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 On 10 June 2010, the second Verification of the Origins of Tornadoes Experiment 

(VORTEX2) armada observed the non-tornadic phase of a supercell thunderstorm near Last 

Chance, Colorado. Tempest unmanned aircraft system (UAS) data collected in the rear-flank 

outflow revealed what appeared to be an elevated outflow head, turbulent wake, and a cold 

secondary outflow surge. Surface thermodynamic and kinematic data collected by StickNets and 

mobile mesonets suggested that the outflow wake may have extended to or very near the surface, 

perhaps cutting off the leading edge of the outflow at times. Single-Doppler data collected by the 

NOAA X-Pol Mobile Polarimetric Doppler Radar (NOXP) were supportive of the possibility of 

a downdraft in the outflow wake being driven by low-level divergence. A conceptual model of 

the hypothesized rear-flank outflow structure in the non-tornadic phase of the Last Chance 

supercell is presented. A comparison of the secondary cold outflow surge to previously observed 

rear-flank internal surges is also presented. 
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Chapter 1 

Introduction 

1.1 Background 

 For many years, meteorologists have hypothesized that the rear-flank downdraft 

(RFD) is critical to the formation of tornadoes (the reader is referred to the review of 

Markowski 2002 and references therein). Under the assumption that there is pre-existing 

vertical vorticity very close to ground level, convergence/stretching associated with the 

RFD could amplify this vorticity into a tornado-strength vortex. For vertical vorticity to 

develop near the ground, a supercell must transport vorticity associated with the storm’s 

mesocyclone to the surface, create vorticity through baroclinicity, or some combination 

of these two processes. In theory, the RFD can also assist low level vertical vorticity 

generation due to the horizontal buoyancy gradients which exist within it (and antecedent 

baroclinic generation of vorticity). The RFD may also transport air rich in angular 

momentum from aloft to low levels of the storm, where convergence may act to form a 

low-level maximum in vertical vorticity (Markowski 2002; Davies-Jones 2008). 

 Via analyses of Doppler radar and in situ surface observations collected during 

the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX), it was 

hypothesized that RFDs characterized by higher thermal buoyancy were more likely to 

support tornadogenesis, due to a higher potential for air in the RFD to accelerate upward 
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and increase vertical vorticity via stretching (Markowski et al. 2002; Markowski 2002; 

Grzych et al. 2007; Hirth et al. 2008; Lee et al. 2012). However, it is also likely that the 

RFD realigns and distributes vorticity that is generated baroclinically within the RFD 

(Davies-Jones and Brooks 1993), suggesting that tornadogenesis may also be less likely 

to occur in the absence of a horizontal buoyancy gradient (i.e., having outflow that is too 

warm for baroclinic vorticity generation). From the observation of vortex lines which 

arch over hook echoes, it has been inferred that some low-level vertical vorticity in 

supercells is created baroclinically (Straka et al. 2007). From this observation, it follows 

that a deficit in the thermal buoyancy of RFDs would be a favorable condition for the 

formation of low-level vertical vorticity. Therefore, there may exist a range of thermal 

buoyancy within RFDs (relative to the surrounding air mass) which is most supportive of 

tornadogenesis and tornado maintenance (Markowski 2008). 

Recent in situ observations (e.g., Marquis et al. 2000; Mashiko et al. 2009, Lee et 

al. 2012; Kosiba et al. 2013; Skinner et al. 2014) have identified momentum surges 

behind the primary rear-flank gust front (RFGF), hereafter referred to as rear-flank 

internal surges (RFIS), as being instrumental in providing surface convergence needed 

for stretching of vertical vorticity, and subsequent tornadogenesis. The potential 

importance of RFIS formation with regard to tornadogenesis underscores the importance 

of diagnosing the kinematic and thermodynamic processes which lead to their 

occurrence.  

 On 10 June 2010, during the second Verification of the Origins of Rotation in 

Tornadoes Experiment (VORTEX2; Wurman et al. 2012), the NOAA X-Pol (NOXP) 

Doppler radar, SMART-R 2 (SR2) Doppler radar (Bigggerstaff et al. 2005), StickNet 
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(Weiss et al. 2008), mobile mesonet surface observing platforms, and the Tempest 

unmanned aircraft system (UAS; Elston et al. 2011) observed a RFGF, rear-flank outflow 

(RFO), and rear-flank internal surge of a supercell thunderstorm during its post-tornadic 

stage. This data set is unique in large measure because surface observations of these 

features were accompanied by UAS observations. This juxtaposition provided a unique 

opportunity to study the vertical thermodynamic structure of a rear-flank outflow.   

1.2 Overview of the Last Chance Case 

 Two supercell thunderstorms formed in an upslope flow regime in northeastern 

Colorado late in the afternoon on 10 June 2010. One supercell initiated at about 22:30 

UTC and eventually underwent a merger and weakened (Klees et al. 2014).  A second 

supercell, hereafter referred to as the “Last Chance supercell” due to its proximity to Last 

Chance, Colorado, also initiated at around 22:30 UTC and produced two tornadoes 

between about 01:08-01:27 UTC (Klees et al. 2014). After this tornadic phase, the RFGF 

propagated well ahead of the mid-level mesocyclone and tornado production abated. 

Structure and evolution of the RFO during this non-tornadic phase, particularly from 

01:28-02:10 UTC, is the focus of this study. The reader is referred to the work of Klees et 

al. (2014) for analysis and discussion of the interaction between the northern and Last 

Chance supercells and an in-depth analysis of mesocyclone evolution during the non-

tornadic phase of the Last Chance supercell.   

 During its non-tornadic phase, the Last Chance supercell was embedded in an 

environment characterized by moderate mixed-layer convective available potential 

energy (MLCAPE), steep mid-level lapse rates above the capping inversion (near dry 
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adiabatic), and moderate low-level shear (0-3 km storm relative helicity values ranged 

from 110-152 m2s-2). Figure 1.1 shows the location of the three soundings launched from 

01:37 to 01:40 UTC used to represent the environment relative to the supercells at 01:37 

UTC. The soundings were plotted and indices calculated using the SHARPPy package 

(Halbert et al. 2015). 

 

Fig. 1.1: Radar reflectivity factor from KFTG (Denver, CO WSR-88D) with locations of three soundings 

overlaid (valid near 01:37 UTC). 

