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Abstract

Phased construction allows for the replacement of a bridge while maintain-

ing traffic flow during the construction.  However, problems such as differ-

ential elevation of the phases and premature deterioration of the closure 

region joining the phases have been observed.  Replacement of the Dodge 

Street Bridge over I-480 in Omaha, Nebraska, provided the opportunity to 

observe and closely monitor a phased constructed system.

The bridge was instrumented and then monitored during construction and 

for an additional 5 years of in-service use.  Additionally, live load testing 

was performed on each of the phases.  Selected data and results obtained 

from this extensive monitoring are presented in this paper.  Deformations 

due to temperature changes along these years were thoroughly measured 

and a detailed analysis of deflections was made.
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Executive Summary

Phased construction allows for the replacement of a bridge while maintain-

ing traffic flow during the construction. The main objective of this project 

was to observe the behavior of a bridge using phased construction for a 

long period of time, when the short term deformations have already taken 

place and the main factors affecting the bridge are traffic, time, and envi-

ronment.
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Introduction

Chapter

1
PROJECT OBJECTIVE AND CONTENTS

This report is the second concerned with the replacement of the Dodge 

Street Bridge over I-480 in Omaha, Nebraska. The completed structure is 

shown in Figure 1-1. The replacement of this bridge provided an opportu-

nity to monitor a project built utilizing phased construction.  Phased con-

struction, also known as staged construction, allows the replacement of a 

bridge while maintaining traffic flow.  Dodge Street (US Highway 6) is a 

major arterial and complete closure to traffic during construction was to 

be avoided.  Construction of the bridge occurred in two sequential phases 

with each phase roughly corresponding to half of the bridge.  While one of 

the halves is being replaced, traffic is permitted to flow in the other one. 

Later, the two separate phases are joined together by means of a closure 

pour in order to make the deck of the new bridge transversely continuous. 

At first, these phases act independently and deflect differently, due to time 

dependent effects. Instrumentation was installed on the structure prior to 



4

Objective

construction that allowed for monitoring the behavior both during con-

struction and under regular in-service live loads.

1.1 OBJECTIVE

The main objective of this report is to investigate the strains, deflections, 

and expansion and contraction of the bridge under changes in tempera-

ture, both daily and seasonally.  Currently, very conservative methods are 

used to address these movements.  This can result in oversized, expensive 

bearing pads along with excessively wide expansion joints.

To allow measurement of the deflections and strains, the project continued 

with a monitoring system already installed on Dodge Street Bridge, for pre-

vious research. 

Figure 1-1:  Completed structure
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1.2 CONTENT OF REPORT

The previously published report, Development of a Design Guideline for 

Phase Construction of Steel Girder Bridges, details the observations and 

monitoring results obtained during construction and for a period of time 

after completion of the structure.  At the end of this period of time the 

monitoring equipment was still functional.  It was therefore decided to con-

tinue the monitoring effort.  This report presents the results obtained from 

that continued monitoring in addition to the previously reported data.  The 

focus on the long term performance of the structure after construction was 

completed and the full bridge was opened to traffic.

A detailed description of the bridge and monitoring program can be found 

in Chapter 2. The theory and the data processing of temperature effects are 

presented in Chapter 4.

This report focuses on the strucure’s responses occuring after the comple-

tion of the bridge. The longitudinal and vertical deformations are 

addressed separately, in chapters 5 and 6, respectively. 

Contained in the Appendices is the complete data obtained from the mon-

itoring of the Dodge Street Bridge over I-480.
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Monitoring Program 
Overview

Chapter

2
INSTRUMENTATION OF THE DODGE STREET BRIDGE 

OVER I-480

This chapter has been taken directly from the previous report, Develop-

ment of a Design Guideline for Phase Construction of Steel Girder Bridges. 

This provides the structural details and construction sequence of the 

bridge which serves as background for the data and discussions contained 

in the report. This section also provides an overview of the monitoring 

system that was used to collect the data. Additional details of the monitor-

ing is provided in Appendix B. The previous report and the thesis by John 

Swendorski, Field Monitoring of a Staged Construction Project, contains 

extensive information as well.



8

Experimental Program Overview

2.1 EXPERIMENTAL PROGRAM OVERVIEW

Replacement of Dodge Street over I-480 in Omaha, Nebraska provided an 

opportunity to monitor a phase construction project. Each construction 

phase was monitored to gain behavioral insights. Gages were used to mon-

itor steel strains, concrete strains, and deflections. Both short-term data, 

during construction events, and long term-data were investigated. 

This report concerns the construction, gaging, and analysis of data col-

lected from October 20, 1999 through May 23, 2005. Data has been ana-

lyzed to investigate long-term data trends concerning mainly temperature 

effects.

2.1.1 CHALLENGES FACED IN FIELD MONITORING

Several challenges were encountered in field monitoring. Gages were either 

placed in the field or at Lincoln Steel, where the girders were fabricated. 

Although proper procedures were followed to ensure gages were applied 

properly this makes the task cumbersome. Once gages are placed, wires 

from the gage to the data acquisition unit must be placed in the field. After 

installation on the bridge, girders are over 20 feet off the ground which 

made this process difficult and dangerous. Instrumentation locations are 

somewhat limited as frames to monitor deflection had to be placed so they 

would not interfere with construction equipment or I-480 traffic that runs 

under the bridge. Several large television transmission towers are also 

present near the bridge. Radio waves can interfere with the transmission of 

electrical signals through gage wires. Shielded wires were used to eliminate 

the problem.

Many construction events affect the loading on bridge girders, such as 

placement of heavy temporary barriers and removal of formwork. In order 

to understand the strain data collected from each girder, it is desirable to 

know exactly when these events occur. Unfortunately there is significant 

uncertainty regarding construction timing. As the bridge is 60 miles away 
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it is not possible to be there continuously observing construction. Further-

more, construction occurs at a rapid pace and not even the contractor 

knows in advance when certain events will occur so the drive to be there 

could be made. Communication with the construction manager enables 

dates of events to be obtained, however beginning and end times are not 

recorded. For instance, barriers may have been placed on June 4, 2001 but 

the start and ending times must be determined from analyzing data. As 

formwork removal takes a very long time, up to two months, it is impossi-

ble to determine the efffect that removing this load has.

The fact that monitoring occurs in an uncontrollable environment, versus 

a laboratory for example, also adds challenges. A laboratory environment 

stays relatively stable allowing the direct observation of long-term concrete 

effects. In the field, temperature and weather change. Not only does tem-

perature increase or decrease seasonally but the temperature profile 

across the girder also changes daily as the sun warms the deck faster than 

the steel. These temperature changes affect bridge behavior. Environmen-

tal effects must be removed to directly observe how various construction 

events and long-term concrete behavior influence strains and deflections. 

These environmental effects have been studied and presented. Attempts 

have been made to remove these effects to more directly observe time 

dependent concrete effects but more work should be done to better under-

stand this behavior. Finally, live load is present during monitoring as the 

phases carry traffic. This will cause some variation in readings and make it 

more difficult to directly observe long-term concrete behavior. Ideally this 

would not be present but there is no way to uncouple the live load effects.

2.2 BRIDGE DESCRIPTION

Replacement of Dodge Street Bridge over I-480 in Omaha, Nebraska pro-

vided an opportunity to monitor a project built utilizing staged construc-

tion. Dodge Street (US Highway 6) is a major arterial and complete closure 
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to traffic during construction was not feasible. The new bridge, which is a 

two span continuous steel plate girder bridge, replaces a 1963 eight span 

cast-in-place reinforced concrete box girder bridge. The new bridge will 

carry the same four traffic lanes and two pedestrian sidewalks as the old 

bridge. The completed new bridge consists of eight continuous steel plate 

girders spaced 9 ft., 5 in. apart spanning two equal 236.5 ft. spans. Each 

construction phase consisted of four girders topped by a 7.0 in. deep by 

34ft. 10in. wide deck built compositely with the girders. The width of the 

closure pour joining the two phases is 40 in. After the closure pour, an 

overlay brought the final deck thickness to 8.5 in. and permanent railings 

were slip-formed. All plate girders were hybrid. Over the pier, girders uti-

lize HPS-70W steel (High Performance Weathering Steel with 70 ksi yield 

strength) for both flanges. In the positive moment section, only the tension 

flanges use HPS-70W steel while the compression flanges use A709-50W 

steel. A709-50W steel was selected for web materials.

2.2.1 GIRDERS

The eight girders for the completed bridge are identical. Each girder 

changes section properties at five locations as shown in Figure 2-1. The 

girders are longitudinally symmetric about the pier. There are 4 field 

splices, two on each side of the pier, so each girder was manufactured in 

five sections. Girder spacing is 9 ft. 5 in. on center. Girders are named 

according to letter designation. Girders E, G, H and J are contained in Phase 
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I while A, B, C, and D are in Phase II. The five field sections are designated 

by girder letter and section number, such as A3.

Girder camber accounts for dead load deflections and the substantial ver-

tical roadway curvature, accommodating nearly 7 ft of elevation difference 

between east and west abutments. The west abutment is higher than the 

Figure 2-1:  Girder plate dimensions. Note symmetry about the Pier CL. All steel is A709-50W unless 
noted otherwise.
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east. Figure 2-2 contains the blocking diagram from the bridge design and 

Figure 2-3 contains the blocking ordinates.

Figure 2-2:  Blocking diagram for girders. Units are in mm.
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Figure 2-3:  Blocking ordinates for girders. Units are in mm.

Figure 2-4:  Shear Studs on the top flange. Picture is taken looking West. From right to left are 
Girders E, G, H, and J during erection for Phase I.
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Shear studs welded to the top flange will provide composite action with the 

deck. The shear studs are M7/8 x 5" with three per row spaced 24" between 

rows. An example of the shear stud placement can be seen in Figure 2-4.

