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RESEARCH ARTICLE

Genetically based low oxygen affinities of felid hemoglobins:
lack of biochemical adaptation to high-altitude hypoxia in the
snow leopard
Jan E. Janecka1, Simone S. E. Nielsen2,*, Sidsel D. Andersen2,*, Federico G. Hoffmann3,4, Roy E. Weber2,
Trevor Anderson1, Jay F. Storz5,‡ and Angela Fago2,‡

ABSTRACT
Genetically based modifications of hemoglobin (Hb) function that
increase blood–O2 affinity are hallmarks of hypoxia adaptation in
vertebrates. Amongmammals, felid Hbs are unusual in that they have
low intrinsic O2 affinities and reduced sensitivities to the allosteric
cofactor 2,3-diphosphoglycerate (DPG). This combination of features
compromises the acclimatization capacity of blood–O2 affinity and
has led to the hypothesis that felids have a restricted physiological
niche breadth relative to other mammals. In seeming defiance of this
conjecture, the snow leopard (Panthera uncia) has an extraordinarily
broad elevational distribution and occurs at elevations above 6000 m
in the Himalayas. Here, we characterized structural and functional
variation of big cat Hbs and investigatedmolecular mechanisms of Hb
adaptation and allosteric regulation that may contribute to the extreme
hypoxia tolerance of the snow leopard. Experiments revealed that
purified Hbs from snow leopard and African lion exhibited equally low
O2 affinities and DPG sensitivities. Both properties are primarily
attributable to a single amino acid substitution, β2His→Phe, which
occurred in the common ancestor of Felidae. Given the low O2 affinity
and reduced regulatory capacity of feline Hbs, the extreme hypoxia
tolerance of snow leopards must be attributable to compensatory
modifications of other steps in the O2-transport pathway.

KEY WORDS: Felidae, Oxygen affinity, Amino acid substitution,
Blood-oxygen transport, Allosteric regulation

INTRODUCTION
The O2-transport properties of vertebrate red blood cells exhibit a
high degree of plasticity in adjusting to changes in metabolic
demands and/or environmental O2 availability (Nikinmaa, 1990;
Weber and Fago, 2004). At high altitude, O2 uptake may be
compromised by the low ambient O2 tension (PO2

) (Bouverot, 1985;
Weber, 2007). As a general rule, the tolerance to low PO2

at high
altitude is associated with an increase in hemoglobin (Hb)–O2

affinity that raises arterial O2 saturation (Storz et al., 2010a; Weber,
2007). In most mammals, reversible changes in Hb–O2 affinity
are mediated by regulatory adjustments in the erythrocytic

concentration of the organic phosphate 2,3-diphosphoglycerate
(DPG) (Mairbaurl and Weber, 2012; Weber, 2007), a potent
allosteric regulator of Hb–O2 affinity (Benesch and Benesch, 1967;
Bunn, 1980, 1971). In human Hb, negatively charged DPG
electrostatically binds in the symmetric cationic cleft between the
paired β-subunits, including strong interactions with positively
charged β82Lys and β2His and weaker interactions with the β-chain
N-termini and β143His (Richard et al., 1993). As this positively
charged cleft is accessible for DPG binding in the low-affinity T
quaternary structure of the tetrameric (α2β2) Hb but not in the high-
affinity R structure, changes in red blood cell DPG levels alter
Hb–O2 affinity by shifting the T–R allosteric equilibrium of the Hb
(Weber, 2007). Although Hb–O2 affinity is also allosterically
regulated by chloride ions (Cl−), the Cl− concentration does not
change appreciably in red blood cells (Nikinmaa, 1990). In addition
to changes in the concentration of allosteric cofactors, adaptation of
mammalian species to high altitude often involves genetically based
modifications of the Hb structure that increase Hb’s intrinsic O2

affinity or hamper the protein’s ability to bind DPG or Cl− (Storz
and Moriyama, 2008; Weber and Fago, 2004; Weber, 2007).

Intriguingly, the red blood cells of two mammalian lineages,
ruminant artiodactyls and carnivores in the suborder Feliformia
(cats, hyenas, mongooses, civets and allies) contain exceedingly
low concentrations of DPG (<1.0 mmol l−1 versus 4–10 mmol l−1

in other mammals) (Bunn et al., 1974; Scott et al., 1977). Moreover,
previous studies indicate that the adult Hbs of both groups have
independently evolved dramatically reduced O2 affinities and
suppressed sensitivities to DPG (Bunn et al., 1974; Bunn, 1980,
1971; Scott et al., 1976, 1977; Taketa, 1973), features that may limit
the capacity to regulate Hb–O2 affinity.

