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Ultrasonic characterization of microstructure evolution
during processing

Liyong Yanga� and Joseph A. Turner
Department of Engineering Mechanics, W317.4 Nebraska Hall, University of Nebraska-Lincoln,
Lincoln, Nebraska 68588-0526

Zheng Li
Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China

�Received 12 June 2006; revised 27 September 2006; accepted 5 October 2006�

Many cold-working processes for polycrystalline metals cause alignment of the grains with a single
symmetry axis. This type of microstructure is called fiber texture. The existence of a preferred
orientation of the grains has a significant influence on the propagation and scattering of ultrasonic
waves, which are often used for material inspection. Knowledge of the wave attenuation of such
textured materials is of both theoretical and practical interest to nondestructive testing and materials
characterization. In this article, the quantitative relations between fiber texture and wave
attenuations of hexagonal crystals are presented. The texture is characterized by a Gaussian
distribution function that contains a single parameter that governs the transition of the texture from
perfectly aligned crystals to statistically isotropic. Under this assumption, the materials of interest
have a varying degree of transverse isotropy representative of processing conditions. Simple
expressions for the attenuations of the three modes of waves are given in a concise, generalized
representation. Finally, numerical results are presented and discussed in terms of the directional,
frequency, and texture dependence. The results presented are expected to improve the understanding
of the microstructure evolution during thermomechanical processing. © 2007 Acoustical Society of
America. �DOI: 10.1121/1.2382749�

PACS number�s�: 43.20.Bi, 43.20.Gp, 43.35.Cg �TDM� Pages: 50–59

I. INTRODUCTION

The macroscopic anisotropy of the physical properties of
polycrystalline materials is generally determined by two fac-
tors, the anisotropy of the crystals, which is described by the
single-crystal elastic constants, and the distribution of the
crystals in space, which is called the texture. The simplest
anisotropic symmetry class to be considered is that of me-
dium with a single symmetry axis. The direction of the single
symmetry axis is defined as the fiber direction. In this case,
the fiber direction is not necessarily perpendicular to the
sample surface, but typically is associated with processing
conditions �e.g., rolling direction�. The knowledge that the
material microstructure directly affects the macroscopic ma-
terial properties was a turning point in the field of materials
manufacturing. Specific types of manufacturing processes
are used to produce the corresponding microstructure in a
controlled fashion. Many heat treatment processes, such as
annealing, are used to relieve the internal stress state that
develops during cold working, which allows the microstruc-
ture to rearrange itself to a state of lower energy. During such
processing, individual crystals in a polycrystalline aggregate
undergo orientation changes. Often, the recrystallization pro-
cess creates material texture, or preferred orientation of
grains. The degree and type of texture are best described
quantitatively by the orientation distribution function �ODF�.

The distribution of the orientation occurring in the recrystal-
lization textures of polycrystalline titanium and zinc may be
represented by a Gaussian ODF �Li, 2000�.

Ultrasonic techniques provide information about the in-
terior microstructure due to the penetration of ultrasonic
waves. In recent years, major advances in ultrasonic moni-
toring nondestructive evaluation �NDE� demonstrate a poten-
tial to characterize recrystallization processes. Previous
analysis of wave propagation and scattering in polycrystals
with fiber texture was focused mainly on samples with cubic
crystal symmetry �Hirsekorn, 1985, 1986; Turner, 1999;
Ahmed and Thompson, 1996�. However, crystal symmetries
other than cubic are also important. For example, the fiber
texture of hexagonal crystals has been observed for a variety
of materials, such as titanium, zinc, magnesium, ice, and
many others.

The scattering of elastic waves by grains of polycrystals
has received considerable attention. Contributions for cubic
symmetry with uniformly distributed orientations of grains
were made by Hirsekorn �1982, 1983�, Stanke and Kino
�1984�, and Weaver �1990�. The problem of wave propaga-
tion and scattering in the case of polycrystalline grains with
an aligned �001� axis has been examined by Ahmed and
Thompson �1996� and Turner �1999�. In that case, the aver-
age medium is statistically transversely isotropic. Ahmed
and Thompson �1992, 1996� also studied correlations defined
by both equiaxed grains and grains with elongation. Most
recently, wave attenuation in the case of orthorhombic-cubic
symmetry was investigated by Yang and Turner �2004�.

a�Author to whom correspondence should be addressed; Electronic mail:
lyang4@unl.edu
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In this article, quantitative relations between fiber tex-
ture and wave attenuations of hexagonal crystals are pre-
sented. The texture is characterized by a Gaussian distribu-
tion function that contains a single parameter that governs
the transition of the texture from perfectly aligned grains to
statistically isotropic. Under this assumption, the materials of
interest have a varying degree of transverse isotropy repre-
senting various states of processing conditions. Simple ex-
pressions for the attenuations of the three modes of waves
are given in a concise representation. The resulting attenua-
tions are presented and discussed in terms of the directional,
frequency, and texture dependence. The results presented are
expected to improve the understanding of the microstructure
evolution during thermomechanical processing. In addition,
the present formulation may be used to study diffuse ultra-
sonic problems in a straightforward manner.