2.2.2 CROSS FRAMES

Figures 2-5 and 2-6 show cross frame locations and orientations. Cross 

frames were placed to provide compression flange bracing during con-
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struction and transverse continuity. Cross frame locations are symmetric 

about the pier.
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Figure 2-5:  Location of Cross Frames. Refer to Figure 2.6 for orientation.
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2.2.3 DECK

The slab for the completed bridge consists of three parts. The first two 

parts are the slabs cast in Phases I and II. These slabs are 7.0 in. thick by 

34ft. 10in. wide built compositely with the girders. The third completed 

Figure 2-6:  Orientation of Cross Frames. All members are L6x6x3/8
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deck section is the closure region which is 7 in. thick by 40 in. wide and 

connects the two phases as shown in Figure 2-7.

Once the three sections of the deck are completed an overlay seals the 

joints and brings the total deck thickness to 8.5 in. as shown in Figure 2-7.

Figure 2-7:  Deck thickness
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2.2.4 PERMANENT RAILINGS

Once the overlay is complete, NDOR standard closed concrete rails are slip-

formed on each side separating two 9 ft. sidewalks from 54 ft. of clear 

roadway. Figure 2-8 is a cross section of the completed bridge.
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Figure 2-8:  Completed bridge cross section. Note the phases are symmetric about the centerline. All 
dimensions are inches unless noted otherwise.
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2.3 CONSTRUCTION SEQUENCE

The purpose of Staged Construction is to maintain traffic flow while an 

existing bridge is being replaced. To perform this task on Dodge Street over 

I-480, several steps were taken. First, the southern half of the existing 

bridge was removed allowing the construction of Phase I. During this time, 

temporary barriers were placed on the remaining half of the existing bridge 

allowing for two lanes of traffic and a pedestrian sidewalk.

Once Phase I was completed, temporary barriers were placed and traffic 

was switched onto the completed phase. The remaining half of the old 

bridge was then demolished. Phase II was constructed while Phase I carried 

traffic.

Once Phase II's deck was complete, the entire bridge was closed for 2 days 

while the closure pour operation joined the phases. Temporary barriers 

were used to maintain traffic flow while the overlay was placed first on the 

North side then on the South side. Next, permanent barriers were slip-

formed utilizing temporary barriers to maintain traffic flow. Finally, all 

four traffic lanes and both pedestrian sidewalks were opened.

2.3.1 CONSTRUCTION OF PHASE I
After the southern half of the existing bridge had been removed and traffic 

was being carried on the existing bridge's remaining half, Phase I construc-

tion started. The first operations were those concerning the substructure: 

pile driving, constructing the concrete pier, and pile cap pouring. Once 

these operations were complete superstructure work could begin.

GIRDER ERECTION

Figure 2-9 is a graphical representation of the erection sequence. The like 

shaded girder sections were erected simultaneously and in the order indi-
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cated below the figure. Table 2-1 includes the dates girder sections were 

erected.

Figure 2-9:  Girder erection sequence for Phase I
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Phase I girders were erected as follows. Sections E3 and G3 were connected 

by their cross frames while on the ground and placed on the pier. Tempo-

rary shoring supported the girders so wind would not blow them off. Next, 

Sections H3 and J3 were connected on the ground and placed on the pier. 

While in the air, cross frames between Girders G and H were placed. Now 

all girder sections over the pier were in place as seen in Figure 2-10. In the 

Table 2-1: Construction Time Table for Phase I

Event Date Started  Date Completed 

Pour of Pier  6/21/99 
East Abutment Poured  7/15/99 
West Abutment Poured  7/28/99 
Girder Placement 8/31/99 9/14/99 
     Girders E3 and G3  8/31/99  
     Girders H3 and J3  9/1/99 
     Girders E4-E5 and G4-G5  9/3/99 
     Girders H4-H5 and J4-J5   9/8/99 
     Girders E1-E2 and G1-G2   9/10/99 
     Girders H1-H2 and J1-J2  9/14/99 
Deck Formwork Placed 9/18/99 10/7/99 
Rebar Placed for deck 10/4/99 10/13/99 
Positive Region Pour  10/20/99 
Negative Region Pour  10/28/99 
Pedestrian Fencing Installed 11/5/99 11/9/99 
Placement of Traffic Barriers on Ph. I 11/5/99 11/12/99 
     South Side Temporary  11/5/99 
     North Side Temporary  11/12/99 
Phase I Opened to Traffic  11/15/99 
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figure Girder J is in forefront. Note the temporary shoring that is support-

ing the West (left) side.

East span girder sections were erected after the pier sections were in place. 

While on the ground, sections 4 and 5 were spliced together for Girders E 

and G. The cross frames connecting Girder E to G and the cross frames that 

connect Girder G to H were placed before lifting. This unit was then spliced 

with girder section 3 while in the air and placed on the East abutment 

girder seats. Sections 4 and 5 of Girders H and J were placed in the same 

way. Figures 2-11 and 2-12 show these sections in place. Note in Figure 2-

11 that Girder E is on the left and girder G is to the right. Also note the gird-

Figure 2-10:  Girder sections E3, G3, H3, and J3 placed over the pier
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ers supported by the East abutment and cross frames ready to accept 

Girder H. Splice to section 3 is not visible.

Figure 2-11:  Girder sections 4 and 5 of the East span
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The final girder sections erected for Phase I were those for the West Span. 

Sections 1 and 2 of Girders E and G were spliced together. The cross frames 

connecting them were placed along with the cross frames to accept Girder 

H. This unit was then spliced with girder section 3 in the air and placed on 

the west abutment girder seats. Girder sections 1 and 2 of Girders H and J 

were placed in the same way. Figure 2-13 shows the west span girders in 

place. Note in the figure that the west abutment and the temporary shoring 

to support section 3 has been removed as it is no longer needed. Girder J 

Figure 2-12:  All four girders for East span in place.
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is in forefront. Posts on top of the girders are for the safety of construction 

workers.

Girder sections were spliced in the field using 22.2mm ASTM A325M bolts. 

Each side of the splice contained 2 lines of 5 bolts in top flange splices, 2 

lines of 23 bolts in web splices, and 2 lines of 10 bolts in bottom flange 

splices. Splice plates utilized A709-50W steel. Top flange splice plates were 

0.625" thick, web splice plates were 0.5" thick, and bottom flange splice 

Figure 2-13:  West span girders in place
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plates were 1.0" thick. Filler plates were of appropriate size. A typical splice 

is shown in Figure 2-14.

DECK POURING SEQUENCE

Once girder erection is complete the deck formwork and rebar can be 

placed. Forming the deck with plywood and metal hangers was carried out 

between 9/18/1999 to 10/7/1999. Placement of rebar took place between 

10/4/1999 and 10/13/1999.

The concrete deck for Phases I and II was cast in the following sequence. 

Starting at a distance of 167' 4" from each abutment, concrete was poured 

simultaneously using two crews working towards each abutment as seen in 

Figure 2-15. The pour was 7" thick and 34' 4" wide. This pour is referred to 

as the positive region pour. The pour was performed 10/20/99 for Phase I.

Figure 2-14:  Girder splice
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The remaining portion of the deck was cast after the positive region con-

crete reached its 28 day design strength. This pour had a 138' 4" length. 

The pour started on the East span and ended on the West span. This “neg-

ative region pour” can be seen in Figure 2-16. This portion of the deck was 

poured 10/28/99 for Phase I.

TEMPORARY GUARDRAIL AND FENCING

With the deck of Phase I complete it is nearly ready to carry traffic. Before 

that is possible pedestrian fencing must be placed and temporary barriers 

located to separate traffic lanes from the sidewalk. The fencing was placed 

on the south side of Phase I from 11/5/99 to 11/9/99. Temporary barriers 

were placed on the southern side of Phase I on 11/5/99. On 11/12/99 tem-

porary barriers were placed on the North side, near the closure pour loca-

tion. Barrier locations are shown in Figure 2-17. In the figure Girder E is on 

the North side and is closest to the closure region. The remaining half of 

the existing bridge would be North (right) of Girder E.

Figure 2-15:  Positive region pour.

Figure 2-16:  Negative region pour
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PHASE I OPENS TO TRAFFIC

On 11/15/99 traffic was switched from the Northern half of the existing 

bridge to Phase I. Once Phase I was opened to traffic the formwork was 

removed from all regions except the closure region. After Phase I was car-

rying the traffic, the remaining half of the existing bridge was demolished 

as seen in Figure 2-18.

Figure 2-17:  Location of Temporary barriers.
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2.3.2 PHASE II CONSTRUCTION

After demolition of the existing bridge's northern half was completed, 

Phase II construction commenced. Again, the first operations were those 

concerning the substructure: pile driving, constructing the concrete pier, 

and pile cap pouring. Once these operations were complete superstructure 

work could begin. As the two phases are mirror images about the project 

centerline, construction steps were very similar. Therefore, an in-depth 

summary of Phase II's construction up to closure is unwarranted. 

GIRDER ERECTION

Girders for Phase II were placed in a similar manner to those of Phase I with 

two joined by cross frames were set at once. The only difference was that 

the West span girders were placed before the East span girders. The order 

Figure 2-18:  Demolition of the Northern half of the existing bridge
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of placement can be seen in Figure 2-19 and Table 2-2 shows the dates of 

erection.

Figure 2-19:  Girder erection sequence for Phase II.
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DECK POURING SEQUENCE

Once girder erection was complete, the deck formwork and rebar was 

placed. Deck forming was carried out between 3/1/2000 to 3/14/2000. 

Placement of rebar took place between 4/2/2000 and 4/9/2000.

