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In this thesis, we present evidence that there is an under-emphasis on the application of

software systems in Software Engineering research, affecting the advancement of the field

as a whole. Specifically, we perform a case-study on KLEE, a tool with over 1000 citations.

We made improvements that consisted of fixing performance bugs and implementing

optimizations that have become common practice, increasing KLEE’s performance by

2-11X. To understand how techniques proposed in the literature would be affected by

these improvements, we analyzed 100 papers that cited the original KLEE paper. From

this analysis we found two things. First, it is clear that coherence to the principles of

replication is lacking; it was often very difficult to understand how a particular study

used KLEE, and therefore to understand how our improvements would affect the study.

Second, when conservatively estimating how the studies relied on KLEE, we believe that

seven of the 21 papers that we investigated could have their conclusions significantly

strengthened or weakened. Upon closer investigation, six of these seven papers involved

studies that directly compared a KLEE or a KLEE dependent tool to some other tool.

The potential for mis-application within these competing techniques makes it difficult to

understand which observations are true, a situation that potentially leads to wasted effort

and slowed progress. To conclude, we examine several recent proposals to address this

under-emphasis, using KLEE as an exemplar to understand their likely effects.
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Chapter 1

Introduction

The pursuits of scholarship are often broken down into four distinct phases. These

phases are discovery: the investigation of new knowledge, integration: uniting theories

in meaningful ways, application: using knowledge to solve real-world problems, and

teaching: enabling future scholarship [1]. In this thesis, we present evidence that there is

an under-emphasis on the application phase of scholarship in Software Engineering.

We contend that this under-emphasis stems from academia’s reliance on publication

as the main avenue for advancement [2]. “[P]ublish or perish” is a common refrain,

summing up the pressures on faculty [3]. During the review process, papers that claim

something new are much more likely to be published [2, 4, 5, 6]. For example, one

paper surveyed 79 program-committee and editorial-board members about their views on

replication [5]. The authors concluded “[m]ost participants wish to see more replications

but, at the same time, are reluctant to conduct, read, or accept them ... [showing] a lack

of incentives for conducting replication studies”. Instead, the incentive structure links

discovery to advancement, with everything else relegated to a secondary role [1].

While these misaligned incentives are pervasive throughout the scientific community

[4, 7], they are more problematic for Software Engineering than for many other disciplines
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because we create the systems we study [3, 8, 9]. The close relationship between creation

and evaluation often makes it difficult to distinguish discovery from mis-application

[10]. In some cases, newly proposed techniques (discovery) may compensate for buggy

implementations (application), leading to unnecessary complexity and false conclusions.

In other cases, new techniques are compared against systems lagging behind the current

state-of-the-art, artificially inflating the technique’s effectiveness. In the end, the noise

from the escalating complexity and competing techniques makes it difficult to understand

which observations are true and which are a byproduct of implementation deficiencies.

This uncertainty leads to wasted effort and slows the progress of the community as a

whole.

To illustrate the problems that are associated with the current incentive structure,

we examine the Symbolic Execution (SymExe) [11] engine KLEE [12]. We chose KLEE

because it is a well thought of, well maintained tool in the Software Engineering research

community. This is illustrated by the fact that the paper that presented KLEE, KLEE:

Unassisted and automatic generation of high-coverage tests [13], has garnered over 1000

citations [14] and is at the foundation of many other influential research tools [15, 16, 17,

18]. Since the source code’s release in 2009, the creators of KLEE have met or exceeded

the expectations for maintaining and improving a foundational research tool. They

have released the source code [19]. There is an active community of contributors from

both academia and industry [20]. The core developers are welcoming of bug-fixes and

optimizations to their code.

Despite its importance and widespread use, however, we were able to make several

significant improvements to KLEE’s code-base. Some of these improvements were bugs

that have undermined KLEE’s performance since its release. Others were optimizations

that have since become common practice. In the end, the time required to run KLEE

was reduced by up to 11X, a speedup that dwarfs many of the new techniques proposed
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in the literature. Given the fact that many other tools do not exhibit the same level of

continued development and maintenance as KLEE (discussed in Section 2.3), we find it

likely that other tools suffer from similar problems.

In order to understand how our improvements might affect the state-of-the-art, we

analyzed 100 papers [21] that were published by international conferences and journals

and cited the original KLEE paper [13]. Of these 100 papers, 26 used KLEE in their

experiments. In an ideal world, we would be able to easily re-run each of the experiments

in these 26 papers in order to understand the impact of our improvements. Unfortunately,

our analysis showed us is that papers rarely live up to the principles of replication. While

some papers (three) made it easy to closely follow their KLEE-based experiments, others

(five) provided just enough information to make it clear that re-running their experiments

would be very difficult. Most papers (18), however, left out critical information required

to reliably replicate their experiments.

In order to proceed with the analysis about how our improvements affected the state-

of-the-art, we decided to focus on the 21 papers that either made closely following their

KLEE-based experiments easy or left out critical information on how to replicate their

KLEE-based experiments (we left the five papers that had provided enough information

to make it clear that replicating their experiments would be difficult for future work).

We felt that including the first group of papers would provide valuable insights because

we could closely follow their original experiments with our improvements included and

examine the effect on their results. We felt that including this second group of papers was

a necessary step. Since so many of them had excluded critical information for replication,

the only way to understand how they would be affected is through approximation.

Therefore, we examined each of these papers and conservatively estimated the KLEE

setups they were most likely to have used.

Having made these decisions, we examined how our improvements would likely
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affect the outcomes of these 21 papers. In the end, we believe that seven of them could

potentially have their conclusions significantly strengthened or weakened. These seven

papers range in impact from a single citation [22, 23, 24] up to 16 citations [25] and

appeared in venues such as ICSE [25], OOPSLA [26], ICST [22], and CAD [24]. These

papers illustrate the potential negatives associated with the current incentive structure.

They represent potentially wasted effort by authors who mistook mis-application for

discovery. They also represent potentially wasted effort on behalf the community as

these papers may provide conflicting signals of which techniques are effective and which

techniques are not.

Upon closer examination, six of these seven papers directly compared the ability of

different options to solve a particular problem and declared one to be better than the others.

Indeed, 50% (6 of 12) of the papers that involved evaluations of this type we believe could

be questioned. The lack of robust conclusions seen in papers that investigate which of

several options is better is a symptom of our current incentive structure. Improvements

are forsaken as more and more complexity is built into systems, leading to wasted effort

and incorrect conclusions [27]. The difficulty is that we cannot simply exclude studies that

examine which of several options is better, since they are important for the advancement

of the field. Better options lead to faster implementations, in turn making more things

become possible.

In order to address these problems, we examine how to best re-align the relationship

between application and discovery. One option is to change how work on tools such as

KLEE is cited and understood [28, 29, 7]. For example, if KLEE’s functionality is being

used, the tool itself, rather than the original paper that presented it, should be cited

[7]. This change, combined with an increased appreciation for this type of work by the

community at large, would mean that all contributions to a project would receive credit,

rather than just a static list of the tool’s original authors. Another option is to increase the
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role of funding bodies. In this case, money would be given to tools that achieve sufficient

importance to merit a devoted staff of developers [30, 31, 32]. This funding would provide

a staff whose primary motivation is to improve the tool. Another suggestion is to expand

the role of competitions more broadly [33, 34, 35]. Here, the esteem of winning provides

the incentive to apply ideas correctly. Finally, the inclusion of a maintenance track in

conferences and journals has the potential to reward application within the current

model for academic recognition. This track would provide a forum to both highlight

improvements to important tools and to identify papers whose conclusions might be

affected by these improvements. Each of these four options attempts to reward the work

of application within the context of scholarship. Accomplishing this would acknowledge

a truth that has long gone unrecognized in our discipline: quality engineering and correct

application of state-of-the-art ideas is both difficult and important [36].

Finally, we believe that combining a re-alignment of the incentive structure to reward

the scholarship of application with efforts to increase the community’s conformance to

replication principles [37] has the potential to yield benefits greater than those that would

be achieved by each individually. This is because the effects of improvements to a tool

underlying a set of papers could be quickly understood. This would allow researchers

to identify techniques that are byproducts of incorrect implementations, providing the

community with a refined view of the current state-of-the-art. By continually improving

and vetting the systems and techniques that we rely on for research, there would be

fewer false starts and fewer mixed signals, leading in turn to more consistent progress by

the community as a whole [27]. For this reason, we believe that both efforts should be

advanced simultaneously.

It is important to note that our analysis of the different ways to address the under-

emphasis on application leaves many questions unanswered. For example, there is a lot

of debate about how to handle closed source and non-released tools within the context
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of scientific inquiry [38]. Since KLEE is an open source tool, we provide few insights on

how to proceed on this front. Problems such as these will likely require their own specific

solutions and paradigms.

It is clear that no amount of effort will completely remove all questions about the

foundation upon which new ideas are built. The unknowns of Science lie both ahead and

behind. What we can do is acknowledge our sources of error, and move to address them.

