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Granular layers on vibrating plates: Effective bending stiffness
and particle-size effects

Wonmo Kang, Joseph A. Turner,a� Florin Bobaru, Liyong Yang, and Kitti Rattanadit
Department of Engineering Mechanics, University of Nebraska-Lincoln, W317.4 Nebraska Hall,
Lincoln, Nebraska 68588

�Received 2 February 2006; revised 3 November 2006; accepted 9 November 2006�

Acoustic methods of land mine detection rely on the vibrations of the top plate of the mine in
response to sound. For granular soil �e.g., sand�, the particle size is expected to influence the mine
response. This hypothesis is studied experimentally using a plate loaded with dry sand of various
sizes from hundreds of microns to a few millimeters. For low values of sand mass, the plate
resonance decreases with added mass and eventually reaches a minimum without particle size
dependence. After the minimum, a frequency increase is observed with additional mass that includes
a particle-size effect. Analytical nondissipative continuum models for granular media capture the
observed particle-size dependence qualitatively but not quantitatively. In addition, a
continuum-based finite element model �FEM� of a two-layer plate is used, with the sand layer
replaced by an equivalent elastic layer for evaluation of the effective properties of the layer. Given
a thickness of sand layer and corresponding experimental resonance, an inverse FEM problem is
solved iteratively to give the effective Young’s modulus and bending stiffness that matches the
experimental frequency. It is shown that a continuum elastic model must employ a
thickness-dependent elastic modulus in order to match experimental values. © 2007 Acoustical
Society of America. �DOI: 10.1121/1.2404635�

PACS number�s�: 43.40.At, 43.20.Tb, 43.40.Dx �JGM� Pages: 888–896

I. INTRODUCTION

Interest in acoustic/seismic methods of detecting nonme-
tallic landmines has grown in recent years. Both linear1–4 and
nonlinear5–8 detection methods have shown good success in
laboratory and field tests. These methods rely on the vibra-
tion response of the top plate of the mine under excitation
from an acoustic wave. This response is complex due to the
interaction of the plate with the soil which lies above the
mine. Thus, a clear understanding of the response of a plate-
soil system is important for increasing the probability of de-
tection and for reducing false alarms. The influence of a soil
layer on the frequency response of a plate was recently ex-
amined experimentally by Korman and Sabatier9 for loess
soil and by Zagrai et al.10 for moist sand. In all cases, it has
been observed that the resonance decreases as the layer
thickness increases, reaches a minimum and then increases.
Here, a similar experiment is used to study the response of a
plate loaded with sand. The emphasis is on the influence of
particle size on the plate response. To explore the relation
between particle size and the resonance analytically, a model
based on effective medium theory and Hertzian contact is
derived.

In addition, models of two-layer elastic plates are ex-
plored with regard to the measured data. First, the analytical
solution of a two-layer plate is used and it is shown that such
a model consistently overpredicts the observed resonant fre-
quency. Next, a numerical model of the two-layer plate is
used to describe the plate-sand behavior. The plate-sand sys-

tem examined experimentally is modeled as a thin-plate
loaded by an equivalent elastic layer �EEL� which replaces
the layer of sand. The nondissipative numerical model is then
discretized by finite elements using shell elements for the
thin metal plate and solid elements for the EEL. The equiva-
lent elastic layer is defined as the layer that produces the
shift/change in the first resonant frequency that matches the
experimental measurements from the plate-sand system. This
continuum-based model is selected due to its simplicity in
evaluating effective elastic moduli for the granular layer. Its
utility in evaluating the “bending stiffness” of a granular
layer �a new concept defined here� is emphasized and the
limits in capturing the interactions between the elastic plate
and the real granular layer are examined.

In Sec. II, the experiments are described and results are
presented. Then, the particle size effect observed experimen-
tally is analyzed with an effective medium model for granu-
lar materials. In Sec. III, analytical and numerical models of
the two-layer plate system are discussed. Also, the numerical
method used to analyze the equivalent continuum three-
dimensional system is described. Finally, a summary and
conclusions are presented in Sec. IV. The results are expected
to provide insight into the importance of particle size effects
for acoustic landmine detection.