II. EFFECTIVE ELASTIC STIFFNESS

For textured materials, a detailed description of poly-
crystalline material properties in the sample requires a
knowledge of the orientation distribution of all crystallites in
the sample. The orientation of a given single crystallite is
specified by the three Euler angles �, �, and �. The orienta-
tion distribution of crystallite grains with preferred directions
in the sample can be described by the orientation distribution
function �ODF�, F�� ,� ,��, which is the probability density
function in terms of the three Euler angles. To discuss the
orientation of a grain, a set of crystallite-fixed axes Xi is
chosen for a given grain. One may choose the sample-fixed
axes xi in polycrystals. The crystallite axes Xi and the sample
axes xi are related through a rotation matrix using the three
Euler angles. In general, the elastic modulus tensor for a
single hexagonal crystallite is given by

cijkl = �h�ij�kl + �h��ik� jl + �il� jk� + A��ijêkêl + �klêiêj�

+ B��ikêjêl + �ilê jêk + � jkêiêl + � jlêiêk� + Dêiêjêkêl,

�1�

where the unit vector ê is defined as the crystal sixfold sym-
metry axis. The five coefficients in Eq. �1� are given in terms
of single hexagonal crystallite elastic constants c11, c33, c44,
c12, c13, c66 as

�h = c12 = c11 − 2c66, �h = c66,

A = c13 − c12, B = c44 − c66,

D = c11 + c33 − 2c13 − c44. �2�

The average medium is characterized by the average
stiffness tensor. If the average elastic stiffness tensor, �c�,
represents a transversely isotropic medium, it may be written
as a function of Kronecker deltas and the unit vector n̂,
which defines the fiber direction �or uniaxial symmetry axis�.
It can be expressed by

Cijkl = �cijkl� = �1�ij�kl + �2��ik� jl + �il� jk�

+ �3��ijn̂kn̂l + �kln̂in̂j� + �4��ikn̂jn̂l + �iln̂jn̂k

+ � jkn̂in̂l + � jln̂in̂k� + �5n̂in̂jn̂kn̂l

= �1J1 + �2J2 + �3J3 + �4J4 + �4J5, �3�

where Eq. �3� serves to define the tensors Ji with coefficients
�i �i=1,2 ,3 ,4 ,5�. Relations between �i and Cijkl are derived
below. The ensemble average stiffness of the medium is de-
fined explicitly by

�cijkl� =
1

8�2�
0

� �
0

2� �
0

2�

cijklF�	,�,�,��sin � d� d� d� , �4�

where cijkl is given in Eq. �1�.
As discussed above, an orientation distribution function

�ODF� F�	 ,� ,� ,�� is introduced to represent uniquely the
crystallite orientation distribution. Here, a Gaussian distribu-
tion function is adopted as the ODF, which is a reasonable
approximation for the fiber texture associated with hexagonal
materials �Li, 2000�. That is, the crystallite distribution de-
pends only on Euler angle � and is independent of angles �
and �,

F�	,�� = F0 exp�−
�2

2	2	 , �5�

where 	 is a single parameter that governs the transition of
the texture from perfectly aligned grains to statistically iso-
tropic. The normalization coefficient F0 is defined by
�1/8�2�
0

�
0
2�
0

2� F�	 ,� ,� ,��sin � d� d� d�=1. Thus, it
may be expressed as

F0 =
��	

4�2
exp�−

	2

2
	�2 Erfi� 	

�2
	 − Erfi�− i� + 	2

�2	
	

− Erfi� i� + 	2

�2	
	 , �6�

where Erfi is the imaginary error function. The shape of this
type of distribution function for several values of 	 is shown

FIG. 1. Gaussian distribution function with various parameters 	.
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in Fig. 1. Two extreme cases are observed. One is a quasi-
single crystal with perfectly aligned grains which occurs as
	→0. The other limiting case is a statistically isotropic
polycrystal with randomly oriented grains which occurs as
	→
. Other degrees of texture between these limits can be
realized by varying 	. Thus, such a distribution function al-
lows a single parameter to model this transition.