The concrete deck for Phase II was cast in the same sequence as Phase I. 

The positive region pour was performed 4/18/2000 and is shown in 

Table 2-2: Construction Time Table for Phase II

Event Started  Completed 

Pour of Pier  12/28/1999 
East Abutment Poured 1/19/00 1/21/00 
West Abutment Poured 1/27/00 1/28/00 
Girder Placement 2/1/00 2/21/00 
     Girders C3, D3, A3, and B3 2/1/00 2/5/00 
     Girders C1-C2 and D1-D2  2/8/00 
     Girders A1-A2 and B1-B2  2/13/00 
     Girders C4-C5 and D4-D5  2/20/00 
     Girders A4-A5 and B4-B5  2/21/00 
Deck Formwork Placed 3/1/00 3/14/00 
Positive Region Pour 4/18/00 8am 4/18/00 11am 
Negative Region Pour 4/26/00 7am 4/26/00 9am 
Live Load Tests 5/3/00 5/4/00 
Bridge Closed to all Traffic  5/5/00 at 11pm 
Closure Pour 5/6/00 5:15am 5/6/00 7:05am 
Phase I Re-opened to Traffic  5/7/00 at 3pm 
Overlay on Phase 2 5/22/00 2:25am 5/22/00 8:15am 
Placement of Permanent N Side Barrier 6-2-00 2pm 6-2-00 4:30pm 
Placement of Fence and Handrail on Phase II 6-5-00 6-8-00 
Handrail Attached on Phase 2 Permanent Rail 6-12-00 6:30am 6-12-00 3pm 
N Side Overhang Slab Formwork Removed 6-8-00 7pm 6-9-00 2am 
Temporary Barriers Placed on S Side Phase 2 6-13-00 6am  6-13-00 9:30am 
Phase 2 Opened to Traffic 6-13-00 10:30am  
Temporary Barriers Removed from Phase 1 6-13-00 10:30am 6-13-00 4pm 
Formwork Removal from Phase II 6-18-00 11pm 6-19-00 3:30am 
Final Cross Frames Placed between Phases 6-19-00 3:30am 6-19-00 5am 
Formwork Removal from Phase 2 completed 6-19-00 11pm 6-20-00 6am 
South Bridge Overlay 6-30-00 5am 6-30-00 10:30 
South Bridge Sidewalk Overlay 7-8-00 7am 7-8-00 10am 
Prep of Phase I bridge for concrete railing 7-10-00 7-13-00 
Placement of Phase I permanent  Barrier 7-14-00 8am 7-14-00 10 am 
Bridge Completely opened to Traffic  8-10-00 3:30pm 
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Figure 2-20. The negative region pour was performed on 4/26/2000 and 

can be seen in Figure 2-21.

2.3.3 CLOSURE POUR

Before connecting the two phases with the closure pour, several things 

were done. First the construction crew removed some of the formwork 

from Phase II but left the overhangs needed for the closure concrete. Then 

some of the cross frames between Girders D and E were placed. All of the 

cross frames between these girders could not be placed because a differen-

tial elevation existed and cross frame bolt holes did not line up with those 

on the girders. The cross frames that were installed prior to the closure 

pour are shown in Figure 2-22. The other cross frames were placed after 

the closure operation. Longitudinal rebar was also placed in the closure 

region to provide strength. Transverse rebar consisted of extensions from 

the Phase I and II slabs. No additional rebar was placed in the transverse 

Figure 2-20:  Positive region pour.

Figure 2-21:  Negative region pour
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direction, rather, the bars extending from the Phase I and II slabs were 

lapped and tied together.
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Figure 2-22:  Cross frames that were installed at time of closure pour.
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To perform the closure pour both phases were closed to traffic from 11pm 

May 5, 2000 to 3pm May 7, 2000. This was the only time during construc-

tion that traffic was entirely closed down. After the bridge was closed, all 

temporary barriers were removed from Phase I. The elevation of each phase 

was then obtained to determine the differential between the phases. 

Because Phase II was significantly higher than Phase I on the East span, bar-

riers were placed on Phase II's East span as shown in Figure 2-23. These 

barriers reduced the differential elevation to 0.75" on the East Span. Barri-

ers were placed from East abutment to pier. This reduced the differential 

elevation and was deemed an acceptable solution by Nebraska Department 

of Roads bridge engineers. The closure region formwork was then adjusted 
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by turning the leveling screw in the overhang brackets and plywood was 

screwed together to remove any gap in the forms.
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Figure 2-23:  Location of barriers on Phase II



40

Construction Sequence

Concrete placement began 5:15am on May 6, 2000. Concrete trucks were 

not allowed on the bridge so concrete was either pumped or carted where 

it was needed with wheelbarrows. The closure pour was 40" wide and ran 

the entire bridge length. Pouring started at the East abutment and ended at 

the West abutment. The depth depended on the amount of differential ele-

vation and was approximately the same as the Phase I and II decks, 7". 

Figure 2-24 shows the pour as it was being performed. The two decks from 

Phase I and II are clearly seen in the figure. Note transverse rebar tied 

together. This rebar consists of extensions of the rebar from the Phase I 

and II slabs to provide continuity. Longitudinal rebar was placed before the 

pour commenced. Figure 2-25 indicates the pouring direction.

Figure 2-24:  Closure pour
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After the concrete surface was finished it was covered with a curing agent 

and covered with wet burlap for 48 hours. The pour ended at 7:05am May 

6, 2000.

Phase I was re-opened to traffic on May 7, 2000 at 3pm. Barriers were 

removed from Phase II and placed on Phase I as shown in Figure 2-26. This 

allowed only 32 hours for closure concrete to cure before barriers on the 

Figure 2-25:  Direction of closure pour
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East span of Phase II were removed. Data recorded during the closure oper-

ation will be presented later.

2.3.4 OVERLAY AND BARRIERS

Once the primary structure had been completed, a few tasked remained 

including overlay of both phases and installation of the permanent barri-

ers.

Figure 2-26:  Phase I and II after closure pour



Construction Sequence

Phase Construction 43

PHASE II OVERLAY

As traffic was once again on Phase I, the Phase II overlay was placed. Before 

this could be done, the deck of Phase II was prepared. This consisted of 

sandblasting 1/8” from the deck, blowing away dust using compressed air, 

and washing the surface with water. Wet burlap was then carefully placed 

from the West abutment to the East abutment. This was done in such a way 

that workers and trucks never stepped on the prepared surface. Instead 

they walked on wet burlap until the pour began.

Two concrete trucks were always on the bridge during the pour. They both 

backed down the bridge from the West abutment. One concrete truck con-

tained a grout that was brushed onto the deck to help the overlay adhere 

to the original surface. The other concrete truck contained the overlay con-

crete. These trucks unloaded directly onto the bridge. The pour started at 

the East abutment and ended at the West. Burlap was pulled up as trucks 

drove forward to expose the prepared surface. A finishing machine and 

several workers did the finishing work. After work on a region was com-

plete, it was recovered with burlap and sprinklers placed. The overlay was 

kept moist for 7 days to reduce shrinkage cracks and insure the best pos-

sible bond between the original deck and overlay.

The overlay of Phase II started at 2:25am May 22, 2000 and ended at 

8:15am the same day. The final deck thickness was 8.5 in. yielding an 

approximate overlay thickness of 1.75 in. The area overlaid was one half 
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the deck width, from Phase II's edge to the closure region's center, as seen 

in Figure 2-27.
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Figure 2-27:  Configuration of bridge after Phase II overlay. Note bridges are joined by closure pour 
which has already occurred.
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PHASE II PERMANENT RAILING

With the overlay on Phase II completed and traffic still being carried on 

Phase I, the permanent barrier on Phase II was placed. After the reinforcing 

steel was in place, the rail was slip-formed from the West to the East abut-

ment from 2:00pm to 4:30pm on June 2, 2000. The rail was coated with a 

curing agent and left uncovered. Figure 2-28 shows the machine to slip 

form the rail and the reinforcing steel in place.

After the railing cured pedestrian fencing was placed on Phase II and tem-

porary barriers placed so traffic could be switched over and Phase I com-

Figure 2-28:  Phase II permanent barrier before casting. Note dowels epoxied into deck
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pleted. A cross section of the bridge before the Phase I overlay is seen in 

Figure 2-29.
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Figure 2-29:  Configuration of bridge before Phase I overlay. Note traffic is being carried on Phase II 
as it is complete.
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PHASE I OVERLAY

The Phase I overlay was very similar to that of Phase II. The deck prepara-

tions were performed in the same fashion and the concrete was placed the 

same way from East to West. The only difference is that Phase I had the 

pedestrian fencing in place at the time of the pour. Therefore the finishing 

machine rail had to be placed on the deck and the whole width could not 

be overlain at once. The majority of the overlay was placed from 5:00am to 

10:30am on June 30, 2000. The remaining sidewalk overlay portion was 

completed on July 8, 2000 from 7:00am to 10:00am. As the sidewalk over-

lay was a small region all finishing work was done by hand. Both the main 

deck and sidewalk overlays were kept moist for one week to ensure a good 
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bond with the original deck and to reduce shrinkage cracking. Figure 2-30

shows the bridge cross section after the Phase I overlay was complete.

PHASE I PERMANENT RAILING

Permanent rail for Phase I was cast on July 14, 2000 from 8:00am to 

10:00am. This railing was also slip-formed from the West Abutment to the 

Figure 2-30:  Configuration of Bridge after Phase I overlay.
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East abutment as was Phase I. A photo of the finished rail is seen in 

Figure 2-31.

COMPLETION OF PROJECT

Before the bridge could be opened to traffic some of the deck had to be 

ground to bring the surface profile to the design 2% cross slope. During this 

operation the temporary barriers were removed from the bridge and traffic 

was limited to one phase or the other by barrels as seen on the left side of 

Figure 2-31.