 A thermal inversion was present near the 750 hPa level (Figs. 1.2 and 1.4). This 

inversion also existed in the 01:37 UTC sounding (Fig. 1.3), though it was located closer 

to 800 hPa and was accompanied by a sharp inversion near the ground (perhaps due to 

anvil shadowing effects).  
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Fig. 1.2: 01:38 UTC NSSL sounding. Hodograph rings are at 10 ms-1 intervals. 100 hPa mixed layer parcel 

trace. 

 

Fig. 1.3: 01:37 UTC NCAR sounding. Hodograph rings every 10 ms-1. 100 hPa mixed layer parcel trace. 
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Fig. 1.4: 01:40 UTC NCAR sounding. 100 hPa mixed layer parcel trace; 10 ms-1 hodograph rings.  
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Fig. 1.5: NOXP uncorrected reflectivity (dBZ) (left panels) and radial velocity (ms-1) (right panels). 

Annotations are: RFGF=solid sky blue line, RFIS=solid dark blue line, leading edge of outflow 

wake=dashed red line. 8 minute intervals are shown, starting at 01:48 UTC and ending at 02:04 UTC. All 

except 02:04 UTC are 2.0⁰ elevation PPIs; the 02:04 UTC scan was taken at 3⁰ elevation. 

 

Between 01:48 UTC and 02:04 UTC, the RFGF (denoted as the solid sky blue 

line in Fig. 1.5) propagated to the east towards NOXP. As the (RFO) expanded to the 
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east, a region of outbound radial velocity became clearly visible to the rear of the RFGF, 

followed by a second area of inbound radial velocity farther to the west (Fig. 1.5). The 

secondary area of inbound radial velocity is referred to as the RFIS (denoted as the solid 

dark blue line); this is the RFIS that the UAS, scout mesonet, and StickNets sampled. 

Meanwhile, the hook echo propagated eastward as well, and took on a flared-out shape 

(Bluestein et al. 2014).  

Chapter 2  

Methodology 

2.1 Radar Methodology 
 NOXP, an X-band dual-polarimetric Doppler radar, collected shallow volume 

scans with seven elevation tilts ranging from 1⁰ to 7⁰ (Table 1.1). NOXP data were 

manually quality controlled using Solo3 to align ground clutter with nearby surface 

clutter targets, subsequently remove ground clutter, remove multiple trip echoes, and de-

alias radial velocity. Additionally, radial offsets which existed in some higher tilts in 

NOXP data were manually corrected by aligning storm scale features (such as the hook 

echo) to positions in adjacent elevation angles.  
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Table 1.1: NOXP radar specifications 

 

2.2 Coordinate System Methodology 

 Previous studies have examined the thermodynamic characteristics of RFOs in 

supercells by placing surface observations (both from moving and stationary platforms) 

in a storm-relative reference frame (e.g., Markowski et al. 2002; Lee et al. 2004; Finley et 

al. 2008; Lee et al. 2012; Klees et al. 2014). While thermodynamic and kinematic 

analysis of the Last Chance supercell could also have been performed in a storm-relative 

framework (as was described in Klees et al. 2014), since the focus of this work is on the 

rear-flank air masses and attendant boundaries, in-situ data were placed in a boundary-

relative reference frame. Moreover, the RFGF did not maintain a constant mid-level 

mesocyclone-relative position. Therefore, placing data in coordinates with respect to the 

mid-level mesocyclone could not be assumed to produce an analysis which retains 

information about RFGF-relative positions. 

 The initial steps taken to place data collected by the Tempest UAS, StickNets, and 

mobile mesonets into boundary-relative coordinates involved subjectively analyzing the 

position of the RFGF with observations collected by the KFTG Denver Weather 

Surveillance Radar-88 Doppler (WSR-88D), SR2, and NOXP. The reader is referred to 

Table 1.2 for a list of boundary position analysis times and other specifications. Sets of 
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latitude/longitude coordinates were recorded for each RFGF position by drawing 

boundaries in the Integrated Data Viewer based on the positions of reflectivity fine lines 

and inbound/outbound radial velocities at 0.8⁰-3.0⁰ tilts. As boundaries were drawn 

farther south of the storm, the positions of the southern ends of the boundaries became 

more approximate due to weaker signal returns. While this was done to include some of 

the southernmost StickNet observing stations in the analysis, the boundary-relative 

positions at the southern edge of the domain should be considered more approximate than 

those farther north.  

Table 1.2: Boundary-relative coordinate system methodology. 

 

 Once boundary positions at fixed analysis times were collected, intermediate 

RFGF positions were calculated to create a set of RFGF positions spanning the analysis 

time frame. First, the pre-determined boundary positions were linearly interpolated to 

splines on a 1/10000th degree spaced latitude grid, such that along each respective latitude 
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parallel, there existed a set of longitude values that defined east-west positions of the 

RFGF at different times. Between the fixed analysis times, intermediate longitude values 

were computed along latitude parallels via linear extrapolation at a 1 Hz frequency, 

which resulted in a set of latitude/longitude coordinates approximating the RFGF position 

for every second during the analysis period. Thus, the interpolation along separate 

latitude parallels accounted for differential boundary motion in the west-to-east direction.  

 The positions of instruments relative to the RFGF were then calculated. Data from 

each instrument were linearly interpolated to a 1 Hz frequency. Each instrument’s 

(stationary and moving) distance from the RFGF was calculated using the haversine 

function, where for every second that data existed, the minimum distance to any point 

along the RFGF was calculated. If the observation was collected west of the gust front, 

the distance was recorded as a negative number, while observations east of the gust front 

were recorded as positive numbers. Data that were collected north or south of the 

predefined latitude grid were excluded from analysis. 

2.3 StickNet Methods 

 StickNet pods (Weiss et al. 2008) recorded pressure, temperature, relative 

humidity and wind speed and direction. All StickNets recorded these data at either 10 Hz, 

5 Hz, or 1 Hz. Data not recorded at 1 Hz were subsampled for boundary-relative 

coordinate system processing to a 1 Hz frequency. StickNet data used for this analysis are 

from a 12-unit south-north array deployed along Colorado Highway 71. Automated 

quality controls were also applied to StickNet data in order to remove bad or questionable 

thermodynamic data and wind data (Weiss et al. 2008). Pressure data from the 
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southernmost probe were subjectively determined to be too high as well, so 

thermodynamic variables from this probe were excluded from the analysis. Before being 

plotted on a RFGF-relative plot, wind data were converted to their u and v components 

and then smoothed with a 20 second Gaussian filter.   