In order to obtain the coefficients of �i, the following
identities are needed:

�êiê j� = �ij�1

2
�I	

0 − I	
2� + n̂in̂j�1

2
�− I	

0 + 3I	
2� ,

�êiê jêkêl� = �J1 + J2 − J3 − J4 + 3J5��1

8
�I	

0 − 2I	
2 + I	

4�
+ �J5�I	

4 + �J3 + J4 − 6J5��1

2
�I	

2 − I	
4� , �7�

where the coefficients I	
m �m=0,2 ,4 ,6 ,8� are defined by

I	
m =

1

2
�

0

�

F�	,��cosm � sin � d� . �8�

Using the identities given in Eq. �7�, the five coefficients �i

in Eq. �3� are obtained and expressed as

�1 = �h + 2AM1 + DM3,

�2 = �h + 2BM1 + DM3,

�3 = AM2 − DM3 + DM5,

�4 = BM2 − DM3 + DM5,

�5 = 3DM3 + DM4 − 6DM5,

where Mi are expressed in terms of the coefficients in Eq. �8�
as

M1 =
1

2
�I	

0 − I	
2�, M2 =

1

2
�− I	

0 + 3I	
2�, M5 = I	

4 ,

M3 =
1

8
�I	

0 − 2I	
2 + I	

4�, M4 =
1

2
�I	

2 − I	
4� . �9�

Hence, the five effective elastic constants of the ensemble
average medium are given by

C11 = �1 + 2�2, C33 = �1 + 2�2 + 2�3 + 4�4 + �5,

C44 = �2 + �4, C12 = �1, C13 = �1 + �3, �10�

C66 =
1

2
�C11 − C12� .

It is known that the identities given in Eq. �7� can be
simplified under the two limiting cases of interest as �Fe-
dorov, 1968�

�êiê j� =
1

3
�ij, �êiê jêkêl� =

1

15
�J1 + J2�, when 	 → 
 ,

and �êiê j� = n̂in̂j, �êiê jêkêl� = n̂in̂jn̂kn̂l, when 	 → 0.

�11�
The identities in Eq. �7� may be rewritten as

�êiê j� = M1�ij + M2n̂in̂ ,

�êiê jêkêl� = S1�J1 + J2� + S2�J3 + J4� + S3J5, �12�

where

S1 =
1

8
�I	

0 − 2I	
2 + I	

4� ,

S2 =
1

8
�− I	

0 + 6I	
2 − 5I	

4�, S3 =
1

8
�3I	

0 − 30I	
2 + 35I	

4� .

The five coefficients M1 and M2, and S1, S2, and S3 are
shown in Figs. 2 and 3, respectively. It is observed as 	
→
, the coefficients M2, and S2 and S3 approach zero, and
as 	→0, the coefficients M1, and S1 and S2 approach zero.
Thus, the expected limiting behavior for C is observed. For
the statistically isotropic case, the average elastic stiffness of
a hexagonal crystallite may be simplified as �Li and Thomp-
son, 1990�

FIG. 2. Coefficients M1 and M2 as a function of texture parameter 	.

FIG. 3. Coefficients S1, S2, and S3 as a function of texture parameter 	.
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Cijkl = �̄�ij�kl + �̄��ik� jl + �il� jk�

= ��h +
2

3
A +

D

15
	�ij�kl + ��h +

2

3
B +

D

15
	

���ik� jl + �il� jk� . �13�

Example results of the effective elastic constants are
now shown for a titanium polycrystal. The material constants
of the single crystallite used here are c11=160 GPa, c12

=90 GPa, c13=66 GPa, c33=181 GPa, and c44=46.5 GPa. In
Fig. 4, the elastic constants are presented as a function of 	,
where 	 governs the crystal alignment from perfectly aligned
�	=0� to randomly aligned �	→
�. It is clearly seen from
Fig. 4 that as 	 approaches zero, the grains in polycrystals
become perfectly aligned. In this case, the polycrystal be-
haves as a quasi-single crystal, the elastic constants of which
reduce to the appropriate single-crystal constants. When 	
approaches infinity, the grains in the polycrystal are ran-
domly oriented as expected. In such a case, the five indepen-
dent elastic constants of the polycrystal reduce to two inde-
pendent elastic constants. The transition between these two
limits is seen clearly. Because the focus here is on wave
propagation and scattering phenomena, the directional de-
pendence of the wave speeds is of importance. Thus, slow-
ness surfaces are presented for various parameter 	 for the
shear horizontal, quasilongitudinal, and quasishear waves,
respectively, in Figs. 5, 6, and 7. The transition of the texture
from perfectly aligned to statistically isotropic is clear.

