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In deducing the consequences of the Direct Interaction Approximation, Kraichnan was
sometimes led to consider the properties of special classes of nonlinear interactions in
degenerate triads in which one wavevector is very small. Such interactions can be de-
scribed by simplified models closely related to elementary closures for homogeneous
isotropic turbulence such as the Heisenberg and Leith models. These connections can be
exploited to derive considerably improved versions of the Heisenberg and Leith models
that are only slightly more complicated analytically. This paper applies this approach
to derive some new simplified closure models for passive scalar advection and investi-
gates the consistency of these models with fundamental properties of scalar turbulence.
Whereas some properties, such as the existence of the Kolmogorov–Obukhov range and
the existence of thermal equilibrium ensembles, follow the velocity case closely, phe-
nomena special to the scalar case arise when the diffusive and viscous effects become
important at different scales of motion. These include the Batchelor and Batchelor–
Howells–Townsend ranges pertaining, respectively, to high and low molecular Schmidt
number. We also consider the spectrum in the diffusive range that follows the Batche-
lor range. We conclude that improved elementary models can be made consistent with
many nontrivial properties of scalar turbulence, but that such models have unavoidable
limitations.

Keywords: isotropic turbulence; homogeneous turbulence; passive scalar turbulence;
solvable or simplified models; turbulent mixing

1. Introduction

The quadratic nonlinearity of the Navier–Stokes equation is expressed in the Fourier rep-
resentation by the condition that modes with wavevectors p and q interact to excite mode
k, subject to the ‘triad condition’ k = p + q. The first attempts to model energy trans-
fer in homogeneous isotropic turbulence by Kovasznay, Heisenberg, Obukhov, and many
others [1], which might be called the classical turbulence closures, ignored this ‘triadic’
structure, so that the Navier–Stokes nonlinearity had no explicit role in their formulation.
Batchelor [2] criticized these models on precisely these grounds. Whatever its defects are,
the quasinormality theory [1] did incorporate the Navier–Stokes nonlinearity explicitly,
through geometric factors linked to triad interactions, as did Kraichnan’s direct interaction
approximation (DIA) [3] and its various modifications.

The oversimplifications inherent in the classical closures result in numerous difficul-
ties, including questionable or even extremely unrealistic predictions of the dissipation
range [1], and other defects like forward-only energy transfer and inability to fill unexcited
modes by nonlinear interactions alone [4,5]. Although these problems are addressed by
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analytical closures of the DIA family, these theories have some practical drawbacks.
Whereas classical closures appeal to easily grasped physical pictures (or perhaps, car-
toons), like stepwise cascade and eddy viscosity, the derivation of analytical closures, in-
cluding the quasinormality theory, may seem abstract and unintuitive. Moreover, whereas
their analytical simplicity makes computational implementation of the classical closures
quite straightforward, computational implementation of DIA-based closures is actually
quite difficult. Considerations like these make the classical closures rather attractive.

Thus, some practical compromise between simplicity and theoretical rigor could be a
desirable feature of a class of models intermediate between DIA and the classical closures.
One such model is the model for inhomogeneous turbulence by Besnard et al. [6]. Canuto
and Dubovikov [7] have developed and applied such models to a variety of problems
including shear and rotating turbulence. In [4] and [5], it is shown that models closely
related to the Leith and Heisenberg models result from taking suitable limits of DIA-based
closures. These models are only slightly more complex than the original closures, and
thus retain their appealing analytical simplicity, but overcome many of their theoretical
limitations.

The present paper applies these methods to the problem of passive scalar advection by
a random velocity field. Both the classical closures and the improved models suggested
by analytical closures of the DIA family are easily extended to the scalar case. Although
the linearity of passive scalar dynamics simplifies the problem significantly, new possi-
bilities arise when the diffusivity and viscosity are of different orders of magnitude, or
equivalently, when the Schmidt number is very large or very small. Then diffusive and
viscous effects become important at different scales of motion; the difference leads to the
Batchelor [8] (or viscous-convective) and Batchelor–Howells–Townsend [9] (or inertial-
diffusive) ranges, which occur at high and low molecular Schmidt number, respectively.
Another problem unique to scalar turbulence is the behavior of the scalar spectrum in the
diffusive range following the Batchelor range. We consider the consistency of closures for
scalar turbulence with these ranges. A new version of the scalar Leith model [10] can be
consistent with the Batchelor range and the correct Batchelor diffusive range, but not with
the Batchelor–Howells–Townsend range. Conversely, scalar Heisenberg models are neces-
sarily inconsistent with the Batchelor range, but a modified Heisenberg model can predict a
Batchelor–Howells-Townsend range. In all cases, consistency is demonstrated for our new
models, not for the original ‘classical’ formulations; this fact supports the reformulation
of classical closures. On the other hand, whereas Kraichnan has demonstrated the consis-
tency of the Lagrangian History DIA with all of these scaling regimes [11], the failure of
any one simplified model to be consistent with all of them demonstrates that such models
have unavoidable limitations.

2. Classical closures for scalar turbulence

The spectrum C(k) of the variance of a passive scalar θ advected by a statistically homo-
geneous and isotropic random velocity field ui satisfies

Ċ(k) = Pθ (k) − ∂Fθ

∂k
− 2Dk2C(k), (1)

where Pθ (k) is the spectrum of a source of scalar fluctuations, D is the scalar diffusivity,
and the scalar flux is

Fθ (k) = �
∫

|k|≤k

dk
∫

dpdq δ(k − p − q)kp〈up(p)θ (q)θ (−k)〉. (2)
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The time argument is understood but not written explicitly.
The linearity of the advection equation in θ implies that any closure for Fθ must be lin-

ear in the scalar spectrum. This condition makes it trivial to extend the original Heisenberg,
Leith, and Kovasznay models [1,12] to the scalar case:

Fθ (k) = C
∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp

√
E(p)

p3
(Heisenberg) (3)

Fθ (k) = C
√

k3E(k)k4 ∂

∂k

[
C(k)

k2

]
(Leith) (4)

Fθ (k) = C
√

k3E(k)kC(k) (Kovasznay), (5)

where E(k) is the energy spectrum of the velocity field and C denotes a constant, but not
necessarily the same constant each time it appears. The arguments justifying these models
follow the arguments justifying the velocity models very closely: the Heisenberg model
equates the scalar flux to ‘production’ of scalar variance at scale k by an ‘eddy diffusivity’
(the second integral) multiplying the square of the scalar gradient (the first integral); the
Kovasznay model states that the scalar flux is the product of a frequency at scale k, namely√

k3E(k), and a measure of the scalar variance at scale k, namely kC(k). The Leith model
simply adds a diffusive contribution to the Kovasznay model. The Leith model (1967) is
much newer than the Kovasznay and Heisenberg models (1948), but its formulation in
terms of the wavenumber k alone, without explicit reference to ‘triad’ geometry, justifies
grouping it with what we have called ‘classical’ models. Leith’s velocity model [12] sug-
gests a more general form of Equation (4); however, we follow [10] and [13] in formulating
a special case consistent with the existence of equilibrium ensembles. This point will be
discussed more fully later.