II. EXPERIMENTS AND EFFECTIVE MEDIUM
MODELING

The experiments are designed to provide insight into the
relation between the particle size of sand layer and the reso-
nant behavior of the plate. The experimental setup used here
is shown schematically in Fig. 1 and is based on that of
Korman and Sabatier.9 The plate-sand system is created us-
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888 J. Acoust. Soc. Am. 121 �2�, February 2007 © 2007 Acoustical Society of America0001-4966/2007/121�2�/888/9/$23.00



ing a circular brass plate �mass=26.4 g, thickness
=0.25 mm, radius=50.8 mm� clamped at the outer edge.
Acoustic waves are generated by a loudspeaker positioned
below the plate. A small input voltage of 50 mV is used to
ensure that the response remained in the linear regime for all
measurements. The response of the plate is measured using
an accelerometer placed at the center of the plate. The natu-
ral frequency corresponding to the system is determined us-
ing an HP35670A Dynamic Signal Analyzer. The first bend-
ing resonance for the brass plate alone is approximately
170 Hz.

For this study, the influence of particle size is investi-
gated. Thus, six different sizes of sand are used, all sieved
from the same batch of dry sand. Additional measurements
using the sand mixture are also made. The particle sizes and
sample designations are shown in Table I. Note that all
monodispersed samples have approximately the same effec-
tive density �the average density for S1–S6 is
1600±32.6 kg/m3� indicating that the particles are packing
essentially as spheres. However, the polydispersed sample
�S-mix�, from which the monodispersed samples were
sieved, has an effective density �12% higher than the mono-
dispersed average. The first bending resonance of the plate-
sand system is measured using 10 g increments of sand, with
a maximum layer thickness of 3.3 cm.

A. Experimental results

The results of the experiments described above are pre-

sented in Fig. 2. The normalized resonant frequency, f̃ is
defined as the frequency of the loaded plate divided by the
frequency of the unloaded plate. Figure 2 shows the depen-

dence of f̃ on the normalized mass of the sand layer. The
overall trend of the resonance is similar to that observed for
loess soil9 and moist sand.10 The resonance first decreases
�region A�, reaches a minimum and then increases �region

B�. It is clear from these results that the particle size is not
relevant in Region A, but is important in region B. In addi-
tion, it is observed that larger particle sizes lead to higher
resonant frequencies suggesting that the combined system is
in some ways stiffer if larger particles are present. The uni-
versal nature of this response is discussed in the following.
Another interesting result is also illustrated in Fig. 2. The
curve denoted as S-mix is the result from the unsieved dry
sand mixture �polydispersed�. The size distribution of S-mix,
shown in Table II, has an average particle size of 0.56 mm.
The response of the plate when loaded with this polydis-
persed mixture corresponds to the same curve �0.3–0.6 mm�
as a monodispersed layer with the same average particle size
although their effective densities are slightly different. This
result suggests that the behavior of the system in region B
depends only on the average particle size of the layer and is
not as sensitive to the distribution of particle sizes in the
layer.

Region A is a mass-dominated regime in which the com-
bined system behaves as a plate loaded by added mass. Some
understanding of the resonant frequency in region A is at-
tained from the analytical solution of a clamped plate. The
first bending frequency from classical thin plate theory is
given by11

�1 =
�1

2

�2�D

�
=

�1
2

�2� Eh3

12��1 − �2�
, �1�

where �1
2�=10.2� is the eigenvalue associated with the first

bending mode of a clamped plate, � is radius of the plate,
E is Young’s modulus, h is the plate thickness, � is mass

FIG. 1. Schematic of the cross section of the experimental setup. A thin
brass plate is clamped between two plastic tubes and excited with a loud-
speaker. The response is measured with an accelerometer mounted to the
center of the plate.

TABLE I. Particle sizes and names of the samples of sand used for the experiments. All monodispersed samples
�S1–S6� were sieved from the polydispersed mixture S-mix.