III. ATTENUATION

The scattering of elastic waves, often characterized by
the attenuation, in a polycrystal results from the misalign-
ment of the grains. To calculate the attenuations, the relevant
inner products on the covariance of the moduli fluctuations
are required �Turner, 1999�. These may be written as

�
¯·ûp̂ŝv̂
¯·ûp̂ŝv̂ = ����

ijkl û�ûkp̂p̂lŝiŝ�v̂�v̂ j , �14�

where the covariance of the moduli fluctuations ����
ijkl is

given explicitly by

�ijkl
��� = �cijklc���� − �cijkl��c���� . �15�

The brackets, � �, denote an ensemble average over all orien-
tations of grains. The average elastic stiffness tensor, �c�, is
given in Eq. �4� for the case of interest here. The first term in
Eq. �15� �cc� is defined by

�cijklc���� =
1

8�2�
0

� �
0

2� �
0

2�

cijklc���F�	,��

�sin � d� d� d� . �16�

In order to carry out the calculations in Eq. �16�, the follow-
ing general identities are given:

FIG. 4. Effective elastic constants as a function of texture parameter 	.

FIG. 5. Slowness surface of the shear horizontal wave �SH�.

FIG. 6. Slowness surface of the quasilongitudinal wave �qP�.
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�êiê jêkêlêê�� = � 1

48
�I	

0 − 3I	
2 + 3I	

4 − I	
6� ��ij�kl�� + all permutations-15 terms in all�

+ �1

8
�I	

2 − 2I	
4 + I	

6� �n̂in̂j��kl�� + �k��l + �k�l�� + all permutations-15 terms in all�

+ �1

2
�I	

4 − I	
6� �n̂in̂jn̂kn̂l�ij + all permutations-15 terms in all� + �I	

6�n̂in̂jn̂kn̂ln̂n̂�, �17�

�êiê jêkêlêê�ê�ê�� = � 1

384
�I	

0 − 4I	
2 + 6I	

4 − 4I	
6 + I	

8� ��ij�kl����� + all permutations-105 terms in all�

+ � 1

48
�I	

2 − 3I	
4 + 3I	

6 − I	
8� �n̂in̂j�kl����� + all permutations-420 terms in all�

+ �1

8
�I	

4 − 2I	
6 + I	

8� �n̂in̂jn̂kn̂l����� + all permutations-210 terms in all�

+ �1

2
�I	

6 − I	
8� �n̂in̂jn̂kn̂ln̂n̂���� + all permutations-28 terms in all� + �I	

8�n̂in̂jn̂kn̂ln̂n̂�n̂�n̂�, �18�

where �mn=�mn− n̂mn̂n. In Fig. 8, examples of a few terms of
�cc� are shown. As expected those values reach a constant
value, respectively, as 	→
. Using the identities given in
Eqs. �7�, �17�, and �18�, the covariance �ijkl

��� can be written
in a general form, which is not presented here due to brevity.
Example values of the covariance �ijkl

��� of interest are plot-
ted in Fig. 9. It is observed from Fig. 9 that the covariance
�ijkl

��� reduces to two constants when 	 becomes larger.
For the inner products �

¯·ûp̂ŝv̂
¯·ûp̂ŝv̂ presented in Eq. �14�, the

vectors p̂ and ŝ, respectively, represent the incoming and
outgoing propagation directions. The vectors û and v̂ are
vectors defining the polarization directions of the particular
waves. Without loss of generality, the vectors are defined

with respect to a general xyz coordinate system as shown in
Fig. 10. The vectors n̂, p̂, and ŝ are given by

n̂ = ẑ, p̂ = x̂ sin � + ŷ cos � ,

ŝ = x̂ sin �� cos �� + ŷ sin �� sin �� + ẑ cos ��. �19�

The polarization vectors û and v̂ as shown in Fig. 10 are
given elsewhere �Turner, 1999�. Substituting those unit vec-
tors into Eq. �14�, and combining with Eq. �15�, the general
inner products �

¯·ûp̂ŝv̂
¯·ûp̂ŝv̂ may be calculated. An example inner

product associated with the attenuation of a shear horizontal
wave is presented in the Appendix. If the tensorial and spa-
tial components of covariance are assumed to be indepen-
dent, the spatial correlation function W is not dependent on
the tensorial part. For simplicity, the correlation function W
is assumed to have an exponential form

FIG. 7. Slowness surface of the quasi-shear vertical wave �qSV�. FIG. 8. Various terms �cc� as a function of 	.
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W�r� = e−r/L,

where L is the spatial correlation length, which is of the
order of the grain radius of the crystallites. In general, the
simple exponential form of the correlation function must be

modified for the polycrystalline materials with texture since
grain elongation often exists. A more general expression
�Ahmed and Thompson, 1992� will be used in future work.
The influence of the choice of correlation function on the
attenuations is not the subject of the present work.

Using the expressions given above, the resulting dimen-
sionless attenuations are written in a general form as �Yang
and Turner, 2004�

��p̂�L =
x�

4c��p̂�
2�2 ��

4�

�
¯·ûKp̂ŝv̂1

¯·ûKp̂ŝv̂1�p̂, ŝ�

�1 + x�
2�p̂� + xSH

2 �ŝ� − 2x��p̂�xSH�ŝ�p̂ · ŝ�2

1

cSH
5 �ŝ�

d2ŝ

+ �
4�

�
¯·ûKp̂ŝv̂2

¯·ûKp̂ŝv̂2�p̂, ŝ�

�1 + x�
2�p̂� + xqP

2 �ŝ� − 2x��p̂�xqP�ŝ�p̂ · ŝ�2

1

cqP
5 �ŝ�

d2ŝ

+ �
4�

�
¯·ûKp̂ŝv̂3

¯·ûKp̂ŝv̂3�p̂, ŝ�

�1 + x�
2�p̂� + xqSV

2 �ŝ� − 2x��p̂�xqSV�ŝ�p̂ · ŝ�2

1

cqSV
5 �ŝ�

d2ŝ� , �20�

where K is defined as the polarization for the wave type � �1,
2, or 3 for wave types SH, qP, and qSV, respectively�. The
normalized frequency x� is defined by x�=�L /c�, where �
is the frequency and c� is the wave velocity of each type. In
Eq. �20�, it can be seen that the integrals are over the unit
sphere, which is defined by unit vector ŝ. Further details of
the scattering model can be reviewed by the reader in the
articles of Weaver �1990� and Turner �1999�. For the ex-
treme case of statistical isotropy �	→
�, the dimensionless
longitudinal and transverse attenuations can be given as fol-
lows:

L = LLL + LTL, T = TLL + TTL , �21�

where

LLL =
xL

4

2cL
4�

−1

+1 �. . ..p̂p̂ŝŝ
. . ..p̂p̂ŝŝ

�1 + 2xL
2�1 − ���2d� ,

LTL =
xT

4

2cL
3cT
�

−1

+1 ��. . ..p̂p̂ŝŝ2

. . ..p̂p̂ŝŝ2 + �. . ..p̂p̂ŝŝ3

. . ..p̂p̂ŝŝ3�

�1 + xL
2 + xT

2 − 2xLxT��2d� ,

TLL =
1

2
� cT

cL
	2

LTL ,

TTL =
xT

4

4cT
4

��
−1

+1 ��. . ..p̂2p̂ŝŝ2

. . ..p̂2p̂ŝŝ2 + �. . ..p̂3p̂ŝŝ3

. . ..p̂3p̂ŝŝ3 + �. . ..p̂2p̂ŝŝ3

. . ..p̂2p̂ŝŝ3 + �. . ..p̂3p̂ŝŝ2

. . ..p̂3p̂ŝŝ2�

�1 + 2xT
2�1 − ���2

�d� , �22�

with �= p̂ · ŝ=cos �, where � is the angle separating the
propagation direction p̂ and the scattering direction ŝ. The
detailed expressions for the inner products in Eq. �22� are
given in the Appendix.

FIG. 9. Covariance � as a function of 	.