2.4 Tempest UAS Methods 

 The Tempest UAS (Fig. 2.1) collected pressure, temperature, and relative 

humidity data. The Vaisala RS92 core sensor collected temperature and relative humidity 

data with response times of 0.5 s and 0.4 s, respectively. An Aeroprobe Corporation Five-

Hole Pitch+Yaw sensor also collected 3-dimensional wind data, though these were 

considered to not be research grade. Altitude data were also recorded from GPS altitude 

measurements.  

 

Fig. 2.1: Tempest UAS during AVIATE. 
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Chapter 3 

Results 

 The Tempest UAS collected pressure, temperature, and relative humidity data in 

the environment to the southeast of the Last Chance supercell and in the supercell’s RFO. 

Data were collected from 01:28 UTC to 02:04 UTC, mainly on a north-south trajectory 

along Colorado Highway 71 as the primary RFGF and a RFIS translated from west to 

east across Colorado Highway 71 (Fig. 3.1) to the south of the flared-out hook echo. As 

discussed previously, the UAS sampled three distinct features within the RFO. First, the 

primary RFGF can be seen as a gradual decrease in equivalent potential temperature (θe) 

at approximately 01:41 UTC (Fig. 3.2). Equivalent potential temperature then gradually 

decreased for the following five minutes, which would be expected as the UAS 

penetrated deeper into the RFO. An increase in θe followed from 01:47 to 01:53 UTC. 

Equivalent potential temperature values during this period reached or exceeded those 

seen prior to the passage of the RFGF. A rapid decrease in θe occurred from about 01:53 

to 02:00 UTC, signifying the presence of a cold RFIS (Fig. 3.2). An increase in 
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equivalent potential temperature to values near those in the air mass immediately in front 

of the secondary outflow surge then occurred as the UAS travelled southward.  

 

Fig. 3.1: Locations of instruments. Radar image is NOXP 2.0⁰ tilt at 01:56:20 UTC, solid blue line 

represents positions of PSU mobile mesonets from 01:50 UTC to 02:00 UTC, solid green line represents all 

scout mesonet positions, sky blue line represents all UAS positions, magenta square represents location of 

scout mesonet at 01:56:20 UTC, yellow airplane represents position of UAS at 01:56:20 UTC, and orange 

stars represent StickNet locations. As denoted, NOXP is near the right-center edge of the figure. 
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Fig. 3.2: Time series of Tempest UAS equivalent potential temperature (K).  

 Just before encountering the RFIS (around 01:55 UTC), the UAS altitude rapidly 

increased by 30-40 m (Fig. 3.3). Since the aircraft autopilot was tasked to stay on an 

isobaric level corresponding to an AGL height of ~375 m, this quick increase in altitude 

can be attributed to strong, small-scale ascent and/or a sudden increase in pressure.  An 

increase in pressure was not observed, thus the sudden increase in altitude is most likely a 

consequence of an updraft, which would be expected at the leading edge of an advancing 

cold RFIS. A smaller altitude increase occurred as the UAS exited the outflow surge at 

about 02:00 UTC (about 5-6 minutes after the initial altitude increase), supporting the 

presence of an updraft tied to a persistent feature within the larger-scale outflow.   
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Fig. 3.3: Tempest UAS GPS height (m AGL). 

 Equivalent potential temperature derived from UAS observations suggest that a 

distinct air mass similar to the inflow air mass existed within the RFO. In the following 

analysis, the characteristics of this air mass aloft and at the surface will be examined in a 

RFGF-relative reference frame. To the west of the RFGF, the primary RFO manifests as 

a ~1 K decrease in potential temperature (Fig. 3.4a). At about 4.5 km rearward of the 

RFGF, potential temperature gradually increased back to values consistent with pre-

RFGF air (Fig. 3.4a). The air mass to the west of 5 km was generally characterized by 

higher potential temperature, though several local maxima existed, one at about 6.5 km 

rearward of the RFGF, and two 8-9 km rearward of the RFGF. The first maximum in 

potential temperature was roughly co-located with the θe maximum within the wake (Fig. 
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3.4a,b). However, the second and third potential temperature maxima were located in a 

region where θe was relatively low (much closer to primary RFO values than to θe values 

within the wake).  The RFIS was then manifest as a rapid decrease in potential 

temperature to values below those found in the initial RFO. Immediately to the west of 

the RFGF, in the primary RFO, θe decreased by 1-1.5 K. Equivalent potential temperature 

values then became more variable (though generally increased) from 4.5 km to 5.5 km 

rearward of the RFGF (Fig. 3.4b). After this period of higher variability, θe increased by 

2-3 K from 5.5 to 7 km rearward of the RFGF as the UAS progressed northward through 

the RFO (Fig. 10b). The θe values in this region met or exceeded θe values in the inflow 

environment to the east of the RFGF. Between 7 and 8 km rearward of the RFGF, θe 

again became more variable, and, aside from a few points in the range of θe in the wake, 

θe decreased back to values characteristic of the initial RFO. The region 8-11 km 

rearward of the RFGF was characterized by θe about 3 K lower than the initial RFO, 

signifying the presence of the cold RFIS. As the UAS progressed southward, it again 

encountered θe values more characteristic of the inflow air mass.  

The same features in the RFO can be seen in other UAS-measured variables, with 

a few key differences. Water vapor mixing ratio data show a RFO that, in general, was 

slightly drier than the inflow air mass (Fig. 3.4c). In the localized regions of high 

potential temperature in the wake, water vapor mixing ratios reached local minima. The 

second peak in potential temperature (at about 8.5 km rearward of the RFGF) was also 

characterized by low water vapor mixing ratios (values at or below 13.4 gkg-1), indicating 

that the warm air within the wake was also, in some areas, very dry. Low water vapor 
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mixing ratio values were also present in the RFIS, compared both to the inflow 

environment and the initial outflow (Fig. 3.4c).  
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Fig. 3.4: Tempest UAS a) potential temperature, b) equivalent potential temperature, and c) water vapor 

mixing ratio in latitude vs distance spatial coordinates. The blue line represents the RFGF position, while 

UAS observations start in the bottom right and continue to the west. 
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 The UAS also revealed the vertical thermodynamic structure of the lowest 350-

400 m of the boundary layer inflow region through which the RFGF would have passed. 

