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Tunable Resistive m-dPEG Acid Patterns on Polyelectrolyte
Multilayers at Physiological Conditions: Template for Directed
Deposition of Biomacromolecules

Srivatsan Kidambi†, Christina Chan*,†,‡, and Ilsoon Lee*,†

†Department of Chemical Engineering and Materials Science, Michigan State University, East
Lansing, Michigan 48824

‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing,
Michigan 48824

Abstract

This paper describes a new class of salt-responsive poly(ethylene glycol) (PEG) self-assembled

monolayers (SAMs) on top of polyelectrolyte multilayer (PEMs) films. PEM surfaces with

poly(diallyldimethylammonium chloride) as the topmost layer are chemically patterned by

microcontact printing (μCP) oligomeric PEG molecules with an activated carboxylic acid terminal

group (m-dPEG acid). The resistive m-d-poly(ethylene glycol) (m-dPEG) acid molecules on the

PEMs films were subsequently removed from the PEM surface with salt treatment, thus

converting the nonadhesive surfaces into adhesive surfaces. The resistive PEG patterns facilitate

the directed deposition of various macromolecules such as polymers, dyes, colloidal particles,

proteins, liposomes, and nucleic acids. Further, these PEG patterns act as a universal resist for

different types of cells (e.g., primary cells, cell lines), thus permitting more flexibility in attaching

a wide variety of cells to material surfaces. The patterned films were characterized by optical

microscopy and atomic force microscopy (AFM). The PEG patterns were removed from the PEM

surface at certain salt conditions without affecting the PEM films underneath the SAMs. Removal

of the PEG SAMs and the stability of the PEM films underneath it were characterized with

ellipsometry and optical microscopy. Such salt- and pH-responsive surfaces could lead to

significant advances in the fields of tissue engineering, targeted drug delivery, materials science,

and biology.

Introduction

The development of new tunable and structured surfaces capable of assembling two or more

biological elements such as proteins, liposomes, nucleic acids, and cells onto a surface

resulting in arrays of biological molecules has generated tremendous interest in the past

years. Here, we describe a new class of salt-responsive poly(ethylene glycol) (PEG) self-

assembled monolayers (SAMs) on top of polyelectrolyte multilayer (PEMs) films. Current

approaches to engineer tunable surfaces are based on sophisticated methods that use light-,
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laser-, and UV-induced and electrochemical surface modifications, which tend to affect the

morphology and properties of the underlying surfaces and are not compatible when extended

to biological systems involving cells and proteins.1–3 The PEG patterns developed in this

study are tunable at certain salt conditions, unveiling active regions of the film while leaving

the attached biomolecules on the PEM surface undisturbed. The resistive PEG patterns

facilitate the directed deposition of various macromolecules such as polymers, dyes,

colloidal particles, proteins, liposomes, and nucleic acids. Further, these PEG patterns act as

a universal resist for different types of cells (e.g., primary cells, cell lines), thus permitting

more flexibility in attaching a wide variety of cells to material surfaces. Such salt- and pH-

responsive surfaces could lead to significant advances in the fields of tissue engineering,

targeted drug delivery, materials science, and biology.4–6

The ability to control cell adhesion in vitro may lead to advances in diverse fields, ranging

from cell biology to tissue engineering. A number of fabrication strategies such as

photolithography, microcontact printing, micromolding, inkjet printing, and dippen

spotting7–10 have been applied to create micropatterned surfaces for manipulating the cell

environment. In these approaches, the cells have been localized to adhesive regions on a

substrate, thus limiting their use to one cell type. Most cell-patterning studies that

engineered patterned co-cultures have involved selective adhesion of one cell type over

another. For example, studies to design co-cultures with primary hepatocytes and fibroblasts

required adhesion of primary hepatocytes to the surface prior to attaching the second cell

type, i.e., fibroblast. This is because fibroblast typically can attach to any surface, whereas

primary hepatocytes are more selective in their attachment to surfaces. Thus, capitalizing

upon this fact permits the design of pattern co-cultures of primary hepatocytes and

fibroblasts. Due to the lack of a tunable universal surface resistant to all cell types,11,12 there

is a need to develop surfaces with the ability to dynamically and locally switch substrate

adhesiveness to different types of cells and thus more easily facilitate the patterning of two

or more cell types in spatially defined cocultures.