Although these equations state the scalar Heisenberg, Leith, and Kovasznay models,
we omit ‘scalar’ in what follows. These models have been formulated for any velocity
spectrum E(k); no assumptions have been made about the analytical form of this spectrum
or about how it has been obtained.

Although the Kovasznay model is not suggested by analytical theory, it is included
because it is the simplest conceivable model, and because it occurs in any argument based
entirely on dimensional analysis with an implicit locality assumption [14]. Formally, the
Kovasznay model is a limit of the Heisenberg model, since if we cut-off the interactions in
the Heisenberg model so that

Fθ (k) = C(λ)
∫ k

k/λ

dκ κ2C(κ)
∫ λk

k

dp

√
E(p)

p3
(6)

and adjust C(λ) so that the limit λ → 1 is nonzero, the result will be the Kovasznay model.
We remark that the effect of finite λ < ∞ in Equation (6) is obviously to reduce the ef-
fect of distant interactions; in fact, Orszag [15] had suggested that modifying the Heisen-
berg model to reduce the effect of extremely distant interactions produces a more realistic
model; however, we will not pursue this point. The completely local interactions described
by the Kovasznay model correspond to the intuitive idea of a stepwise cascade.

We briefly summarize previous work connecting classical closures to analytical closure
based on DIA; more details appear in the Appendix. In [4], it was shown following [16] that
considering only degenerate wavevector triads corresponding to distant interactions such
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that 0 ≈ k � p, q (here, k = |k|, p = |p|, and q = |q|, and the triad condition k = p + q
is assumed) in DIA, and making some other simplifications of the triad relaxation time
leads to a model with the structure of the classical Heisenberg model.1 For the scalar, the
analogous result is

Fθ (k) = C
∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp �T (κ, p)E(p), (7)

where �T is a relaxation time corresponding to a pair of modes, rather than a triad as
in DIA-based models. Although the derivation begins with DIA, in which no arbitrary
constants appear, the interactions isolated to arrive at Equation (7) do not conserve scalar
variance among themselves. Imposing conservation requires introducing an arbitrary con-
stant, which could be chosen to match a known form of the Kolmogorov–Obukhov scalar
spectrum [1].

Adding a class of local interactions such that 0 ≈ q � k ≈ p leads to a generalized
Heisenberg model [4]; the scalar analog is

Fθ (k) = C
{
−
∫ k

0
dκ κ4

∫ ∞

k

dp �T (κ, p)
C(p)E(p)

p2

+
∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp �T (κ, p)E(p)

}
. (8)

The second term on the right side coincides with the Heisenberg model; the first term gives
a scalar analog of the ‘backscatter’ term in the velocity model. Because of this term, the
scalar flux can take either sign, whereas in Equation (7), the flux is necessarily positive. A
somewhat different treatment of local interactions leads to a generalized Leith model [5].
The scalar analog is

Fθ (k) = −C
[∫ k

0
dκ κ2E(κ)�T (κ, k)

]
k4 ∂

∂k

[
C(k)

k2

]
. (9)

In the interest of simplicity, following our previous work [4] on the velocity field mod-
els, the timescales in Equations (7)–(9) are further abridged by replacing the pair relaxation
time by a single-mode relaxation time determined by the larger wavenumber. Although the
models with a pair relaxation time might be interesting, reduction to a single-mode relax-
ation time does not appear to compromise any important theoretical property. The result is
a set of models closer to the classical models than Equations (7)–(9), but more general than
the original models Equations (3)–(5). We propose then the modified Heisenberg model,

Fθ (k) = C
∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp �T (p)E(p) (modified Heisenberg), (10)

the modified Leith model

Fθ (k) = −C
[∫ k

0
dκ κ2E(κ)

]
�T (k)k4 ∂

∂k

[
C(k)

k2

]
(modified Leith) (11)
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and, by simply evaluating the integrands in Equation (10) at the same wavenumber k and
multiplying by k2 to make the units consistent, the modified Kovasznay model,

Fθ (k) = Ck3E(k)�T (k)kC(k) (modified Kovasznay). (12)

We can add the scalar version of the ‘generalized Heisenberg model’ [4]

Fθ (k) = C
{∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp �T (p)E(p)

−
∫ k

0
dq q4

∫ ∞

k

dp �T (p)
C(p)E(p)

p2

}
. (13)

The limit discussed in connection with Equation (6) that leads from the Heisenberg
model to the Kovasznay model can be applied to Equations (10) and (12) as well. The same
limiting process applied to Equation (13) yields the Leith model, but we acknowledge that
this analysis is purely formal.

Following [4], we suggest the following models for �T :

�̇T (k) = 1 − ηT (k)�T (k) − Dk2�T (k) (14)

�̇T (k) = 1 − ηT (k)�T (k) (15)

0 = 1 − ηT (k)�T (k) − Dk2�T (k) (16)

0 = 1 − ηT (k)�T (k). (17)

The first equation imitates the structure of Kraichnan’s test-field model [17,18]; the subse-
quent equations are steady-state and/or nondiffusive simplifications. A consequence of the
dependence on k alone is suppression of the viscosity dependence of the scalar timescale
in the theory of [18]. The frequency ηT (k) can be modeled by the algebraic expression,

ηT (k) = C�T (k)k3E(k) (18)

or by the integral expression, again obtained by imitating Kraichnan’s theories,

ηT (k) = C�T (k)
∫ k

0
dκ κ2E(κ). (19)

The formulation of Equations (10)–(12) in terms of a timescale �T is useful because in
some cases, ‘external agencies’ like rotation and shear can be modeled by suitably gener-
alizing �T ; for the velocity case, compare, for example [14,19].

The velocity field models suggested in [4] differ analytically from Equations (14)–(19)
only in the appearance of the scalar diffusivity instead of the viscosity. However, although
Equations (70) and (71) in [4], rewritten in the present notation, formulate the model

η(k) = cη�(k)
∫ k

0
dκ κ2E(κ),
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where η and � now pertain to the velocity field, the proportionality constant cη need not
equal the corresponding constant C in Equation (19). On the contrary, the ratio cη/C is a
‘turbulent Schmidt number.’

In a more complete theory like DIA, such constants are computed in terms of scalar
and velocity field response functions [3], which are not the same, and which reflect the
relative differences of scalar transfer compared to momentum transfer. A more precise link
between the semi-phenomenological models proposed here and the much more sophisti-
cated timescale modeling in comprehensive closure theories is beyond the scope of this
paper.

