View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by UNL | Libraries

University of Nebraska - Lincoln

Digital Commons@University of Nebraska - Lincoln

Ralph Skomski Publications Research Papers in Physics and Astronomy

2016

On the Ising character of the quantum-phase
transition in LiHoF4

Ralph Skomski
University of Nebraska-Lincoln, rskomski2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicsskomski

b Part of the Atomic, Molecular and Optical Physics Commons, Other Physics Commons, and the
Quantum Physics Commons

Skomski, Ralph, "On the Ising character of the quantum-phase transition in LiHoF4" (2016). Ralph Skomski Publications. 96.
http://digitalcommons.unl.edu/physicsskomski/96

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at Digital Commons@ University of Nebraska -
Lincoln. It has been accepted for inclusion in Ralph Skomski Publications by an authorized administrator of Digital Commons@University of Nebraska

- Lincoln.


https://core.ac.uk/display/188103647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsskomski?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsresearch?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsskomski?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsskomski/96?utm_source=digitalcommons.unl.edu%2Fphysicsskomski%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages

@ CrossMark
AIP ADVANCES 6, 055704 (2016) o

On the Ising character of the quantum-phase
transition in LiHoF,
R. Skomski

Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience,
University of Nebraska, Lincoln, NE 68588, USA

(Presented 13 January 2016; received 8 November 2015; accepted 1 December 2015;
published online 23 February 2016)

It is investigated how a transverse magnetic field affects the quantum-mechanical
character of LiHoF,, a system generally considered as a textbook example for an
Ising-like quantum-phase transition. In small magnetic fields, the low-temperature
behavior of the ions is Ising-like, involving the nearly degenerate low-lying J, = + 8
doublet. However, as the transverse field increases, there is a substantial admixture
of states having |J,| < 8. Near the quantum-phase-transition field, the system is
distinctively non-Ising like, and all J, eigenstates yield ground-state contributions of
comparable magnitude. A classical analog to this mechanism is the micromagnetic
single point in magnets with uniaxial anisotropy. Since Ho** has J = 8, the ion’s
behavior is reminiscent of the classical limit (J = oo), but quantum corrections
remain clearly visible. © 2016 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4942950]

. INTRODUCTION

The Ising quantum chain in a transverse magnetic field is a conceptually simple model with
a nontrivial quantum phase transition (QPT). In contrast to Curie transitions, such quantum transi-
tions occur at zero temperature and involve exotic quantum states rather than critical fluctuations
of thermodynamic origin."> The quasi-one-dimensional tetragonal compound LiHoF, is generally
regarded an experimental textbook example of an Ising-like QPT.> In the absence of a transverse
magnetic field and at low temperatures (including the Curie temperature of about 1.53 K), the
ground state of the Ho** ions is a well-defined and nearly degenerate crystal-field doublet (J, = +8),
and this doublet can be mapped onto an Ising spin. However, for two reasons, the Ising character of
the magnetism of LiHoF,4 merits a re-examination.

First, in a strict sense, there are no quantum-mechanical Ising models. By definition, Ising
models have two quantum states S, = +1/2 (or J, = +1/2) per site,” in contrast to the S = 1/2
Heisenberg model, where a noninteracting spin has two eigenvalues +1/2 but the spin can point
in any direction on the Bloch sphere. The Ising model has a quasiclassical visualization as a Hei-
senberg spin with strong single-ion easy-axis anisotropy, but quantum-mechanically, this single-ion
anisotropy is zero, because S-state ions and are therefore isotropic.® In fact, the Ising models usually
considered in quantum-phase transitions are Heisenberg models with anisotropic exchange, which
is, strictly speaking, a very different class of models.’

Second, Ho’* is a nearly classical ion, because the relative effect of quantum fluctuations
decreases approximately as 1/2J with increasing J. Quantum fluctuations are most pronounced
for J = 1/2, but the Ho>" ion in LiHoF, has J = 8 (1/2J = 0.0625) and should therefore behave
nearly classically (1/2J = 0). The question therefore arises how the quasiclassical character of Ho**
manifests itself in magnetic measurements.

In this paper, we scrutinize quantum-mechanical behavior of the Ho** ions. Our focus is on
the atomic-scale physics of LiHoF, — no specific consideration will be given to the interatomic-
coupling aspect of the material, which is crucial for the understanding of fluctuations near the phase
transition but only loosely related to the atom’s internal spin structure. We elaborate that the QPT
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FIG. 1. Uniaxial anisotropy (n) and transverse magnetic field: (a) classical magnets and (b) quantum-mechanical case of a
Ho’* ion (J =8).

singularity in a transverse field corresponds to the classical single point well-known in micromag-
netism,? calculate the quantum corrections near the single point, and show that the behavior near the
single point is non-Ising-like.

Il. SINGLE-POINT ANALYSIS

Figure 1 compares the classical and quantum-mechanical limits of anisotropic magnets in a
transverse magnetic field. In the classical limit, the Hamiltonian is of the Stoner-Wohlfarth type

1
H = —§K1V(3 cos? 60 — 1) — poMH,V sin 6 — u,MH,V cos 6 (1)

where 6 is the magnetization angle, defined by M, = M, cos# and My = M; sin 6. The quantities
K, M, H, and V have their usual meanings, namely lowest-order uniaxial anisotropy constant,
saturation magnetization, applied magnetic field, and magnet volume, respectively.