Engineering of micrometer- and nanoscale protein arrays is important for a wide range of

applications such as drug delivery, biosensors, and basis cell studies.7,13,14 Most of the

studies developed have focused on forming arrays of single proteins.7,8,15–20 However, few

studies have reported engineering of multiple protein arrays on surfaces and have various

limitations including pattern resolution,21,22 protein degradation,23 and exposure to harsh

chemicals.24

In this study, we engineered a novel salt tunable resistive m-dPEG acid SAM patterns on

PEM surfaces which provides a template to design numerous sorted surfaces that can be

used in a wide variety of applications. We capitalized upon the ionic interactions to deposit

thin, uniform SAM patterns of resistive m-dPEG acid molecules atop the PEM films using

μCP (Figure 1A).24 The PEG molecule has a degree of polymerization of four and an

activated carboxylate functional group at the end. This carboxylate functional group in the

PEG molecule ionically binds to the topmost positive surface of the PEM surfaces, and the

other end of the PEG molecule resists the deposit of subsequent macromolecules including

polyelectrolyte layers. The resistive nature of the PEG patterns was used to achieve

formation of complex polyelectrolyte multilayer structures25–27 and directed assembly of a
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wide range of macromolecules such as colloid particles, proteins, as well as cells (as shown

in Figure 1B–D and Figure 3). The PEG patterns were tuned under mild conditions (salt

concentration = 0.25 M) to reveal active regions that can be used to create multicomponent

systems. Hammond and co-workers developed surface-directed templates capable of

creating multicomponent systems of colloidal particles and polymers.24 The current study

extends the tunable PEG surfaces to engineer multicomponent systems of macromolecules

with similar physical and chemical properties.

Experimental Details

1. Materials

Sulfonated polystyrene (SPS) (Mw = 70 000), poly-(diallyldimethylammonium chloride)

(PDAC) (Mw = 100 000–200 000) as a 20wt%solution, and sodium chloride were purchased

from Aldrich Chemical, Milwaukee, WI. The m-dPEG acid molecule (Mw = 236) was

obtained from Quanta Biodesign. Poly(dimethylsiloxane) (PDMS) from the Sylgard 184

silicone elastomer kit (Dow Corning, Midland, MI) was used to prepare stamps used in

microcontact printing. Carboxyfluorescein (6-CF), fluorescence dye, was purchased and

used as received from Sigma. Carboxylated polystyrene latex particles (4 µm diameter),

purchased from Polysciences, were used for a colloidal adsorption study on m-dPEG self-

assembled monolayer patterned polyelectrolyte templates. Dulbecco’s Modified Eagle

Medium (DMEM) with 4.5 g/L glucose, 10×DMEM,fetal bovine serum (FBS), penicillin,

and streptomycin were purchased from Life Technologies (Gaithersburg, MD). Insulin and

glucagon were purchased from Eli Lilly and Co. (Indianapolis, IN); epidermal growth factor

was purchased from Sigma Chemical (St. Louis, MO). Adult female Sprague-Dawley rats

were obtained from Charles River Laboratories (Boston, MA). Actin cytoskeleton and focal

adhesion staining kit was purchased from Chemicon (Temecula, CA).

2. Preparation of Polyelectrolyte Multilayers

Films were prepared as described in our earlier study.24 Briefly, 10.5 bilayers of PEMs were

built using a Carl Zeiss slide stainer equipped with a custom-designed ultrasonic bath

connected to a computer to perform layer-by-layer assembly. The stamping conditions were

varied to optimize the microcontact printing of them-dPEG acid. The optimized conditions,

as determined by us in our previous work, were used for making PEG patterns.28 The

stamped regions were designed to act as resists to adsorption as the oligoethylene glycol

graft chains of PEG did. In the procedure of creating complex 3-D microstructures, m-dPEG

acid was stamped onto the PEM surface (PDAC surface) followed by a sequential

adsorption layer-by-layer deposition process to build additional patterned polyelectrolyte

multilayers outside the stamped region.

