillus sp.7 1.6 Sludge (10 g/L) 0.89 More et al., [31]
Serratia sp.1 3.4 Sludge (25 g/L) 12.3 40 0.3 Bezawada et al., [27]

Yersiniasp.1 (BS11) 2.5 Synthetic medium 6 4.1 1.46 Bala subramanian et al., [10]
Serratia sp.1 (BS8) 3 Synthetic medium 5.2 2.8 1.89 Bala subramanian et al., [10]

Cloacibacterium Normanense 13.3 Sludge (25 g/L) 12.7 21.8 0.58 Present study

Note: aTC- total carbohydrate; bTP- total protein. cCar- carbohydrates. 
Table 2. Characterization of extracted EPS in terms of total protein and carbohydrates.

Strains B-EPS 
(g/L)

Raw 
material

Flocculation activity Dewaterability of 
Kaolin

Dewaterability of sludge Settling of Sludge References

FA (%) EPS Added
(S-EPS 
mg/g 

kaolin)

CST(%) EPS added¸
(S-EPS mg/g 

Kaolin)

CST (%)
(MWWS)

EPS Added 
(S-EPS mg/g 

SS)

SVI (mL/g)
(MWWS)

EPS Added
(S-EPS 

mg/g SS)

Bacillus sp.7 1.6 Sludge
(10 g/L)

81.7 1.12 – 2.7 65 1.12-2.7 - - - - More et al., [31]

Serratia sp.1 3.4 Sludge
(25 g/L)

79.1 2.7 34.7 2.7 - - - - More et al., [2]

BS11 2.5 Synthetic 
medium

85.7 250 - 250 77.38 250 63 250 Bala subramanian 
et al., [10]

BS8 3 Synthetic 
medium

81.4 400 - 400 63.6 400 60 400 Bala subramanian 
et al., [10]

Cloacibacterium 
Normanense

13.3 Sludge (25 
g/L)

94.2 1.3 59.9 5.2 37.6 9.75 20 3.9 Present Study

Table 3: Comparison of flocculation activity, dewaterability and settling results.

http://dx.doi.org/10.4172/2165-784X.1000191


Volume 5 • Issue 6 • 1000191J Civil Environ Eng
ISSN: 2165-784X JCEE, an open access journal

Citation: Nouha K, Hoang NV, Song Y, Tagi RD, Surampalli RY (2015) Characterization of Extracellular Polymeric Substances (Eps) Produced 
by Cloacibacterium normanense Isolated from Wastewater Sludge for Sludge Settling and Dewatering. J Civil Environ Eng 5: 191. 
doi:10.4172/2165-784X.1000191

Page 7 of 8

 

0

2

4

6

8

10

12

1 2 5 7

C
ST

 (
s)

 

SS concentration (g/L) 

Control
CST-PPS (0.02 g/L)

0

20

40

60

80

100

120

140

160

1 2 5

C
ST

 (
s)

 

SS concentration (g/L) 

Control
CST-MWWS (0.02 g/L)

(a) 

Figure 6: Effect of S-EPS on sludge dewaterability at different sludge suspended 
solids concentration; (a) pulp and paper sludge and (b) municipal wastewater 
sludge.

total EPS had negative correlations with CST. The results obtained 
for dewaterability on municipal and pulp and paper secondary sludge 
using S-EPS were presented (Figures 6a and 6b). At 2 g/L SS of MWWS, 
the CST value was decreased from 130 ± 2 s (in the control sample) to 
81 ± 1 s with the addition of 0.02 ± 0.01 g/L of S-EPS (Figure 6b). A 
good dewaterability of PPS was achieved at 5 g/L SS; the CST value 
decreased from 10.0 ± 0.4 s (control) to 8.0 ± 0.1 s (with S-EPS dose 
of 0.02 ± 0.01 g/L) (Figure 6a). The EPS produced by Cloacibacterium 
normanense strain (this work) was more effective in lowering the 
CST value than the EPS present in sludge (1.6 g/L of PPS and 1.2 g/L 
MWWS). In this work, reduction in CST was more effective at low EPS 
concentration compared to the results reported by Bala subramanian 
et. al. [10], where the CST value decreased from 130 s (control) to 36.4 
s after addition of 400 mg S-EPS /g SS produced by BS8 strain (Table 
3). The dewaterability improvement was higher in MWWS than in 
PPS (Figure 6). This might be due to the difference in characteristics of 
organic matter in MWWS and PPS as well as the structure of protein 
and carbohydrate of EPS and their content in sludge [31,32]. 

Conclusions
High concentration (13 ± 0.8 g/L of S-EPS and 0.3 ± 0.1 g/L 

C-EPS) of extracellular polymeric substances (EPSs) was produced 
by Cloacibacterium normanense in sterilized sludge with 25 g/L 
suspended solids. EPS combined with Ca2+ demonstrated to be a good 
bioflocculant. Slime EPS exhibited higher flocculation activity (94.2%) 
and better dewaterability (59.9%) compared to the capsular EPS and 

the broth EPS in kaolin solution. The maximum dewaterability of 
municipal wastewater sludge (with suspended solids 2 g/L) achieved 
wad 37.6% with the use of 0.02 ± 0.01 g/L of slime-EPS and 600 mg/L 
of Al2 (SO4)3. The study showed a promising approach of new isolated 
strain, which produced high concentration of EPS in sludge with high 
flocculation activity as well as good settling. 
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