FIG. 10. �Color online� Geometry for the propagation direction p̂, the scat-
tered direction ŝ, and the respective polarization directions û and v̂.
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Numerical results of the attenuations are now presented
for titanium, using the single elastic constants given above.
First, Fig. 11 presents the normalized longitudinal and trans-
verse attenuations which are given in Eq. �21� as a function
of dimensionless frequency, xL, for the extreme case of sta-
tistically isotropy �	→
�. It is shown that the transverse
attenuation is always greater than the longitudinal attenua-
tion as shown in cubic crystals. Next, the general attenua-
tions as a function of texture parameter 	 are presented. To
compute the attenuations of three wave types, numerical in-
tegrations are employed in Eq. �20�. The inner products on
the covariance of the moduli fluctuations are obtained by Eq.
�14�. Using the covariance and wave propagation vectors ob-
tained, the inner products of each wave type are calculated
numerically. Then, the attenuations of the three wave types
as a function of texture parameter 	 are obtained.

The texture dependence of the attenuations for a given
dimensionless frequency xSH=0.5 is presented. Figure 12
shows the dimensionless attenuation of the shear horizontal
wave �SH� as a function of the texture parameter 	 for given

wave propagation directions �. It is observed that attenua-
tion is zero when the texture parameter 	 is small. Since in
this limit the hexagonal crystals are perfectly aligned, they
behave as a single crystal without scattering attenuation as
expected. After the zero attenuation region, the attenuation
increases to reach a maximum, then decreases to constant
attenuation. The attenuations along various propagation di-
rections all recover the isotropic limit as expected. The slight
error observed in the isotropic limit is due to limits of the
numerical integrations. It is also observed from Fig. 12 that
there are different maxima for different wave propagation
directions such that it is sensitive to the propagation direction
due to texture. In particular, it is seen that there is no peak
presented for �=0°. Such information is useful for monitor-
ing microstructure evolution during processing.

In Fig. 13, the dimensionless quasi-longitudinal attenu-
ation �qP� is plotted versus the texture parameter 	 for the
given dimensionless frequency and wave propagation direc-
tion. It is observed that the attenuation shows a similar track
with texture parameter 	 to SH wave as well. The attenua-
tion is zero for 	 small, then increases to reach a maximum
value. It is interesting to see that there are no maxima except
at �=0° and �=30° appearing in other selected propagation
directions. The dependence of these maxima on single-
crystal parameters is the subject of future research. The rela-
tionship between the attenuation of the quasi-shear vertical
wave �qSV� and the texture parameter 	 is presented in Fig.
14. It is seen that there are maxima displayed for some
propagation directions. However, the variation of these peaks
of the qSV wave is much smaller than those of the SH and
qP waves. Therefore, it might be concluded that the SH and
qP waves are more sensitive to the grain orientation during
processing. The attenuation results provide good motivation
to use experiment measurements to detect changes of micro-
structure of hexagonal materials during the cold-working
process. In addition, the experimental data could be used
with various representative samples of cold working to
clarify the peak observed in the theoretical predictions as
part of future research.

FIG. 11. Normalized longitudinal L and transverse T attenuations in terms
of normalized frequency xL.

FIG. 12. Attenuations of the shear horizontal wave �SH� versus texture
parameter 	 with various wave propagation directions � and the given
frequency xSH=0.5.

FIG. 13. Attenuations of the quasi-longitudinal wave �qP� versus texture
parameter 	 with various wave propagation directions � and the given
frequency xSH=0.5.
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IV. CONCLUSIONS

In this article, the wave propagation and scattering in
hexagonal polycrystalline materials with fiber texture was
discussed. The quantitative relations between fiber texture
and wave attenuations of hexagonal crystals were presented.
The texture is characterized by a Gaussian distribution func-
tion that contains a single parameter that governs the transi-
tion of the texture from perfectly aligned crystals to statisti-
cally isotropic. Under this assumption, the materials of
interest have a varying degree of transverse isotropy repre-
sentative of processing conditions. Simple expressions for
the attenuations of the three modes of waves are given in a
concise representation. Finally, numerical results for titan-
tium were presented and discussed in terms of the direc-
tional, frequency, and texture dependence. The results show
that the attenuations of each wave type can be considerably
affected during processing since the material’s microstruc-
ture is changing. The results presented are expected to im-
prove the understanding of the texture variations during pro-
cessing. In experimental measurements, if one measures the
attenuations at several times during the annealing process, it
might be possible to obtain the texture and grain size infor-
mation using this model, which is a future research topic.
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APPENDIX: EXAMPLE INNER PRODUCTS

As an example, the inner products of the shear horizon-
tal wave are given in the following. For the SH wave, we
have

�. . ..û1p̂ŝv̂1

. . ..û1p̂ŝv̂1 = sin2 � sin2 ���a1 sin4 �� − a1 sin2 �� + a2� + a3

+ sin � cos � sin �� cos ���a4 sin3 ��

+ a5 sin ��� + cos2 � cos2 ���a6 sin2 �� + a7�;