Both phases of the bridge were officially opened to traffic on August 10, 

2000 at 3:30pm. Construction lasted 14 months from the time the Phase I 

Figure 2-31:  Finished permanent barrier. Note truck on bridge is grinding surface.



52

Construction Sequence

pier was poured. A completed cross section of the bridge is shown in 

Figure 2-32.
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Figure 2-32:  Completed bridge. Four traffic lanes and two sidewalks are clearly seen. Overall width 
of construction is 72'.
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2.4 INSTRUMENTATION

The necessary data to obtain an understanding of the bridge behavior can 

be divided into two categories: strain and deflection. This data will provide 

information necessary to understand system behavior during short-term 

construction events such as deck casting, concrete barrier placement, clo-

sure pour, and live load tests. The data will also provide information nec-

essary to understand long term bridge behavior such as creep, shrinkage, 

weather, and thermal effects.

2.4.1 DEVICES AND SENSORS USED IN MONITORING

Proper choice of instruments is essential for obtaining the required data. 

The strain data can be sub-divided into two categories: steel strain and con-

crete strain. The desired deflection data can also be divided into two cate-

gories: vertical girder deflection and longitudinal girder movement. A 

description of each instrument chosen to obtain the desired data follows.

Redundant instrumentation to obtain the desired data adds to the project 

cost and produces massive data files. Therefore, a cost effective instrumen-

tation strategy was devised by judiciously selecting the location of gages.

Using the 1997 AASHTO LRFD Bridge Design Manual, the bridge as 

designed by the Nebraska Department of Roads (NDoR) was analyzed. 

From the dead and live load analyses the positioning of the gages was 

determined as described below. It was desirable to place gages on the East 

span because the distance to the ground is only 20' versus nearly 50' on the 

West span.

STEEL STRAIN SENSORS

Spot-Weldable Vibrating Wire(VW) sensors produced by Slope Indicator CO. 

of Bothell, WA were used to obtain data involving steel girder strain. The 

gauge consists of a steel wire held in tension inside a tube. The tube is 

mounted on a stainless steel flange, which is welded to a structural mem-
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ber's surface using specialized equipment. Sensors placed over each gauge 

read the frequency at which the wire vibrates after the sensor plucks the 

wire. This frequency varies with the tension in the wire and can therefore 

be converted to a strain measurement. The reader also contains a thermis-

tor that measures local temperature. An example of this gage can be seen 

in Figure 2-33. Vibrating wire gages were chosen for this project instead of 

typical electrical strain gages because of the monitoring duration. An elec-

trical gage could not withstand constant excitation for over two years and 

reliable readings would be lost. Vibrating wire gages on the other hand 

have excellent long-term performance and can be expected to perform for 

many years.

Figure 2-33:  Steel strain gage and reader. Clockwise from upper left: reader, gage and reader in place, 
gage after being placed on reader.
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The location of maximum positive bending moment from the Strength I 

combination was chosen as a gaging location. These strain readings will 

relate to the bending moment experienced by the girders. To obtain the 

amount of negative moment carried by girders, strain gages were also 

placed 2' East of the pier centerline. The gages could not be placed directly 

at the pier because of the bearing stiffeners there. Finally, spot-weldable 

gages were placed near the abutments so the amount of end restraint could 

later be determined and compared to the simple support assumed for 

design. Strain gages attached to the flanges were centered on the flange at 

their respective position.

Two cross frames for Phase II were also gaged. These strain readings will 

indicate how effective cross frames are in transmitting load in the trans-

verse direction as the phases deflect relative to each other. The cross 

frames chosen to be gaged were the ones closest to the maximum positive 

moment section (Section 2).

CONCRETE STRAIN SENSORS

Embedment Strain Gauges, model 52630126, produced by Slope Indicator 

CO. of Bothell, WA were used to obtain the strain in the concrete. The VS 

Embedment strain gauge is a steel tube with flanges at either end. Inside 

the body is a steel strap and a magnetic coil. The strap is held in tension 

between the two flanges, and the coil magnetically “plucks” the steel strap, 

which then vibrates at a frequency that can then be converted to a strain 

reading. The gages also contain a thermistor to record local temperature. 
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The gages are tied to rebar before concrete placement. Figure 2-34 shows 

two of these gages tied to rebar in the closure region.

To obtain concrete strain data, gages were placed at several locations and 

orientations in the deck. Additionally, one gage was placed in a control 

Figure 2-34:  Concrete Embedment gage in place. These gages record concrete strain.
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specimen 7" deep x 6" wide x 18" long, as seen in Figure 2-35, that was 

placed near the DAS to obtain the concrete's free shrinkage behavior.

Gages were placed in the closure pour because it joins the two phases and 

can carry high strains and crack if differential settlement between the 

phases occurs. The gages will also provide long-term data on the closure 

region concrete behavior as it creeps and shrinks.

VERTICAL GIRDER DEFLECTION 
The vertical girder deflections were measured using RAYELCO Linear 

Motion Transducers manufactured by MagneTek of Simi Valley, CA. These 

gages contain a potentiometer that is connected to a wire spool. A known 

voltage is sent to the potentiometer and by reading the return voltage the 

length of stretched wire is computed. The free end of the spooled wire is 

connected to a fixed point and the potentiometer is fixed to the deflecting 

structure, or vice-versa. By choosing a datum at an appropriate time the 

change in deflection can be interpreted from subsequent readings. The 

Figure 2-35:  Embedment Gage in Free Shrinkage Control Specimen
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devices were mounted to a piece of steel and then protected from the envi-

ronment by constructing a covering over them. Care was taken so the cov-

ering would not disturb their normal function. The unit in its protective 

covering clamped to the bridge girder can be seen in Figure 2-36.

To obtain meaningful vertical displacement data it is desirable to measure 

deflection at the predicted location of maximum deflection, 0.4L. Potenti-

ometers (pots) could not be placed exactly at this location because there is 

a roadway underneath the bridge. Therefore they were placed as close to 

the roadway as possible while still in a location that would not interfere 

with construction. The pots are tightly clamped to the underside of the 

girders while the other end is connected to a rigid test frame, which has its 

base embedded in concrete at a depth below the frost line. The pots mon-

itor deflection during significant construction events and also long-term 

behavior. This data will indicate the amount of differential deflection 

occurring between the phases.

Figure 2-36:  Potentiometer connected to the girder and fixed frame.
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LONGITUDINAL DISPLACEMENTS 
Girders D and E were instrumented at each abutment to measure the lon-

gitudinal displacement of each phase. These girders were chosen because 

they are adjacent to the closure pour and should have the most effect on 

the closure region behavior. This data allows comparisons between the 

behaviors of the two phases.

Longitudinal girder movements were measured at the abutments using 

VWP Displacement Transducers (crackmeters) produced by Slope Indicator 

CO. of Bothell, WA. The device is mounted with one end on the girder's 

bottom flange and the other on a surface that is assumed not to move, the 

pile cap in this case. The device operates on the same frequency principle 

as previously mentioned gages but these instruments relate frequency to 

displacement. As with the other Slope indicator products, local tempera-

ture is also recorded. An example of these units during service can be seen 

in Figure 2-37. In the figure, note the right end connected to the galvanized 
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angle that has been screwed into pile cap and the left end which is con-

nected to an angle which has been clamped to girder flange.

2.4.2 DATA ACQUISITION SYSTEM (DAS)
To acquire the necessary data, a DAS that can perform the essential tasks 

while remaining flexible to changing needs is essential. These tasks include 

taking readings from sensors at appropriate intervals, recording the read-

ings in non-volatile memory, and the ability to download data files for anal-

ysis.   Readings in non-volatile memory are stored such that system power 

can be lost and previously stored readings are preserved.

The DAS for this task was produced by Slope Indicator CO. and consists of 

many different modules. The CR10X is the primary module that controls 

the system and stores the system's instructions. It controls the other mod-

ules and dictates when readings are taken and how data is recorded into 

Figure 2-37:  Crackmeter connected to girder flange
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memory using the other modules. Gages are connected to the AM416 Relay 

Multiplexers which excite the gages and read the responses. The AVW100 

module switches between multiplexers so the channels are excited in cor-

rect order. Power is provided through the PS12LA battery/battery charger. 

Data is recorded in the CR10X's internal 128k of memory. Finally, the 

SC32A Optically Isolated RS232 Interface allows the user to interface with 

the DAS using a computer and a 9-pin connector. The individual modules 

are manufactured by Campbell Scientific, INC. of Logan, Utah and are 

assembled by Slope Indicator to meet the project's needs.

Two multiplexers provided adequate resources to acquire data from the 24 

vibrating wire gages and 5 potentiometers required for Phase I monitoring. 

Once Phase II began, the system had to be upgraded. Four additional mul-

tiplexers were added providing channels for up to 48 more vibrating wire 

gages and 16 potentiometers. A COM 100 Cellular Phone Package and a 

COM 200 Telephone Modem were added so data could be retrieved 

remotely. A solar panel, manufactured by Solarex of Frederick, MD, was 

connected to the PS12LA battery/battery charger to provide power during 

the day and to charge the battery for night usage. Finally a SM4M Storage 

module was added providing an additional 4 Megabytes of non-volatile 
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memory allowing for longer intervals between downloading data. Figure 2-

38 is a schematic of the final DAS.

To control, communicate, and access the system's memory, Slope Indicator 

CO provides a program package, PC208W Datalogger Support Software. 

The package serves several functions. One is to allow the user to provide 

the DAS with information concerning gage to channel relationships and at 

what frequency to excite gages. This information is contained in a program 

which is uploaded to the CR10X. The program also contains information 

concerning what data to record into memory so it can be accessed later. 