The simplest timescale model combines the nondiffusive static model Equation (17)
with the algebraic frequency model Equation (18). The result is

�T (k) = C
1√

k3E(k)
. (20)

Substituting Equation (20) in Equations (10) and (12) reproduces the classical Heisenberg
and Kovasznay models Equations (3) and (5), respectively.

A simple way to move beyond the classical models is to combine Equation (17) with
the integral model Equation (19), so that

�T (k) = C
1√∫ k

0
dκ κ2E(κ)

. (21)

Substituting Equation (21) in Equation (11) gives the modified Leith model,

Fθ (k) = C

√∫ k

0
dκ κ2E(κ)k4 ∂

∂k

[
C(k)

k2

]
(LWN), (22)

advocated in [13]. Following the terminology of that reference, we can call it the scalar
LWN (local wave-number) model.

Another possibility not envisioned in the classical models is diffusive damping of the
timescale. Combining Equations (16) and (18), the timescale is found by solving

k3E(k)�T (k)2 + Dk2�T (k) = 1. (23)

The positive solution has the limits

�T ∼
⎧⎨
⎩
(
k3E(k)

)−1/2
if k3E(k)  Dk2

(Dk2
)−1

if k3E(k) � Dk2.
(24)

The diffusive limit is important for the Batchelor–Howells–Townsend spectrum discussed
later.

The introduction of a timescale evolution equation as in Equations (14) and (15) de-
parts further from the classical models: if steady-state models like Equations (20) and
(21) are combined with the corresponding steady-state timescale models for the velocity
field [4], the result is proportionality of the scalar and velocity timescales; the proportional-
ity constant will be the ‘turbulent Schmidt number’ noted earlier. However, if the scalar and
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velocity timescales satisfy evolution equations, then there is no simple universal relation
between them. We believe that this observation may be applicable to ‘advanced’ single-
point models that allow a variable ratio of the turbulent diffusivity and eddy viscosity;
however, such developments must be left to future research.

Eliminating the diffusion term in Equation (22) results in a modified Kovasznay model,

Fθ (k) = C

√∫ k

0
dκ κ2E(κ)kC(k) (Ellison), (25)

which might be called the scalar Ellison model [1]. This model is more consistent with the
elementary character of the Kovasznay model than the result of substituting Equation (21)
in Equation (12).

Our experience with the velocity models suggests that the models of Equations (22)
and (25) should be very much superior to the models of Equations (4) and (5), and this
expectation will be confirmed: just as for the velocity field, some dependence on distant
interactions appears indispensable for any realistic model of scalar turbulence. We note,
however, that introducing the integral timescale of Equation (21) in Equation (10) leads to
numerical instabilities; compare [4] for the velocity field.

3. Constraints on models of scalar turbulence

Like closures for the velocity field, closures for scalar turbulence must satisfy some basic
general constraints. Two of them: the existence of a constant flux scalar Kolmogorov–
Obukhov (or inertial-convective) range and the scalar equipartition ensemble are formu-
lated by analogy to the velocity case as follows.

(1) Existence of a Kolmogorov–Obukhov range: If the velocity field is in a Kolmogorov
steady state with dissipation rate ε, the constant scalar flux condition Fθ = χ = constant
should permit the solution,

C(k) = Cχε−1/3k−5/3, (26)

where χ is the scalar dissipation rate

χ =
∫ ∞

0
dk 2Dk2C(k). (27)

(2) Equipartition solution: The nondiffusive truncated system for the passive scalar,
defined by D = 0 and the spectral truncation k ≤ kmax, should permit the solution Fθ = 0
with an equipartition spectrum,

C(k) ∼ k2. (28)

This solution should exist for advection by an arbitrary solenoidal velocity field [11]. Al-
though the possibility of equipartition may seem somewhat esoteric, it has important qual-
itative consequences for models: if it is satisfied, then both ‘forward’ (large to small scale)
and ‘backward’ (small to large scale) transfer of scalar excitation must be possible. This
issue will be discussed in more detail later.

If the molecular diffusivity and viscosity are not of comparable magnitude, then dif-
fusive and viscous effects in the scalar and velocity spectra can exist at different scales of
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motion. Consequently, scalar spectra with no direct analog in the velocity case are pos-
sible: scalar fluctuations can persist even when the velocity fluctuations are damped by
viscosity; conversely, the scalar fluctuations can be damped by diffusivity even when sig-
nificant velocity fluctuations exist. When the velocity field exhibits a Kolmogorov inertial
range, these possibilities define the Batchelor [8] and Batchelor–Howells–Townsend [9]
ranges, respectively. Denoting the inverse Kolmogorov scale by kd ∝ (ε/ν3)1/4, where ν is
the viscosity, these additional basic constraints are formulated as follows.

(3) Possibility of a Batchelor range: If the velocity field is in a Kolmogorov steady
state, and scalar fluctuations persist when k  kd , then the constant scalar flux condition
is satisfied by the Batchelor spectrum,

C(k) = C

√
ν

ε
χk−1. (29)

This spectrum is expected to exist in the range kd � k � kB , where kB is the wavenumber
at which the viscous frequency κk2

B equals the Kolmogorov frequency
√

ε/ν; as kB ∼
(ε/D2ν)1/4 = Sc1/2kd , where Sc = ν/D is the Schmidt number, the Batchelor range can
exist when the Schmidt number is very large.

(4) Possibility of a Batchelor–Howells–Townsend range: If the velocity field is in a
Kolmogorov steady state, and scalar fluctuations are damped by molecular diffusivity when
k � kd , then the scalar fluctuations can exhibit a power-law diffusive range of the form,

C(k) = Cχ
ε2/3

D3
k−17/3. (30)

This spectrum is expected to exist for k  kBHT, where kBHT is a wavenumber at which the
Kolmogorov viscosity ε1/3k−4/3 equals the scalar diffusivity D. As kBHT = (ε/D3)1/4 =
Sc3/4kd , this range can exist if the Schmidt number Sc is very small.

It may also be useful to recall the arguments for the spectra Equations (29) and (30).
The derivation of Equation (29) assumes that when the Batchelor range exists, the scalar
field is randomly strained by the velocity field. Since necessarily C(k) ∝ χ and the total
strain is proportional to

√
ε/ν, the Kolmogorov frequency of the velocity field, dimensional

analysis gives Equation (29). The spectrum Equation (30) applies when power-law velocity
fluctuations act against scalar diffusivity. The dominant balance in such a range is [9]

u · ∇θ = D∇2θ. (31)

Squaring and assuming that u and θ are independent gives the spectral balance,

E(k)
χ

D = D2k4C(k). (32)

Equation (30) follows by substituting a Kolmogorov spectrum for E(k). Despite its power-
law form, this spectral law does not express a constant flux condition. We should add
that the actual existence of the Batchelor–Howells–Townsend range remains a topic of
occasional discussion [20,21], but we consider it as at least theoretically plausible because
it is supported by a simple, elementary argument.