This will lead to greater sustained progress by the community at large.
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Chapter 2

Tip of the Iceberg

In this chapter we present KLEE and discuss how it works. After this, we present the

improvements that we made to KLEE and evaluate their effect on its performance.

2.1 What is KLEE

KLEE is a powerful SymExe (Symbolic Execution) tool for automaticaly testing C pro-

grams. There exist a wide variety of SymExe tools, including ones for binary code [39, 40],

Java [41, 42], C# [43], C++[44], and C [45, 46, 47, 48, 25, 49, 50, 51, 52]. Each has been

used to find a wide variety of bugs and flaws in programs.

What made KLEE unique from the tools that preceded it was the sheer scale of

programs it was able to test. Before KLEE, most SymExe tools were used to test small

toy programs or pieces of larger systems. KLEE broke new ground, testing 89 of Unix’s

core-utils programs, exposing new bugs and achieving higher coverage in a few hours

than test suites developed by experts over the course of decades [13].

There are several reasons that KLEE was able to make this important advance. First,

it utilized the newly created LLVM framework [53], that allowed large C programs to
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be compiled into a format that a SymExe tool could handle. Second, KLEE relied on

uClibc to model key system calls [54], allowing it to handle unaltered versions of the

core-utils. Third, it was the work of some incredibly talented researchers who combined

some of their own optimizations with those presented in both the literature and other

tools into one fully functional tool. Finally KLEE relies on search strategies that focus

on code coverage rather than a complete exploration. This tradeoff allows it to be more

useful in practice.

Because of its success, KLEE has been used in a wide variety of ways since its code-

base was released in 2009. These include instances where KLEE is used for testing [55, 56],

including GPU “kernels” [57], networks [58], and file system checkers [59]. There are

groups that have used KLEE for document synthesis [60], stress testing [26], and aiding

debugging [61, 62]. In addition, it is often used as a baseline to show the efficacy of a

new technique [63, 64], the implication being that if KLEE can’t do it, then it is unlikely

any other tool could.

2.2 How KLEE Works

Instead of executing a program in the normal manner, where the inputs control a path

through the program, KLEE (and SymExe in general) works by representing inputs

symbolically. This means that whenever a branch is encountered, the tool forks, ostensibly

exploring both sides of the branch. In order to focus towards generating meaningful

inputs, KLEE utilizes the STP SMT solver [65] to determine if a particular path is “feasible.”

A path is “feasible” if there exists some input that would be able to follow the path in

question. Additionally, the solver can be used to create concrete inputs, allowing a normal

execution to follow these same “feasible” paths. In contrast, “infeasible” paths are ones

that cannot possibly be executed and therefore can be removed from the exploration.
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In theory, given enough time, every “feasible” path in a program could be traversed,

proving it to be free of common bugs (such as assertion violations) as well as generating

a comprehensive test suite that exercises all of these paths. In practice, however, KLEE

relies on search methods that allow it to target “important” paths sooner in the execution,

increasing the chances that bugs will be found in a realistic amount of time.

For the majority of configurations, a KLEE execution can be split into two separate

phases: program exploration and test generation. The program exploration phase is tasked

with traversing various paths through the program, attempting to cover as much of the

program being tested as possible. This phase utilizes two different parts of KLEE. The first

part, called the Executor, chooses which paths to follow through the program, generating

sets of constraints that represent each particular path traversal. The second part, called

the Solver Chain, decides whether the constraint sets and the paths they represent are

feasible (SAT/UNSAT).

Upon completion of the program exploration phase (due to timing out, reaching a

termination metric, or having fully explored the program), KLEE enters its test generation

phase.1Here, constraints that were generated during the program exploration phase are

passed to the Solver Chain in order to generate concrete tests. These concrete tests allow

for a native execution to follow the same paths that were traversed by KLEE.

During normal use, the Solver Chain is the most expensive part of an execution. This

is because the Solver Chain is often forced to use the SMT solver: an extremely costly

operation. In an attempt to mitigate these costs, KLEE uses three filters to reduce the

size and number of constraint sets that reach the solver. In practice, these filters are very

helpful, preventing on average 99.8% of the constraint sets from ever reaching the solver.2

1It practice, KLEE may also create tests during the program exploration phase. This occurs whenever a
path being traversed reaches a program exit.

2Data generated across all 89 core-utils programs using none instance of KLEE configured using the
Generic Regression setup. Both of these are discussed in Section 2.5.
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The first filter looks for “constraint independence”, factorizing the incoming constraint

sets into smaller independent subsets (see Appendix A for details). These smaller subsets

are much easier for the latter parts of the Solver Chain to handle. Additionally, since

KLEE builds these constraint sets incrementally, it is possible to identify the newest

constraint from the constraints that have been a part of the path for a long time. With

this information, KLEE can then “slice” the constraint set. This is useful because, in

most cases, just the subset of constraints that contains the newest constraint needs to be

forwarded further down the Solver Chain, leading to a significant reduction in the number

of constraints that need to be handled [66]. Only when a solution for the entire state is

required does the entire constraint set need to be solved.

The second filter caches previously determined solutions and checks whether the an-

swer to an incoming constraint set has already been computed. It does so by maintaining

a simple map of constraint sets and their solutions. If the constraint set is SAT, then its

solution represents a point that, if plugged back into the constraint set, would evaluate to

True. If, instead, the constraint set is UNSAT, this shows that no points exist that would

evaluate to True.

The third filter uses a UBTree [67] to store a mapping between a previously solved

constraint set and its solution. When a constraint set reaches the third filter, the UBTree

is queried to see whether there exists a subsuming relationship between the incoming

constraint set and a previously solved constraint set. Should there exist a constraint

set that was previously determined to be UNSAT and that is a subset of the incoming

constraint set, then the incoming constraint set must be UNSAT as well. If, instead,

there is a constraint set that was previously determined to be SAT and is a superset of

the incoming constraint set, then the incoming constraint set must also be SAT. Finally,

should both of these checks fail, KLEE finds all the solutions of the constraint sets that

are subsets of the incoming constraint set. It then plugs every one of these solutions into
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the incoming constraint set with the hope that one of the solutions evaluates to True. This

final step relies on the fact that evaluating a solution is much cheaper than generating

one via a solver.

2.3 How KLEE is Maintained

KLEE was first released on GitHub [19] in March of 2009. Since then, 24 different

contributors have had at least one commit accepted into the main trunk. This effort

translates into 989 total commits over the course of the project, including 177 total

commits in the past year, and 49 commits in the last month [19]. When compared with

other SymExe projects, KLEE’s development community is among the strongest. For

example, CREST [46], FuzzBALL [49], jCute[42], CAUT [51], and SPF [41] have equivalent

or smaller development communities [20].3Other SymExe tools, such as Pex [43], do not

provide source code for outside researchers to examine or build on. Yet others, such as

SAGE [39], CREST-BV [25], and Oasis [52], don’t even provide binaries.

To aid new users of KLEE, there is a website with a series of tutorials on how to get

KLEE up and running [68]. On this website there is a trove of information that not only

allows new users to replicate the experiments presented in the original 2008 KLEE paper,

but also provides instructions on how to set up KLEE for development. Should these

resources not be sufficient, there is also a klee-dev email list. All of this goes to show that

the KLEE community is as responsive, diverse, and active as many other important tools’.
3 as of 7/6/2015

CREST developers: 1, commits in past month: 0

FuzzBALL developers: 4, commits in past month: 7

jCute developers: 1, commits in past month: 0

CAUT developers: 1, commits in past month: 0

SPF developers: 12, commits in past month: 5
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Improvement Description Location Pull # Size in LOC Status
Complete Solution Re-computation Optimization Solver Chain 198 215 Pending

Quick Cache Bug Solver Chain 206 85 Pending
Array Factory Bug Memory Internals 202 135 Accepted

Default Enabled no-prefer-cex Bug Exploration Termination 241 24 Accepted
Unnecessary UBTree Superset Computation Bug Solver Chain 250 15 Accepted

Inequality Concretization Optimization Constraint Storage 229 231 Pending

Table 2.1: Brief descriptions of the six improvements we made to KLEE. The Improvement
Description column shows the name of each improvement. The Location column describes

where the improvement was made within KLEE. The Pull # shows the pull request
associated with each improvement on KLEE’s GitHub page [12]. Size in LOC shows how
many lines of code were changed in order to accomplish the improvement. Finally, the

Status column, shows the current status of the pull request as of 7/24/2015.

2.4 Improvements to KLEE

Despite all of these efforts, there remained opportunities for improvement in KLEE. In

this section, we go over the six different improvements that we made. Three of the

improvements occurred in KLEE’s Solver Chain. Of the other three, one has to do with

how KLEE terminates, one has to do with KLEE’s internal memory structures, and one

has to do with how KLEE stores constraints. None of the improvements we made can

be considered a contribution to the state-of-the-art. Instead, four address a performance

bug in KLEE and two add simple optimizations that are now common practice. Table 2.1

provides a brief description of these different improvements. In the sections below, we

examine each of them in-depth.