In mammals with DPG-insensitive Hbs, the reduced plasticity in
blood–O2 affinity may limit physiological niche breadth (Bunn,
1980; Kay, 1977; Scott et al., 1976, 1977). Those taxa that have
secondarily lost the capacity to regulate Hb–O2 affinity through
changes in erythrocytic DPG concentration ‘…are restricted to a
much narrower range of possible habitats and/or life-styles’,
according to Kay (1977). Consistent with this idea, domestic cats
are notoriously intolerant of environmental hypoxia (Campbell,
1927; Reeves et al., 1963).

As a denizen of theHimalayan alpine, the snow leopard,Panthera
uncia, defies conventional wisdom about restricted physiological
tolerances among cats in general, and dispels the notion that
susceptibility to hypoxic stress is a characteristic feline trait. Snow
leopards are most common above the tree line at elevations between
3500 and 5000 m (Sunquist and Sunquist, 2002), although they have
been recorded at elevations above 6000 m (where PO2

is less than
50% of the sea level value). However, they are not restricted to these
zones; in parts of their range including the Gobi Desert ofMongolia,Received 15 May 2015; Accepted 18 May 2015

1Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282,
USA. 2Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers
Alle 3, Aarhus C 8000, Denmark. 3Department of Biochemistry, Molecular Biology,
Entomology, and Plant Pathology, Mississippi State University, Starkville, MS
39762, USA. 4Institute for Genomics, Biocomputing, and Biotechnology,
Mississippi State University, Starkville, MS 39762, USA. 5School of Biological
Sciences, University of Nebraska, Lincoln, NE 68588, USA.
*These authors contributed equally to this work

‡Authors for correspondence ( jstorz2@unl.edu; angela.fago@bios.au.dk)

2402

© 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2402-2409 doi:10.1242/jeb.125369

Th
e
Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:jstorz2@unl.edu
mailto:angela.fago@bios.au.dk


they also occur at low elevations (1500–2000 m) (Janečka et al.,
2011). In theHimalaya, the home ranges of individual snow leopards
can span >2000 m in elevation. The remarkably broad elevational
distribution of snow leopards and their ability to tolerate severe
ambient hypoxia prompt questions about possible mechanisms of
biochemical adaptation in O2 transport. Here, we addressed these
questions by determining the amino acid sequences of the α- and
β-subunits of adult Hbs from a number of species of the cat family

(Felidae) and by comparing functional properties of snow leopard
Hbswith those of a representative lowland species of the same genus,
the African lion, Panthera leo, to investigate possible mechanisms
of biochemical adaptation to high-altitude hypoxia.

RESULTS
Low levels of structural variation among felid Hbs
We examined structural variation in the adult-expressed Hb
isoforms of five big cat species in the genus Panthera: snow
leopard, P. uncia (Schreber 1775); African lion, P. leo (Linnaeus
1758); tiger, P. tigris (Linnaeus 1758); leopard, P. pardus
(Linnaeus 1758); and jaguar, P. onca (Linnaeus 1758). Our
sequencing results revealed that all five big cat species share the
same complement of four adult-expressed Hb genes found in the
domestic cat (Gaudry et al., 2014), including a tandemly linked
pair of α-globin genes that are identical in amino acid sequence,

List of abbreviations
DPG 2,3-diphosphoglycerate
Hb hemoglobin
IEF isoelectric focusing
n cooperativity (Hill) coefficient
P50 O2 tension at half-saturation
PO2

O2 tension
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Fig. 1. Multiple sequence alignment
of adult-expressed α- and β-type
globins of cats and other eutherian
mammals. (A) HBA α-globin genes and
(B) HBB/D and HBB β-type globin
genes.
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and a tandemly linked pair of β-type globin genes (HBB/D and
HBB) that are distinguished from one another by four to eight
amino acid substitutions (Fig. 1). The β-type HBB/D gene is a
chimeric fusion gene, which originated via unequal crossing over
between the tandemly linked δ- and β-globin genes HBD and
HBB, respectively (Gaudry et al., 2014) (Fig. 2). This
recombination event occurred in the stem lineage of carnivores
(Fig. 2), so the same fusion gene is shared with members of the
carnivoran suborder Caniformia (Gaudry et al., 2014). The other
β-globin gene is a non-chimeric HBB gene, which is orthologous
to the adult β-globin gene of humans and most other mammals
(Hoffmann et al., 2008; Opazo et al., 2008a,b, 2009). Remarkably,
orthologs of HBB/D and HBB in snow leopard, tiger and African
lion are completely invariant at the amino acid level (Fig. 1B). In
each of these three species, the same four substitutions (at sites β1,
β56, β58 and β144) distinguish the HBB/D and HBB paralogs
(Fig. 1B). HBA orthologs of snow leopard and African lion differ
at a total of four sites, α57, α71, α74 and α120, and these are the
only HBA sites that vary among species in the genus Panthera
(Fig. 1A).
In analogy with the domestic cat, products of each of the two