3. Ellipsometry

Ellipsometric measurements were obtained with a rotating analyzer ellipsometer (model

M-44; J. A. Woollam) using WVASE32 software. Substrate parameters (n and k) were

measured after absorption of MPA. This ensures that any changes in substrate reflectivity

due to Au–S bonds will not affect subsequent measurements. The angle of incidence was
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75° for all experiments. The thickness values for PEM films were determined using 44

wavelengths between 414.0 and 736.1 nm.

4. Cell Culture

Hepatocyte Isolation—Primary rat hepatocytes were isolated from 2 month old adult

female Sprague-Dawley rats (Charles River Laboratories, Boston, MA) according to a two-

step collagenase perfusion technique described by Seglen29 and modified by Dunn.27 The

liver isolations yielded 150–300 × 106 hepatocytes. Using trypan blue exclusion the viability

ranged from 90% to 98%. Primary hepatocyte culture medium consisted of DMEM

supplemented with 10% FBS, 14 ng/mL glucagon, 20 ng/mL epidermal growth factor, 7.5

µg/mL hydrocortisone, 200 µg/mL streptomycin (10 000 µg/mL)-penicillin (10 000 U/mL)

solution, and 0.5 U/mL insulin.

Hepatocyte Culture—The cells were seeded under sterile tissue culture hoods and

maintained at 37 °C in a humidified air/CO2 incubator (90/10 vol %). Primary hepatocytes

were cultured on PEM-coated 6-well TCPS coating PEG patterns. The multiplayer-coated

TCPS plates were sterilized by spraying with 70% ethanol and exposing them to UV light

before seeding the cells onto these surfaces. The cell culture experiments were performed on

PEM surfaces without adhesive proteins. Collagen-coated TCPS and uncoated TCPS were

used as controls in these studies. A collagen gel solution was prepared by mixing 9 parts of

the 1.2 mg/mL collagen suspension in 1 mM HCl with 1 part of concentrated (10×) DMEM

at 4 °C. The control wells were coated with 0.5 mL of this collagen gel solution, and the

coated plates were incubated at 37 °C for 1 h. Freshly isolated hepatocytes were seeded at a

concentration of 2 × 105 cells per well, and 2 mL was added to all surfaces studied. One

milliliter of fresh medium was supplied daily to the cultures after removal of the

supernatant. Samples were kept in a temperature-and humidity-controlled incubator.

4. NIH 3T3, HeLa Cell Culture—NIH 3T3 fibroblast and HeLa cell lines were purchased

from American Tissue Type Collection. Cells grown to 70% confluency were trypsinized in

0.01% trypsin (ICN Biomedicals) solution in PBS for 10 min and re-suspended in 25 mL of

media. Approximately 10% of the cells were seeded into a fresh tissue culture flask, and the

rest of the cells were used for the co-culture experiments. Fibroblast medium consisted of

DMEM with high glucose, supplemented with 10% bovine calf serum, 200U/mL penicillin,

and 200µg/mL streptomycin.

5. Characterization

A Nikon Eclipse ME 600 optical microscope (Nikon, Melville, NY) was used to obtain

dark-field images of the m-dPEG acid patterns and the additional microfabricated PEMs. A

Nikon Eclipse E 400 microscope was used to obtain the fluorescence images. The 6-

carboxyfluorescein (6-CF) dye was used to visualize the m-dPEG SAM patterns on PEM

following the stamping and rinsing processes. The dye was dissolved directly in 0.1 M

NaOH; samples were imaged by dipping the substrates into the dye solution. The dye, which

is negatively charged, preferentially stained the positively charged PDAC surface. The dyed

regions appear green when viewed with the fluorescence optical microscope using a FITC
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filter. Images were captured with a digital camera and processed on a Pentium computer

running camera software.