Name S1 S2 S3 S4 S5 S6 S-mix

Size �mm� �0.15 0.15–0.3 0.3–0.6 0.6–1.18 1.18–2.36 2.36–4.75 Unsieved sand
Density �kg/m3� 1572 1574 1620 1660 1593 1570 1795

FIG. 2. Shift of the first bending resonance due to sand loading for seven
samples of sand with various sizes �S1: �, S2: �, S3: �, S4: �, S5: �, S6:
�, S-mix: �, see Table I�. The dashed line is based on Korman and Sabati-
er’s data �Ref. 9�, while the solid line is the behavior expected from mass
loading alone as given by Eq. �3�. In region A, there is no particle size effect
observed. However, particle size becomes an important factor in region B.
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density per unit area of the plate, and � is Poisson’s ratio.
Equation �1� also serves to define the plate bending stiff-
ness D. It can be assumed that the mass of sand is the
dominant parameter in region A. Thus, the first bending
resonance in region A, �A, can be written as

�A =
�2

�2� D

�eff
=

�2

�2� D

�p�1 + M�
, �2�

with an effective density defined as the average density of
the plate-layer system �eff=�p�1+M�, where M is mass ra-
tio �mass of the sand normalized by the mass of the plate�
and �p is the density of the brass plate per unit area

�=2.18 kg/m2�. Thus, f̃ is given by

f̃ =
f

f0
=� 1

1 + M
. �3�

The solid line in Fig. 2 shows the trend expected from Eq.
�3�.

In region B, the thickness of the sand layer is sufficient
so that it behaves in many ways as a plate itself. In this
region, the sand layer is dominant such that the brass plate
has only a minor influence on the response of the plate-sand
system. In this case, the first bending resonance of the plate
in region B, �B, is given by

�B =
�2

�2� Eheff
2

12�eff�1 − �2�
	��h + M�p/�s�3

�p�1 + M�
, �4�

with the effective thickness of the plate-layer system given
by heff= �h+M�p /�s�, where �s is the density of the sand
layer. Equation �4� shows that when M is sufficiently

large, f̃ is expected to depend linearly on M. Thus, the
trends observed in region B are also expected from the
standpoint of basic plate vibrations. The dependence of

the slope of f̃ on particle size in region B is discussed
next, including expectations based on theoretical models
of particle aggregates.

B. Particle-size dependence

As discussed earlier, the linear dependence of f̃ on M is
expected for the region of the measurements for which M
varies from 6 to 11. However, the slopes of these curves are
clearly dependent on the average particle size of the layer as
well as other parameters. In order to quantify this depen-

dence, the slope of each curve 
=� f̃ /�M in region B is ex-

tracted. The slopes are calculated by fitting the entire f̃ −M
curve using the function9

f̃ = �A/�M + 1� + BM + CM2�0.5, �5�

where A, B, and C are fit coefficients. Then it is assumed that

=�C in the region of interest due to the relatively large
value of M. The results are given in Table III. The depen-
dence of 
 on particle radius R is determined assuming a
power-law relation. Thus, this dependence is given by


�R� = �R�, �6�

where � and � are fit parameters obtained using the method
of least squares. The results shown in Table III give a value
for �=0.305 ��=0.08�. A plot of 
 as a function of R is
given in Fig. 3. The values of 
 and R from the measure-
ments are given in relation to Eq. �6�.

The universality of this dependence is demonstrated us-
ing data from Korman and Sabatier.9 Their results are shown
as the dashed line in Fig. 2 and are determined using Eq. �5�
and their published coefficients �A=1, B=0.0078, and C
=0.0004�.9 The slope of their curve in region B is consistent
with Eq. �6� for a particle size of 10.5 m. The soil used by
Korman and Sabatier �S-KS� was loess soil, a mixture of
clay and silt. The result seems reasonable in that the particle
size of clay is less then 2 m and that of silt is between 2
and 80 m.12 The actual particle size of the S-KS soil was
later confirmed as 10 m.13 Thus, it appears that the power-
law dependence proposed is sufficiently general for a large
range of particle radii. However, the bending vibration re-
sponse of a granular layer has not yet been considered from
a theoretical standpoint.

The effective elastic response of an aggregate of par-
ticles has been of interest for over two decades. Although
previous attempts to model such aggregates using effective
medium theories have met with limited success, some
progress has been made. For example Digby,14 Walton,15 and
more recently Jenkins et al.,16 have developed expressions
for the effective elastic moduli of an aggregate of spherical

TABLE II. Particle size distribution of samples S-mix, the polydispersed
sample.

Size S1 S2 S3 S4 S5 S6

Weight �g� 17 209.3 344.4 156.7 41.4 5.1
Ratio �%� 2.2 27.05 44.50 20.25 5.35 0.66

Total weight of S-mix=773.9 g

TABLE III. Slopes of the frequency curves for different particle sizes of
sand.