We next consider the consistency of closures with each of these ranges in turn.
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3.1. Kolmogorov–Obukhov range

Because the Kolmogorov–Obukhov range is a nondiffusive steady state, all of the timescale
models reduce to either Equations (20) or (21), and for Kolmogorov scaling, both equations
give

�T (k) ∝ (
ε1/3k2/3

)−1
. (33)

The constant flux states with Fθ = χ are therefore found for each model as follows.

3.1.1. Kovasznay and Leith models

For the Kovasznay model,

χ = Cε1/3k5/3C(k) (34)

so that C(k) has the required form Equation (26). For the Leith model,

Cχε−1/3k−14/3 = d

dk

[
C(k)

k2

]
. (35)

has a solution C(k) ∼ k−5/3.

3.1.2. Heisenberg and generalized Heisenberg models

In both of these models, ∫ ∞

k

dp �T (p)E(p) ∝ ε1/3k−4/3, (36)

therefore the constant scalar flux condition for the Heisenberg model is

χε−1/3k4/3 = C
∫ k

0
dκ κ2C(κ). (37)

Differentiating with respect to k gives the required solution. For the generalized Heisenberg
model, the constant scalar flux condition is

χ = C
{
ε1/3k−4/3

∫ k

0
dκ κ2C(κ) − 1

5
k5
∫ ∞

k

dp ε1/3p−13/3C(p)

}
. (38)

Direct substitution shows the existence of the required solution. In all cases, the constant C
could be chosen by requiring agreement with an observed value of the constant in Equation
(26), the so-called ‘Batchelor constant.’

3.2. Equipartition solution

3.2.1. Classical Kovasznay and Heisenberg models

For the Kovasznay model the zero flux condition Fθ = 0 forces C(k) = 0; the equipartition
solution does not exist no matter how the timescale is determined. The same is obviously
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also true for the Heisenberg model. Returning to an earlier remark about equipartition and
the direction of transfer, note that for both the Kovasznay and Heisenberg models, Fθ is
necessarily positive; thus, transfer of scalar excitation must be from large to small scales.

3.2.2. Leith models

All variants of the Leith model developed here contain the term ∂(C/k2)/∂k and are there-
fore automatically consistent with vanishing scalar flux when C ∝ k2. Again referring to
the connection between the direction of transfer and the equipartition property, all versions
of the Leith model permit the scalar flux to take either sign.

3.2.3. Generalized Heisenberg models

Rewriting Equation (13) as

Fθ = C
∫ k

0
dκ κ4

∫ ∞

k

dp �T (p)E(p)

[
C(κ)

κ2
− C(p)

p2

]
(39)

shows that the equipartition solution exists regardless of the timescale model, and that the
flux vanishes for this solution. Note that the second integral must be cut-off at some large
wavenumber in order that it can be absolutely convergent, but such a cut-off is consistent
with the definition of the equilibrium ensemble. In this model as well, the scalar flux can
have either sign.

3.3. Batchelor spectrum

3.3.1. Classical Kovasznay, Leith, and Heisenberg models

Recall that the Batchelor spectrum has a constant scalar flux when the velocity spectrum
is in its dissipation range. It is obvious that none of the classical models Equations (3)–(5)
can support a constant scalar flux when E(k) is exponentially small unless C(k) becomes
exponentially large. The Batchelor spectrum is impossible for all of these models.

3.3.2. Modified Kovasznay and Leith models

Consider the scalar flux models of Equations (22) and (25). In the Batchelor regime with
k  kd ,

∫ k

0
dκ κ2E(κ) → ε

ν
. (40)

This nonzero limit is the crucial advantage of the integral expression Equation (19) over
the algebraic model of Equation (18). For the Ellison model, imposing the constant scalar
flux condition with Equation (25) gives

χ =
√

ε

ν
kC(k) (41)

and Equation (29) follows immediately.
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For the LWN model, Equation (22), the constant scalar flux condition

χ = −C

√
ε

ν
k4 d

dk

C(k)

k2
(42)

is obviously satisfied by the Batchelor spectrum Equation (29).
Equation (42) coincides with the result of Kraichnan’s analysis [11] of the Batchelor

range in the rapid change limit of the velocity field; compare also [18], where the Batchelor
range is related to a diffusive limit of the test-field model.

3.3.3. Scalar Heisenberg and generalized Heisenberg models

It is evident in advance that the Heisenberg models cannot be consistent with the Batchelor
spectrum because these models express the eddy diffusivity at any wavenumber k in terms
of modes with wavenumbers larger than k, whereas the Batchelor spectrum requires the
random straining of the scalar by modes with wavenumbers smaller than k. The physical
mechanism responsible for the Batchelor spectrum is therefore inconsistent with the for-
mulation of the scalar Heisenberg models. Under the conditions that generate the Batchelor
spectrum, the constant scalar flux condition,

χ = C
∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp �T (p)E(p) (43)

cannot be satisfied by a power-law C(k), because the second integral is exponentially small
in the dissipation range k  kd , regardless of how �T is chosen. The backscatter term in
the generalized Heisenberg model does not change this conclusion.

3.4. The Batchelor diffusive range

Batchelor [8] had originally proposed that the k−1 range is terminated by a scalar diffusive
range proportional to e−ak2

: this dependence followed from an assumption of effectively
static straining by the velocity field of the scalar spectrum which is then averaged over an
ensemble of strain fields. In a reconsideration of Batchelor’s arguments, Kraichnan [11]
suggested that this diffusive range will scale instead as e−ak , the exponential decay found
for the velocity field. This conclusion was the outcome of an assumption that the strain
varied rapidly in time; the limit in which the velocity field is white noise in time has become
known as the Kraichnan model.

The only scalar models consistent with the Batchelor range are the Ellison and LWN
models Equations (25) and (22). Let us consider the diffusive range for each. For the Ellison
model, the diffusive range of the Batchelor spectrum is found by solving

d

dk

√
ε

ν
kC(k) + Dk2C(k) = 0 (44)

which has the solution

C(k) ∝ k−1e−D√
ν/εk2

(45)
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with the squared exponential diffusive range predicted originally by Batchelor. For the
LWN model, we have instead

d

dk
k4 d

dk

(
C

k2

)
+ Dk2C(k) = 0, (46)

which simplifies to

4

k

d

dk

(
C

k2

)
+ d2

dk2

(
C

k2

)
= −D

√
ν

ε

(
C

k2

)
(47)

with the asymptotic decaying solution

C(k) ∝ k2e−(D2ν/ε)1/4k (48)

in agreement with the prediction of Kraichnan’s refinement of Batchelor’s argument. The
prefactor k2 in Equation (48) is related to a property of the Leith model noted earlier:
consistency with an equipartition solution C(k) ∝ k2 in the limit of zero diffusivity. Note
that Equation (45) does not lead to equipartition in the non-diffusive limit, but instead to
an indefinitely long Batchelor scaling regime.