2.4.1 Complete Solution Re-computation Optimization

During KLEE’s program exploration phase, the first filter of the Solver Chain minimizes

the size of every new constraint set by factorizing it. Unfortunately, during the test

generation phase, the original implementation of KLEE would no longer attempt to

factorize incoming constraint sets. Therefore, instead of using the cached solutions for its

individual subsets, a complete constraint set would pass unrecognized through the Solver
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Chain and end up at the SMT solver.

To fix this, we changed KLEE so that a constraint set generated during the test

generation phase would be fully factorized.4Once each subsets’ solution is retrieved, all

of them are stitched together to form a single, complete solution. This is faster than the

original implementation since all of the pieces of the constraint set have already been

solved for and combining them is very inexpensive. This approach for generating a single

complete solution from many smaller solutions has been considered common practice

since 2004 [69].

2.4.2 Quick Cache Bug

This bug occurred at the interface of the second and third filters in the Solver Chain.

The second filter is designed to catch constraint sets that have been seen before. This is

important for two reasons. From one perspective, it can be viewed as a means to quickly

decide the status of an incoming constraint set. Another way of viewing it, however, is as

preventing the third filter from using its increased power, and therefore increased costs,

on constraint sets that could be handled more efficiently.

The misses happened when the second filter was invoked to check whether a particular

branch could be traversed along both edges. If the first edge of the branch had not been

seen before, then the entire constraint set was immediately forwarded to the third filter.

This meant that the other edge of the branch was never checked in the second filter, even

though its solution was often already cached. In practice, this meant that the second filter

allowed thousands of equivalent constraint sets through. Therefore, the more expensive

UBTree data structure in the third filter ended up being invoked when its power wasn’t

required. We decided that the least intrusive way to fix this problem was by implementing

a simple hashmap in the third filter.5Similar to the second filter, the hashmap maintains
4Full description of improvement can be seen at https://github.com/klee/klee/pull/198

https://github.com/klee/klee/pull/198
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a simple map of constraint sets and their solutions. This hashmap is checked prior to

invoking the UBTree.

2.4.3 Array Factory Bug

This bug lay deep within the low-level workings of KLEE. During the exploration phase,

every time KLEE encounters an array, a data structure that tracks all of the reads and

writes to that array is created. In the original implementation, each time one of these

arrays was encountered, an entirely new instance of the data structure was created. The

problem occured when the same array was encountered along a different path. In this

case, two different instances ended up representing the same array. This manifested itself

in solutions that were equivalent but not recognized as such due to referencing issues.

To fix this bug, we created a factory method that examined every incoming request

for an array. If the request was for an array that had already been created, we simply

returned a reference to that array.6Fixing this bug enables solutions to be stored and

used much more flexibly than in the original implementation of KLEE. For instance, this

improvement enabled the Complete Solution Re-computation Optimization and Quick Cache

Bug improvements, discussed above, to be implemented without triggering errors. These

errors would occur when solutions were evaluated on a particular constraint set. Despite

the fact the solutions should have been recognized as valid, the aliasing problems made

them seem otherwise.

2.4.4 Default Enabled no-prefer-cex Bug

In the original implementation, when a user executes KLEE’s help command, a menu

with over 160 command-line options was displayed. While most of the options are
5Full description of improvement can be seen at https://github.com/klee/klee/pull/206
6Full description of improvement can be seen at https://github.com/klee/klee/pull/202

https://github.com/klee/klee/pull/206
https://github.com/klee/klee/pull/202
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clearly explained, there was a command-line option called no-prefer-cex without any

accompanying description. If you looked through the code, there was no documentation

on what this option does. An online search was similarly unhelpful.

Eventually, through a combination of trial and error and the klee-dev email list, we

discovered that no-prefer-cex is an option that attempts to make each byte in a test case

an ASCII character. This results in test cases that contain as many human readable

characters as possible. During our exploration, we couldn’t find any configuration that

degraded KLEE’s performance as much as when no-prefer-cex was enabled. Unfortunately,

no-prefer-cex was enabled by default.7

We considered no-prefer-cex a bug because the costs far outweigh the benefits.8None

of the papers that we examined mentioned that they wanted human readable output

for their test cases. In our experiments with KLEE, we rarely even looked at a test case.

While it seems possible that there is a place for this option, such as introducing new users

to KLEE, making it the default behavior reduces the performance of KLEE for the average

user.

2.4.5 Unnecessary UBTree Superset Computation Bug

This bug was the result of what turns out to be an unnecessary “optimization” added to

KLEE. In the original implementation, the UBTree checked for both supersets and subsets

of an incoming constraint set. The subset query was very efficient, taking on average less

than 1% of the overall computation.9The superset query, however, was much less efficient.

Over the course of a run, it could account for up to 79% of the computation while on
7The no-prefer-cex option is actually a double negative. When it is turned “off”, it actually caused

additional computation. Its default position was “off”. Due to the difficulty discussing double-negatives,
we will consider no-prefer-cex to be “enabled” if it causes the extra computation that produces human
readable test cases. We will consider the no-prefer-cex option “disabled” if this extra computation is skipped.

8Full description of improvement can be seen at https://github.com/klee/klee/pull/241

https://github.com/klee/klee/pull/241
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average taking up 44% of the computation.

The reason for this inefficiency is that when more and more constraint sets are placed

into the UBTree, the response time for a superset query increased at a much faster rate

than the subset query. These escalating computational costs eventually outweighed the

costs of bypassing the check and sending the query directly to the solver. Upon removing

the superset check10, our experiments show that, on average, 80% of the constraint sets

that would have been caught by the superset check end up being decided by the much

less expensive subset check.11 Even when the subset check does miss, the costs associated

with an SMT call end up being significantly less than a superset check.12

2.4.6 Inequality Concretization Optimization

Concretization is an important optimization in all SymExe tools. If a symbolic variable

can be proven to be a single value, then it no longer needs to be symbolic. This logic is

used to simplify and even eliminate many of the constraint sets that need to be solved.

KLEE’s original implementation had a simple form of concretization. If a symbolic

value was ever explicitly set to a single value (x = 4), then it would be treated concretely.

This simplification makes it easier for the SMT solver to return an answer. For example,

the constraint set (x = 4) ∧ (x + y < 10) would be simplified to (y < 6).

KLEE did not, however, have a mechanism to handle inequalities, which can constrain

a variable to the point where it can only be a single value. For example, the constraints
9Data generated across all 89 core-utils programs using none instance of KLEE configured using the

Generic Regression setup. Both of these are discussed in Section 2.5.
10Full description of improvement can be seen at https://github.com/klee/klee/pull/250
11Data generated across all 89 core-utils programs comparing the all instance of KLEE against the

no-disable instance of KLEE. Each instance is configured using the Generic Regression setup. Each of these is
discussed in Section 2.5.

12The authors of CREST-BV noticed this problem when they were comparing their tool directly against
KLEE [25]. Unfortunately, they turned off the entire UBTree, removing the highly effective subset checks.
By turning off just the superset checks, the efficiency of the UBTree stage increases while simultaneously
providing almost all of the filtering capabilities of the original implementation.

https://github.com/klee/klee/pull/250
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(3 < x) ∧ (x < 5) can be used to show that (x = 4). In order to implement this

optimization, we simply created a series of maps that hold the maximal and minimal

values that a variable can possibly be.13Should the maximal and minimal values ever

become equal, then the variable would be concretized. This optimization has been

common practice since at least 2007 [48, 66, 70].

2.5 Experimental Setup

The goal of this evaluation is to examine how the six improvements explained above

might affect the state-of-the-art. In order to do this, we examined the configurations of

the 21 papers from our analysis in Section 3.2.2. Of these 21 papers, three made it very

clear how they were using KLEE. For the remaining 18, we often had trouble determining

their exact configurations due to lack of documentation within the papers. After a close

reading of these papers, however, we came to believe that each of these 21 papers could be

mapped onto one of three different configurations. Table 3.1 shows the final configuration

we determined for each paper.

The first setup, called Core-Utils Coverage, covers papers that re-run the experiments

in the original KLEE paper. The goal of these original experiments was to find bugs

within the core-utils and to create a test suite that only included tests that increased

line coverage. In this case, various optimizing command-line options were turned on to

allow KLEE to target specific patterns in the core-utils. The second setup, called Generic

Coverage, covers experiments that did not involve core-utils, and therefore didn’t use any

optimizing command-line options, but still only outputs tests that increased coverage.