�. . ..û1p̂ŝv̂2

. . ..û1p̂ŝv̂2 = sin2 � sin2 �� sin2 ���a1 sin2 �� cos2 �� + a8�

+ sin2 ��cos2 �� sin2 �� + sin2 �� cos2 ����a4�

+ sin2 � cos2 �� cos2 ���a9�

+ sin2 � sin �� cos �� sin �� cos ���a10�

+ sin � cos ��cos2 �� sin �� cos ��

+ sin �� cos �� cos2 ����a11 sin ���

+ sin � cos ��sin2 �� sin �� cos ��

+ sin �� cos �� sin2 ����a12 sin3 �� + a13 sin ���

+ cos2 � cos2 �� cos2 ���a14�

+ cos2 � sin2 �� sin2 ���a15 cos2 �� + a16�

+ cos2 ��sin2 �� cos2 �� + cos2 �� sin2 ���

��a17 cos2 �� + a18�

+ cos2 � sin �� cos �� sin �� cos ��

��a19 cos2 �� + a20�;

�. . ..û1p̂ŝv̂3

. . ..û1p̂ŝv̂3 = sin2 � sin2 �� cos2 ���a1 sin2 �� cos2 �� + a8�

+ sin2 ��cos2 �� cos2 �� + sin2 �� sin2 ����a4�

+ sin2 � cos2 �� sin2 ���a9�

− sin2 � sin �� cos �� sin �� cos ���a10�

+ sin � cos ��− cos2 �� sin �� cos ��

+ sin �� cos �� sin2 ����a11 sin ���

+ sin � cos ��− sin2 �� sin �� cos ��

+ sin �� cos �� cos sin2 ����a12 sin3 ��

+ a13 sin ��� + cos2 � cos2 �� cos2 ���a14�

+ cos2 � sin2 �� cos2 ���a15 cos2 �� + a16�

+ cos2 ��sin2 �� sin2 �� + cos2 �� cos2 ���

��a17 cos2 �� + a18�

− cos2 � sin �� cos �� sin �� cos ��

��a19 cos2 �� + a20�;

where the coefficients are given by

a1 = − 4�2BM1 + DM3�2 + 32B2M3 + 24D2N1

+ 48BDM6,

a2 = − �2BM1 + DM3�2 + 9D2N1 + 8B2M3 + 12BDM6

− 3D2N2 − B2M4 − 2BDM7,

a3 = 3D2N2 + B2M4 + 2BDM7,

a4 = − 4BDM2M3 − 8BDM1M3 − 8BDM1M4

− 4D2M3M4 + 12BDM6 + 16B2M3 + 16B2M4

− 8B2M1M2 + 36BDM7 − 16B2M1
2 + 24D2N2,

FIG. 14. Attenuations of the quasi-shear vertical wave �qSV� versus texture
parameter 	 with various wave propagation directions � and the given
frequency xSH=0.5.