Name S1 S2 S3 S4 S5 S6


 0.0387 0.0424 0.0728 0.0686 0.1153 0.1077

FIG. 3. Dependence of the slope of the resonance curves, 
, in region B on
particle radius R. The experimental data from Table III are plotted as black
circles. The power-law fit 
=�R� is given by the solid line ��=0.08, �
=0.305�. This curve matches with data from Korman and Sabatier �Ref. 9�.
The dashed lines correspond to the analytical model for three values of h /R.
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particles under hydrostatic pressure. Here, their results are
applied to the problem of interest such that the dependence
of 
 on R may be explored. As such, the resonant frequency
of a circular plate of spherical particles with a clamped edge
is assumed to have the form

�B =
�1

2

�2
� Ēhs

3

12�s�1 − �̄2�
, �7�

where Ē is the effective Young’s modulus and �̄ is Poisson’s
ratio of the effective plate with hs and �s as the thickness and
density of the layer. Considering a random packing of iden-
tical elastic spherical particles of radius R, the effective

Lamé’s constants �̄ and ̄ may be written14

�̄ =
C

5�R
� a

1 − �
−

2b

2 − �
� ,

̄ =
C

5�R
� a

1 − �
+

3b

2 − �
� , �8�

where  is shear modulus and � is Poisson’s ratio for the
spheres. In addition, the packing has an average coordinate
number C=K�, where K is average number of contacts of
each sphere and � is the packing fraction. Each pair of grains
is assumed to be initially bonded with a contact radius b.
Under an applied hydrostatic pressure, the packing increases
resulting in an increase in contact area with radius a, such
that a�b. For the experiments described here, it is assumed
that the contact of two particles without load is negligible,
such that b=0. For the sand layer considered, the pressure
from loading that results in the contact radius a arises from
the weight of the particles above the particle of interest.
Thus, the effective Lamé constants may be rewritten in terms

of the effective Young’s modulus Ē and Poisson’s ratio �̄ as

Ē =
C

�R

1

2

a

1 − �
,

�̄ = 1
4 . �9�

Under the assumption of Hertzian contact between two par-
ticles, the contact radius is given by17

a = 	3pR

4E* 
1/3

, �10�

where p is the applied normal force at the point of contact.
As noted previously,18–20 no particle-size dependence results
from this theory for a constant contact radius. To address this
issue, it is assumed here that the contact force on a given
particle contact is equal to the total weight of the particles
above a given particle divided by the number of contacts
over which the force is distributed. Thus, p= p�z�=�sg��h
−z� / �3zK� /4R3�, with z the depth in the layer that varies
from 0 to h. The average contact area is then given by

�a� = 	3p�z�R
4E* 
1/3� , �11�

where the ensemble average � �, is an integral through the
thickness of the layer. Thus, Eq. �11� becomes

�a� = 	 �sg�

E*K�

1/3

R4/31

h
�

R

h �h − z

z
�1/3

dz ,

where the reduced elastic modulus E* of the contact is given
by E*=2E / �1−�2�, with E and � as the Young’s modulus
and Poisson’s ratio of the particles, respectively. Then the
ratio of �a� /R can be expressed by

�a�
R

= 	 �sg�

E*K�

1/3

R1/3Q�R/h� , �12�

where

Q�R/h� = �
R/h

1 	1 − z̃

z̃

1/3

dz̃ .

Finally, the dependence of resonant frequency, Eq. �7�, on R
is given by

�B 	 �R1/3Q�R/h� . �13�

Thus, the final form given by Eq. �13� shows a dependence
of the resonance on the size of particles in the layer. In order
to put Eq. �13� in terms of the experimental results, the de-

pendence of � f̃ /�M on R is needed. This quantity is


 =
� f̃

�M
	 �R1/3Q�R/h� , �14�

due primarily to the fact that the effective density of all par-
ticle sizes is equal. Example curves corresponding to Eq.
�14� are shown in Fig. 3 for three values of h /R. It should be
noted that for large layer thickness, h /R→� such that
Q�0�=2� /3�3. In this case, the dependence of 
 is R1/6.
The term �Q reduces the value of 
 as shown. It is clear
that Eq. �14� shows an increase in 
 with R, but that the
exponent of the power-law dependence does not match the
experimental result. Just as effective medium theories for
granular systems have not been able to predict average
moduli accurately,16 Eq. �14� does not accurately predict
the size dependence of the frequency for the plate-sand
system, although the general trend �increasing 
 for in-
creasing R� is correct.