The final option, called Generic Regression, mimics papers that attempted to generate as

many tests as possible. The first two columns of Table 2.2 shows how the papers were
13Full description of improvement can be seen at https://github.com/klee/klee/pull/229

https://github.com/klee/klee/pull/229
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Setup # of Papers Command-Line Arguments
CC 2 klee –libc=uclibc –posix-runtime –max-forks-terminate=$FINISH –exit-on-error=0 –simplify-

sym-indices –write-cvcs –write-cov –output-module –max-memory=1000 –disable-inlining
–optimize –use-forked-solver –use-cex-cache –allow-external-sym-calls –only-output-states-
covering-new –environ=test.env –run-in=/tmp/sandbox –max-sym-array-size=4096 –max-
instruction-time=30. –max-memory-inhibit=false –max-static-fork-pct=1 –max-static-solve-
pct=1 –max-static-cpfork-pct=1 –switch-type=internal –randomize-fork –search=random-
path –search=nurs:covnew –use-batching-search –batch-instructions=10000 ls.bc –sym-args
0 1 10 –sym-args 0 2 2 –sym-files 1 8 –sym-stdout

GC 11 klee –libc=uclibc –posix-runtime –max-forks-terminate=$FINISH –exit-on-error=0 –only-
output-states-covering-new=1 ls.bc –sym-args 0 1 10 –sym-args 0 2 2 –sym-files 1 8 –sym-
stdout

GR 8 klee –libc=uclibc –posix-runtime –max-forks-terminate=$FINISH –exit-on-error=0 ls.bc –sym-
args 0 1 10 –sym-args 0 2 2 –sym-files 1 8 –sym-stdout

Table 2.2: The number of papers and the command-line arguments associated with a
particular setup. The three setups were the ones used by the papers in our analysis seen

in Section 3.2.1. The Setup column shows each of the three setups we tested with CC
meaning Core-utils Coverage, GC meaning Generic Coverage, and GR meaning Generic

Regression. The Papers column shows the number of papers from our analysis that used
that particular setup. The Command-Line Arguments shows the arguments used to run

KLEE using that particular setup.

distributed across these three setups.

For test artifacts, we used the same version of the core-utils programs that was used

in the original KLEE paper [13]. For each test artifact, we used the same number and size

of symbolic arguments as suggested on the KLEE website [68].

We had to design the experiments that assessed the improvements to KLEE carefully.

This is because KLEE does not have a traditional timeout. Instead, between the time when

KLEE is started and the “timeout,” KLEE is in its program exploration phase. Once the

“timeout” is reached, KLEE switches to the test generation phase. This means a one hour

“timeout” can result in a 10 hour KLEE run.14Simply terminating KLEE at the one hour

mark would result in an unequal comparison between configurations. Because of this, we

chose to generate a “finish line” and time how long it took the various configurations of

KLEE to reach it and create all requisite tests. The “finish line” we selected was the number

of forks our fastest configuration of KLEE was able to traverse in one hour. We then
14This huge disparity between the “timeout” and the actual termination of KLEE run is most common

when many tests are being created. This is the case with the Generic Regression setup.
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recorded how long it took each setup to reach this “finish line” and then generate all of

its requisite tests. We did this five times for each program, averaging the execution times

across all five runs. If a particular execution took longer than 24 hours, we terminated it.

The third column of Table 2.2 presents each of the three different configurations we

evaluated, using the core-utils program ls as an example. The $FINISH variable represents

the number of forks we used to terminate execution and would change depending on

the program being tested. In addition, as previously discussed, the symbolic arguments

passed into KLEE would change depending on the program as well.

Finally, for each of these three KLEE setups, we tested seven different instances of

KLEE.15The first instance had all of our improvements enabled (denoted as all). The

second instance was untouched by any of our improvements (denoted as none). The

remaining five instances were versions that had all but one of our improvements enabled.

We tested versions that were missing the Complete Solution Re-computation Optimization

(denoted as no-recompute), the Quick Cache Bug fix (denoted as no-quick), the Unnecessary

UBTree Superset Computation Bug fix (denoted as no-disable), the Inequality Concretization

Optimization (denoted as no-concrete), and the Default Enabled no-prefer-cex Bug fix (denoted

as no-prefer). By testing in this all but one fashion, we hoped to show the importance of

each improvement. The one bug we could not directly test in this all but one fashion was

the Array Factory Bug since both the Complete Solution Re-computation Optimization and the

Quick Cache Bug required it in order to function. Turning off the Array Factory Bug would

have required that we turn off these optimizations as well.
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Setup none no-prefer no-quick no-recompute no-disable no-concrete
CC 11.6 (13.2) 1.2 (1.0) 1.2 (1.0) 1.2 (1.0) 1.6 (1.2) 8.5 (7.5)
GC 2.4 (1.9) 1.4 (1.0) 1.0 (1.0) 1.2 (1.0) 1.9 (1.5) 1.1 (1.0)
GR 11.0 (9.1) 4.5 (3.6) 1.0 (1.0) 1.8 (1.3) 1.9 (1.5) 1.1 (1.1)

Table 2.3: Average (median) improvement of the all instance relative to the other six
instances on the set of runnable core-utils programs for a particular setup. The Setup

column shows each of the three setups we tested with CC meaning Core-utils Coverage,
GC meaning Generic Coverage, and GR meaning Generic Regression. The none, no-prefer,

no-quick, no-recompute, no-disable, and no-concrete columns show to how much faster the all
instance executes all runnable core-utils programs relative to the none instance, the

no-prefer instance, the no-quick instance, the no-recompute instance, the no-disable instance,
and the no-concrete instance respectively.

2.6 Results

Figure 2.3 shows the results of our experiments. The columns none, no-prefer, no-quick,

no-recompute, no-disable, and no-concrete refer to how much faster the all instance executes

all the setup of runnable core-utils programs is relative to the none instance, the no-prefer

instance, the no-quick instance, the no-recompute instance, the no-disable instance, and the

no-concrete instance respectively. Each cell contains the average improvement of the all

instance with the median program’s improvement in parentheses.

In addition, Figures 2.1, 2.2, and 2.3 are provided to show more detail of how our

improvements affected the set of runnable core-util programs. Each figure shows a series

of box-plots. The labels none, no-prefer, no-quick, no-recompute, no-disable, and no-concrete

refer to how much faster the all instance is relative to the none instance, the no-prefer

instance, the no-quick instance, the no-recompute instance, the no-disable instance, and the

no-concrete instance respectively. The box-plots show the minimal, first quartile, median,

third quartile, and maximal improvements across the set of all core-util programs that
15Each of our test instances was based off commit number 3bd3789 from KLEE’s GitHub repository [12].

For example, the none instance explained above is a build of commit number 3bd3789 while the all instance
is commit number 3bd3789 with all of our improvements added on top. Complete execution information
and data from our experiments can be found at http://bit.ly/1Ir86EI

http://bit.ly/1Ir86EI
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could be run for a particular setup. Each graph is displayed using the same logarithmic

scale with a maximum value of 100.

We generated each data point within the box-plots by dividing the time required to

execute a particular program for a particular instance by the time required to execute that

same program for the all instance. For example, the minimal point in Figure 2.1 for the

box plot labeled none represents the one program (ptx) that was slower for the all instance

to evaluate than the none instance. We calculated the value of this point by dividing

the average time required to finish the core-utils program ptx for the none instance (768

seconds) by the average time required to finish ptx for the all instance (2925 seconds) to

show that our improvements made analyzing ptx 0.26 times as fast.

2.6.1 Core-utils Coverage Setup

For this setup we were able to execute 86 of the 89 core-util programs. We couldn’t test

three of the programs (date, touch, and fmt) due to preexisting assertion violations that

were encountered by every one of our KLEE instances, including the none instance.

After running each instance with the Core-utils coverage Setup, the average improvement

by all over none across the set of all runnable core-utils programs was 11.6X, as can be

seen in Figure 2.3. In addition, as can be seen by the left-most box-plot in Figure 2.1,

the median performance of the all instance was 13.2X faster than the none instance. The

program ptx, as discussed previously, was the only core-utils program where all was

slower than none.

The improvement that has by far the largest effect on the overall performance of KLEE

after our optimizations is the Inequality Concretization Optimization. This can be seen in

the fact that the no-concrete instance had an average runtime that was 8.5X worse with

a median value that was 7.5X worse than the all instance. In addition, the Unnecessary
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Figure 2.1: Results for executing KLEE with all, none, and all but one of our improvements
on the Core-utils Coverage setup on all of the programs of core-utils we were able to run.

The none, no-prefer, no-quick, no-recompute, no-disable, no-concrete box-plots show how
much faster the all instance is relative the none instance, the no-prefer instance, the

no-quick instance, the no-recompute instance, the no-disable instance, and the no-concrete
instance respectively.

UBTree Superset Computation Bug is very important, as can be seen by the fact that no-disable

instance’s average runtime is 56% worse with a median value that is 21% worse than the

all instance. The Default Enabled no-prefer-cex Bug was helpful. Without it, the no-prefer

instance ran, on average, 20% percent slower with a median value that was 1% slower.