Another important function of the package is to download data stored in 

memory. The user can also set the DAS's clock and instruct it to take read-

ings at set intervals or upon command.

Figure 2-38:  Data Acquisition System (DAS) for Dodge Street over I-480
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Long Term Data Reduction

Chapter

3
RESPONSES WHICH VARY OVER TIME DUE TO 

SEASONAL AND DAILY TEMPERATURE CHANGES

The deflections observed when using phased construction methods can be 

separated into two main categories. The first category deals with the short 

term deflection concerns, which are present shortly after the bridge is built 

and completely opened to traffic. The other is concerned with the long 

term performance of the structure, which happens during its life time, 

when the two phases have already suffered initial deflections due to creep 

and shrinkage and have "settled in" being one monolithic system.

Short term deflection prediction, including creep and shrinkage, is treated 

profoundly in the report Development of a Design Guideline for Phase Con-

struction of Steel Girder Bridges.  The present report focuses on long term 

deflections, due mainly to temperature.
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3.1 DEFLECTION MECHANISMS

Sun light strikes the bridge heating the deck while the shaded girders 

below remain at the ambient air temperature.  This thermal gradient 

results in an uneven expansion of the bridge through the depth.  Since the 

top of the bridge expands, or elongates, more than the bottom, the result 

is an upward bending of the bridge. This effect is illustrated in Figure 3-1.

In addition to deflection due to thermal gradient, deflection can also be in 

response to a change in ambient temperature.  Two potential mechanisms 

have been identified which explain this occurrence.

The first explanation is the different coefficients of thermal expansion for 

steel and concrete.  The values are 6.5×10-6 and 5.5×10-6 in/in/°F for steel 

and concrete respectively.  Therefore, the steel elongates 1.0×10-6 in/in/°F 

more than the concrete.  Since the steel is on the bottom of the structure, 

the bottom of the bridge elongates more than the top and the bridge 

deflects downwards.  Note that this is in the opposite direction as the 

Figure 3-1:  Deflection due to Thermal Gradient
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movement due to temperature gradient. This phenomenon is illustrated in 

Figure 3-2.

The second mechanism requires the presence of at least partial end 

restraint at the end of the girders which acts eccentric to the girder cen-

troid as shown in Figure 3-3.  If the restraint is assumed to act in line with 

the deck, then as the girder expands, the deck is restrained from expansion 

while the steel girder is not.  Therefore, the bottom of the bridge is free to 

elongate more than the top.  Again, the bridge deflection is downwards.

5.5με/°F

6.5με/°F

Figure 3-2:  Deflection due to Uniform Temperature (Different Expansion 
Coefficient)
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3.2 OBSERVED MOVEMENT

3.2.1 ONE WEEK ANALYSIS

The temperature during a sunny summer day can be seen in Figure 3-4. 

The data in Figure 3-4 is from an interior girder taken around June 23, 

2000.  The numbers along the x-axis are the number of days since the 

beginning of the project with midnight falling on the whole numbers.  It 

can be seen from the figure that the temperature in the slab can be a great 

deal higher than the temperature of the steel.  This is due to solar heating. 

The temperature of the bottom flange follows very closely the ambient 

temperature.  Further, due to conductive heating of the steel by the slab, 

the top flange temperature remains higher than the bottom flange.  Finally, 

note that the temperature of the slab remains well above the temperature 

of the steel even into the morning hours.  The entire system generally 

reaches a uniform temperature around 4:00 am.

Figure 3-3:  Deflection due to Uniform Temperature (End Restraint))
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Figure 3-5 illustrates the gradient through the depth of the girder at 

5:00pm on June 23, 2000. Also shown in the figure is the thermal gradient 

specified by the AASHTO LRFD Specification. Instrumentation was not pro-

vided to obtain the temperature through the entire depth of the slab, how-

ever, the temperature obtained at mid-depth does coincide well with the 

prescribed value. The predicted value at the top flange is well below the 

observed value. The higher temperature of the top flange is due to the con-

ductive heating of the steel. It is assumed that the zone of elevated temper-

ature is small and is therefore ignored by the predictive equations.
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The elevation of Girder E has also been shown in Figure 3-4.  The values 

along the right y-axis are the elevation in inches as measured from an arbi-

trary reference height.  It can be seen that both the temperature gradient 

and deflection peak around 5:00 in the afternoon.  The elevation increases 

over the course of the afternoon meaning the bridge deflects upwards.

It is of particular interest to observe the elevation of the girder at the time 

when the temperature is uniform over the depth of the girder.  During the 

week presented in Figure 3-4 the early morning uniform temperature on 

most days was around 68° Fahrenheit.  At that same time the elevation of 

the girder was around 15.95 inches.  However, on the morning of the 24th 

the uniform temperature was found to be 9° higher at 77° F.  On this day 

the elevation was at 15.75 inches.  This demonstrates that as the uniform 

temperature increases the bridge deflects downwards.

0

10

20

30

40

50

60

70

80

90

20 25 30 35 40 45 50 55 60 65

Temperature (°c)

D
is

ta
nc

e 
Fr

om
 B

ot
to

m
 (i

n)

Gird E
Gird G
Gird H
Gird J
Ambient
AASHTO

Figure 3-5:  Gradient through depth of girder



Observed Movement

Phase Construction 71

The week of data presented in Figure 3-4 demonstrates well the primary 

deflection modes in response to temperature.  It should be emphasized 

that the movement due to an increase in temperature gradient is in the 

opposite direction as the movement due to an increase in the uniform tem-

perature.  During the course of a typical day both the ambient temperature 

and temperature gradient increase during the afternoon and decrease 

during the evening resulting in opposing deflections.  In a practical sense 

this is a good thing since the two effects oppose each other lessening the 

overall movement due to temperature.  However, this situation is difficult 

to account for in analyzing the data obtained from the field testing.

3.2.2 PROPOSED METHODS TO HANDLE TEMPERATURE EFFECTS

Three general methods were proposed for dealing with the temperature 

effects.  The first was to fully account for all thermal effects utilizing sim-

ulation and analysis techniques.  It was determined that, due to the com-

plex interaction between the various factors including additional 

meteorological factors not yet mentioned such as humidity, drought and 

precipitation, this alternative was too costly given the ultimate objectives 

of the project.

The second alternative was to ignore the presence of the thermal gradient 

and deal solely with the average ambient temperature at the time of a read-

ing.  As was shown in the preceding section, during the afternoon as the 

average ambient temperature is increasing thus forcing the bridge down-

wards, the thermal gradient is increasing thus forcing the bridge upwards. 

It is quite apparent from Figure 3-4 that the thermal gradient effects are 

much greater than the ambient temperature effects on a day to day basis. 

On a good sunny day one can expect to see an approximate upwards deflec-

tion of 0.6 inches.  However the approximate change in elevation observed 

through the seasonal thermal change is 0.5 inches.  Therefore, since the 

magnitude of movement is the same for the two effects it would be incor-

rect to ignore either.
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The third alternative was to consider the effects separately.  Studying the 

effect of thermal gradient can be done by examining the data obtained 

from individual days.  The goal in particular is to find a sunny day during 

which the ambient temperature remains relatively constant.  This mini-

mizes the effects of change in ambient temperature while exposing the 

response of the bridge to thermal gradient.  The procedure for isolation of 

the bridge response to ambient temperature in absence of thermal gradient 

is less straight forward and will be discussed in the following section.

3.3 REMOVAL OF THERMAL GRADIENT

After completion of the second phase there were 75 sensors capable of 

indicating temperature however the results from each and every gage are 

not necessarily accurate. Looking at a two week period of time in Figure 3-

6 one can see that the temperature data can be quite noisy. This noise can 

come from a number of sources including but not limited to communica-

tion problems, interference, faulty gages, loads and vibration, and mois-

ture in the wiring.
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It was seen in the previous section that there is a short period of time 

during which the thermal gradient is at a minimum each day. The goal of 

filtering is to isolate that period of time and obtain the temperature and 

bridge response corresponding to a constant uniform temperature for each 

day. It would also be desirable to reduce the overall volume of data.

The first step in filtering the temperature data is to limit the time period 

used in the analysis. The time period chosen is from 4:00 am to 10:00 am 

resulting in seven readings for each day. The plots such as Figure 3-7 which 

shows all gages over a one day period indicate that the temperature is most 

stable during this period of time with the gages showing a small spread in 

values.
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The next step is to eliminate the obvious outliers. These are the values 

which are so far out of range that they are obviously due to systemic error. 

Since future filtering steps will further eliminate outlier points the limits at 

this point can be very generous. These limit points have been chosen to be 

-30 and 60 degrees Celsius (-22° and 140° F). Any reading which falls out-

side these limits is eliminated from the data set. Figure 3-8 shows the same 

twenty days displayed in Figure 3-9 after imposing the time and extreme 

value limits.

The next step is to further refine the elimination of outlier data points. This 

step is based on the following premise. If the temperature is constant, and 

has been for some time, one would expect all 75 gages to give approxi-

mately the same value. Based on this, the average value and standard devi-

ation is calculated for each reading. If the standard deviation is less than 
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3° C (5.4° F) then the reading is acceptable. However, if the standard devia-

tion is over 3° C (5.4° F) then the individual gage reading which is furthest 

from the mean is eliminated and the mean and standard deviation is recal-

culated. This is repeated until the three degree standard deviation criterion 

is satisfied. At this point if there are at least five gages remaining in the 

data set then the average value from the remaining gages is determined to 

be the average uniform temperature of the structure for the time of that 

reading. This is then repeated for each hour such that a single temperature 

is obtained for each hour. Figure 3-8 shows the results of this filter for the 

twenty days referenced previously. Since the outliers have been removed 

the data falls in a much tighter band and the limits in the plot have been 

adjusted accordingly to provide more detail.