β-globin genes HBB/D and HBB are incorporated into two distinct
Hb isoforms, HbA and HbB, respectively, which share the same
α-chain subunit encoded by the two identical HBA genes (Abbasi
and Braunitzer, 1985; Taketa et al., 1968) (Fig. 2). The tandemly
linked HBB/D and HBB genes share the same β2His→Phe
substitution as in the domestic cat (Fig. 1B), as a result of a
history of interparalog gene conversion (Gaudry et al., 2014). Thus,
the feline HbA and HbB isoforms are all missing a major residue
(Hisβ2) involved in DPG binding. HBB has an additional
substitution at the adjacent N-terminal residue position,
β1Val→Ser, which is acetylated in the native HbB. Overall, our
survey of sequence variation revealed very little structural variation
among the adult-expressed Hbs of big cat species in the genus
Panthera (Fig. 1).

Hb isoform composition of big cat red blood cells
We characterized the Hb isoform composition of red blood cells
from the five species of big cats that comprise the genus Panthera
(snow leopard, tiger, African lion, leopard and jaguar). Isoelectric
focusing (IEF) analysis resolved the hemolysates of each species

into three major bands and one minor (more cathodic) band with
identical mobilities across species (Fig. 3A). Similar to the case of
the domestic cat (Hamilton and Edelstein, 1974), ion-exchange
chromatography separated lion and snow leopard hemolysates into
two distinct peaks, representing native HbA and HbB isoforms in an
almost equimolar ratio (49:51 and 47:53, for lion and snow leopard,
respectively). On IEF gels, each of these two peaks resolved into
two bands with mobilities corresponding to two of the three major
bands of the hemolysate (Fig. 3B).

The fact that the HBB/D and HBB paralogs differ by only four
amino acid residues (at positions β1, β56, β58 and β144) suggests
that the β-chain products of both genes may be incorporated in the
same tetrameric Hb. This is supported by the finding of three major
bands of each feline hemolysate on IEF gels (Fig. 3). Each bandmay
represent symmetric α2β

AβA and α2β
BβB Hb tetramers along with a

stable asymmetric hybrid α2β
AβB tetramer of intermediate mobility

(where βA and βB indicate the products of genes HBB/D and HBB,
respectively) (Fig. 3). Thus, feline red blood cells appear to contain
the two parental symmetric isoforms HbA and HbB as well as their
hybrid molecule. Feline Hbs are characterized by a relatively high
tetramer–dimer dissociation constant (Hamilton and Edelstein,
1974), which may further favor hybrid tetrameric Hb assemblies in
the red blood cell. Overall, the possession of structurally similar

HBDHBD HBB/D HBB HbA HbBHBB

Unequal cross-over Gene deletion
Co-expression of 

Hb isoforms

Feliformia

Caniformia

C
arnivora

Non-carnivore laurasiatherians

α

βA βA βB βB

α α α

Fig. 2. History of structural changes in the adult-expressedHBD andHBB β-globin genes of feliform carnivores. The ancestor of laurasiatherianmammals
[the supraordinal group that includes carnivores, as well as bats, pangolins, eulipotyphlans (shrews, moles and hedgehogs), perissodactyls and cetartiodactyls]
possessed a tandemly linked pair of HBD and HBB genes. In the stem lineage of carnivores, an unequal cross-over event produced a duplication in the
chromosome now containing a chimeric HBB/D fusion gene, flanked by the parental HBD and HBB genes on the 5′ and 3′ sides, respectively (Gaudry et al.,
2014). In the common ancestor of felids (or possibly in the common ancestor of all feliform carnivores), the 5′ HBD gene was deleted after divergence from the
ancestor of caniform carnivores. Consequently, adult cats co-express two structurally distinct hemoglobin (Hb) isoforms: HbA (which incorporates β-chain
products of the chimeric HBB/D gene) and HbB (which incorporates β-chain products of the HBB gene). The two isoforms share identical α-chain subunits.
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Fig. 3. Isoelectric focusing gels (pH 3–9) and isoHb multiplicity in big
cats. (A) Red blood cell lysates from lion, leopard, jaguar, tiger and snow
leopard, and (B) purified HbA and HbB components from snow leopard and
lion, showing highly similar patterns. The putative α- and β-subunit composition
of each of the three major bands is indicated, with βA and βB corresponding to
the products of genes HBB/D and HBB, respectively. Plus sign, cathode;
minus sign, anode.
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isoHb components among the Panthera species, as evident from the
IEF patterns (Fig. 3), is consistent with the remarkably low level of
interspecific variation in α- and β-globin primary structures (Fig. 1).