Between ground level and ~380 m AGL, potential temperature increased from roughly 

311.8 K to 312.7 K, yielding an approximate vertical potential temperature gradient of 

2.37 K km-1. This stable layer was likely present due to anvil shadowing which prevented 

the formation of an adiabatic or super-adiabatic surface layer. Therefore, the thermal 

structure of the pre-RFGF boundary layer should have provided some thermodynamic 

resistance to vertical parcel accelerations.  

 UAS thermodynamic data exhibited a spatial pattern consistent with an RFO that, 

above the surface, had been partitioned into an initial outflow head, a turbulent and much 

warmer wake region, and a RFIS. The initial outflow, in terms of both potential 

temperature and θe, was cold with respect to the inflow environment, but warmer than the 

RFIS (Fig. 3.4). The large variability of potential temperature in the wake, in contrast to 

lower variability in the initial RFO, suggests the existence of a turbulent wake, which 

would be expected behind the head of a density current where Kelvin-Helmholtz 

instability (KHI) would likely be released (Droegemeier and Wilhelmson 1987; Simpson 

1997). Additionally, the higher potential temperature values in the wake, combined with 

low water vapor mixing ratio, suggests that air within the wake came from outside the 

RFO.    

 UAS potential temperature and water vapor mixing ratio data were plotted on a 

Paluch diagram (Paluch 1979) along with smoothed potential temperature and water 

vapor mixing ratio data from the 01:40 UTC and 01:37 UTC NCAR soundings (refer to 

Fig. 1.1 for the location of the soundings relative to the storm) in an effort to reveal 
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possible source regions for the wake air mass in a conserved variable framework. 

Potential temperature and water vapor mixing ratio, for the purpose of a conserved 

variable analysis, were treated as being conserved over the period of advection for parcels 

traveling from the inflow to the RFO. In order for this assumption to be valid for the 

scales being considered in this analysis, two assumptions were made. First, total water 

mixing ratio was assumed to be conserved for any parcel as it advected into the RFO. 

Given that no precipitation was observed by radar along the RFGF to the south of the 

hook echo, any water vapor lost to cloud water was assumed to evaporate after parcels 

crossed over the RFGF, thus conserving total water mixing ratio and allowing water 

vapor mixing ratio to remain unchanged between its pre-condensation and post-

evaporation phases. Related to this assumption, diabatic processes which would warm or 

cool parcels traversing the RFGF were assumed to be fully reversible, thus conserving 

potential temperature between pre-condensation and post-evaporation phases. For the 

purpose of the conserved variable analysis, UAS data were subjectively partitioned into 

four categories: inflow (pre-RFGF environment), initial RFO (RFGF to wake), wake 

intrusion, and RFIS. The 01:40 UTC sounding showed low altitude data which most 

closely aligned with UAS data collected in the pre-RFGF air mass (as compared to other 

soundings launched near the storm).  

 The wake air mass appears to fall along two mixing lines. The high potential 

temperature values to the right of the 01:40 UTC sounding line, denoted as red circles 

(Fig. 3.5), fall between the 01:40 UTC sounding line and the 01:37 UTC sounding lines, 

suggesting that some of the air in the wake may have been a mixture of the primary RFO 

and the warmer, moist air mass sampled by the 01:37 UTC sounding near 500-600 m 
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AGL (Fig. 3.5). A second mixing line appears to lie between the initial RFO and a 

warmer and drier region at altitudes between 600 and 1000 m in the inflow. It follows 

from the placement of these two mixing lines that air from above the RFO and 

originating in the inflow air mass may have penetrated into the wake region.  

 

Fig. 3.5: Annotated scatterplot of 01:40 UTC and 01:37 UTC NCAR soundings (01:40 UTC sounding 

lower left solid line) and Tempest UAS water vapor mixing ratio (gkg-1) and potential temperature (K). 

Surface sounding values begin at the upper left of the solid sounding line (color coded by height AGL), and 

end on the bottom right. The yellow dashed line represents a mixing line that a portion of air in the wake 

appears to fall along, while the brown dashed line represents a second apparent mixing line. Inflow 

observations were defined by RFGF-relative distances > 0 m, initial RFO by -4230 m < distance < 0 m, 

wake by -8570 m < distance < -4230, and Surge A (RFIS) by distance < -8570 m.  

 

 While it has been established that relatively warmer air infiltrated the RFO above 

the surface, it does not necessarily follow that a wake intrusion would also be found at 
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the surface. The scout vehicle for the UAS, which also travelled along a south-north 

trajectory along Colorado Highway 71, collected similar measurements to the UAS (for 

specifics on these measurements and subsequent data processing, see Chapter 2.2. 

Additionally, data from 3 Pennsylvania State University (PSU) mobile mesonets and an 

array of StickNets (Weiss et al. 2008) (Fig. 3.1) collected in situ surface thermodynamic 

data. Given the spatiotemporal proximity of UAS thermodynamic measurements to 

surface-based measurements, these datasets are compared to examine vertical continuity 

(or lack thereof) of the features inferred from UAS data. 

 The surface observing platforms encountered a similar pre-RFGF environment to 

that measured by the UAS. Air at the surface was generally warm and moist, with a 

maximum in potential temperature occurring near 5 km in advance of the RFGF. At 

distances within a kilometer of the RFGF, the potential temperature was approximately 1 

K lower than the maximum at 5 km.  