At this point it is unclear whether a more comprehensive
effective medium approach, such as that developed by Jen-
kins et al.,16 would yield results more closely related to the
experiments. It is likely that the difference between the ana-
lytical estimates provided by these well-bonded models �two
grains originally in contact remain in contact after an exter-
nal load is applied� and the experimental results can be ex-
plained by the failure21 of the well-bonded model to approxi-
mate accurately the bending motion in the vibration of the
granular system.

In Sec. III, the plate/sand-layer system is analyzed with
the multilayer Kirchoff plate theory and a finite element
model. The notion of the bending stiffness of the granular
layer is of particular interest here.
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III. TWO-LAYER PLATE MODELS

It is clear from the experimental results shown above for
the granular layer supported by a thin plate that a simple
model is not sufficient to describe the observed behavior.
Thus, additional aspects relevant for this system must be
examined in order to identify the pertinent parameters that
will allow predictive models to be developed. Toward that
end, three different types of two-layer plate models are now
explored. The first is an analytical model that describes the
vibration behavior of a two-layer elastic plate.22 Such a
model differs from the heuristic model presented
previously10 for which the bending stiffnesses of the two
layers were simply added. Unfortunately, the nature of the
equation governing the vibrations of a multilayer plate does
not support the approach in Ref. 10 from a physical stand-
point. The second is a numerical approach using a finite el-
ement model �FEM�. In this case, the upper layer is modeled
using three-dimensional elements valid for thick plates. Fi-
nally, an inverse approach is presented for which the effec-
tive granular layer properties are extracted by matching the
FEM results to the experimental results. This approach re-
sults in a thickness dependent modulus for the granular layer
with corresponding bending stiffness �also thickness depen-
dent�.

A. Analytical model

The analytical solution for a two-layer elastic plate22 is
now employed to model the system of interest. The top layer
is considered as an EEL to study the dependence of the reso-
nant frequency on the thickness of the granular layer. The
majority of the derivation is not repeated here for brevity.
The interested reader is referred to the original for more
details.22 Both layers of the combined plate are modeled us-
ing Kirchhoff plate theory. The interface between the two
layers is then assumed to be perfectly bonded such that there
is continuity of displacement and stress. The boundary con-
ditions of interest correspond to clamped conditions for both
layers. Following standard vibration theory, harmonic solu-
tions are sought and the spatial eigenvalue problem is de-
rived. The solution of the eigenvalue problem results in the
eigenfunctions �mode shapes� and allowable wave numbers
�that are related to the natural frequencies� for the given ge-
ometry and boundary conditions. For the problem of interest
here, the characteristic equation governing the natural fre-
quencies is given by22

�
J0�̄1ā�/̄1ā J0�̄2ā�/̄2ā − I0�m̄3ā�/m̄3ā

J1�̄1ā� J1�̄2ā� I1�m̄3ā�
̄1

2

�̄2 − ̄1
2J1�̄1ā�

̄2
2

�̄2 − ̄2
2J1�̄2ā�

̄3
2

�̄2 − ̄3
2 I1�m̄3ā� �

= 0, �15�

where Ji and Ii are Bessel functions and modified Bessel

functions of the first kind, respectively and �̄2=R0�̄2 / Ā.
Here, �̄ is the natural frequency of the two-layer plate and ā
is radius of the two-layer plate. Also, R0=�1h1+�2h2 in

terms of the mass densities ��i� of the plates and plate thick-
nesses �hi�. The parameter

Ā =
E1

1 − �1
2h1 +

E2

1 − �2
2h2

is defined in terms of the moduli �Ei� and Poisson’s ratios
��i� of the plates. The dimensionless quantities ̄1ā�0,
̄2ā�0, and ̄3ā= m̄3āi in Eq. �15� are not independent, but
are the roots of the following sixth-degree �third-degree in
�̄ā�2� polynomial