To understand the difference between these predictions, note that whereas Equation
(47) coincides with Equation (3.12) of [11] for scalar advection in the ‘rapid change’ limit,
Equation (44) is related to Equation (3.9) of the same reference, where the large-scale strain
rate γ is

√
ε/ν (note that Kraichnan’s  is the scalar mode density such that k2(k) ∝

C(k).) According to Kraichnan, Equation (44) is appropriate if the straining is effectively
static in each realization. Some further discussion is given in Appendix.

3.5. Batchelor–Howells–Townsend spectrum

To find this range, we solve the equation,

d

dk
Fθ (k) = −2Dk2C(k), (49)

where the velocity is assumed to have a Kolmogorov scaling range.

3.5.1. Kovasznay, Ellison, and Leith models

The Kovasznay and Ellison models have the common form,

d

dk
[ηT (k)kC(k)] = 2Dk2C(k) (50)

with ηT (k) ∝
√

k3E(k) and ηT (k) ∝
√∫ k

0
dκ κ2E(κ), respectively. The solution of Equa-

tion (49) then has the form

ηT (k)kC(k) = exp

(
−
∫

dk
2Dk

ηT (k)

)
. (51)
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No choice of ηT consistent with the present models yields the correct power law. Consider,
for example, the limit of Equation (23) in which the scalar timescale is purely diffusive,
�T = 1/(Dk2), so that ηT ∼ (ε2/3/D)k−2/3. Then C(k) ∼ k−5/3 exp(−ak8/3), where a ∝
D2/ε2/3.

The analysis for the Leith models is similar and leads to the same conclusion that the
Batchelor–Howells–Townsend spectrum does not exist. For example, Leith [12] shows that
the flux model Equation (4) leads to a solution in terms of exponentially decaying Bessel
functions; this is qualitatively consistent with the results for the Kovasznay model. If the
scalar timescale is purely diffusive, Equation (49) becomes

d

dk

[
ε2/3

D k10/3 d

dk

C(k)

k2

]
∝ Dk2C(k) (52)

and it can be verified directly that this equation has no power-law solution.
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Figure 1. Scalar spectra for the Leith diffusion model at high Sc showing an equipartition at high
wavenumbers. Note that the energy and scalar spectra terminate at high wavenumber.
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3.5.2. Heisenberg and generalized Heisenberg models

Equation (49) takes the form

d

dk

∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp E(p)�T (p) = 2Dk2C(k). (53)

For scales in this spectral regime, scalar fluctuations are strongly damped, so that

∫ k

0
dκ κ2C(κ) ≈ χ

D . (54)

Assuming, as we did for the scalar Kovasznay and Leith models, that �T is dominated by
molecular diffusivity according to the lower limit in Equation (24), we obtain

d

dk

χ

D
ε2/3k−2/3

Dk2
= 2Dk2C(k) (55)

and Equation (30) follows. This derivation requires the possibility of a viscous timescale;
thus, the classical Heisenberg model is not consistent with this scalar spectrum. Because it
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Figure 2. Scalar spectra for the Leith diffusion model at low Sc . Note that the energy and scalar
spectra terminate at high wavenumber.



Journal of Turbulence 85

assumes that scalar damping is due to the velocity inertial range, it gives instead

C(k) = C
χ

D2
ε1/3k−13/3. (56)

To prove the existence of the Batchelor–Howells–Townsend spectrum for the gener-
alized Heisenberg model, it is necessary to establish that the backscatter term cannot up-
set the relevant balance. Substituting the Batchelor–Howells–Townsend spectrum in the
backscatter term gives

d

dk

∫ k

0
dκ κ4

∫ ∞

k

dp �p(p)
E(p)C(p)

p2
∼ k−5, (57)

which is much smaller than k2C(k) ∼ k2−17/3 = k−11/3 for large k. We conclude that the
backscatter term decays more rapidly that the eddy damping term, and therefore does not
change the balance in Equation (55) to leading order.
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Figure 3. Scalar spectra for the Ellison model at high Sc showing equipartition at small scales.
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In deriving the Batchelor–Howells–Townsend spectrum, we have assumed that the in-
tegral,

∫ ∞

0
dκ κ2C(κ), (58)

converges at infinity in order to assert Equation (54) for arbitrarily large k; clearly, the
scaling C(κ) ∼ κ−17/3 is consistent with this assumption.

4. Model calculations

Calculations have been performed to demonstrate the predictions of these closures at high
and low Schmidt numbers. The equations were solved using finite difference methods with
second-order accuracy in time and space. To improve the computational efficiency, the
equations are rewritten so that the wavenumber space, k, is logarithmic, i.e. we have equal
increments of z = log (k/kscale) with kscale = 1. In addition, we have found it useful to
compute the evolution of kE (k, t) and kC (k, t), rather than E (k, t) and C (k, t). The cal-
culations used a grid spacing of δz = 0.02 and a total of 1400 grid points. The time steps
are adaptive and are selected by stability criteria. The well-resolved scaling regions ex-
hibited in the numerical results confirm that the numerical methods with these choices of
wavenumber resolution and time step are adequate. We stress that satisfactory numerical
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Figure 4. Scalar spectra for the Ellison model at low Sc showing BHT spectrum at small scales.
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resolution, even in a calculation that resolves very small scales, is much more easily ob-
tained and verified in statistical calculations like these, than in direct numerical simulations.
Each calculation required approximately 4 × 105 time steps.

The problem simulated is simultaneous decay of the energy and scalar spectra; for this
problem, it is appropriate to evaluate the velocity spectrum evolution using the velocity
closure corresponding to the scalar closure [5]. The initial energy and scalar spectra have
the common form,

K0

(
k

k0

)2

exp

(
−
(

k

k0

)2
)

∫ ∞

0
dq

(
q

k0

)2

exp

(
−
(

q

k0

)2
) , (59)

where the constant K0 determines either the total energy or total scalar variance as appro-
priate, and k0 determines the wavenumber at which the velocity or scalar spectrum reaches
a maximum; we have set K0 = 1 and k0 = 1 for both spectra. Two cases were run for each
model, a low Schmidt number case with Sc = 10−2 and a high Schmidt number case with
Sc = 10+6.
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It was noted in the Introduction that one attractive feature of these closures is the rel-
ative ease with which the model equations can be solved on modern computers. To give
some idea of the computational resources required, all calculations were performed on a
Macintosh MacBook Pro with a 2.6 Ghz Intel Core i7 processor. The code is written in C
and compiled with the Gnu C Compiler (gcc) and is not heavily optimized. Each calcu-
lation required at most 4 minutes. Our previous experience suggests that the computation
time required to simulate the same problems using a more fundamental Markovianized
closure can be estimated as roughly the square of the time required by the present closures;
this estimate is consistent with the requirement to compute two-dimensional rather than
one-dimensional integrations in wavenumber space in order to resolve triad interactions.