Finally, the Complete Solution Re-computation Optimization and the Quick Cache Bug fix

are also useful. The no-recompute and the no-quick instances had an average runtime that

were both 21% and 20% worse than the all instance with median runtimes that were 3%

and 4% better respectively. The fact that the average runtime was faster but the median

runtime was sightly slower shows that these optimizations were particularly helpful for

programs that took longer to execute.
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Figure 2.2: Results for executing KLEE with all, none, and all but one of our improvements
on the Generic Coverage on the full set of core-utils programs. The none, no-prefer, no-quick,

no-recompute, no-disable, no-concrete box-plots show how much faster the all instance is
relative the none instance, the no-prefer instance, the no-quick instance, the no-recompute

instance, the no-disable instance, and the no-concrete instance respectively.

2.6.2 Generic Coverage

For this setup, we were able to execute all of the 89 core-utils programs. As can be seen

in Figure 2.3, the average improvement by all over none was 2.4X. As can be seen by the

left-most box-plot in Figure 2.2, the median program for the all instance was 1.9X faster

than the none instance. The only program that was slower for the all instance was yes,

which went from 257 seconds to 834 seconds. It should be noted that we omitted sort

from the graph since it was over 1000X faster with the all instance than with the none

instance.

The improvement that was by far the most important for this setup was the Unnecessary

UBTree Superset Computation Bug. This can be seen by the fact that the no-disable instance

had an average runtime that was 89% worse with a median runtime that was 49% worse

than the all instance. The Default Enabled no-prefer-cex Bug was the next most important.
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The average runtime for no-prefer was 40% worse while the median was was 1% worse.

In addition, the Complete Solution Re-computation Optimization had a positive impact, as

seen by the fact that the no-recompute instance’s average value was 24% worse than the

all instance, although its median value was actually 5% better than all. When examining

the data more closely, it turns out that only a few programs benefitted from these

improvement, but they benefitted dramatically enough to affect the average execution

time.

Fixing the Inequality Concretization Optimization was the next most important opti-

mization. The no-concrete instance had an average runtime that was 7% worse and a

median value that was 3% worse than the all instance. The reason that this improvement

was so effective in the Core-utils Coverage setup but of relative little importance in this

setup is because of the difference in search strategies of these two setups. The Core-utils

Coverage is very aggressive, making large jumps in an attempt to exercise unexplored

branches. These jumps produce many more constraints, often bounding a variable to a

single value. The Generic Coverage Setup, on the other hand, moves much more slowly

through the program. This slow progress means that the paths followed are much shorter

and therefore less constrained, meaning that the opportunity for concretization occurs

much less frequently.

Finally, the Quick Cache Bug actually hurt execution times slightly. Both the average

and median value for no-quick was 1% better when compared with the all instance.

2.6.3 Generic Regression

For this setup, we were also able to execute all 89 core-utils programs. As can be seen in

Figure 2.3, the average improvement for all over none was 11X. In addition, as can be seen

by the left-most box-plot of Figure 2.3, the median execution time of the all instance was
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Figure 2.3: Results for executing KLEE with all, none, and all but one of our improvements
on the Generic Regression on the full set of core-utils programs. The none, no-prefer,

no-quick, no-recompute, no-disable, no-concrete box-plots show how much faster the all
instance is relative the none instance, the no-prefer instance, the no-quick instance, the

no-recompute instance, the no-disable instance, and the no-concrete instance respectively.

9.1X faster than the none instance. There were no programs that were slower when using

the all instance. We again omitted sort from our graphs since the all instance was over

1000X faster than the none instance.

The most important improvement for this setup was the Default Enabled no-prefer-cex

Bug fix, as seen by the fact that the average execution time for the no-prefer instance was

over 4.5X worse with a median execution time was over 3.5X worse than the all instance.

The reason that this improvement was so much more effective for this setup than for the

previous setups is because this setup produces many more test cases. This means that

reducing the costs of producing test cases has a much larger impact.

The next most important improvement was the Unnecessary UBTree Superset Computa-

tion Bug: the average execution time using the no-disable instance was, on average, 88%

worse with a median value that was 47% worse than with the all instance. The next
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most important improvement was the Complete Solution Re-computation Optimization. The

no-recompute instance had an average runtime that was 78% worse with a median value

that was 25% worse when compared with the all instance. As with the Default Enabled

no-prefer-cex Bug fix, the reason that this improvement was so much more effective for

this particular setup is because this setup produces many more test cases and therefore a

reduction in the costs of producing a test case has a larger impact.

The Inequality Concretization Optimization had a smaller effect since the no-concrete

instance had an average value that was 9% and a median value that was 5% worse than

the all instance. Finally, the Quick Cache Bug had minimal impact, as seen by the fact that

the no-quick instance had an average and median runtime than was almost identical to

the all instance.

2.7 Discussion

The first thing that the data shows is that a particular improvement can have different

effects on different setups. As can be seen in Table 2.3, in the case of the Core-utils Coverage

setup, the average and median increase was over 10X. For the Generic Regression setup,

the improvements were almost as large, with an average improvement also over 10X and

with a median improvement of 9.1X. The Generic Coverage setup, however, was much less

influenced by our improvements. In this case, the average and median improvement were

both around 2X.

The reason for these differences is that the importance of a particular improvement

changes depending on KLEE’s setup. When the original implementation of KLEE is run

with the Generic Regression setup, test generation was by far the most expensive operation.

It is for this reason that the Complete Solution Re-computation Optimization, and the Default

Enabled no-prefer-cex Bug fix come to the fore. In the other two setups, Core-utils Coverage
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and Generic Coverage, there is much less time spent creating tests and therefore the costs

of exploration become relatively larger. Therefore, the improvements associated with

exploration become more important.

2.8 How We Got Here

In addition to understanding the effects of the improvements we made, examining how

we stumbled upon them is useful as well, illustrating many of the challenges that are

associated with the current under-emphasis of the application phase of scholarship in

Software Engineering.

Over the past few years, we worked extensively with Green [66]. Green is a tool

designed to be an intermediary between SymExe tools and SMT solvers. It works

similarly to KLEE’s Solver Chain, first factorizing, then simplifying and concretizing a

constraint set to increase the chance it will be matched to a previously calculated solution.

Only when all of its attempts fail is a constraint set passed forward to a solver.

One of the goals of this research was to add the ability to handle the bit-vector

constraints generated by KLEE to Green. We hoped to eventually discover a new technique

that would reduce the number of calls making it to the solver. As such, we ran a series

of experiments with KLEE in Generic Regression mode. We captured the output that

KLEE was sending to the SMT solver and fed it through Green. From this, we made

two observations. First, KLEE was intermittently outputting constraints that could be

factorized and handled solely through caching. This led us to the Complete Solution

Re-computation Optimization discussed in Section 2.4.1. The other observation, however,

was much more interesting. We noticed that it was possible to divide the constraint sets

much more precisely than KLEE’s first filter was able to (see Appendix B for details).

From this intuition, we developed a simple heuristic that could quickly target these
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opportunities for factorization that KLEE’s approach missed (see Appendix C for details).

As mentioned before, we knew that there was a problem somewhere in the factoriza-

tion part of KLEE. As we began to implement the heuristic, however, we soon encountered

other potential improvements, such as the Array Factory Bug and the Quick Cache Bug.

Since these improvements were seemingly orthogonal to our line of research, we sim-

ply marked them for future work. When we eventually got our heuristic working, we

achieved over a 2X increase in KLEE’s performance.

At some point, however, we noticed our technique only worked when KLEE was

attempting to generate a test case. Curious, we eventually stumbled onto the existence of

the no-prefer-cex option. We realized that when no-prefer-cex was disabled, the performance

increase enabled by our technique completely vanished (see Appendix D for details). It

is fair to say we were disappointed; the technique that we had spent months on was

rendered obsolete with the flip of a switch. It was apparent to us that, rather than

discovering a technique that would help advance the state-of-the-art, we were really only

improving an inefficient and unnecessary behavior.

All of this effort and eventual failure is illustrative of a larger problem. What began as

an attempt to improve the state-of-the-art led us down a rabbit hole of implementation

details and debugging issues. It was fairly lucky that we even discovered the no-prefer-cex

option. We had started preparing to publish our technique, presenting it as a universal

improvement for all SymExe tools. This realization of how close we came to publishing

faulty results caused us to examine how this might have affected other areas of research.

We hoped (perhaps cynically) to use our experience to frame the difficulties that can

come from working within the current incentive structure, showing that without major

changes, similar situations will either lead to faulty publications or wasted effort.
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Chapter 3

Shaky Foundations

In Chapter 2, we discussed how several improvements we made increased the performance

of a popular research tool within Software Engineering. The key insight is that none of

these improvements could be considered contributions to the state of the art: some were

performance bugs in KLEE and others were optimizations that have become common

practice. In this chapter, we extend our analysis to examine how these realizations could

affect publications that rely on KLEE.

3.1 Method

In order to see how our improvements might affect the state-of-the-art, we conducted

an analysis of 100 papers. While our analysis was not meant to be a systematic review

[21, 71], we attempted to follow the suggested guidelines for conducting one in order to

make our setup and analysis complete and transparent. The goal of our analysis was to

understand how the work in these papers built and depended on KLEE, and how their

results and conclusions are affected by our improvements made to KLEE.
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3.1.1 Research Questions

The research questions addressed by this study are:

RQ1 How is KLEE cited and used by the research community?