�1 − B̄2/ĀD̄��̄ā�6 − �R0�̄2/Ā�ā2�̄ā�4

− �R0�̄2/D̄�ā4�̄ā�2 + ��R0�̄2�2ĀD̄� = 0. �16�

In Eq. �16� B̄ and D̄ are defined as

B̄ = −
1

2

E1

1 − �1
2h1

2 +
1

2

E2

1 − �2
2h2

2,

D̄ =
1

3

E1

1 − �1
2h1

3 +
1

3

E2

1 − �2
2h2

3,

where �1 and �2 are mass densities of the plates, h1 and h2

are the thicknesses, �1 and �2 are the Poisson’s ratios, E1 and
E2 are the Young’s moduli, and �̄ is frequency of the two-
layer plate.22 Equations �15� and �16� must be solved numeri-
cally for the necessary natural frequencies of the two-layer
plate. From the brief description included here it is clear that
the vibrations of a two-layer plate are much more compli-
cated than a single-layer plate. For example, the solutions of
Eq. �16� show that ̄1, ̄2, and ̄3 have nonlinear dependen-
cies on the thickness ratio h1 /h2 as do the natural frequen-
cies. The mode shapes that result from the two-layer plate
are also slightly different from those of a single-layer plate
with the specific mode shapes dependent on the thickness
ratio as well. These points are made to highlight the differ-
ences between the analytical two-layer plate theory22 and the
model of Zagrai et al.:10 The two-layer plate theory has a
more complicated characteristic equation and gives different
mode shapes, wave numbers, and corresponding natural fre-
quencies than those associated with a single-layer plate. An
example result is shown in Fig. 4 for which the two-layer
plate solution �brass plate with a top layer having E
=3 MPa� is compared with Eq. �22� of Zagrai et al. Con-
siderable differences are observed between the two results
especially for most of the range of mass ratio.

Although the two-layer plate model discussed here has
the appropriate qualitative behavior expected, it is not able to
match the quantitative behavior of the experimental data. It
is perhaps not too surprising since the Kirchhoff plate theory
is valid for thin plates only �ratio of radius to thickness is at
least 10–15�. Thus, it is appropriate to explore a more appli-
cable model that accounts for effects beyond the thin-plate
theory.

B. Finite element model

The model discussed above is based on thin-plate theory.
However, for much of the experimental data, the assump-
tions implicit in Eq. �4� are not expected to hold due to
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thick-plate effects. In order to investigate the applicability of
continuum models for this system further, the response of a
thin plate loaded with an elastic layer is considered. The
FEM is used to compute the first resonant mode of the two-
layer system. The problem is axisymmetric such that axisym-
metric elements can be used. Therefore, 57 SAX2 three-node
axisymmetric shell elements and 115 CAX8R eight-noded
biquadratic axisymmetric solid elements are used for the thin
metal plate and the upper elastic layer, respectively.23 The
selection of the number of shell elements is based on a con-
vergence study performed to match the exact solution for the
first resonant frequency of the thin plate to six digits. The
mesh generator in ABAQUS automatically selects the num-
ber of solid elements corresponding to the number of shell
elements and the input data. The number of elements in the
thickness direction varies with the thickness of the sand
layer. For example, 14 elements are employed in the thick-
ness direction in the case of mass ratio of 5. Due to the
axisymmetry of the problem, the boundary condition corre-
sponding to the center of the plate is chosen as rolling, while
a clamped boundary condition is used for the plate outer
edge. The boundary condition at the sand layer/tube interface
�see Fig. 1� is expected to depend in some way on friction.
The influence of this boundary condition on the numerical
results is illustrated in Fig. 5, where results for both clamped
and roller boundary conditions on the sand layer are com-
pared. The results for a frictional boundary condition are
expected to fall between these two extremes. The plots in
Fig. 5 show that this boundary has only a minor influence on
the predicted response for the regime of interest. Thus, a
roller boundary condition is used for all simulations to fol-
low. The condition along the interface between the plate and
the EEL is rough friction �no slip occurs as relative horizon-
tal motion of nodes in contact is prevented�. Other interface
conditions were examined as well but were found not to
change results in any significant way.

The geometric and material properties of the plate are
chosen to match the experimental system ��=5.08�10−2 m,
h=2.54�10−4 m, �=8575 kg/m3, E=103 GPa, and �
=0.34�. Analytical results for a two-layer plate22 and the
FEM results show that changes in Poisson’s ratio from 0.05

to 0.30 result in changes in the first resonant frequency
smaller than 0.01%. Thus, it is concluded that the first reso-
nant frequency is insensitive to changes in �. Therefore, a
Poisson’s ratio of 0.25 is used for the EEL.