 Surface observations collected rearward of the RFGF suggest that the wake and 

RFIS inferred to exist from UAS data were also present at the surface. However, these 

features appeared differently at the surface than aloft. An initial drop of ~1 K was 

recorded as the RFGF crossed the StickNet array. Rearward of this initial cooling, 

potential temperature measured by the StickNets increased by 1-2.5 K with respect to 

values before RFGF passage, reaching a maximum at approximately 5 km behind the 

primary gust front, near where the warming observed by the UAS began but before 

temperatures aloft reached their maxima (Fig. 3.6). StickNet potential temperature north 

of 39.67⁰ N recorded local maxima in potential temperature closer to the RFGF. In 

contrast to potential temperature aloft, StickNet-observed potential temperature in the 
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wake at the surface exhibited a single maximum (Fig. 3.6). In general, as measured by the 

southern branch of StickNets, potential temperature increased from 0.5-2 K in the 2.5-9 

km range rearward of the RFGF (Fig. 3.6). Corroborating this finding, PSU mobile 

mesonets also observed a local maximum in potential temperature near 39.67⁰ N (Fig. 

3.7). StickNets along and north of 39.65⁰ N recorded a rapid drop in potential 

temperature between 5 and 10 km rearward of the RFGF. This decrease in potential 

temperature was likely tied to the RFIS encountered by the UAS. The PSU mobile 

mesonets encountered a more gradual decrease in potential temperature north of 39.70⁰ 

N, suggesting that the RFIS may not have been as well defined in the northern RFO, or 

may not have existed at all. If the latter was the case, this would suggest that the RFIS 

existed as a result of density current wake dynamics, by which the wake acted to erode 

the RFO such that the trailing portion of the RFO manifested as a RFIS. 
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Fig. 3.6: StickNet traces of potential temperature. The blue dashed line denotes the beginning of the RFIS, 

and the red dashed line shows the beginning of the outflow wake at the surface. 
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Fig. 3.7: Analysis valid from 01:50-02:00 UTC. Traces from three PSU mobile mesonets (probes 2, 3, and 

7). Winds ms-1. 

 The increase in potential temperature from the primary RFO rearward to the wake 

was not as rapid as the subsequent cooling in the RFIS. This could be explained by warm 

air from aloft mixing with air in the primary RFO such that air temperatures only 

gradually warm as the wake approaches, which would be consistent with the warm air 

being advected into the outflow through the wake. The larger temperature gradient 

between the wake and the RFIS may have existed due to kinematic frontogenesis in this 

region, whereas the temperature gradient behind the RFGF may have been weaker due to 

surface kinematic frontolysis. 
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 Thermodynamic data collected by the scout mesonet exhibited the same patterns 

as those collected by the StickNet array. Scout mesonet observations contained some 

differences in thermodynamic quantities, perhaps due to differences in data collection 

time or instrumentation response times. However, as seen in Fig. 3.8a, scout mesonet 

potential temperature observations exhibited a distinct warming near 5 km rearward of 

the RFGF, and a strong cooling farther back into the outflow, corroborating observations 

collected by the StickNet array.   
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Fig. 3.8: Traces of scout mesonet a) potential temperature and b) water vapor mixing ratio. The blue dashed 

line represents the drop in potential temperature associated with the RFIS, while the red dashed line denotes 

the beginning of the outflow wake at the surface.  
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 Scout mesonet water vapor mixing ratio observations exhibited some similarities 

to those collected by the UAS, though there were also significant differences between the 

wake region at the surface and aloft (Fig. 3.8b). The primary similarity between surface 

qv and qv aloft was that the RFO was generally drier than the pre-RFGF air mass. The 

lowest qv values measured by the scout mesonet were found in the wake. Scout mesonet 

observations suggested that higher qv (Fig. 3.8b) may have existed in the second traverse 

through the wake region. 

 Surface wind speed and direction data collected by StickNets and mobile 

mesonets were analyzed in the same RFGF-relative reference frame as the 

thermodynamic observations. StickNet observations showed generally easterly or 

northeasterly flow in advance of the RFGF. Winds then shifted to a more westerly or 

northwesterly direction at the passage of the RFGF. At all but the farthest north StickNet 

(Fig. 3.9), winds shifted back to easterly and northeasterly between 4-6 km rearward of 

the RFGF. The southern StickNets maintained an easterly wind component during the 

remainder of the analysis period. Two of the northern StickNets measured shifts to 

northwesterly flow at about 10 km rearward of the RFGF. Potential temperature 

decreased coinciding with the northwesterly wind shift, supporting the wind shift’s 

connection to the cold RFIS. Kinematic observations from the scout mesonet and PSU 

mobile mesonets generally corroborated the wind field inferred from StickNet data (Figs. 

3.7 and 3.10). 
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Fig. 3.9: Wind barbs (ms-1) in RFGF-relative frame. As in other figures, the solid blue line represents the 

RFGF. StickNets which had flagged wind speed or direction were not included.   
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Fig. 3.10: Scout mesonet potential temperature (K) and winds (ms-1). 

 The wind field measured by StickNets suggested that an area of diffluent flow 

existed approximately 3-6 km rearward of the RFGF, where winds shifted from 

northwest to northeast or east-northeast. This region of surface diffluence suggests that a 

downdraft may have been present 3-6 km rearward of the RFGF. However, farther to the 

north in the RFO, this diffluent pattern was not present. Rather, winds remained west-

southwesterly until a shift to northwesterly winds occurred at ~11 km behind the RFGF 

(Fig. 3.9). Thus, a possible downdraft extending to or near the surface in the wake was 

not ubiquitous from south to north through the RFO, but instead was favored in the 

southern portion of the RFO.  
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As discussed in Chapter 2.1, NOXP performed shallow volume scans from 1⁰-7⁰ 

elevation; these volume scans captured some of the vertical and horizontal flow structure 

within the RFO, especially from about 01:58 UTC onward, when the RFGF was close 

enough to NOXP that the vertical structure of the gust front head and flow structure to its 

west could be examined. Tilts at 1⁰ elevation were excluded due to extensive missing 

data. A few prominent features within the RFO flow field become apparent when viewed 

on range-height plots derived using 6 elevation tilts (2⁰-7⁰). First, the RFO possesses an 

elevated head to the south of the hook echo (as indicated by inbound radial velocity; (Fig. 

3.11a,b,c). Second, an extensive area of outbound radial velocity was found rearward of 

the RFO head (at the same altitude as the inbound velocity at the RFGF). Third, the depth 

of the RFO (inferred from inbound radial velocity) increased from south to north. For 

example, at 02:00 UTC, outflow in the southern region of the RFGF appeared to extend 

to roughly 0.8 km AGL at its highest point, whereas outflow depth appeared to exceed 1 

km closer to the hook echo (Fig. 3.11a). Over the 02:00-02:08 UTC period, the outflow 

in the northern RFO extended from the surface to at least 1 km, while the outflow in the 

southern RFO appeared to be no deeper than 0.8 km. Fourth, in areas of shallower 

outflow, a region of radial divergence was found at the rear of the elevated outflow head. 