The figures show the energy and scalar spectra at a nondimensional time of tk0
√

K0 =
25, when the energy and scalar spectral evolution are both self-similar. Self-similarity is
verified by collapse of both spectra using suitable scaling variables. The self-similar regime
in both the velocity and scalar is by now very standard, therefore we do not show the
verification of self-similarity explicitly. To exhibit possible scaling regions, we evaluate a
local exponent,

γj =
log

Ej+1 − Ej

Ej − Ej−1

log(�z)
(60)
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Figure 6. Scalar spectra for the LWN modification of the ‘classic’ Leith diffusion model using the
integral timescale, for low Sc showing equipartition at small scales.
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over the entire spectrum. In spectral regions in which E(k) ∼ kγ , γj = γ ; we believe that
this method of exhibiting power-law scaling is preferable to visual comparison with straight
lines in a log-log plot. Note, however, that γj is not meaningful in spectral regions without
power-law scaling, in particular, near the peak of the spectrum.

Figures 1 and 2 show predictions of the ‘classical’ Leith model Equation (4), for high
and low Schmidt numbers, respectively. In both the high (Figure 1) and low (Figure 2)
Schmidt number cases, the energy and scalar spectra terminate at some high wavenumber
beyond which both vanish identically [6,12]. The cause lies in a peculiarity the classical
Leith velocity spectrum model shares with the Kovasznay model: since both are purely
local, the bizarre but dimensionally possible spectrum E(k) ∼ E0 − ν2k is consistent with
both models and moreover defines the ‘dissipation range:’ the velocity spectrum decays
linearly, reaches zero at some finite wavenumber, and is zero thereafter. This obviously
undesirable property transfers to the Leith scalar model, because it causes the diffusivity
to vanish at sufficiently large k. In the high Schmidt number case, the scalar spectrum
first reaches equipartition before it terminates. The equipartition spectrum is shown by the
effective power-law exponents of Equation (60). The low-Schmidt number computation
does not exhibit any Batchelor–Howells–Townsend regime.

Figures 3 and 4 show the results for the scalar Ellison model for high and low Schmidt
number, respectively. The Ellison model produces Batchelor scaling at high wavenumbers
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in the high Schmidt number case. However, the Batchelor–Howells–Townsend spectrum
does not occur in the low Schmidt number regime, despite the well-resolved inertial range
in the velocity field.

Figures 5 and 6 show the results for the calculation with the LWN model for the high
and low Schmidt number cases, respectively. Like the Ellison model, the LWN model
does produce the Batchelor scaling regime for the high-Schmidt number case, but not the
Batchelor–Howells–Townsend for the low-Schmidt number case.

Theoretically, the Ellison and LWN models make different predictions for the diffusive
range following the Batchelor range; unfortunately however, even in these quite well re-
solved closure calculations, it has not been possible to find unambiguous confirmation of
the spectra Equations (45) and (48). Kraichnan [11] commented that it did not seem possi-
ble to find an analytical form of the spectrum consistent with both the Batchelor spectrum
and the Batchelor diffusive range of Equation (48). Another feature of these calculations is
the prediction of a ‘bottleneck’ before the Batchelor diffusive range in both the Ellison and
LWN models, but we will not speculate on any significance it might have. Perhaps both of
these topics warrant further investigation.

Figures 7 and 8 show the results for the generalized Heisenberg model for high and
low Schmidt numbers. The generalized Heisenberg model is the only model tested that
produced the Batchelor–Howells–Townsend scaling for the low-Schmidt number case, but
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Figure 8. Scalar spectra for generalized Heisenberg model at low Sc showing BHT spectrum at
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it failed to produce the Batchelor scaling at high Schmidt number, and instead produced an
equipartition of the scalar spectrum.

5. Conclusions

In this paper, we have explored some models of scalar turbulence that are intermediate
in complexity between analytical closures that explicitly resolve triad interactions, and
‘classical’ closures in which the exact velocity-scalar coupling has no explicit role. We
have examined the consistency of these models with some nontrivial properties of scalar
turbulence. We summarize the results in the table.

Consistency of models with properties of scalar turbulence.

Model Kolmo–Obukh Equipart Batchelor BHT

Kovasznay Equation (5) Yes No No No
Leith Equation (4) Yes Yes No No
Heisenberg Equation (3) Yes No No No
Ellison Equation (25) Yes No Yes No
LWN Equation (22) Yes Yes Yes No
New Heisenberg Yes No No Yes
Gen. Heisenberg Equation (8) Yes Yes No Yes

where BHT denotes the Batchelor–Howells–Townsend spectrum. By ‘new Heisenberg’
we mean the model Equation (10) with a timescale that admits a diffusive limit, such as
Equation (23).

Evidently, the classical Kovasznay and Heisenberg models are the least satisfactory,
while the LWN and generalized Heisenberg models come closest to satisfying all con-
straints. But none of these models satisfies all four. We noted earlier that this fact under-
scores the limitations of simplified models, since Kraichnan [11] shows the consistency
of Lagrangian closure with all of these special cases. On the other hand, this limitation is
perhaps not extremely serious, since a problem in which the Schmidt number takes both
very high and very low values is unlikely. We note that the consistency of simple spec-
tral models with the properties of scalar advection at high and low Schmidt numbers may
suggest the possibility of applications to single-point models.

One overall conclusion can certainly be drawn: distant interactions must be possible
in any turbulence theory that is at all realistic. The table conclusively demonstrates that
merely changing the timescale from algebraic to integral produces major improvements in
models.
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Note
1. This derivation confirms Batchelor’s assessment [2] of the Heisenberg model: ‘...the underlying

physical idea seems to be suited more to the exchange of energy between distant wavenumbers
than to the more important case of exchange between wavenumbers of the same order of magni-
tude.’
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Appendix. Analytical theories of scalar turbulence

The purpose of this appendix is to simplify the closures of the DIA family by replacing
integrations over mode triads by integrations over a single wavenumber. It will entail re-
peating some earlier arguments [4,5] for velocity field closures in the simpler context of
scalar turbulence. We stress at the outset that these results are not approximations of DIA
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or any other analytical closure; they are simplifications that highlight some of the properties
of interactions in scalar turbulence, at least as they are captured by closure theories.