Oxygenation properties of big cat Hbs
To examine possible differences in the oxygenation properties of
big cat Hbs, we measured O2-equilibrium curves for purified HbA
and HbB isoforms of lion and snow leopard under standardized
conditions of pH and anion concentrations. For comparison,
O2-equilibrium curves were also measured for human Hb under
identical buffer conditions (Fig. 4). Under cofactor-free (stripped)
conditions, these experiments revealed uniformly low Hb–O2

affinities (i.e. high P50, the O2 tension at half-saturation) for both
isoforms compared with human Hb (Fig. 4, Table 1). Hill
coefficients of both lion and snow leopard isoforms (Table 1)
indicated normal cooperative O2 binding. O2-equilibrium curves of
HbA and HbB isoforms from lion (Fig. 4A) and snow leopard
(Fig. 4B) were highly similar and were almost completely
unresponsive to the addition of DPG, in contrast to those of
human Hb, as shown by the similar P50 values obtained in the
absence and presence of DPG (Fig. 4, Table 1). However, in both
lion and snow leopard, the O2 affinities of HbA and HbB were
markedly reduced in the presence of 0.1 mol l−1 Cl−, indicating that
these Hbs are sensitive to Cl− (Fig. 5, Table 1).

DISCUSSION
Structural and functional variation of feline Hbs
Consistent with the low level of structural variation among big
cat Hbs, O2-equilibrium experiments revealed no appreciable

differences in oxygenation properties between the purified HbA
and HbB isoforms isolated from either snow leopard or African lion
(Table 1), demonstrating that the four amino acid substitutions that
distinguish the HBB/D and HBB paralogs do not have any
functionally important net effect. This finding also indicates that,
if present, hybrid Hb tetramers of the type α2β

AβB would have the
same O2-binding properties as the parental α2β

AβA and α2β
BβB Hbs.

Moreover, the experiments did not reveal any appreciable
differences in Hb–O2 affinity between the high-altitude, hypoxia-
adapted snow leopard and the predominantly lowland African lion,
as isoform-specific P50 values for the two species were very similar
across all treatments (Table 1). As shown in Fig. 1, the amino acid
sites that differ between the Hbs of snow leopard and African lion
are among the only sites that vary in the Hbs of all big cats. Thus, our
examination of structural and functional variation of felid Hbs
indicates that all members of the genus Panthera possess
functionally similar Hbs.

A single amino acid substitution is associated with
suppressed DPG sensitivity and reduced O2 affinity of
big cat Hbs
The low intrinsic O2 affinities, suppressed DPG sensitivities and
large Cl− effects of the big cat Hbs (Table 1) relative to human Hb
can be considered characteristic features of feline Hbs, as they are
consistent with previously described properties of cat Hbs
(Baumann and Haller, 1975; Hamilton and Edelstein, 1974;
León-Velarde et al., 1996; Parer et al., 1970; Taketa et al., 1971;
Taketa, 1973). Specifically, the suppressed DPG sensitivities of
snow leopard and African lion HbA and HbB isoforms (Figs 4, 5)
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Fig. 4. Hb–O2 equilibrium curves of big cats. Hb–O2

equilibrium curves of African lion (A) and snow leopard (B) HbA
and HbB are insensitive to 2,3-diphosphoglycerate (DPG) and
are right-shifted compared with those of human adult Hb (open
symbols, dotted lines). Data were obtained at a heme
concentration of 0.3 mmol l−1, 37°C, in 0.1 mol l−1 Hepes buffer,
pH 7.4, in the absence (circles) and presence of DPG (triangles),
at a 2-fold molar excess of DPG over tetrameric Hb. Non-linear
regression of the O2-saturation data according to the sigmoidal
Hill equation is shown for each of the conditions used.
1 Torr≈133 Pa.