Results and Discussion

To evaluate the effect of salt on the m-dPEG acid patterns, the PEG patterns were treated

with salt and the presence of PEG patterns was analyzed with fluorescence microscopy

using a dye specific to positive surfaces. The dye attached selectively to the positive PDAC

surface and resulted in patterns of green (PDAC) and dark (PEG) regions, thereby indicating

the resistive property of the PEG patterns (Figure 2A). When this surface was exposed to a

salt solution, the PEG patterns were removed from the PEM surface to expose the active

PDAC surfaces underneath the SAMs as evident by the red dye specific for PDAC surfaces

attaching homogeneously to the PEG free PEM films (Figure 2B). As proof-of-concept of

the resistive nature of the PEG films, a layer of SPS was added on top of the PEG patterns;

due to the presence of the PEG patterns, the SPS preferentially formed a layer on the non-

PEG, PDAC surfaces, resulting in alternating regions of PEG and SPS surfaces. Treating the

surface with salt removed the PEG patterns, resulting in alternating regions of PDAC

(green) and SPS (dark) (Figure 2C). Further evidence of the salt-induced surface tunability

of the PEG patterns was established using ellipsometry (Figure 2D). Results showed an

increase of 13–15 Å in thickness when PEG SAMs were attached on the PEM films which

upon exposure to salt decreased the film thickness to the original thickness, suggesting that

the PEG coating was removed and the underlying PEM film was left intact. The effect of

salt concentration was studied by monitoring the thickness of the PEG films by varying the

ionic strengths over time (Figure 2E). The rate of PEG removal varied with the ionic

strength. At lower salt concentrations (0 and 0.1 M) no significant change in the PEG

thickness was observed over time, whereas at higher salt concentrations (0.25 and 0.5 M) an

appreciable change in the PEG thickness was observed with 85% of the PEG removed upon

exposure to salt for 1 h. The salt concentrations used included physiological levels (i.e., 0.25

M) and thus should not affect the biological molecules that may be attached to the PEMs.

Directed Assembly of Cells

To illustrate the advantage of the salt tunable PEG patterns, we used the PEG patterns to

control the adhesion of different types of cells including primary hepatocytes, primary

neurons, HeLa cells, and fibroblasts (Figure 3). The removable PEG SAMs developed in

this study provide surfaces that can be readily switched from cell repulsive to cell adhesive

using cell-friendly conditions. This approach is advantageous since they can be used to form

patterned co-cultures irrespective of the types of cell or the order of seeding of the different

types of cells. As shown in Figure 3, HeLa cells attached onto the PEG patterns before and

after salt treatment, indicating that the salt treatment did not affect the cells attached to the

PEM surface. The same cell type was used to illustrate the advantages of this method and its

ability to control the adhesion of similar cell types. This approach can be extended to

different combinations of cell types for co-culturing (e.g., adherent versus nonadherent,

eukaryotic versus prokaryotic). Figure 4A,B shows the phase contrast and fluorescence

images of the directed assembly of FITC tagged HeLa cells on top of the PEG patterns,

respectively, before salt treatment. When the cell-deposited surfaces were treated with salt,
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the cells remained attached and intact while the PEG SAMs were removed to expose the

underlying active PDAC surface. Next, a second batch of HeLa cells without the fluorescent

tag was cultured over the exposed surfaces to form patterned co-culture of HeLa cells

(Figure 4C,D). When the cells were imaged, the HeLa cells seeded before salt treatment are

visible while the cells added after salt treatment were not fluorescently tagged and thus are

not observed under the fluorescence microscope.

Directed Assembly of Colloidal Particles

m-dPEG acid molecules were stamped on top of the (PDAC/SPS)10.5 and the negatively

charged carboxylated polystyrene PS particles (Poly-sciences, diameter = 0.5 µm) deposited

selectively over the positive (PDAC/SPS)10.5 surface but not on the m-dPEG self-assembled

monolayer regions (Figure 5A). When the particle-deposited surfaces were treated with salt,

the particles remained attached and intact while the PEG SAMs were removed, exposing the

underlying active PDAC surface. Next, particles of 0.2 µm diameter were deposited over the

exposed surfaces, resulting in a two-particle system (Figure 5B). In our study, both particles

have similar chemistry but different sizes were used to illustrate the presence of two

different sized particles on the surface. This approach is more universal, convenient, and

nonspecific than the previous one by the Hammond group. This effective method provides a

flexible and versatile approach to the fabrication of composite colloidal structures

irrespective of their properties such as silica and metal-doped particles of varying size and

surface functionality and using functionalized spheres modified with PEMs. This approach

has potential applications in electronic and optical devices, direct colloid assembly, plastic

electronics, and thin film power devices.