Minimizing Eq. (1) for H = H, e, and monitoring My yields the solid curve of Fig. 2. The
curve exhibits a singularity at the anisotropy field Hy = 2K,/ u,M;. This singularity is exploited in
a well-established experimental method known as single-point detection (SPD),'® which traces the
second derivative d>M,/dH?. Ideally, this derivative is a delta peak, but in practice, it is a simple
maximum near Hy, because sample and grain misalignments smooth the singularity (dashed line in
Fig. 2). This effect was first noticed the original paper by Stoner and Wohlfarth.!! The SPD method
can be used to experimentally determine magnetic anisotropies, for example by using a pulse field.

From the classical relations My(H < Ha) = My Hy/Ha and M> = M,> + M,? it follows that

M, = v M52 - sz (2)

Figure 2 shows the field dependences of My and M,. The blue curve (M,) is a classical analog of the
quantum-phase transition, whereas the red curve (M) is the same as the solid curve in Fig. 2.

lll. QUANTUM-MECHANICAL LIMIT

In suitable dimensionless units, the Hamiltonian of the Ho* ion subjected to a second-order
uniaxial crystal field (A, ~ Bag) and an external magnetic field (Hy) is

H=-GJ ~JJ+1) = hiy 3)

where J is the angular-momentum operator of the Ho** ion (J = 8) and h ~ H,/A,". It is convenient
to use a basis where fz is diagonal, with the eigenvalues J, = (-8,...,7,8). In this basis, fx is
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FIG. 2. Approach to saturation and single-point detection. A true singularity (solid curve) exists for perfectly aligned magnets
only (n L H). Any oblique angles, such as 2° in the case of the dashed line, smooth the singularity.

tridiagonal and symmetric with the matrix elements J,(j, ) = 0 and

L(j+1) = %«/72 -®=NT-)) )

Note, in particular, that the matrix element connecting the states with J, = +8 is zero. The eigen-
values and eigenfunctions of Eq. (3) are readily obtained by explicit matrix diagonalization.

In zero field, Eq. (3) yields the double-degenerate ground state, J,= + 8, of energy E, = — 120.
The energy-level splitting between the ground-state and first excited doublets is 45 energy units.

Normalized Magnetization

0 1
Magnetic Field H, (in units of Hj)

FIG. 3. Relation between single point and vanishing of the magnetization in the classical limit (J > co). The field where the
magnetization M, vanishes is equal to the single-point field (anisotropy field).
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FIG. 4. Energy levels calculated from the Hamiltonian of Eq. (1). The solid red curve refers to the single-ion ground state,
whereas the dashed lines are excited one-ion levels.

This splitting is much larger than the interaction strength between the Ho®* ions, which is
epitomized by the Curie temperature, 1.53 K for LiHoF,.? Excited levels can therefore be ignored
at all temperatures of interest, and the system behaves like an Ising spin with two spin orienta-
tions (s, = +1).>* However, this argumentation applies to small fields only, not to the transverse
fields that cause the magnetization M, to vanish at the zero-temperature (or low-temperature)
quantum-phase transition.

Figure 4 shows the expectation values <Jx> as a function of the transverse field Hy. The red
curve refers to the ground state, whereas the dashed curves correspond to excited states. In the limit
of very high transverse fields, the levels are equally spaced Zeeman levels. Comparison of the solid
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FIG. 5. Quantum mechanical approach to saturation in the field direction. In terms of Fig. 4, the applied fields are 7 =12
(dashed black curve) and h =36 (dotted red curve).
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red lines in Figs. 3 and 4 shows that the approach to saturation is nearly classical, although the effect
of quantum fluctuations is clearly visible in Fig. 4.

Figure 5 compares the ground-state eigenfunctions in low transverse fields (2 = 12) and near
the single point (2 = 36). In low fields, the system remains Ising like, dominated by states with
J, = £J and having a relatively small admixture of states with |J,| < 8. However, near the single
point, the ground state is no longer Ising like but represents a superposition of all J, states.

IV. DISCUSSION AND CONCLUSIONS

Our analysis ignores the dipolar and exchange interactions between the Ho ions. These interac-
tions are important for the understanding of the quantum-phase transition, but they do not affect the
present findings, because they do not undo the mixing of the quantum states near the phase transi-
tion. In fact, the interactions do not interfere in lowest order, because ensembles of ions described
by Eq. (3) rotate coherently, that is, little or no penalty is imposed through changing angles between
neighboring Ho moments. Furthermore, the interactions are weaker than the level splitting caused
by the anisotropy.* Similarities between classical and quantum-mechanical predictions, as epito-
mized by the red curves in Figs. 3 and 4, respectively, indicate the need to study quantum-phase
transitions on a materials-specific basis.

In summary, we have investigated the effect of a transverse magnetic field on LiHoF,. In the
classical limit, the quantum-phase transition assumes the character of a micromagnetic single point.
Since the Ho** ions have J = 8, their behavior is reminiscent of classical spins, but quantum effects
remains clearly visible in the magnetization curves. The transverse-field Ising model captures some
nontrivial features of quantum-phase transitions, but it does not provide an adequate description
of LiHoF,, which has been considered an archetypical Ising system. In small transverse fields, the
system is Ising-like, but the Ising character wanes as the transverse magnetic field increases. Our
analysis indicates that a comprehensive and materials-specific analysis of quantum phase transitions
in systems with J > 1/2 remains a challenge to future research.
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