We give a condensed account of the analytical theory and refer to standard references
like [18] for details. Define the scalar spectral density in homogeneous scalar turbulence,

Z(k) = 〈θ (k)θ (−k)〉. (A1)

As before, the time variable is understood but not written explicitly. The evolution equation
for Z(k) is

Ż(k) = Fθ (k) − Sθ (k) − 2Dk2Z(k), (A2)

where Fθ (k) is a source of scalar fluctuations, and the scalar transfer term is

Sθ (k) =
∫

dpdq δ(k − p − q)�{qm〈um(p)θ (q)θ (−k)〉} (A3)

Consequently, the spectrum of scalar fluctuations

C(k) = 1
2

∮
dS(k)Z(k) (A4)

satisfies

Ċ(k) = Pθ (k) − Tθ (k) − 2Dk2C(k), (A5)

where in Equations (A4) and (A5),
∮

dS(k) denotes integration over a sphere of radius k,

and

Pθ (k) = 1
2

∮
dS(k)Fθ (k) Tθ (k) = 1

2

∮
dS(k)Sθ (k). (A6)

Conservation of scalar variance by the velocity-scalar interaction implies

∫
dk Sθ (k) = 0; (A7)

consequently, the transfer term Tθ is the gradient of a flux,

Tθ (k) = ∂Fθ

∂k
, (A8)

which gives the spectral evolution equation in the form of Equation (1). If the scalar field
is statistically isotropic, then

Tθ (k) = 4πk2Sθ (k). (A9)
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Markovianized analytical closures for isotropic scalar turbulence have the common
structure,

Sθ (k) =
∫

dpdq δ(k − p − q)

× qmqn�T (k, p, q)Pmn(p)U (p)[Z(k) − Z(q)], (A10)

where U (p) is the mode density of the velocity field and Pmn(p) = δmn − p−2pmpn is the
transverse projection operator. This equation without time dependence would describe a
steady state under a two-time theory like the DIA; by applying it to a statistically nonsta-
tionary problem, we are making approximations consistent with Markovianization. These
issues are carefully discussed by Carnevale and Martin [22].

In a scalar analog of the test-field model [18], the relaxation time �T would evolve by

�̇T (k, p, q) = 1 − [ηT (k) + η(p) + ηT (q)]�T (k, p, q)

−[Dk2 + νp2 + Dq2]�T (k, p, q), (A11)

where ηT is a scalar frequency defined by

ηT (k) = Ckmkn

∫
dpdq δ(k − p − q)�T (k, p, q)Pmn(p)U (p) (A12)

and η(p) is an analogous quantity for the velocity field. The dependence of �T on both
a scalar and a velocity frequency complicates any attempt to replace triad interactions by
pair interactions. At the risk of oversimplification, we propose to ignore the dependence
on the velocity frequency scale entirely, and assume that �T depends only on the scalar
frequency.

Following [4], we distinguish two contributions to scalar transfer as defined by Equa-
tion (A10): an ‘input’ or ‘replenishing’ term,

S+
θ (k, p, q) = −

∫
dpdq δ(k − p − q)qmqn�T (k, p, q)Pmn(p)U (p)Z(q) (A13)

and a ‘damping’ or ‘eddy diffusivity’ term,

S−
θ (k, p, q) =

∫
dpdq δ(k − p − q)qmqn�T (k, p, q)Pmn(p)U (p)Z(k) (A14)

so that Sθ = S+
θ + S−

θ . (The terminology ‘input’ and ‘damping’ is consistent with the signs
in Equations (A13) and (A14) because Sθ appears in Equation (A2) with a negative sign.)
Continuing to follow [4], we will evaluate these terms in the two limits of distant in-
teractions k � p, q → ∞ and local interactions q � k ≈ p. In both limits, the triangle
formed by the wavevectors k, p, q with k = p + q degenerates into collinear line segments
and permits the replacement of integrals over wavevector triads by integrals over a single
wavenumber.

The procedure is as follows:

1. Evaluate the integrands in Equations (A13) and (A14) in the distant and local interaction limits.
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2. Replace all mode interactions in which q ≥ k by their distant interaction limit, and all interactions
in which q ≤ k by their local interaction limit.

3. Replace the triad interaction time by a pair interaction time.

Steps (1) and (2) were introduced by Kraichnan [16] for distant interactions to connect an-
alytical theories to renormalization group formalisms. These steps undeniably entail some
arbitrary choices: in step (2), we could replace k by λk with λ > 1; recall the comment
by Orszag cited earlier [15]. Also, in step (3), there is no ‘rational’ way to replace the
triad time by a pair interaction time; we simply do it. However to repeat, we are seeking
simplifications, not approximations.

Consider the distant interaction limit of the integrand of S−
θ . In this limit, p ≈ q, thus

qmqn�T (k, p, q)Pmn(p)U (p)Z(k) ≈ kmkn�T (k, p, p)Pmn(q)U (q)Z(k), (A15)

where we have substituted q = k − p. Using the elementary result for integration over a
sphere of radius p,

∮
dS(p) Pmn(p) = 8

3πp2δmn (A16)

and following step (2) in replacing the integration over triads by an integral over all q ≥ k,
the outcome is

S−
θ → Ck2Z(k)

∫ ∞

k

dq �T (k, q, q)E(q), (A17)

where the symbol → simply denotes the result of the indicated operations. We used
U (q)dq ∝ E(q)dq, valid for isotropy, to replace mode density U (q) by the energy spec-
trum E(q). Step (3), brute force introduction of a pair relaxation time, leads to

S−
θ → C−

d k2Z(k)
∫ ∞

k

dq �T (k, q)E(q) (distant interactions). (A18)

Analytical evaluation of C−
d and subsequent analogous constants is straightforward, how-

ever, as in [4], they will be treated as disposable parameters.
The distant interaction limit of S+

θ is similar and leads after the same three steps to

S+
θ → −C+

d k2
∫ ∞

k

dq �T (k, q)
E(q)Z(q)

q2
(distant interactions). (A19)

Next consider the local interactions in which p ≈ k. Clearly,

qmqn�T (k, p, q)Pmn(p)U (p)Z(k) ≈ qmqn�T (k, k, q)Pmn(k)U (k)Z(k) (A20)

in this limit. Again following the same steps,

S−
θ → C−

� Z(k)U (k)
∫ k

0
dq �T (k, q)q4 (local interactions). (A21)
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Since in the local interaction limit,

qmqn�T (k, p, q)Pmn(p)U (p)Z(q) ≈ qmqn�T (k, k, q)Pmn(k)U (k)Z(q), (A22)

we find

S+
θ → C+

� U (k)
∫ k

0
dq �T (k, q)q2C(q) (local interactions) (A23)

(as in Equation (A17), we use Z(q)dq ∝ E(q)dq.) In this case, we have used the notation
to emphasize that the constants in each of Equations (A18)–(A23) are different.