Directed Assembly of Proteins

The removable PEG surfaces developed in this study provide a template for designing

multiple regions of different proteins onto defined regions of a surface without exposing the

proteins to irradiation, organic solvents, or dehydration. As shown in Figure 6A–D, the same

protein, secondary alcohol dehydrogenase (sADH), with different fluorescent tags (FITC

and Alexa Fluoro) was attached onto the PEG patterns before and after salt treatment,

indicating that the salt treatment did not affect attachment of the proteins to the PEM

surface. Figure 6A,B shows fluorescence images of the directed assembly of proteins on top

of PEG patterns in both red and green channels before salt treatment. The red regions

demonstrate the directed attachment of the alexa-fluoro tagged secondary alcohol

dehydrogenase (sADH) proteins to the PEMs [(PDAC/SPS)10.5] and away from the resistive

m-dPEG monolayer regions (black regions). No proteins were observed when imaged using

the green channel. When the protein-deposited surfaces were treated with salt, the proteins

remained attached and intact while the PEG SAMs were removed to expose the underlying

active PDAC surface. Next FITC-tagged sADH were deposited over the exposed surfaces,

resulting in a two-protein array (Figure 6C,D).

Conclusions

The strategy presented here for preparation of removable resistive SAMs provides a

template to design various surfaces that can be used in a wide range of applications. We
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have shown that these PEG patterns can be removed using physiological salt conditions that

do not compromise the underlying polymers, charged particles, and biological molecules,

including living cells, deposited on the surface. The salt-responsive PEG SAMs are ideal for

optical technologies such as electroluminescent and conducting surfaces, where templates of

multicomponent particle arrays on PEMs are required. We have also shown that these

removable surfaces can be used to form patterns of multiple proteins and cells, which may

be relevant to drug discovery, drug delivery, and tissue engineering applications. This new

approach is an environmentally friendly and biocompatible route to designing versatile salt

tunable surfaces.
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Figure 1.
(A) Diagram illustrating the formation of salt tunable m-dPEG acid SAMs on a PDAC/SPS

multilayer platform. (i) PEMs (PDAC/SPS)10.5 build on top of the substrates. (ii) Patterned

PEG SAMs on PEMs. (iii) Directed assembly of molecules due to the presence of resistive

PEG SAMs. (iv) PEG SAMs are removed by treating it with salt, giving rise to new active

regions. (v) The new active regions are filled with a new set of molecules. The chemical

structure of the m-dPEG acid molecule. (B–D) Optical microscope images of directed

deposition of macromolecules on PEG patterns: (B) 0.5 µm colloid particles (brown lines),

scale bar = 25 µm; (C) Alexa Fluoro tagged sADH, scale bar = 25 µm; (D) FITC tagged

nucleic acid, scale bar = 50 µm. The dark lines represent the m-dPEG acid regions.
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Figure 2.
Fluorescent images of PEG patterns (A) before and (B,C) after salt treatment. (D)

Ellipsometric data on the PEG patterns before and after salt treatment. (E) Thickness of the

PEG patterns at varying salt concentration.
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Figure 3.
Optical microscope images of directed deposition of cells on PEG patterns: (A) primary

hepatocytes, (B) HeLa cells, (C) primary neurons, and (D) fibroblast.

Kidambi et al. Page 11

Langmuir. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Optical microscope images of HeLa cells on PEG patterns before and after salt treatment.

Phase contrast (A) and fluorescent images (B) of HeLa cells labeled red on the m-dPEG acid

patterns before salt treatment. Phase contrast (C) and fluorescent images (D) of HeLa cells

seeded onto the surface after salt treatment.
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Figure 5.
Phase contrast images of colloidal particles on PEG patterns before and after salt treatment:

(A) particles (D = 0.5 µm) on the m-dPEG acid patterns before salt treatment, (B) particles

(D = 0.2 µm) added onto surface A after salt treatment.
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Figure 6.
Fluorescent images of sADH protein attachment on PEG patterns before and after salt

treatment: (A, B) sADH tagged with Alexa-Fluoro on the m-dPEG acid patterns before salt

treatment, and (C, D) sADH tagged with FITC added onto surface A after salt treatment. A

and C are pictures taken using the red channel, while B and D were taken using the green

channel.
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