The next step in the filtering process is to reduce to data down to a single 

temperature reading per day. The criteria for this operation are that the 

temperature range during the day must not exceed 3° C (5.4° F) and the 
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number of hourly reading remaining during that day be greater than or 

equal to two. The first criterion assures that the temperature is not chang-

ing too rapidly during the period of time. This is because the steel changes 

temperature quickly and closely follows the ambient temperature while the 

concrete slab has more thermal inertia requiring more time to respond to 

rapidly changing temperatures. The second criterion requires that there 

are a sufficient number of readings available to provide a statistically rele-

vant result. If the specified criteria are met then a centrally weighted aver-

age is performed with the resulting temperature being the temperature for 

that day. These temperatures are shown in Figure 3-10 for the twenty days 

being examined. The days in Figure 3-10 without a large marker indicating 

the final daily temperature are those days which violated the prescribed 

crieria.
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Figure 3-9:  Temperature Data after filtering
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The final step in the temperature filtering process is to obtain daily values 

for the bridge response variables such as deflection, and strain. Minimal fil-

tering is performed on the response variables. For each gage generous 

extreme outlier limits have been specified and the excessive values elimi-

nated from the data set. Once the extreme values have been removed a cen-

trally weighted average is performed on the admissible hourly reading 

values for each day. The resulting value is the response variable value for 

that day.

The result of temperature filtering has thus reduced the full data set into 

a single temperature and the corresponding response data for each day. 

The values are from a period each day when the thermal gradient through 

the depth is at a minimum. Days during which the temperature is changing 

rapidly have been discarded and central averaging has been utilized to fur-

ther reduce the effect of variability in the response variables.
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Figure 3-10:  Temperature Data after Averaging Process
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Longitudinal Deformation 

Chapter

4
LONGITUDINAL RESPONSE DUE TO UNIFORM 

TEMPERATURE CHANGE

Once the effects of thermal gradient had been removed using the proce-

dure described in the preceding chapter, one could begin investigating the 

movements which could be attributable to a uniform change in tempera-

ture. 

4.1 DEFORMATION BEHAVIOR

There are four gages capable of monitoring the longitudinal deformation. 

One gage is placed at each end of girders E and D. A more detailed descrip-

tion of the instrumentation is given in Chapter 2 . To begin examining the 

influence of temperature on longitudinal movement, the longitudinal posi-

tion has been plotted versus daily temperature for all data collected in 

Figure 4-1. The zero position for each gage is the arbitrarily chosen initial 
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Deformation Behavior

position when the gage was installed. This serves to separate the data and 

make each gage distinguishable from the other.

Inspecting Figure 4-1, one should notice an apparent linear relation for 

each of the gages. Further, a pairing of the data is observed with respect to 

which end of girder the gages are on. Figures 4-2 and 4-3 separate the pairs 

for the west abutment and east abutment respectively.

Figure 4-1:  Longitudinal Movement versus Temperature
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From inspection of the two previous figures one observes the deflection of 

the west end of the bridge caused by a change in temperature is larger than 

the deflection of the east end of the bridge subjected to the same temper-

ature change. While there is insufficient instrumentation to verify, one 

hypothesis is that the difference in behavior between the two ends of the 

bridge is due to the vertical curve of the roadway as depicted in Figure 4-4. 

The supposition is that the lower end provides a rigid base off of which the 

rest of the bridge pushes off of. This is similar to a vertical metal rod rest-

ing on a table and subjected to a temperature change. The bottom remains 

fixed while the top of the bar experiences all the deformation.

Of greater significance than which end deforms more or less than the other 

is the total elongation or contraction of the bridge in response to temper-

ature fluctuations. To obtain this value, the deformation from the west end 

has been added to the deformation of the east end. The resulting data 

versus the average daily temperature has been plotted in Figure 4-5 for 

girders D and E. As was done with the position data, the reference point for 

Figure 4-2:  Longitudinal Movement versus Temperature (West End)
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Predicted and Real Displacement

zero deformation is arbitrary which separates the two data series on the 

same plot.

4.2 PREDICTED AND REAL DISPLACEMENT

A linear regression for the girder contraction versus temperature data 

from Girders E is shown in Figure 4-5.  As the intercept is arbitrary the 

slope is of interest.  Equation 4-1 gives an approximation for the longitudi-

nal movement due to a change in temperature, which is used by most 

designers to approximate longitudinal movement.

Figure 4-3:  Longitudinal Movement versus Temperature (East End)

East
West

Figure 4-4:  Bridge Vertical Alignment
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The coefficient of thermal expansion of steel is 11.7×10-6 mm per mm per

degree Celsius (6.5×10-6 in/in/°F).  Multiplying this value by the total bridge

length of 144,180 mm (473 ft) gives the rate of deformation with respect

to change in temperature.  Comparing the resulting value of 1.69 mm/°C

(0.0369 in/°F) to the slope of the line in Fig. 9, 1.42 mm/°C (0.0311 in/°F) it

(4-1)

Where

δ = Longitudinal movement due to temperature change

ΔT = Change in temperature

α = Coefficient of thermal expansion

L = Length of girder

Figure 4-5:  Girder Shortening versus Temperature
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Predicted and Real Displacement

can be seen that the predicted rate of deformation with respect to temper-

ature change is very close to the measured value.

The bridge is located within the Cold Climate region as specified in the 

AASHTO Specifications.  The assumed temperature extremes used for 

design is from -35° C to 50° C (-30° to 120° F) for a range of 83.3° C (150° F). 

Therefore, the full predicted deformation for design would be 141 mm 

(5.55 in) while the actual deformation of the bridge due to the specified 

temperature variation over five years is 118 mm (4.65 in).
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Vertical Deformation 

Chapter

5
VERTICAL RESPONSE DUE TO TEMPERATURE 

CHANGE

In the previous chapter it was found that the longitudinal deformation cor-

related well with the change in average daily temperature and matched well 

with the theoretical prediction.This same exercise was also performed with 

respect to vertical midspan deflection.

5.1 DEFORMATION BEHAVIOR

Vertical deflection of each of the eight girders is measured near 0.4L in the 

East span using potentiometers.   Figure 5-1 plots the vertical deflection at 

midspan versus time from the end of construction up to May 23, 2005.  The 

deflection trends from all girders are similar. However, due to various fac-

tors such as wire splice corrosion and sensor malfunction, the signals 

become increasingly noisy. Therefore, to minimize clutter, only two gages, 

G and H, are shown in the Figure 5-2.
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As noted in Figure 5-2, despite the obvious seasonal deflection trend, the 

deformation peaks do not correspond with the observed peaks in temper-

ature.  In fact, the deformation appears to peak approximately one month 

after the temperature.  When the vertical deflection is plotted versus the 

daily average temperature as shown in Figure 5-3, one can see that there is 

no apparent relationship.

Figure 5-1:  Vertical Movement over Time
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The conclusion which the data suggests is that temperature is not the only 

factor driving the seasonal variation in vertical deflection.  It is quite evi-

dent that there is seasonal variation in the deflection history.  Therefore, it 

is suggested that an additional parameter also varies seasonally and oper-

ates in conjunction with the temperature to drive the deflection changes.

Figure 5-2:  Vertical Movement Gages G and H Only
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Other Meteorological Effects

5.2 OTHER METEOROLOGICAL EFFECTS

The meteorological parameters which keep arising as likely culprits are 

humidity and precipitation.  Just as shrinkage occurs when concrete cures 

and loses moisture, exposing dry cured concrete to humidity can result in 

a re-expansion.  Humidity, like temperature, fluctuates with the seasons. 

The summers are humid and moist and the winters dry.  It would be 

expected, however that, as the concrete deck expanded during the moist 

summer months, the vertical deflection would tend upwards.  It is seen in 

Figure 5-2 that during the summer months the bridge actually moves 

downwards.  This could suggest that temperature is still the predominant 

factor with humidity being of lesser importance yet significant enough to 

force a shift in the peak deflection.

Figure 5-3:  Vertical Movement Girder G versus Temperature
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Conclusion

Chapter

6
FINAL OBSERVATIONS

Construction of the Dodge Street Bridge over I-480 in Omaha, Nebraska 

provided an opportunity to monitor a bridge constructed using phased 

construction both during construction and beyond.  The bridge was moni-

tored between September 1999 and May 2005. During construction, the 

majority of monitored deflections were predictable and attributable to dis-

creet events. These results are found in the previous report, Development 

of a Design Guideline for Phase Construction of Steel Girder Bridges.

Long term monitoring of the bridge showed that the full actual deforma-

tion due to temperature variation is safely within the design limits. It also 

shows that the longitudinal movements are strongly correlated to the 

ambient temperature. However, vertical deflection, although varying sea-

sonally, does not appear to directly correlate to temperature since the peak 

in response lags behind the peak in temperature by approximately one 



90

month.  Identification of the underlying mechanism driving the seasonal 

deformation is a topic for future research.
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Sensor Data

Appendix

A
CHARTS WITH DATA FROM GAGES INSTALLED ON 

THE BRIDGE

This appendix contains all of the data obtained from the monitoring proj-

ect. Both the raw data and filtered data is presented. Note that the data 

obtained from obviously bad gages have been included as well. This is 

simply to maintain correspondence with the instumentation descriptions 

and eliminate question as to whether a gage was inadvertantly omitted.

To conserve space, a compromise had to be reached that balanced the 

volume of data with its value. Therefore, some of the plots in this Appendix 

may be somewhat small. However, the general trends they convey is still 

discernable. Additionally, the electronic versions of this report contain 

high resolution eps files that may be viewed or printed at any level of detail 

desired.
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Raw Data

A.1 RAW DATA

The following figures contain raw data from instrumentation used in the 

project. This is the original raw signal obtained from the sensors. Data 

which has been through minimal filtering can be found in Section A.2.