The ability of the numerical model to match the experi-
mental results is first examined using a layer with the same
density as that measured for the sand layer and with constant
E. Numerical results are shown in Fig. 6 for E=1, 3, 5 MPa,
together with the analytical result for a two-layer elastic plate
�E=3 MPa� and three sets of experimental results �S1, S2,
S5�. In Fig. 6, the overall trends of the analytical two-layer
plate theory and the three-dimensional FEM results are simi-
lar to the experiments: a decrease of the resonant frequency
to a minimum then an increase with gradually decreasing
rate as the thickness of the EEL increase. Note that the FEM
result captures the leveling of the resonant frequency curve
for large mass ratios. Such behavior is observed in the ex-
periments but is impossible to obtain with the two-layer plate
solution. However, neither the analytical solution for the
two-layer plate nor the finite element models capture well the

FIG. 4. Comparison between the exact solution �Ref. 22� for a two-layer
plate and the heuristic model given in Ref. 10, Eq. �22�.

FIG. 5. Finite element results for the normalized first resonant frequency of
the plate-EEL system for two types of boundary conditions �BC� applied at
the interface between the tube walls and the EEL. The EEL replaces the
granular layer of same thickness and density.

FIG. 6. Comparison of select experimental results with the two-layer plate
model and the plate-EEL FEM model. The dash-dot line is obtained with the
multilayer plate theory �Ref. 22� for E=3 MPa while the FEM results are
obtained for equivalent elastic layers with E=1, 3, and 5 MPa, respectively.
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location of the minimum and the slope in the region of in-
creasing frequency. In fact, the results shown in Fig. 6 sug-
gest that the elastic modulus of the layer depends on its
thickness. In order to study this effect further, the FEM is
used in an inverse analysis to determine the effective elastic
properties of the sand layer.

C. Thickness-dependent stiffness model

The results thus far, based on two-layer plate theory and
finite element model that includes three-dimensional effects
of the layer, clearly show that neither can adequately model
the measured frequency shift as a function of layer thickness.
It seems that the granular layer has an effective bending stiff-
ness that changes with thickness. In order to determine the
properties of an EEL that produces the same resonant fre-
quencies as in the experiments, the problem is formulated as
an inverse problem. The objective is to find the appropriate
Young’s modulus from a given experimental resonance and
thickness using a procedure based on the shooting method.24

For a given thickness of sand layer and the corresponding
value of the first resonance from the experiment, the Young’s
modulus of an equivalent elastic layer of the same thickness
is found as follows:

�1� Two arbitrary values of the Young’s modulus E0 and E1

are chosen and the finite element model of the EEL-plate
system is solved for both cases giving two values for the
first resonant frequency, �0 and �1.

�2� Subsequent values for the Young’s modulus are com-
puted using

Ek+2 = Ek +
�k − �*

�k − �k+1
�Ek+1 − Ek�

for k=0,1 ,2 ,3 , . . . where �k and �k+1 are the resonant
frequencies corresponding to Ek and Ek+1, respectively,
with �* denoting the experimental resonance.

�3� Iteration stops when the relative error between the ex-
perimental frequency and the frequency from the nu-
merical model is less than a preset tolerance �here, 1%�.

This procedure is repeated for all experimental measure-
ments �all particles sizes and all layer thicknesses�.

The results from these computations in terms of Young’s
modulus of the EEL for all experiments are shown in Fig. 7
over the range of mass ratio from 4 to 16. It should be noted
that within the mass dominant regime for thin layers �region
A in Fig. 2�, the inverse problem of finding E for the EEL
from the experimental frequencies is ill-posed due to the in-
sensitivity of the resonant frequencies to variations in the
Young’s values of the EEL. That is, small perturbations in
the input frequencies can induce large changes in Young’s
moduli.

The values obtained for E are in the range of several
MPa for all sizes of sand examined, which is in the same
range as those obtained by Yanagida et al.25 for the “longi-
tudinal elastic modulus” of sand using a different experiment
when they analyzed properties of binary mixtures. The gen-
eral trend observed is that layers of larger particles result in a
larger effective E of the EEL. The results also show that the

effective value of E increases with the layer thickness for all
particle sizes. It may be conjectured that this increase is due
to an increase in the interparticle pressure from the layer as
outlined in the model described in Sec. II B. It is also inter-
esting to note that the values of E shown in Fig. 6 are lower
than might be expected based on wave speed measurements
in sand �103–260 m/s�,17,26 which would result in a range of
E between 19 and 121 MPa.