Table 1. O2 affinity (P50) and cooperativity (Hill) coefficients (n) of African lion and snow leopard HbA and HbB and of human Hb

Stripped +KCl +DPG +KCl+DPG

P50 n P50 n P50 n P50 n

African lion
HbA 13.03±0.59 1.52±0.11 20.73±1.55 1.74±0.23 15.21±0.71 1.68±0.13 21.38±0.85 1.41±0.08
HbB 14.39±0.98 1.75±0.20 25.64±1.44 1.98±0.21 16.72±0.72 1.87±0.15 26.95±1.38 1.93±0.17

Snow leopard
HbA 14.47±0.93 2.36±0.31 23.17±0.83 2.48±0.23 14.81±0.20 2.50±0.07 22.99±0.75 2.46±0.20
HbB 14.74±0.51 2.41±0.17 22.30±0.56 2.53±0.16 16.27±0.40 2.55±0.14 23.30±0.46 2.66±0.20

Human
Hb 6.48±0.05 2.70±0.05 12.98±0.25 2.60±0.17 11.58±0.62 2.41±0.28 13.27±0.53 2.46±0.22

Values (means±s.e.m.) were calculated from non-linear regression of four to six saturation steps using the sigmoidal Hill equation. P50 values are in Torr (where
1 Torr≈133 Pa).
Measurements were made at 37°C in 0.1 mol l−1 Hepes buffer, pH 7.4, in the absence (stripped) and presence of 0.1 mol l−1 KCl and 2,3-diphosphoglycerate
(DPG) (2-fold molar excess over tetrameric hemoglobin, Hb) added individually and in combination.
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are chiefly attributable to the single β2His→Phe substitution shared
by both HBB/D and HBB genes (and also shared by the
corresponding orthologs of domestic cat and other big cat species)
(Fig. 1B) (Gaudry et al., 2014). As the β1Val→Ser substitution in
theHBB gene only affects the HbB isoform, and as our experiments
revealed no appreciable differences in DPG sensitivity between the
HbA and HbB isoforms of snow leopard or lion (Table 1, Fig. 5), it
appears that replacing β1Val with acetylated Ser does not impair
DPG binding beyond that induced by β2His→Phe alone. This
interpretation agrees with the minor role of the β-subunit N-
terminus in DPG binding (Richard et al., 1993) compared with the
original model for DPG binding proposed by Arnone (1972). In
addition to impairing DPG binding, the β2His→Phe substitution
that exchanges a basic residue with an apolar one also contributes to
the reduced intrinsic O2 affinity typical of feline Hb isoforms by
moving the β-chain N-termini towards the center of the Hb
molecule, thereby stabilizing the T-state conformation (Perutz et al.,
1993; Safo and Abraham, 2001) even when the heme is fully
ligated, as found for domestic cat Hb (Balasubramanian et al.,
2014). Similarly, the low O2 affinity and DPG insensitivity of
bovine Hb is also attributable to amino acid substitutions in the
β-subunit N-termini (β1Val deleted and β2His→Met), which
stabilize the low-affinity T state and prevent DPG access to the
central cavity (Perutz et al., 1993; Safo and Abraham, 2001).
Although amino acid substitutions replacing the key β2His with
uncharged residues may cause a high Hb–O2 affinity as a result of
weakened DPG binding in species adapted to high altitudes (Weber
and Fago, 2004; Weber, 2007), we find the opposite functional
effect of the same substitution (i.e. the Hb–O2 affinity is reduced)
when it is combined with a more hydrophobic N-terminal segment
of the β-subunit.

Allosteric regulatory control of feline Hbs
Although feline Hbs have severely reduced capacities for allosteric
regulatory control by DPG (Fig. 5), HbA and HbB are both strongly
modulated by Cl− ions, as indicated by the increased Hb P50 in the
presence of 0.1 mol l−1 Cl− (Table 1, Fig. 5). Although Cl− ions
present in red blood cells will affect P50 in vivo, this may not fully
compensate for the reduced DPG regulatory capacity, as the Cl−

concentration typically exhibits only minor fluctuations mainly

caused by the influx and efflux of bicarbonate ions (Nikinmaa,
1990).