This area of radial divergence is consistent with the in situ observations of surface 

divergence and the inferred attendant downdraft which could advect and mix inflow air 

(located above the density current) with outflow air. The presence of outbound radial 

velocity in the wake and at the top of the RFGF suggests that winds in these regions had a 

significant easterly component, given NOXP’s location to the east of the RFGF. Finally, 

these features were persistent: they were found in 5 volumes covering a 10 minute period. 
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The persistence of these features also lends confidence to the assumption that the UAS 

and surface observing platforms encountered the structures seen in NOXP data, much of 

which was collected from 5-15 minutes after the in situ data collection periods presented 

previously.   
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Fig. 3.11: Vertical cross sections of radial velocity from NOXP. Cross sections are in pairs, from top to 

bottom, at a) 02:00 UTC, b) 02:04 UTC, and c) 02:08 UTC. Yellow dashed box represents region of radial 

divergence.   

Chapter 4 

Discussion 

 The Last Chance, Colorado supercell exhibited an RFO which expanded to the 

east over time through the period of focus. Within the expanding RFO, multiple 

thermodynamic and kinematic in-homogeneities existed. The Tempest UAS, surface 

observation platforms, and a Doppler radar provided evidence that the RFGF was 

shallower to the south of the supercell’s hook echo, and that the RFGF may have become 
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mostly or fully detached from the rest of the RFO during a non-tornadic phase of the 

supercell, particularly in southern areas of the RFO. In the wake of the RFGF, relatively 

weak ground-relative winds with a strong easterly component were found, which 

contrasted with the primarily westerly, southwesterly, or northwesterly winds in the 

initial outflow and outflow near the hook echo. Easterly ground-relative winds were 

found, generally, from about 4-9 km to the west of the RFGF. In this region of easterly 

wind, potential temperature values increased by up to 2 K (with respect to temperatures 

found in the primary RFO). Increased potential temperature was also found east of the 

wind shift, suggesting that a warm downdraft likely existed somewhere from 4-6 km 

rearward of the RFGF, near where the wake of a density current was found. Scout 

mesonet and UAS observations showed relatively dry air in the wake (compared to pre-

outflow air and the initial RFO), suggesting that dry air had been mixed into the wake, 

likely from inflow air located above the outflow. The 01:40 UTC NCAR sounding 

showed that potential temperature increased with altitude, while water vapor mixing ratio 

decreased with altitude over the lowest 1150 m, suggesting that a warm and dry air mass 

likely would originate in the inflow. However, scout mesonet observations from farther 

south in the wake suggested that more moist air was present. Considering that the water 

vapor mixing ratio field measured by the UAS was quite variable in the wake, it appears 

likely that the RFO was turbulent aloft and that the air comprising the wake came from 

both the pre-RFGF air and air from the initial RFO. 

 Range-height cross sections derived from NOXP PPI scans suggested that an area 

of radial divergence existed 4-6 km rearward of the RFGF to the south of the flared-out 

hook echo. It is possible that a downdraft existed about 4 km rearward of the RFGF, such 
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that air from above the RFGF and pre-RFGF air advected over the density current head 

could have been advected downward to the ground, resulting in the diffluent surface wind 

pattern seen in StickNet data and the warm potential temperature discussed previously. In 

range-height plots at 02:00 UTC and 02:04 UTC (Fig. 17a,b), radial divergence behind 

the RFGF appeared to be stronger at low levels, indicating that a downdraft could have 

existed here. The presence of weak wind fields in the wake (as some mobile mesonet 

observations and StickNet observations showed nearly calm winds in the wake) could 

indicate that parcels being advected downward through the wake may have had a level of 

neutral buoyancy well above the ground, such that their vertical velocity by the time they 

reached the surface was near zero. The lack of a strong downdraft near the surface layer 

could explain the lack of a momentum surge in the wake. Unfortunately, given the lack of 

dual-Doppler observations at the RFGF, it is impossible to state with certainty where the 

air in the wake came from. However, given the relatively consistent thermodynamic and 

kinematic observations collected behind the RFGF, it seems probable that air in the wake 

aloft penetrated to the surface at times, and that the air in the wake included a mixture of 

inflow air and air from above the gust front, both of which would be warmer than the 

initial RFO and the RFIS.  

 Theoretical and observational justification for mixing of warm air into an RFO via 

a density current wake are based on the presence of Kelvin-Helmholtz Instability (KHI), 

a shearing instability that exists near the upper interface of many density currents 

(Simpson 1980; Simpson 1997). Given the low vertical resolution of NOXP data and a 

lack of full three-dimensional wind components aloft, the Richardson number was not 

estimated, as has been done by previous studies. However, if Kelvin-Helmholtz billows 
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were responsible for the presence of a deep outflow wake, it would be expected that 

relatively turbulent flow would have existed in the RFO, particularly near the rear edge of 

the initial RFO. A subjective analysis of spectrum width measured by NOXP was 

undertaken to determine the character of turbulence within the RFO as compared to pre-

RFGF flow. Generally, spectrum width was larger in the initial RFO than in advance of 

the RFGF (Fig. 4.1). Moreover, spectrum width tended to increase near the rear of the 

initial RFO (near the beginning of the outflow wake) (Fig. 4.1). Given the vertical shear 

in NOXP radial velocity (Fig. 3.11) and the larger spectrum width in the RFO compared 

to the inflow (Fig. 4.1), it is assumed that KHI was supported. Large KHI billows can 

form to the rear of the head of a density current and occupy much of the depth of the 

density current in the wake (Simpson 1980; Droegemeier and Wilhelmson 1987; Xue et 

al. 1997; Geerts et al. 2006). Air with the thermodynamic and kinematic properties of the 

surrounding environment may be mixed into the density current, possibly resulting in 

relatively warm air reaching the surface and (given vertical shear opposite to the 

propagation of the density current) ground-relative surface winds opposite the 

propagation of the density current in the wake. In order for environmental air to be drawn 

downward through the wake of a density current, mass divergence at low levels may also 

aid in drawing down parcels from above the outflow. 
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Fig. 4.1: Radial velocity (ms-1) (left) and spectrum width (ms-1) (right) at ~02:03 UTC and ~02:07 

UTC. White dashed rings are spaced every 5 km.   