RQ2 How well do studies enable the understanding of how our improvements to KLEE

affect their results and conclusions?

RQ3 How do our improvements to KLEE affect the results and conclusions of these

studies?

3.1.2 Search Process

In order to collect the papers used for our analysis, we used Google Scholar [14] to identify

all the papers that cited the original KLEE paper [13]. We decided to use Google Scholar

because it aggregates data from many publications and professional organizations.

Our search parameters allowed for all papers that were available on or before 3/6/2015

(the date of our search). We began our search by locating the original KLEE paper in

Google Scholar. We then clicked on the Cited by button to access a list of all of the papers

that Google Scholar has identified as citing the original KLEE paper. We then scraped

the contents of all of the resulting pages to create a local repository of files. From

this point, we iteratively and randomly selected a file and evaluated it based on our

inclusion/exclusion criteria until we had 100 papers for analysis. The author of this

document was the original judge of all of the papers, with two members of the masters

panel verifying a sample of the results.1

1All of the papers that were evaluated against the inclusion/exclusion criteria are available at http:
//bit.ly/1LTb4s4. In addition, the website offers a full justification for each of the decisions we made in
our review.

http://bit.ly/1LTb4s4
http://bit.ly/1LTb4s4
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3.1.3 Inclusion and Exclusion Criteria

There were three criteria for inclusion. First, the article had to cite the original KLEE paper.

While our search process would seem to imply this, there were a few papers returned

by Google Scholar that did not actually cite KLEE and were therefore removed from the

study. Second, the papers had to be full, peer-reviewed articles that were published by

international computer science conferences or journals. Finally, we excluded papers that

were duplicates of papers that had already been included in the analysis.

The reason that we chose to include only international conference and journal articles,

while excluding work such as technical reports, theses, and workshops, is because we

believe that investigating these papers will allow us to take the most conservative and

fair view possible of the state-of-the-art.

3.1.4 Quality Assessment

A typical systematic review contains a section that assigns different weights to results

based on the quality of the study and venue in which they appear. These varying weights

are then used to synthesize the results should any disagreements occur. This section is an

instance where the guidelines specified by Kitchenham [21] did not suite our purpose.

Instead, in our analysis we treat each paper in the same way. The reason for this is two-

fold. First, our Inclusion and Exclusion Criteria sets a high bar for a paper to be included in

our analysis. Second, our research questions address the general state-of-the-art rather

than attempting to distill a particular field down to a single conclusion.

3.1.5 Data Collection

The data collected from each paper was:

DC1 The conference or journal where the paper was published
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DC2 The author(s) of the paper

DC3 How KLEE was used in the paper

DC4 To what degree a study that used KLEE depends on execution time

DC5 How the results of a study that used KLEE would likely be affected by our improve-

ments

DC6 Configuration details for KLEE or KLEE dependent tools if KLEE was used in the

study

DC7 Version information for KLEE or KLEE Dependent tools if KLEE was used in the

study

DC8 System setup information if KLEE was used in the study

DC9 Information on where additional resources (such as code and test artifacts) could

be located if KLEE was used in the study

DC10 Whether the authors believe their proposed technique will map to KLEE if a

SymExe tool other than KLEE was used in the study

Some of the data we collected from the papers, such as the author(s), is straightforward.

Several of the pieces of information that we gathered, however, were more open to

interpretation. Therefore, to aid the data collection process, we created three separate

rubrics to formalize these data points.

The first rubric we created is called the KLEE Usage Rubric and is intended to classify

how a particular paper used KLEE (DC3). The first category in this rubric we called

the Superficial Citations category. Papers in this category cite the original KLEE paper,

but do not use it or any other form of SymExe in their experiments or implementation.
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The second category in the rubric we called SymExe Dependent. Papers in this category

cite the original KLEE paper but use some other SymExe tool in their evaluation or

implementation. The final category in the rubric we called KLEE Dependent. Papers in

this category both cite the original KLEE paper and use KLEE in some part of their study.

The second rubric, called the Time Dependence Rubric, was created to classify papers

based on the degree to which their evaluation depends on execution time (DC4). This

rubric consists of three categories representing an escalating dependence on execution

time. The first category, called Time Reported, contains papers that only report the time

required to execute the technique. A second category, denoted Timeout Used, contains

papers that use a timeout in their evaluation. Finally, the third category, named Time

Compared, contains papers that use time to directly compare two or more techniques.

The final rubric we created, called the Effects of Improvements Rubric, was designed

to identify how studies might be affected by our improvements to KLEE (DC5). The

first category, called Unaffected, contains papers whose experimental results we believed

would not be affected by our improvements to KLEE. A second category, called Positively

Affected, contains papers whose experimental results would likely improve due to the

improvements we made to KLEE. Finally, the third category, called Negatively Affected,

contains papers whose experimental results would likely worsen due to the improvements

we made to KLEE. It is important to note that with this rubric we do not investigate the

magnitude of the improvements or how the improvements would affect the conclusions

within the paper. Instead, we examine this question qualitatively in later sections.

The author of this document extracted and classified all the information. Particularly

difficult decisions were brought before two of the members of the masters panel where

they were discussed until a consensus was reached.
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3.2 Results

This section presents the results of our study.

3.2.1 RQ1: How is KLEE cited and used by the research community?

Figure 3.1: How the 100 papers in the analysis were classified by the KLEE Usage Rubric

In order to understand how the general research community uses and cites KLEE, we

used the KLEE Usage Rubric as a coarse filter. From the initial 100 papers, we classified 47

as Superficial Citations, 27 as SymExe Dependent, and 26 as KLEE Dependent. These results

can be seen in Figure 3.1. With this initial understanding, we examined the papers in

each category.

3.2.1.1 Superficial Citations

Papers in this category include configuration space testing [72], software upgrades [73],

accurate bug reports [74], and performance testing [75]. In some cases, KLEE acts as a

potential goal [76, 77], providing motivation for the work. For example, one paper “offers

a [technique for the] formalization of translation rules for C language that allows a ...

test generator to validate properties, like KLEE” [76]. In other cases, KLEE is simply a
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naı̈ve option that can be easily ruled out [78, 79, 80]. An example of this occurs in a paper

that addresses “compile-time configurability” on large systems. They cite the fact that

“the most powerful symbolic execution techniques (such as Klee ... ) would currently not

scale to the size of the Linux kernel” as the reason they don’t include it in their study

[78]. KLEE is also often cited as a potentially orthogonal tool that, when combined with a

newly proposed technique, will lead to further advances [81, 82]. For example, one such

paper says their technique “can take advantage of the high coverage achieved by ... KLEE.

Specifically, we can reuse the test cases produced from ... KLEE to uncover vulnerabilities

in the program” [83].

The diversity of papers in this category shows that KLEE is recognized well beyond

the realm of software testing. In many instances, it provides an avenue for future work

and advancement. Even when it isn’t well suited for a particular problem, however, it is

both popular and powerful enough to at least merit discussion.

3.2.1.2 SymExe Dependent

Papers in this category are mostly focused on the testing and debugging domains of

Software Engineering. Some papers propose new ways to make the results of SymExe

testing more meaningful for developers [84, 85]. Other papers talk about supporting

SymExe in general through changes to the underlying theories [86], techniques [87, 88,

89, 90], or tools [66] of SymExe. Finally, papers in this category often create their own

hybrid techniques to either target new languages [91], or to get around the path explosion

problem in SymExe [92, 93, 94, 95].

Papers in this category are interesting because they were written by SymExe re-

searchers who are aware of KLEE but chose to use a different tool. As we looked through

the papers in this category, it became clear that a majority of them (62%) believe that

their proposed techniques could be mapped onto KLEE and achieve similar results to
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those presented in the paper. In some cases this belief is explicit. For example one paper

says “our algorithms are applicable in the context of other languages for which symbolic

execution tools exists (e.g., Klee ... for C)” [85]. At the end of another paper the authors

say “KLEE ... combines several search strategies in a round robin fashion to avoid cases

where one strategy gets stuck. [Our technique] selects branches in a new context and this

can help prevent the continuous selecting of the same branch” [90].

More often, however, the possibility of extending the proposed technique to KLEE

is implied. This most often occurs when a paper identifies a problem with SymExe as

a whole and then fixes the problem on a particular version of the tool. An example

of this occurs when a paper asserts “[o]ther concolic and symbolic testing tools could

integrate our algorithm to solve complex path conditions without having to sacrifice

any of their own capabilities, leading to higher overall coverage” [87]. The reader is

left with the impression that all SymExe tools, including KLEE, would similarly benefit.

Another example occurs in a paper where the authors report “[w]e developed a scalable

distributed concolic algorithm that ... can alleviate the limitations of the concolic approach

caused by heavy computational cost” [89]. The reader is again left with the impression

that similar approaches applied to KLEE will yield similar results. In Section 3.3 we

analyze the implications of these common assumptions.