It is clear that the loss of DPG sensitivity caused by the
β2His→Phe substitution effectively eliminates a mechanism of
phenotypic plasticity that plays a well-documented role in the
acclimatization response to hypoxia in many other eutherian
mammals (MacArthur, 1984; Tufts et al., 2013; Weber and Fago,
2004). The reduced intrinsic O2 affinity of feline Hb clearly
compensates for the loss of DPG-mediated regulation of O2 binding,
otherwise the constitutively elevated blood–O2 affinity would
impair O2 unloading to the cells of respiring tissues. This is
evidenced by the fact that human Hb mutants with suppressed DPG
sensitivity are invariably associated with erythrocytosis (often at
clinically pathological levels) caused by inadequate tissue
oxygenation (Percy et al., 2009).

Hypoxia tolerance of snow leopards is not associated with
specialized Hb adaptations
The results of our experiments clearly demonstrate that the ability of
snow leopards to tolerate high-altitude hypoxia cannot be explained
by the evolution of Hbs with specialized oxygenation properties.
Snow leopards possess typical feline Hbs, characterized by a low
intrinsic O2 affinity and a restricted capacity for allosteric regulatory
control. In fact, Hbs of all felid species appear to have remarkably
similar respiratory properties, despite extensive variation in body
size, from 2 kg domestic cats to 220 kg African lions.

Studies of Hb function in high-altitude birds and mammals
typically reveal distinctive increases in Hb–O2 affinity relative to
closely related, similar-sized lowland taxa (Natarajan et al., 2013;
Projecto-Garcia et al., 2013; Storz et al., 2009, 2010b; Storz and
Moriyama, 2008; Tufts et al., 2015; Weber, 2007). In a few cases
there is no evidence for differentiation in Hb function between
species or conspecific populations that are native to different
elevations (Cheviron et al., 2014; Natarajan et al., 2015; Revsbech
et al., 2013; Storz et al., 2007). The snow leopard represents one
more example of a high-altitude species that tolerates chronic
altitudinal hypoxia in spite of the fact that it possesses Hbs that are
no different from those of its closest lowland relatives. In parts of
Nepal, India and Bhutan the distribution of snow leopards, leopards
and tigers is partitioned by altitude. Leopards and tigers are known
to occur at elevations up to 3000 m, but the snow leopard is the only
big cat species that is a permanent resident of the high alpine. Given
the low O2 affinity and reduced regulatory capacity of feline Hbs,
the ability of snow leopards to tolerate the severe hypoxia of their
high-altitude environment must be attributable to compensatory
modifications of other convective and conductive steps in the
O2-transport pathway.

In humans, theoretical analyses indicate that changes in
ventilation, pulmonary diffusion capacity and tissue diffusion
capacity exert strong influences on O2 consumption and exercise
performance at high altitude (Wagner, 1996). Under severe
hypoxia, tissue diffusion capacity is a limiting factor for O2

consumption when blood P50 is low (e.g. in species with high Hb–
O2 affinity). By contrast, in snow leopards and other species that
have a low Hb–O2 affinity, venous blood would be largely
desaturated under conditions of severe hypoxia compared with
humans (Cambier et al., 2004), so an increase in tissue diffusion
capacity would lead to comparatively smaller improvements in the
overall level of tissue oxygenation. However, an increase in lung
size (which increases the surface area for pulmonary O2 diffusion)
and an enhanced hypoxic ventilatory response could increase
arterial PO2

and thus improve exercise performance under hypoxia

African lion

Snow leopard

Human Hb

ΔlogP50

HbA
KCI
DPG

HbB

HbA

HbB

0 0.1 0.2 0.3

Fig. 5. Allosteric regulation of Hb–O2 affinity (P50) by DPG and Cl− ions in
African lion and snow leopard HbA and HbB. Sensitivity to DPG and Cl−

anions is indexed by the difference in log-transformed P50 values (reported in
Table 1) measured in the presence and absence (stripped) of each ionic
cofactor. Human Hb–O2 affinity with a high sensitivity to both DPG and Cl− is
shown as a comparison.
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regardless of blood P50, as in some high-altitude birds (Scott and
Milsom, 2006). Because hypoxia-induced hyperventilation can
cause respiratory hypocapnia/alkalosis, it is typically beneficial for
high-altitude vertebrates to maintain a higher ventilation rate in spite
of the reduced blood PCO2

and increased pH (Scott and Milsom,
2007). Thus, an enhanced capacity to increase ventilation under
severe hypoxia could help compensate for the low Hb–O2 affinity of
snow leopards living at high altitude. Similarly, humans that are
indigenous to the Tibetan Plateau do not possess Hbs with
specialized oxygenation properties, and their ability to tolerate
severe hypoxia appears to be partly attributable to the maintenance
of high resting ventilation and a brisk hypoxic ventilatory response
(Beall et al., 1997; Hackett et al., 1980; Zhuang et al., 1993).