This information is being presented to show the spread, variability, and 

long term trends in the complete raw data set. Therefore, it is shown in a 

condensed format. The filtered data is presented in a larger format. A file 

containing full page versions for each of the gages is included on the report 

CD.
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Figure A-1:  Raw Sensor Data
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Raw Data

Figure A-2:  Raw Sensor Data
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Figure A-3:  Raw Sensor Data
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Raw Data

Figure A-4:  Raw Sensor Data
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Figure A-5:  Raw Sensor Data
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Raw Data

Figure A-6:  Raw Sensor Data
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Figure A-7:  Raw Sensor Data
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Raw Data

Figure A-8:  Raw Sensor Data
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Figure A-9:  Raw Sensor Data
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Raw Data

Figure A-10:  Raw Sensor Data
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Figure A-11:  Raw Sensor Data
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Raw Data

Figure A-12:  Raw Sensor Data
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Figure A-13:  Raw Sensor Data
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Raw Data

Figure A-14:  Raw Sensor Data
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Figure A-15:  Raw Sensor Data
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Raw Data

Figure A-16:  Raw Sensor Data
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Figure A-17:  Raw Sensor Data
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Raw Data

Figure A-18:  Raw Sensor Data
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Figure A-19:  Raw Sensor Data
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Raw Data

Figure A-20:  Raw Sensor Data
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Figure A-21:  Raw Sensor Data
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Raw Data

Figure A-22:  Raw Sensor Data
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Figure A-23:  Raw Sensor Data
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Raw Data

Figure A-24:  Raw Sensor Data
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Figure A-25:  Raw Sensor Data



120

Raw Data

Figure A-26:  Raw Sensor Data
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A.2 FILTERED DATA

The following figures contain daily filtered data from instrumentation 

used in the project.
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Filtered Data

Figure A-27:  Gage VE2-1t filtered strain data

Figure A-28:  Gage VE2-2b filtered strain data
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Figure A-29:  Gage VE3-1t filtered strain data

Figure A-30:  Gage VE3-2b filtered strain data
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Filtered Data

Figure A-31:  Gage VG2-1t filtered strain data

Figure A-32:  Gage VG2-2b filtered strain data
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Figure A-33:  Gage VG3-1t filtered strain data

Figure A-34:  Gage VG3-2b filtered strain data
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Filtered Data

Figure A-35:  Gage VH2-1t filtered strain data

Figure A-36:  Gage VH2-2b filtered strain data
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Figure A-37:  Gage VJ2-1t filtered strain data

Figure A-38:  Gage VJ2-2b filtered strain data
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Filtered Data

Figure A-39:  Gage E1 filtered strain data

Figure A-40:  Gage E2 filtered strain data



Filtered Data

Phase Construction 129

Figure A-41:  Gage E3 filtered strain data

Figure A-42:  Gage E4 filtered strain data
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Filtered Data

Figure A-43:  Gage E5 filtered strain data

Figure A-44:  Gage E6 filtered strain data
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Figure A-45:  Gage E7 filtered strain data

Figure A-46:  Gage E8 filtered strain data
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Filtered Data

Figure A-47:  Gage E9 filtered strain data

Figure A-48:  Gage E10 filtered strain data
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Figure A-49:  Gage E11 filtered strain data

Figure A-50:  Gage E12 filtered strain data
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Filtered Data

Figure A-51:  Gage VA1-1t filtered strain data

Figure A-52:  Gage VA1-2b filtered strain data
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Figure A-53:  Gage VB1-1t filtered strain data

Figure A-54:  Gage VB1-2b filtered strain data
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Filtered Data

Figure A-55:  Gage VC1-1t filtered strain data

Figure A-56:  Gage VC1-2b filtered strain data
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Figure A-57:  Gage VD1-1t filtered strain data

Figure A-58:  Gage VD1-2b filtered strain data
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Filtered Data

Figure A-59:  Gage VA2-1t filtered strain data

Figure A-60:  Gage VA2-2b filtered strain data
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Figure A-61:  Gage VB2-1t filtered strain data

Figure A-62:  Gage VB2-2b filtered strain data
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Filtered Data

Figure A-63:  Gage VC2-1t filtered strain data

Figure A-64:  Gage VC2-2b filtered strain data
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Figure A-65:  Gage VD2-1t filtered strain data

Figure A-66:  Gage VD2-2b filtered strain data
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Filtered Data

Figure A-67:  Gage VA3-1t filtered strain data

Figure A-68:  Gage VA3-2b filtered strain data
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Figure A-69:  Gage VB3-1t filtered strain data

Figure A-70:  Gage VB3-2b filtered strain data
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Filtered Data

Figure A-71:  Gage VC3-1t filtered strain data

Figure A-72:  Gage VC3-2b filtered strain data
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Figure A-73:  Gage VD3-1t filtered strain data

Figure A-74:  Gage VD3-2b filtered strain data



146

Filtered Data

Figure A-75:  Gage XCD-1 filtered strain data

Figure A-76:  Gage XCD-2 filtered strain data



Filtered Data

Phase Construction 147

Figure A-77:  Gage XCD-3 filtered strain data

Figure A-78:  Gage XCD-4 filtered strain data
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Filtered Data

Figure A-79:  Gage XCD-5 filtered strain data

Figure A-80:  Gage XDE-1 filtered strain data
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Figure A-81:  Gage XDE-2 filtered strain data

Figure A-82:  Gage XDE-3 filtered strain data
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Figure A-83:  Gage XDE-4 filtered strain data

Figure A-84:  Gage XDE-5 filtered strain data
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Figure A-85:  Gage E13 filtered strain data

Figure A-86:  Gage E14 filtered strain data
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Figure A-87:  Gage E15 filtered strain data

Figure A-88:  Gage E16 filtered strain data
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Figure A-89:  Gage E17 filtered strain data

Figure A-90:  Gage E18 filtered strain data
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Figure A-91:  Gage E19 filtered strain data

Figure A-92:  Gage E20 filtered strain data
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Figure A-93:  Gage E21 filtered strain data

Figure A-94:  Gage E22 filtered strain data
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Filtered Data

Figure A-95:  Gage VE2-1t filtered temperature data

Figure A-96:  Gage VE2-2b filtered temperature data
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Figure A-97:  Gage VE3-1t filtered temperature data

Figure A-98:  Gage VE3-2b filtered temperature data
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Figure A-99:  Gage VG2-1t filtered temperature data

Figure A-100:  Gage VG2-2b filtered temperature data



Filtered Data

Phase Construction 159

Figure A-101:  Gage VG3-1t filtered temperature data

Figure A-102:  Gage VG3-2b filtered temperature data
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Filtered Data

Figure A-103:  Gage VH2-1t filtered temperature data

Figure A-104:  Gage VH2-2b filtered temperature data
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Figure A-105:  Gage VJ2-1t filtered temperature data

Figure A-106:  Gage VJ2-2b filtered temperature data
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Filtered Data

Figure A-107:  Gage E1 filtered temperature data

Figure A-108:  Gage E2 filtered temperature data
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Figure A-109:  Gage E3 filtered temperature data

Figure A-110:  Gage E4 filtered temperature data
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Filtered Data

Figure A-111:  Gage E5 filtered temperature data

Figure A-112:  Gage E6 filtered temperature data
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Figure A-113:  Gage E7 filtered temperature data

Figure A-114:  Gage E8 filtered temperature data
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Filtered Data

Figure A-115:  Gage E9 filtered temperature data

Figure A-116:  Gage E10 filtered temperature data
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Figure A-117:  Gage E11 filtered temperature data

Figure A-118:  Gage E12 filtered temperature data
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Figure A-119:  Gage control-1 filtered temperature data

Figure A-120:  Gage control-2 filtered temperature data
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Figure A-121:  Gage VA1-1t filtered temperature data

Figure A-122:  Gage VA1-2b filtered temperature data
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Filtered Data

Figure A-123:  Gage VB1-1t filtered temperature data

Figure A-124:  Gage VB1-2b filtered temperature data
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Figure A-125:  Gage VC1-1t filtered temperature data

Figure A-126:  Gage VC1-2b filtered temperature data
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Filtered Data

Figure A-127:  Gage VD1-1t filtered temperature data

Figure A-128:  Gage VD1-2b filtered temperature data
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Figure A-129:  Gage VA2-1t filtered temperature data

Figure A-130:  Gage VA2-2b filtered temperature data
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Filtered Data

Figure A-131:  Gage VB2-1t filtered temperature data

Figure A-132:  Gage VB2-2b filtered temperature data
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Figure A-133:  Gage VC2-1t filtered temperature data

Figure A-134:  Gage VC2-2b filtered temperature data
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Figure A-135:  Gage VD2-1t filtered temperature data

Figure A-136:  Gage VD2-2b filtered temperature data
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Figure A-137:  Gage VA3-1t filtered temperature data

Figure A-138:  Gage VA3-2b filtered temperature data
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Figure A-139:  Gage VB3-1t filtered temperature data

Figure A-140:  Gage VB3-2b filtered temperature data
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Figure A-141:  Gage VC3-1t filtered temperature data

Figure A-142:  Gage VC3-2b filtered temperature data
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Filtered Data

Figure A-143:  Gage VD3-1t filtered temperature data

Figure A-144:  Gage VD3-2b filtered temperature data
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Figure A-145:  Gage XCD-1 filtered temperature data

Figure A-146:  Gage XCD-2 filtered temperature data
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Filtered Data