In Fig. 8, the effective bending stiffness D of the EEL,
normalized by the bending stiffness of the plate, is plotted as
a function of mass ratio. The general observations for D are
similar to those for E. However, when plotted in the context
of the plate bending stiffness, the mass ratio necessary for
the layer to become “stiffer” in bending than the metal plate
is very clear. The results above the horizontal line
�DEEL/Dp=1� denote granular layers that dominate the vibra-
tion response of the plate/granular layer system. In terms of
the particle size dependence, the results in Fig. 8 show that

FIG. 7. Solution of the FEM-based inverse problem: computed values for
the Young’s modulus of an equivalent elastic layer that produces the same
resonant frequency as the granular layer in the experiments �see Table I�.
Notice the general trend of increased elastic modulus with increase in par-
ticle size, as well as with the increase in thickness.

FIG. 8. Computed effective bending stiffness of the granular layer �see
Table I� using the FEM-based inverse analysis for the equivalent elastic
layer. Results are normalized by the bending stiffness of the metal plate.
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the EEL for larger particles achieves the same effective D as
the plate for layers that are thinner than the EEL for the
smaller particles.

The inverse problem finite-element-based procedure de-
scribed here provides a simple and effective means for com-
puting the bending stiffness of a granular layer from experi-
mental data. Such information is useful for the development
of continuum models for granular media.

IV. SUMMARY

In this article, it has been shown that the vibration re-
sponse of a sand-loaded plate has two primary regimes. For
layers with mass that are less than approximately five times
the mass of the plate, the resonance exhibits a mass-loading
behavior as predicted theoretically. In this regime the reso-
nance decreases with a dependence �1+M�−1/2 with M as the
mass ratio between the sand layer and plate. No dependence
on particle size was observed. For higher values of M, the
resonance reaches a minimum and then begins to increase
with a clear dependence on average particle size: larger par-
ticles exhibit higher relative frequencies than smaller par-
ticles. The dependence on particle size is shown to behave
according to a power law in particle radius. In addition, it
was shown that the response to a polydispersed layer is
equivalent to a monodispersed layer with the same average
particle size. In other words, only the average particle size of
a polydispersed layer appears to be important for this re-
sponse. Attempts to understand this dependence based on
effective moduli theories are qualitatively successful, but the
value of the exponent in the power law does not match that
of the experiments. The discrepancy between the observed
exponent and the ones predicted by the well-bonded Hertzian
models can perhaps be attributed to the failure of the model
to include loss of contact and frictional dissipation in the
bending motion induced by the vibration regime as well as
other effects that are not clear at this time. This is the subject
of future research.

In order to compute the bending stiffness of a granular
layer a new methodology is proposed based on solving a
sequence of inverse problems with the finite element method
in which the metal-plate/granular layer system was replaced
by an elastic shell/thick elastic layer numerical model. The
nonlinear shooting method is used to obtain an elastic modu-
lus for each thickness of the granular layer so that the
equivalent elastic layer produces the same resonant fre-
quency in the numerical model as that of the real system. It
was shown that a single effective elastic modulus for the
layers of a given particle size cannot be used to match the
experimental results, but that a thickness-dependent modulus
must be employed if the experimental data are to be
matched.

These results show that layers of larger particles are
“stiffer” than those made up of smaller particles for the same
effective density. Modeling the dependence on particle size,
however, remains to be elucidated since the effective me-
dium theories based on well-bonded Hertzian models predict
a value of the power law exponent that is half the size of that
measured experimentally. At this point it is unclear if effec-

tive medium theories can resolve this issue. In the future
discrete models will be used to include rotational degrees of
freedom and frictional dissipation: two of the missing ingre-
dients that may be responsible for the above-mentioned dis-
crepancy. Such models are clearly important for an improved
understanding of the vibration response of an elastic struc-
ture that interacts with a granular material. Quantitative
methods of land mine detection by acoustic means will nec-
essarily require a clear grasp of such fundamental behavior.
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