J. Acoust. Soc. Am., Vol. 121, No. 1, January 2007 Yang et al.: Microstructure evolution during processing 57



a5 = − 12D2N2 − 22BDM7 − 6BDM6 − 8B2M3

+ 2BDM2M3 + 4BDM1M3 + 2D2M3M4 + 8B2M1
2

− 10B2M4 + 4B2M1M2 + 4BDM1M4,

a6 = B2M5 − 4B2M1
2 − D2M4

2 + 2B2M4 + 4BDM7

− 2BDM2M4 − 4BDM1M4 + 2D2N3 + 2B2M3

+ 2BDM8 − 4B2M1M2 − B2M2
2,

a7 = D2N3 + B2M3 − B2M4 − 3D2N2,

a8 = 4ABM3 + 12BDM6 + 4B2M3 + 6ADM6 + A2M3

+ 15D2N1,

a9 = A2M3 + 2ADM7 + D2N3,

a10 = 4ABM3 + 2B2M4 + 8BDM7 + 6ADM6 + 2A2M3

+ 2ADM7 + 12D2N2,

a11 = 2ABM4 + 4D2N3 + 6BDM7 + 2ABM3 + 2BDM8

+ 4ADM7 + 4B2M4,

a12 = − 24D2N2 + 16B2M1
2 − 16B2M4 + 8BDM1M4

− 36BDM7 + 4BDM2M3 + 8BDM1M3 + 4D2M3M4

− 12BDM6 + 8B2M1M2 − 16B2M3,

a13 = 36D2N2 − 16B2M1
2 + 16B2M4 + 2ABM3

− 8BDM1M4 + 42BDM7 − 4BDM2M3

− 8BDM1M3 − 4D2M3M4 + 2ABM4 + 18BDM6

+ 4ADM7 − 8B2M1M2 + 20B2M3,

a14 = 4BDM8 + D2N4 + A2M4 + 4ABM4 + 2ADM8

+ 4B2M4,

a15 = 12BDM7 + 4ABM4 + 4ADM7 + 4B2M4 + 12D2N2,

a16 = A2M4 + 2ADM7 + 3D2N2,

a17 = 4BDM7 + 2BDM8 − 4BDM1M4 − 2BDM2M4

− D2M4
2 − 4B2M1

2 + B2M5 + 2B2M4 + 2B2M3

− 4B2M1M2 − B2M2
2 + 2D2N3,

a18 = 2BDM7 + B2M3 + D2N3,

a19 = 16BDM7 − 8BDM1M4 − 4BDM2M4 + 8BDM8

− 2D2M4
2 − 8B2M1

2 + 4B2M3 − 2B2M2
2 + 4ABM4

+ 4ADM7 + 2B2M5 + 12B2M4 − 8B2M1M2

+ 8D2N3,

a20 = 8BDM7 + 2B2M3 + 4ABM4 + 2A2M4 + 2ADM8

+ 2ADM7 + 4D2N3;

with

M6 = � 1

48
�I	

0 − 3I	
2 + 3I	

4 − I	
6�, M7 = �1

8
�I	

2 − 2I	
4 + I	

6� ,

M8 = �1

2
�I	

4 − I	
6�, M9 = I	

6 ,

N1 = � 1

384
�I	

0 − 4I	
2 + 6I	

4 − 4I	
6 + I	

8� ,

N2 = � 1

48
�I	

2 − 3I	
4 + 3I	

6 − I	
8�, N3 = �1

8
�I	

4 − 2I	
6 + I	

8� ,

N4 = �1

2
�I	

6 − I	
8�, N5 = I	

8 ,

and Mi �i=1,2 ,3 ,4 ,5� are given in Eq. �9�. For the quasi-
longitudinal and quasi-shear waves, the inner products are
not presented here due to brevity.

For the limiting case of statistical isotropy �	→
�, the
inner products required to compute the attenuations given in
Eq. �22� are expressed as

�. . ..p̂p̂ŝŝ
. . ..p̂p̂ŝŝ = �4

3
T4 +

52

15
T7 + �4T4 +

64

3
T5 + 16T6

+
208

15
T7�2 + �16

3
T6 +

28

15
T7�4,

�. . ..p̂p̂ŝŝ2

. . ..p̂p̂ŝŝ2 = �. . ..p̂2p̂ŝŝ
. . ..p̂2p̂ŝŝ = �T4 + 2T7� + �4T5 + 4T6 + 4T7��2,

�. . ..p̂p̂ŝŝ3

. . ..p̂p̂ŝŝ3 = �. . ..p̂3p̂ŝŝ
. . ..p̂3p̂ŝŝ = �T4 + 4T5 + 4T6 + 6T7� + �16

3
T6

+
28

15
T7�2 + �16

3
T6 +

28

15
T7�4,

�. . ..p̂2p̂ŝŝ2

. . ..p̂2p̂ŝŝ2 = �4T6 + 4T7� + �T3 + 3T6 + 2T7��2,

�. . ..p̂3p̂ŝŝ3

. . ..p̂3p̂ŝŝ3 = �4

3
T6 +

52

15
T7 − �16

3
T6 +

28

15
T7�2

+ �16

3
T6 +

14

15
T7�4,

�. . ..p̂2p̂ŝŝ3

. . ..p̂2p̂ŝŝ3 = �. . ..p̂3p̂ŝŝ2

. . ..p̂3p̂ŝŝ2 = �T6 + 2T7� ,

where

T1 = −
8

45
A2 −

16

315
AD −

16

4725
D2,

T2 = −
8

315
AD −

8

315
BD −

8

45
AB −

16

4725
D2,
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T3 = −
8

45
B2 −

16

315
BD −

16

4725
D2,

T4 =
A2

15
+

2

105
AD +

D2

945
,

T5 =
AB

15
+

AD

105
+

BD

105
+

D2

945
,

T6 =
B2

15
+

2BD

105
+

D2

945
,

T7 =
D2

945
.
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