MATERIALS AND METHODS
Blood sample collection
The collection of blood samples was approved by the Clinical Research and
Review Committee of the College of Veterinary Medicine and Biomedical
Science, Texas A&M University (permit CRRC no. 10-44). We obtained
blood samples from captive, adult animals representing five big cat species,
including four snow leopards (P. uncia, San Francisco Zoo, USA and
Philadelphia Zoo, USA), two African lions (P. leo, San Francisco Zoo), one
tiger (P. tigris, Center for Animal Research and Education, Bridgeport, TX,
USA), one common leopard (P. pardus, Feline Conservation Center,
Rosamond, CA, USA) and one jaguar (P. onca, Feline Conservation
Center). The individual snow leopards that we examined (studbook numbers
1650, 1850, 2662, and 2573) were descendants of wild-caught animals
derived from high-altitude regions of Kazakhstan, Kyrgyzstan, China and
Russia (Blomqvist, 2008). For each individual animal, approximately 7 ml
of blood was collected by means of standard venipuncture. All blood
samples were collected by qualified veterinarians during the course of
routine medical examinations.

Processing of blood samples
Following blood collection, samples were shipped to the laboratory on an
ice pack and were processed immediately after being received. Red blood
cells were isolated using the following protocol. A 20 µl volume of blood
was suspended in 80 µl of 0.85% NaCl saline solution, gently mixed, and
centrifuged at 3000 g for 5 min. The supernatant was removed and 100 µl of
the saline solution was added and samples were incubated on ice for 15 min,
followed by centrifugation at 10,000 g for 30 min. Isolated red blood cells
were stored at−80°C until analysis. DNAwas extracted from blood samples
using the Qiagen Gentra PureGene Blood Kit (Qiagen, Venlo, The
Netherlands) following the manufacturer’s recommendations.

PCR and molecular cloning
We used the domestic cat genome reference sequence to design paralog-
specific primers for the HBA, HBB/D and HBB genes of the five big cat
species. Following DNA isolation from samples of each individual
specimen, we PCR-amplified full-length HBA, HBB/D and HBB genes
using the following paralog-specific primers: HBA-29F: CACCTTCTGG-
TCCCGACAC, HBA-1032R: TGAACACGGTTCAGCACATT, HBB/D-
264F: CATACCCTTGAAGGTGGACA, HBB/D-1871R: TGGCTGTCA-
TCATTCAGACC, HBB-92F: TGGGCATAAAAGGAAGAGCA and
HBB-1633R: GCAGGATCTGTTTCCCACAT. The HBA gene was
amplified using the following PCR conditions: 1× Qiagen Type-it Master
Mix (HotStarTaq Plus DNA Polymerase, 3.0 mmol l−1 MgCl2, 200 µmol
l−1 dNTPs), 0.480 µmol l−1 of each primer and 15 ng of DNA in a 50 µl
reaction volume. The cycling conditions included a 95°C, 5 min activation
step, followed by 10 cycles of 95°C for 30 s, 65–55°C for 30 s (1°C
reduction per cycle) and 72°C for 2.0 min, and 20 cycles of 95°C for 30 s,
55°C for 30 s and 72°C for 2.0 min, followed by a final extension of 7 min.
PCR amplicons were purified using the Qiagen QIAquick PCR Purification
Kit and cloned with the NEB PCR Cloning Kit (New England Biolabs,
Ipswich, MA, USA) following manufacturer recommendations. TheHBB/D
and HBB genes were amplified using the following PCR conditions:

Applied Biosystems AmpliTaq Gold 1×360 PCR Buffer (Life
Technologies, Valencia, CA, USA), 0.2 units of AmpliTaq Gold taq,
2.0 mmol l−1 MgCl2, 200 µmol l−1 dNTPs, 0.480 µmol l−1 of each primer
and 15 ng of DNA in a 50 µl reaction volume. The cycling conditions
included a 95°C, 10 min activation step, followed by 10 cycles of 95°C for
30 s, 65–55°C for 30 s (1°C reduction per cycle) and 72°C for 1.5 min, and
20 cycles of 95°C for 30 s, 55°C for 30 s and 72°C for 1.5 min, followed by
a final extension of 10 min. The cloning was conducted in two independent
replicates. We randomly selected a total of 16 colonies per individual for
each gene (i.e. eight colonies from each cloning replicate). These were PCR
amplified in 25 µl reactions with the following conditions: NEB LongAmp
1× PCR Buffer (contained 2.0 mmol l−1 MgSO4), 2.5 units of LongAmp
taq, 300 µmol l−1 dNTPs and 0.300 µmol l−1 of each primer. Cycling
conditions included a 94°C, 2 min activation step, followed by 30 cycles of
94°C for 15 s, 57°C for 15 s and 68°C for 1.5 min, followed by a final 68°C
extension of 5 min. All PCR products were cleaned and sequenced using
ABI BigDye chemistry (Beckman Coulter, Pasadena, CA, USA).We cloned
and sequenced the full complement of adult-expressed α- and β-type globin
genes in each individual that was used as a subject for the experimental
analysis of Hb function and isoform composition (see supplementary
material Table S1). We generated data for the remaining individuals via
direct sequencing of diploid PCR products. All newly generated sequences
were submitted to GenBank under accession nos KR818795–KR818811
(see supplementary material Table S1).

We augmented our newly generated sequence data for the five big cat
species with globin sequences annotated from genome assemblies of
domestic cat and Siberian tiger (P. tigris altaica). For comparative purposes,
we also included the full complement of adult α- and β-like genes from
human and two caniform carnivores, dog (Canis lupus familiaris, Canidae)
and ferret (Mustela putorius furo, Mustelidae).

Characterization of Hb isoform composition
Frozen blood samples from each specimen were lysed as previously
described (Revsbech et al., 2013) and Hb multiplicity was analyzed by IEF
(pH 3–9) on polyacrylamide gels (Phastgel, GEHealthcare Biosciences AB,
Uppsala, Sweden). For lion and snow leopard hemolysates, separation of
Hb isoforms and simultaneous removal (stripping) of endogenous DPG
were achieved by anion-exchange chromatography using an Äkta Pure
chromatography system and a Hi-Trap Q 5 ml column (both GE Healthcare)
equilibrated with 20 mmol l−1 Tris-HCl buffer pH 8.26, 0.5 mmol l−1

EDTA, and eluted using a 0–0.3 mol l−1 NaCl gradient over 80 min, at a
flow rate of 1 ml min−1. Fractions containing HbA and HbB were pooled,
concentrated by ultrafiltration (heme concentration >1 mmol l−1), dialyzed
against 10 mmol l−1 Hepes buffer pH 7.6 to remove NaCl in the elution
buffer and stored at −80°C in aliquots. Heme concentration was measured
spectrophotometrically using published extinction coefficients (van
Assendelft and Zijlstra, 1975). The purity of separate Hb isoforms was
checked by IEF. For comparison of functional properties, human Hb was
prepared and stripped of DPG as described elsewhere (Weber, 1992),
dialyzed against 10 mmol l−1 Hepes buffer pH 7.6 and stored at −80°C.

Measurement of Hb–O2 equilibria
O2 equilibrium curves of isolated Hbs from snow leopard, African lion
and human were measured using 5 µl samples in 0.1 mol l−1 Hepes buffer
pH 7.4, 0.5 mmol l−1 EDTA using a thin-layer chamber technique
described in detail elsewhere (Cheviron et al., 2014; Damsgaard et al.,
2013; Storz et al., 2009; Tufts et al., 2015; Weber, 1992). For each curve,
measures of O2 affinity (P50, the PO2

at which Hb is half-saturated with
O2) and cooperativity (Hill) coefficients n were calculated by non-linear
regression of four to six saturation steps using the sigmoidal Hill equation
Y=PO2

n/(P50
n+PO2

n), where Y is the fractional saturation (Tufts et al.,
2015). Experiments were performed at 37°C and at a heme concentration
of 0.3 mmol l−1 in the absence (stripped) and presence of 0.1 mol l−1 KCl
and DPG (2-fold molar excess over Hb tetramer), that approximate
standard physiological levels within red blood cells of most mammals. Cl−

and DPG were added separately or in combination, to isolate the allosteric
effects of each cofactor on Hb–O2 affinity (expressed as logP50 differences
with and without cofactor) (Tufts et al., 2015). By contrast, previous
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studies of cat Hbs (Bunn, 1971; Hamilton and Edelstein, 1974; Taketa,
1973) measured O2 equilibria using buffer solutions that contained Cl−

ions and inorganic phosphates, which potentially perturb DPG binding to
Hb (Weber, 1992).
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