 It is hypothesized that a turbulent wake extended, at least periodically, to the 

ground, cutting off the main body of the RFO from the leading edge of the outflow. This 

cutoff seems to have occurred to the south of the hook echo in southern parts of the RFO, 

but not in the outflow immediately south of the hook echo. The southern RFO appeared 

to have been shallower than near the hook echo, which could make it easier for positively 
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buoyant parcels to penetrate through the outflow to the surface. A possible explanation 

for why the RFO appeared to be shallower in its southern extent is that, simply, the 

outflow became farther away from its cold air source with southern extent (Xu and 

Moncrieff 1994).  

 While thermodynamic observations support the presence of an RFIS, kinematic 

observations do not follow a model for any RFIS that has been presented previously. The 

definition of an RFIS introduced by Lee et al. (2012) requires a 13 m s-1 increase in wind 

speed associated with the RFIS. However, the winds in the RFIS observed herein 

increased by only 5 ms-1 and were principally manifest as a wind shift.  The observed 

wind field manifestation of the RFIS is consistent with a mechanism proposed to explain 

the RFIS formation: the RFIS is not a “surge” in the RFO per se, but the trailing portion 

of the RFO that has been cut off from the outflow head by the wake. Importantly, like 

RFIS fitting the Lee et al. definition, the RFIS boundary observed here was characterized 

by confluence (and likely convergence).  Thus a line of kinematic frontogenesis can be 

created by this mechanism at the interface between the rear of the wake and the RFIS 

where easterly flow shifts to westerly or northwesterly flow. Recall that the observed 

RFIS boundary was capable of supporting a strong leading-edge updraft, which would 

support the presence of low level convergence. 

 As discussed in Chapter 1.1, RFIS have been hypothesized to aid in 

tornadogenesis and tornado intensification due to their ability to provide increased 

surface/near-surface convergence within an established RFO. The surface convergence 

that can exist in association with an RFIS boundary formed as proposed here could serve 

the same function. However, an important caveat exists when trying to attribute an 
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increased likelihood for tornadogenesis or tornado intensification to the presence of an 

RFIS boundary formed by this mechanism. This process is more likely to occur away 

from sources of cold air (i.e., south of the hook echo). Thus, convergence along the 

secondary boundary would seem unlikely to impact the surface circulation center near the 

hook unless the RFO is uniformly shallow.  

 Independent of whether or not the resultant RFIS boundary could aid in 

tornadogenesis through stretching, the presence of relatively warm air in the RFO is also 

potentially important for tornadogenesis. The associative relationship between cold pool 

buoyancy and tornadogenesis (Markowski et al. 2002; Markowski 2002; Grzych et al. 

2007; Hirth et al. 2008; Lee et al. 2012) may be attributable to the resistance of 

negatively buoyant air within the cold pool to vertical acceleration (Markowski and 

Richardson 2014).  Thus, an RFO warmed through advection/mixing of inflow air in a 

penetrating wake circulation could substantially reduce the stability of the RFO air near 

the surface circulation.   

 Can the mixing of warm air into an RFO through the outflow wake result in warm 

air residing near the surface circulation, thus increasing the likelihood of tornadogenesis? 

In the case presented here, easterly ground-relative momentum was only found at the 

surface in southern portions of the RFO, and the warming in the wake of the RFGF was 

tempered or non-existent north of 39.7⁰ N. This was hypothesized to be a consequence of 

deeper outflow to the north near the hook echo.  Thus, the outflow would need to be 

shallower for the wake circulation to advect inflow air into the RFO near the circulation 

center. Alternatively, warm air in the wake farther to the south could be advected 

northward toward the mesocyclone by any winds with a strong southerly component in 



42 
 

the RFO. This would require inflow with a more southerly storm-relative wind 

component than existed in this case.   

 The potential importance of warm air reaching the surface in the wake region of 

an RFO calls into question how common of a process this may be in supercells. In a dual-

Doppler study of vertical circulations in a cold front, Geerts and co-authors found that a 

downdraft existed rearward of the cold front head (Geerts et al. 2006) which may have 

advected pre-frontal air downward to the surface. The downdraft in the wake in their 

study, similar to previous modelling studies (Drogemeier and Wilhelmson 1987; Limpert 

2013), appeared to be co-located with a large Kelvin-Helmholtz billow which acted to 

either partially or fully cut off the main body of the density current from the leading head. 

While it is hypothesized in the Last Chance study that a breaking Kelvin-Helmholtz 

billow was responsible for the presence of warm air near and at the surface in the Last 

Chance case, it is difficult to say how common of an occurrence this may be. In a set of 

model simulations investigating the effect of stratification on density current structure, 

Liu and Moncrieff found that large low-level stratification can promote deep penetration 

of inflow air into a cold outflow (Liu and Moncrieff 2000). Recall that the UAS and 

01:37 UTC (southernmost) sounding captured some boundary layer stratification. It 

appears that density current depth (which was inferred from NOXP radial velocity data) 

may have played a large role in whether a wake could circulate air from aloft to the 

surface. Previous studies (e.g. Xu and Moncrieff 1994) have found that low-level shear 

plays a role in the depth of a density current. Specifically, all else held constant, a density 

current should be shallower if the environmental shear vector in the layer occupied by the 

density current is pointed towards the cold air. Given that the RFGF propagation was 
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from west to east, the shear of the u-component of the environmental wind east of the 

storm was analyzed in order to determine the direction of the low-level shear vector with 

respect to the cold pool propagation. 