3.2.1.3 KLEE Dependent

When examining the papers in this category, the one thing that was immediately obvious

was the versatility of KLEE. Several papers extend KLEE to test GPU’s [57], Networks [58],

and File Systems Checkers [59]. There are also papers that used KLEE to help a developer

fix a buggy line [61] and recreate field failures in the lab [62]. Two other papers argue

that KLEE has become such a powerful tool that it may be necessary to rethink altogether

how we address certain problems [96, 64]. For example, one of these papers argues for
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the adoption of a particular programming paradigm since it “preserves performance”

while also “enabl[ing] verification” through its amenability to KLEE [96]. Finally, KLEE is

also used as a baseline to prove the efficacy of new techniques [22, 56, 63]. For example,

one paper creates a front-end analysis to help KLEE “create valid test cases for programs

that accept highly structured string inputs” [56]. Its evaluation shows how much more

effective KLEE is when used in conjunction with their tool.

These papers show KLEE’s influence within software testing and analysis research. In

some cases, KLEE is used as the foundation for new techniques, enabling new problems

to be tackled. In other cases, KLEE is simply used as a baseline against which other

techniques are judged, the implication being that if KLEE can’t do it, then the proposed

technique must be powerful.

3.2.2 RQ2: How well do studies enable the understanding of how our

improvements to KLEE affect their results and conclusions?

This question examines how well papers in the KLEE Dependent category present in-

formation that would allow future researchers to understand how changes to their

implementation would affect their results. This question is important for our purposes

because we are attempting to understand how our improvements to KLEE affect the

state-of-the-art. Only by understanding how the state-of-the-art uses KLEE will we be

able to answer this question.

In a perfect world, it would be possible to simply plug our improvements into each

of the KLEE dependent implementations and re-run the experiments they are involved

in, examining the effects on the results. Unfortunately, this is not the case. Instead,

each paper in the KLEE Dependent category provided different amounts and types of

information. As an example of the difficulties that can arise, it is not at all clear what
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Paper Title Setup Config. Ver. Sys. Code Art. Time Eff.
KleeNet [58] GR No No No Yes Yes TR P
Modeling firmware as service functions and its application to
test generation [97]

GR No No No No No TR P

A SOFT way for OpenFlow switch interoperability testing [98] GC No No Yes No Yes TR P
Symbolic software model validation [99] GC No No No No Yes TR P
Automatic detection of floating-point exceptions [100] GC No No No No Yes TO P
Control flow obfuscation using neural network to fight con-
colic testing [64]

GC No No No No Yes TO N

Detecting problematic message sequences and frequencies in
distributed systems [26]

GR No No No No Yes TO P *

MintHint [61] GC No No Yes No Yes TO P
Static analysis driven cache performance testing [101] GC No No Yes No Yes TO P
Automated software testing of memory performance in em-
bedded GPUs [23]

GC No No No No Yes TC N *

Automatic concolic test generation with virtual prototypes for
post-silicon validation [24]

GR No No Yes No No TC N *

Body armor for binaries: preventing buffer overflows without
recompilation [102]

GC No No Yes No Yes TC U

Chaining test cases for reactive system testing [55] GR No Yes No No Yes TC N *
Directed symbolic execution [103] CC Yes Yes Yes Yes Yes TC N
GKLEE [57] GC No No Yes Yes Yes TC P
HAMPI [56] CC Yes No Yes Yes Yes TC N
Industrial application of concolic testing approach [25] GR Yes Yes Yes Yes Yes TC N *
Postconditioned symbolic execution [22] GR No No Yes No Yes TC N *
Scalable testing of file system checkers [59] GR No No Yes No Yes TC P *
Software dataplane verification [96] GC No No No No No TC N
A synergistic analysis method for explaining failed regression
tests [104]

GC No No Yes No Yes TC P

Docovery [60] N/A No No Yes No Yes TO P
Craxweb [105] N/A No Yes Yes No Yes TO P
BugRedux [62] N/A Yes No No Yes Yes TC N
Selecting peers for execution comparison [63] N/A No No Yes No Yes TC N
Reproducing field failures for programs with complex
grammar-based input [106]

N/A Yes No No Yes Yes TC N

Table 3.1: Analysis of papers in KLEE Dependent category. Setup shows how setups tested
in Section 2.5 relate to KLEE’s usage in paper. CC, GC, GR, and N/A stand for Core-utils

Coverage, Generic Coverage, Generic Regression, and Not Applicable respectively. Config.
shows whether all necessary configuration details for KLEE are provided. Ver. and Sys.

show if paper provided version of KLEE (or KLEE dependent program) or system
information used in study. Code shows whether all code necessary to replicate

experiments involving KLEE is provided. Art. shows if all artifacts used in study can be
located. Time shows how we classified paper with Time Dependence Rubric with TR, TO,

TC meaning Time Reported, Timeout Used, and Time Compared respectively. Eff. shows how
we classified paper with Effects of Improvements Rubric with P, N, and U meaning

Positively Affected, Negatively Affected, and Unaffected. A * next to the classification shows
we believe the paper could have its conclusions significantly strengthened or weakened.

should be considered KLEE’s default setting. The command-line inputs suggested on

the website lead to very different results from what would traditionally be considered a

default setting: no additional command-line arguments at all. This shows the level of
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detail that is required to fully understand the experiments involving KLEE.

In addition to these tricky configuration details, there were several instances of papers

that provided unofficial outside resources in the form of repositories that were not referenced

anywhere in the original papers. We found these extra repositories after doing a web-

search on 7/5/15.2We included the results of this search because it was clear that several

papers were presenting a tool to the community, but the norms of providing an internet

address hadn’t yet been established. For example, one paper says “[o]ur main contribution

is a symbolic virtual machine (VM) to model the execution of GPU programs” [57]. The

fact that the authors considered the tool to be their main contribution makes it clear that

they intended for it to be considered a part of their overall work.

In our attempts to answer this research question, a number of special cases arose.

Therefore, we will continually refer to Figure 3.2 to show how different sets of papers

apply to our overall analysis for RQ2. For example, the input to the figure shows the

initial 100 papers in the analysis. Of these initial 100 papers, 47 are Superficial Citations

(Superficial in Figure 3.2) and 27 are SymExe Dependent (SymExe Dep. in Figure 3.2), and

are therefore removed from this part of the analysis. Only the 26 papers in the KLEE

Dependent category (KLEE Dep. in Figure 3.2) were examined while addressing this

research question.

We decided to break our analysis of RQ2 down into three parts. First, we examine the

21 papers for which we could find no outside resources (N.O.R. in Figure 3.2). Second, we

examine the one paper that explicitly referenced official outside resources where the code

and data from the study could be found (O.O.R. in Figure 3.2). Finally, we examine the

four papers that have unofficial outside resources (U.O.R. in Figure 3.2).

2For each paper, this web-search involved Googling [107] the name of the tool presented, looking on
GitHub for projects with the same name as the tool presented, and examining web pages associated with
the authors.
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Figure 3.2: Breaking down the 100 papers in analysis. Superficial, SymExe Dep., and KLEE
Dep. denotes papers in the Superficial Citations, SymExe Dependent, and KLEE Dependent
categories respectively. N.O.R. denotes papers with no outside resources in the form of
repositories that contained code and artifacts associated with study. O.O.R. denotes

papers with official outside resources in the form of repositories referenced in paper. U.O.R
denotes papers with unofficial outside resources in the from of repositories not referenced
in papers but found during a web-search. F.W.A. denotes papers in N.O.R category that
provide enough information to make clear following their experiments will be difficult.
Approx. A. denotes papers in N.O.R. category that, upon a close reading, we believe can
be approximated by experiments in Section 2.5. F.R. denotes papers in N.O.R. category
that are fully replicable. Approx. B. denotes papers in U.O.R. category that, upon a close
reading, we believe can be approximated by experiments in Section 2.5. F.W.B. denotes

papers in U.O.R category that provide enough information to make clear replication will
be difficult.

3.2.2.1 No Outside Resources

Of the 21 papers that were in the KLEE Dependent category and didn’t have any unofficial

outside resources, exactly two provided all the information necessary to clear up all of

the possible ambiguities of their KLEE Dependent evaluations, meaning they were fully

replicable (F.R. in Figure 3.2).
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The first of these papers, Directed Symbolic Execution [103], used KLEE without any

modifications. The paper evaluated easy to find test artifacts, provided full details

about the size of the symbolic arguments, and directed readers to the original KLEE

paper’s setups to handle any ambiguities related to KLEE’s configuration. The second

paper, Industrial Application of Concolic Testing Approach [25] also used KLEE without any

modifications. As with the previous paper, the authors provided a complete explanation

of the command-line options that were used in their evaluation. In both these cases,

the details provided made it very easy to understand how KLEE was being used. This

information, in turn, made it easy to understand how our improvements would likely

affect their results and conclusions.