Figure A-147:  Gage XCD-3 filtered temperature data

Figure A-148:  Gage XCD-4 filtered temperature data
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Figure A-149:  Gage XCD-5 filtered temperature data

Figure A-150:  Gage XDE-1 filtered temperature data
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Figure A-151:  Gage XDE-2 filtered temperature data

Figure A-152:  Gage XDE-3 filtered temperature data
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Figure A-153:  Gage XDE-4 filtered temperature data

Figure A-154:  Gage XDE-5 filtered temperature data
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Figure A-155:  Gage E13 filtered temperature data

Figure A-156:  Gage E14 filtered temperature data
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Figure A-157:  Gage E15 filtered temperature data

Figure A-158:  Gage E16 filtered temperature data
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Figure A-159:  Gage E17 filtered temperature data

Figure A-160:  Gage E18 filtered temperature data
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Figure A-161:  Gage E19 filtered temperature data

Figure A-162:  Gage E20 filtered temperature data
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Figure A-163:  Gage E21 filtered temperature data

Figure A-164:  Gage E22 filtered temperature data
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Figure A-165:  Gage East-E filtered temperature data

Figure A-166:  Gage West-E filtered temperature data
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Filtered Data

Figure A-167:  Gage East-D filtered temperature data

Figure A-168:  Gage West-D filtered temperature data
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Figure A-169:  Gage PT-A filtered position data

Figure A-170:  Gage PT-B filtered position data
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Figure A-171:  Gage PT-C filtered position data

Figure A-172:  Gage PT-D filtered position data
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Figure A-173:  Gage PT-E filtered position data

Figure A-174:  Gage PT-G filtered position data
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Filtered Data

Figure A-175:  Gage PT-H filtered position data

Figure A-176:  Gage PT-J filtered position data
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Figure A-177:  Gage PT-2 filtered position data

Figure A-178:  System Voltage Data
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Gaging Locations

Appendix

B
MONITORING PLAN DETAILS FOR DODGE STREET 

OVER I-480

B.1 GAGE LOCATIONS

Redundant instrumentation to obtain the desired data adds to the project 

cost and produces massive data files. Therefore, a cost effective instrumen-

tation strategy was devised by judiciously selecting the location of gages.

Using the 1997 AASHTO LRFD Bridge Design Manual, the bridge as 

designed by the Nebraska Department of Roads (NDoR) was analyzed. 

From the dead and live load analyses the gaging locations were chosen as 

described below. It was desirable to place gages on the East span because 

the distance to the ground is only 20' versus nearly 50' on the West span. 
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Gage Locations

B.1.1 SPOT-WELDABLE GAGE LOCATIONS

The location of maximum positive bending moment from the Strength I 

combination was chosen as a gaging location. These strain readings will 

relate to the bending moment experienced by the girders. To obtain the 

amount of negative moment carried by girders, strain gages were also 

placed 2' East of the pier centerline. The gages could not be placed directly 

at the pier because of the bearing stiffeners there. Finally, spot-weldable 

gages were placed near the abutments so the amount of end restraint could 

later be determined and compared to the simple support assumed for 
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design. Figures B-1 and B-2 show the bridge sections where spot-weldable 

gages were placed on girders for Phase I and Phase II respectively.
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Gage Locations

Figure B-1:  Sections for spot-weldable steel strain gages for Phase I. Sections 1 and 
4 are at the abutments, section 2 is at the maximum positive moment, 
and section 3 is at the pier
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Figure B-2:  Sections for spot-weldable steel strain gages for Phase II. Sections 1 and 
4 are at the abutments, section 2 is at the maximum positive moment, 
and section 3 is at the pier



204

Gage Locations

Looking at Figures B-1 and B-2 a few differences are evident in the gaging 

plans of Phase I and Phase II. For Phase I only the two girders closest to the 

closure pour were gaged at Section 3 versus all four girders for Phase II. 

Also, at Section 1 for Phase I, Girder J was not gaged. All gages were placed 

prior to girder erection.

Figures B-3 through B-6 show the gage placement on the girder at each sec-

tion. The gages were centered on the flange at their respective position. To 

name the gages, the following convention was used: Vxy,1t or Vxy,2b. The 

V indicates it is a spot-weldable vibrating wire gage while x is the girder the 

gage is located on and the y is the section the gage is on. The 1t or 2b des-

ignates if the gage is located on the top or bottom flange, respectively. For 

example VG2,1t is the vibrating wire gage on Girder G of Section 2 on the 

top flange.

Figure B-3:  Gaging Section 1 - East abutment
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Figure B-4:  Gaging Section 2 - maximum positive bending moment
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Figure B-5:  Gaging Section 3 - maximum negative bending moment
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Two cross frames for Phase II and were also gaged. These strain readings 

will indicate how effective cross frames are in transmitting load in the 

transverse direction as the phases deflect relative to each other. The cross 

frames chosen to be gaged were the ones closest to the maximum positive 

moment section (Section 2). How these cross frames were gaged and their 

locations can be seen in Figures B-7 and B-8. The naming convention is as 

follows: XCD-1 to XCD-5 and XDE-1 to XDE-5. X indicates it is a cross frame 

gage, the two letters following that indicate what girders the cross frames 

Figure B-6:  Gaging Section 4 - West abutment
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connect, and the number is a location. As can be seen there was one cross 

frame gaged in Phase II and one cross frame that connects the two phases.

B.1.2 EMBEDMENT GAGE LOCATIONS

To obtain concrete strain data, gages were placed at several locations and 

orientations in the deck. On Phase I, gages were placed directly above Gird-

ers E, G, H, and J at Sections 2 and 3 and orientated parallel to the girders. 

Several other gages were placed orientated perpendicular to girders at Sec-

Figure B-7:  Cross frame gage placement

Figure B-8:  Location of gaged cross frames
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tion 2. Another gage was placed at Section 2, 3" from the pour edge nearest 

the closure, orientated parallel to the girders. Finally, one gage was placed 

in a control specimen 7" deep x 6" wide x 18" long that was placed near the 

DAS to obtain the concrete's free shrinkage behavior. Figure B-9 shows the 

locations of Phase I embedment gages. Table B-1 indicates the distance 

from the bottom of the deck to the center of the gage for Phase I embed-

ment gages.

Table B-1: Information on embedment gage location for Phase I

Gage Distance above deck Section Orientation 

E1 4.25” 2 3” from N face of pour edge 
E2 5.625” 2 Above CL Girder E parallel to girder 
E3 3.875” 2 Between E&G perpendicular to girders 
E4 5.25” 2 Above CL Girder G parallel to girder 
E5 4.00” 2 Between G&H perpendicular to girders 
E6 4.75” 2 Above CL Girder H parallel to girder 
E7 4.25” 2 Above CL Girder J parallel to girder 
E8 4.625” 3 Above CL Girder E parallel to girder 
E9 5.25” 3 Above CL Girder G parallel to girder 
E10 4.375” 3 Above CL Girder H parallel to girder 
E11 4.125” 3 Above CL Girder J parallel to girder 
E12 4.00”  In a 7” x 6” x 18” control specimen 
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Phase II has different embedment gage locations than Phase I as can be 

seen in Figure B-10. For this phase only two gages were placed in the bridge 

deck to preserve system resources so embedment gages could be placed in 

the closure pour region as seen in Figure B-11. Gages were placed in the clo-

sure pour because it joins the two phases and can carry high strains and 

Figure B-9:  Location of embedment gages for Phase I
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crack if differential settlement between the phases occurs. The gages will 

also provide long-term data on the closure region concrete behavior as it 

creep and shrinks. The gages in Phase II and the closure pour were all 

placed 4 inches above bottom of the deck. These gages are named with the 

prefix E and a number indicating their location.

Embedment gages were also placed in the Pier, East abutment, and West 

abutment for Phase I. The locations of these gages are in Figures B-12, B-

13, and B-14 for the Pier, East abutment, and West abutment, respectively. 

On the East abutment the gages were placed over the second set of piles, 

which is behind the girder seat centerline. On the West abutment, gages 
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were centered along the width of the pile cap. This locates the gages 

directly below girder seats.

Figure B-10:  Location of Embedment gages for Phase II
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Figure B-11:  Location of Embedment gages in the closure region

Figure B-12:  Embedment gage locations in the Pier
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Figure B-13:  Embedment gage locations in the East abutment

Figure B-14:  Embedment gages in the West abutment
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B.1.3 DISPLACEMENT MEASUREMENT LOCATIONS

To obtain meaningful vertical displacement data it is desirable to measure 

deflection at the predicted location of maximum deflection, 0.4L. Potenti-

ometers (pots) could not be placed exactly at this location because there is 

a roadway underneath the bridge. Therefore they were placed as close to 

the roadway as possible while still in a location that would not interfere 

with construction. The pots are tightly clamped to the underside of the 

girders while the other end is connected to a rigid test frame, which has its 

base cemented in the ground below the frost line. It is assumed the test 

frame does not move. This test frame can be seen in Figure B-15. At this 

location one pot is mounted on each girder of Phase I and II as seen in Fig-

ures B-16 and B-17. The pots monitor deflection during significant con-

struction events and also long-term behavior. This data will indicate the 

amount of differential deflection occurring between the phases. The pots 

are named with the convention pot x, where x is the girder letter the pot is 

monitoring.

Girders D and E were instrumented at each abutment as seen in Figures B-

16 and B-17 to measure the longitudinal displacement of each phase. These 

girders were chosen because they are adjacent to the closure pour and 
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should have the most effect on the closure region behavior. This data 

allows comparisons between the behaviors of the two phases.

Figure B-15:  Test frame used to measure deflection. Note pots mounted on the 
underside of girders
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Figure B-16:  Location of Displacement measurement for Phase I
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Figure B-17:  Location of Displacement measurement for Phase II
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