 Wind data from three soundings (Fig. 4.2) launched to the east of the supercell 

(refer to Fig. 1.1 for the locations of the soundings) were analyzed to evaluate the vertical 

shear of the u-component of the horizontal wind in the boundary layer. The RFO 

propagated generally from west to east, so 
𝜕𝑢

𝜕𝑧
 was used to approximate the component of 

the vertical wind shear perpendicular to the RFGF.  
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Fig. 4.2: U component of wind (ms-1) from a) 01:37 UTC, b) 01:38 UTC, and c) 01:40 UTC soundings. 
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  The value of 
𝜕𝑢

𝜕𝑧
 in the lowest 750-1000 m of the boundary layer was generally 

negative (Fig. 4.2); that is, the low-level shear vector was pointed towards the cold side 

of the density current. All else held equal, this shear orientation should lead to a 

shallower density current, and according to the results of Xue et al. 1997, perhaps larger 

and deeper Kelvin-Helmholtz billows. Moreover, the ground-relative easterly flow found 

in the boundary layer in advance of the RFGF could also have acted to accelerate surface 

flow in the RFO to the west (where and if parcels with easterly momentum were mixed to 

the surface). As was seen in some StickNet and mobile mesonet observations, weak 

easterly flow could be found in some areas where warming under the outflow wake also 

occurred.  

Chapter 5 

Conclusions 

 The Tempest UAS, NOXP, StickNets, scout mesonet, and several PSU mobile 

mesonets sampled the RFO of the 10 June 2010 Last Chance, Colorado supercell during a 

non-tornadic phase. During this sampling, StickNets primarily sampled the southern 

RFO, mobile mesonets the northern RFO near the flared-out hook echo, and the scout 

mesonet and Tempest UAS a north-south transect through the RFO. The suite of 

observing platforms sampled the pre-RFGF air mass, RFGF, a turbulent wake, and rear-

flank internal surge (RFIS) over a 36 minute span, with NOXP data adding an additional 

6 minutes to the end of the analysis period.  
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 The following tentative conclusions are made and are summarized in Figs. 5.1, 

5.2, and 5.3. First, warm air (relative to the initial RFO and RFIS) was found from 4-9 

km to the rear of the southern sections of the RFGF (Fig. 5.1). The magnitude of the 

warming was more pronounced aloft (~3-4 K in some areas) than at the surface. This 

warmer air was likely entrained into the RFO in the wake of the RFO head, and likely 

contained a mixture of warm, dry pre-RFGF air with RFO air. Second, surface wind 

measurements collected by StickNets and mobile mesonets exhibited a diffluent pattern 

from roughly 4-6 km to the rear of the RFGF, suggesting the possible presence of a 

downdraft associated with the wake. Range-height plots of radial velocity from 2 minute 

NOXP PPI scans revealed a region of radial divergence about 4-6 km rearward of the 

RFGF at heights as low as near 300 m AGL. This radial velocity distribution would be 

consistent with a downdraft forming about 4-6 km to the rear of the RFGF, which is 

where diffluent surface winds were found by the StickNets. The altitude at which 

outbound radial velocity rearward of the RFGF could be found increased with latitude, 

suggesting that the outflow was deeper closer to the hook echo and that a northward-

pointed gradient in outflow depth may have existed. Since the diffluent surface wind 

pattern (and easterly flow) was less common farther to the north, it is possible that deeper 

outflow there precluded the wake from extending to the surface (Fig. 5.3). Three of the 

soundings launched to the east of the supercell suggested that, all else held equal, the 

environmental shear profile in the boundary layer should have favored a shallow density 

current. The RFIS appeared to manifest as the arrival of the trailing rear-flank outflow 

rearward of warming associated with the outflow wake (Fig. 5.2). The presence of 

relatively cold air at 10 km or farther rearward in the RFO to the north of the suspected 
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RFO cutoff leaves open the possibility that the secondary outflow surge encountered by 

the UAS may have existed independent of any processes taking place in the RFGF wake. 

Thus, it cannot be concluded that the cutting off of the head of the RFO led directly to the 

formation of a cold RFIS. To the extent that the author is aware, relatively warm air in 

RFOs has not been directly attributed to the effects of Kelvin-Helmholtz billows in RFO 

wakes. It does not necessarily follow that the process described above is unusual in 

supercells, though it may be less common closer to regions where latent chilling may be 

common (such as some hook echoes).  
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Fig. 5.1: Plan view of surface thermodynamic structures overlaid on 1.1 km NOXP reflectivity factor 

constant altitude planned position indicator at 01:55 UTC. The solid light blue line represents the RFGF, 

while the dark blue line represents the RFIS. Dashed lines are isentropes (K).  
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Fig. 5.2: Conceptual model of cut-off RFO with isentropes (K) labeled.  
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Fig. 5.3: Hypothesized thermodynamic and kinematic structure of northern RFO. Orange represents warm 

and dry air above the RFO. Blue represents relatively cold outflow air. 

 The cold outflow surge sampled in this dataset, as discussed previously, does not 

fit the definition of an RFIS posed by Lee et al. (2012), where a 13 ms-1 or greater 

acceleration in wind speed must exist. While most surface platforms observed a 

northwesterly or westerly wind shift in the region which the UAS measured a significant 

drop in equivalent potential temperature, there was not a consistent signal for a rapid 

increase in wind speed. However, if RFIS are important for tornadogenesis due to a 

propensity to help to converge vertical vorticity, an RFIS manifested as a low-level wind 

shift associated with outflow wake dynamics may yet be important for convergence 

within the RFO in some cases, given that it occurs close enough to the mesocyclone to 



51 
 

have an effect on the vorticity budget in a developing low-level mesocyclone. Moreover, 

if the wake was to advect inflow air into the rear-flank outflow close enough to the 

mesocyclone, this may have the added effect of reducing the thermal stability of low-

level parcels which may be ingested by the low-level mesocyclone, which may make 

tornadogenesis more likely to occur. 

 Since much of the thermodynamic analysis presented was based on data collected 

by either stationary (StickNet) platforms or instruments which only performed a single 

transect through parts of the RFO (UAS and scout mesonet), no attempt to diagnose 

temporal variability in thermodynamic and kinematic RFO characteristics was made. 

Finally, the effect that warmer air in the RFO may have had on the evolution of this 

particular supercell is unknown. The extent to which it is common for 1) relatively warm 

air to entrain into rear-flank outflows via density current dynamics and 2) a cold RFIS to 

form by this mechanism cannot be ascertained by this dataset alone. Future work aiming 

to investigate these questions should attempt to collect and utilize larger datasets of UAS 

and mobile mesonet RFO transects to gauge the variability in vertical outflow 

thermodynamic structure.  
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