By multiplying the terms proportional to Z(k), Equations (A18) and (A23), by k2 and
adding, and choosing C−

d = C+
� = C, we obtain the closure

Tθ (k) = C
{
k2C(k)

∫ ∞

k

dq �T (k, q)E(q) − E(k)
∫ k

0
dq �T (k, q)q2C(q)

}
(A24)

so that, consistent with conservation properties, Tθ is a gradient:

Tθ (k) = ∂

∂k
C
∫ k

0
dκ κ2C(κ)

∫ ∞

k

dq �T (k, q)E(q), (A25)

which gives the scalar Heisenberg model with a pair relaxation time stated earlier as
Equation (7).

Adding the two additional contributions Equations (A19) and (A21) and again requir-
ing C+

d = C−
� = C, we obtain the scalar generalized Heisenberg model of Equation (8),

Sθ = ∂

∂k
C
{∫ k

0
dκ κ4

∫ ∞

k

dp �T (κ, p)
C(p)E(p)

p2

−
∫ k

0
dκ κ2C(κ)

∫ ∞

k

dp �T (κ, p)E(p)

}
. (A26)

The condition C+
d = C−

� makes the scalar transfer a gradient, and equating both to the
constant C of the Heisenberg model ensures the possibility of equipartition ensembles.

Up to this point, we have not considered the local interactions in which p → 0, q → k.
This limit is rather deeper and more subtle: it is linked to the locality property of scalar
transfer, namely the finiteness of the scalar flux even when the velocity field exhibits Kol-
mogorov scaling at all wavenumbers 0 < k < ∞. Clearly, if we simply set p = 0 in Equa-
tion (A10), it appears that U (p) would cause the transfer to diverge. However in this limit,
Z(q) − Z(k) also approaches zero; thus, the limit must be evaluated more carefully.

Write the scalar flux as

Fθ (k) =
∫

|k|≥k

dk
∫

|p|≤k

dpdq δ(k − p − q)qmqn�T (k, p, q)Pmn(p)U (p)

× [Z(k) − Z(q)]. (A27)
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Expanding the integrand in a Taylor series about k to second order in p,

qmqn�T (k, p, q)Pmn(p)U (p)[Z(k) − Z(k − p)]

≈ (km − pm)(kn − pn)

(
�T (k, p, k) − pc

∂�T (k, p,m)

∂mc

]
m=k

)

×Pmn(p)U (p)

(
pa

∂Z

∂ka

− 1
2papb

∂2Z

∂ka∂kb

)

= − kmknPmn(p)U (p)papc

∂Z

∂ka

∂�T (k, p,m)

∂mc

]
m=k

− 1
2kmkn�T (k, p, k)Pmn(p)U (p)papb

∂2Z

∂ka∂kb

+ · · · (A28)

where we have used pnPmn(p) = pmPmn(p) = 0 and · · · denotes terms that vanish on in-
tegration over p.

At this point, we consider only the last term in Equation (A28); following the previ-
ous steps, we will use this term to represent all interactions in which p ≤ k and replace
�T (k, p, k) by a pair interaction time �T (k, p). Then

Fθ (k) → − 1
2

∫
|k|≥k

dk
∫

|p|≤k

dp kmkn�T (k, p)Pmn(p)U (p)papb

∂2Z

∂ka∂kb

(A29)

where, as in Equation (A17), → simply denotes the result of carrying out the stated steps.
Elementary analysis leads to

∫
|k|≥k

dk
∫

|p|≤k

dp kmkn�T (k, p)Pmn(p)U (p)papb

∂2Z

∂ka∂kb

=
∫

|p|≤k

dp
∫

|k|≥k

dk
∂

∂ka

[
kmkn�T (k, p)Pmn(p)U (p)papb

∂Z

∂kb

]

−
∫

|p|≤k

dp
∫

|k|≥k

dk
∂

∂ka

[kmkn�T (k, p)] Pmn(p)U (p)papb

∂Z

∂kb

=
∫

|p|≤k

dp
∮

dS(k) kmkn�T (k, p)Pmn(p)U (p)kakbk
−2papb

∂Z

∂k

−
∫

|p|≤k

dp
∫

|k|≥k

dk kmkn

(
∂

∂ka

�T (k, p)

)
Pmn(p)U (p)papb

∂Z

∂kb

(A30)

where we note that in going from line 3 to line 5, the contribution from (∂/∂ka)(kmkn) =
δamkn + δankm vanishes.

Considering only the first integral after the last equality,

∫
|p|≤k

dp
∮

dS(k) kmkn�T (k, p)Pmn(p)U (p)kakbk
−2papb

∂Z

∂k

= C
∫ k

0
dp k4p4�T (k, p)U (p)

∂Z

∂k
(A31)
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consequently, we have the expression for the flux

Fθ (k) = −C
∫ k

0
dκ κ2�T (k, κ)E(κ)k4 ∂Z

∂k
. (A32)

This is the scalar LWN model with a pair relaxation time, formulated earlier as Equation
(9). However, we have arrived at this result somewhat less cleanly than the Heisenberg
model, because we have discarded some terms generated by the original closure. Never-
theless, the analysis establishes that analytical closure incorporates an effect of diffusive
transfer described by a model closely related to the Leith model. However, we stress that
the result is not the original model proposed by Leith but rather a modification in which
the effect of distant interactions is explicitly retained through the integration in Equation
(A32).

One important feature is that the model depends on the strain
∫ k

0 dp p2E(p) rather

than on the mean square velocity fluctuation
∫ k

0 dp E(p). This dependence on strain is
responsible for the locality of the Kolmogorov–Obukhov range, since the integral over p

is convergent even if E(p) ∝ p−5/3.
However, we see that in closure, dependence on strain is tightly linked to the diffusive

character of the corresponding interactions: interaction of the scalar field at wavenumber k

with velocity modes with asymptotically small wavenumbers in a range 0 ≤ p ≤ �p, say,
spreads the scalar excitation over wavenumbers κ in the range k − �p ≤ κ ≤ k + �p; this
effect is of course diffusive. In the Ellison model, the dependence on strain is present, but
the diffusive effect is lost.

This conclusion can perhaps help clarify the discussion of Batchelor’s and Kraichnan’s
picture of the Batchelor diffusive range in Section 3.4: in Kraichnan’s picture, the strain
field is at large but finite wavenumbers, and local interactions cause the scalar excitation
to be diffused as discussed above. This diffusion in wavenumber is consistent with the
LWN variant of Leith’s model. However, in Batchelor’s picture, the large-scale strain field
is at effectively zero wavenumber; it therefore acts like a mean field (here, ‘mean field’
is understood in the sense of Reynolds averaging), distorting the scalar field and possibly
the wavevector k, but at most transferring the excitation from k to a different (single)
wavenumber. Consequently, there is no diffusive effect. The perhaps surprising outcome is
that the k−1 constant flux scaling is unchanged, and only the diffusive range is altered [11].
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