Of the remaining 19 papers, 16 of them seem to have used KLEE without any dramatic

alterations to its core functionalities (Approx. A. in Figure 3.2). Unfortunately, beyond

this basic fact, the papers provided very little information about how to recreate their

experiments. A common problem was that the basic behavior of KLEE was obvious (i.e.

whether a comprehensive test suite was needed or whether coverage was more important),

but it wasn’t at all clear whether the authors included any extra command-line options to

speed the execution. For example, while the paper Automatic Detection of Floating-Point

Exceptions made it clear that their evaluation was not generating thousands of test cases,

it provided almost no specific information on the types of command-line options used in

their evaluation [100]. As was seen in Section 2.6, where the Core-utils Coverage setup was

improved by over 10X with our improvements while the Generic Coverage setup was only

improved by 2X, the lack of documentation leaves a lot of room for misinterpretation.

Finally, the three remaining papers (F.W.A. in Figure 3.2) made it clear that they altered

KLEE’s most basic behavior: full program exploration [60, 63, 105]. Each of the papers

changed KLEE’s search algorithm so that it would target a specific line or path. Due to

these fundamental changes, combined with the fact that we could not locate any code
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associated with these studies, understanding how our improvements would affect these

papers would be very difficult. Only by implementing the algorithms described in the

papers would we be able to understand how their evaluations relied on Klee.

3.2.2.2 Official Outside Resources

Only one of the 26 papers in the KLEE Dependent category provided an official outside

resource. In this paper, the authors present a tool called HAMPI [56], “an efficient and

easy-to-use string solver”. In one of their experiments, the authors pair HAMPI with

KLEE to speed the analysis of programs ”with structured input formats”. The paper itself

provided a lot of the necessary configuration details. In addition the authors directed

readers to an online repository for further information. When we visited the repository,

we found that it includes code, configuration details, artifacts, and the data that the

authors drew their conclusions from. The only information it was missing was the version

of KLEE used in the experiments. Therefore, the amount of information provided made

it very easy to understand how Klee was being used in the experiment, enabling an

understanding of how our improvements would likely effect their results.

3.2.2.3 Unofficial Outside Resources

As previously discussed, after a web-search, we were able to find unofficial outside resources

for four of the papers in the KLEE Dependent Category. The first such repository [17] was

associated with the KleeNet [58] paper. We knew this because there was a document in

the repository directly referencing it. While the repository seemed to provide all of the

code necessary to get KleeNet running, it was unclear whether the version of the code

tested in the paper was the same as the version present the repository. In addition, we

couldn’t find any of the artifacts evaluated in the paper within the repository.
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The next repository [18], was associated with the GKLEE [57] paper. As with the

previous repository, we knew that the two were related because there was a document in

the repository directing referencing the GKLEE paper. As with the previous repository,

while all of the code required to get GKLEE running was there, it was unclear how the

version of the code tested in the paper related to the code present the repository. Finally,

this repository included some, but not all, of the artifacts evaluated in the original study.

The last unofficial outside resource we located was a website that provided access to

source code associated with both the BugRedux [62] and Reproducing field failures for

programs with complex grammar-based input [106] papers. Both of these studies evaluated

the effectiveness of BugRedux, a tool that attempted to find specific faults by altering

KLEE’s full program exploration behavior [108]. The difficulty with this website was that

the page devoted to the original BugRedux tool directed users to a second page on the

site. On this second page users could download a tool called F3. This tool was described

as a framework that extends BugRedux with “automated debugging capabilities”. Here,

readers were given instructions on how to download artifacts evaluated in the original

BugRedux paper, but we couldn’t find any reference to the artifacts evaluated in the

Reproducing field failures for programs with complex grammar-based input paper.

These four instances show how difficult it is to find and use the information provided

in unofficial outside resources to understand an experiment. The exact relationship of each

of these code-bases to the original experiments was unclear. It was possible that they

were the same version as the ones appearing in the papers, but it was also possible that

there have been significant changes in the time since. In addition, while two of these

repositories included all [62], or some [57] of the artifacts that were presented in the

paper, the instructions, or lack thereof, made it clear that replicating the experiments with

implementations that included our improvements would be very challenging.
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3.2.2.4 Distilling the evidence

After all of this analysis and subdividing, two questions that remained to be answered:

one theoretical and one practical. The theoretical question directly addresses RQ2. As

previously stated, the optimal solution for understanding the effects of our improvements

on these studies would be to replicate each of their experiments with out improvements

included. In total, however, we found only two papers [25, 103] that would allow for this

to happen. For the remaining 24 papers of the KLEE Dependent category, we had a much

more difficult time understanding how they relied on KLEE.

We compiled the information we gathered from the analysis of the papers and the

web-search. The results of our analysis can be seen in columns three through seven of

Table 3.1. The third column shows whether all of the otherwise ambiguous configuration

details for KLEE were provided. The fourth column shows whether the version of KLEE

or the KLEE dependent tool was provided. The fifth column shows whether system

information about the computer on which the evaluation was run was provided. The sixth

column shows whether all of the code necessary to recreate the experiments involving

KLEE was provided. The seventh column shows whether information about how to get

the artifacts that were tested in the experiments involving KLEE was provided.

This table makes it clear that any attempt to replicate all of these experiments would

be very difficult. The two configuration details that were most often reported were the

computer setup (12) and how to reproduce or find the artifacts that were being evaluated

(20). Many studies (19) didn’t even provide the code that was used in the experiment. If

there was one take-away from Chapter 2, its that the implementation details matter. In

addition, only four studies provided version information of KLEE or the KLEE dependent

tool they were testing. This information is interesting because it is likely that at some point

all of our improvements will be integrated into KLEE. Therefore, any future attempt to
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replicate the experiments in the KLEE Dependent category will be choosing from versions

that have up to a 11X difference in performance. Finally, it is worth noting that almost 60%

of papers provided CPU information while less than 10% provided all of the necessary

configuration details for KLEE. This shows that researchers are generally aware of how

important it is to report their setups, but have a misunderstanding of what details are

important to report.

The other question that needed to be addressed was how to handle each of the 26

papers in the KLEE Dependent category so that we could best understand the effects of our

improvements. There are, in essence, three types of papers in our analysis. There are those

papers (three) that made it very easy to closely follow their KLEE-based experiments

(O.O.R. and F.R. in Figure 3.2). These papers can be mapped onto one of the three

setups we describe in Section 2.5. There are those papers (five) that provided just enough

information to make it clear that attempting to follow their experiments would be very

difficult (F.W.A. and F.W.B. in Figure 3.2). These papers do not map onto any of these three

setups and, therefore, we set them aside for future work to see how our improvements

would affect their results. Finally, there are the 18 papers that left out critical information

required to reliably replicate their experiments (Approx. A. and Approx. B. in Figure 3.2).

Handling these papers was a little more difficult.

In the end, while we were a little uncomfortable guessing at the setups of many of

these studies, the lack of documentation often made it a necessary step. Since so many of

them had excluded critical information for replication, the only way to understand how

they would be affected was through approximation. Therefore, we carefully examined

each paper and conservatively estimated the KLEE setups they were most likely to have

used. In order to do this, we adopted the strategy where we assumed that a paper used

KLEE in the most effective way possible. This led us to divide the 18 papers into one

of two camps. If it was clear that KLEE was being used to create thousands of tests,
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we assumed its setup was most similar to the Generic Regression setup. Otherwise, we

assumed it was a part of the Generic Coverage setup discussed in Section 2.5. Adopting

this strategy also meant that we were being conservative in terms of the effects of our

improvements, since we never mapped a paper to the Core-utils Coverage setup, the setup

that our improvements affected the most. For example, in the paper Software Dataplane

Verification [96], it was unclear whether the authors were using KLEE to generate a lot of

tests. Based on a close reading of the paper, however, it was clear that a large test suite

was not required. Therefore, we assumed that the setup they used matched the setup

that would best suite their purposes while minimizing the effects of our improvements,

leading us to the Generic Coverage setup. The results of how we mapped out papers can

be seen in the second column of Table 3.1.

3.2.3 RQ3: How do our improvements to KLEE affect the results and

conclusions of these studies?

In order to answer this question, we focused on the 3 papers whose evaluation we

could closely follow (O.O.R and F.R. in Figure 3.2) and the 18 papers that could be best

understood through approximation (Approx. A. and Approx. B. in Figure 3.2) discussed

in the previous section. In order to get an initial understanding of the different types of

evaluations being conducted in these papers, we classified each of them using the Time

Dependence Rubric. We classified four papers as Time Reported, five as Timeout Used, and 12

as Time Compared. In addition, we examined how the papers in each category would be

affected by our improvements to KLEE. To do this, we evaluated each of the papers using

the Effects of Improvements Rubric. The results of combining these two rubrics can be seen

in Table 3.2.

When examining Table 3.2, we see that only one paper has results that we believe
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– Negatively Affected Unaffected Positively Affected Total
Time Reported 0 0 4 4

Timeout Used 1 0 4 5

Time Compared 8 1 3 12

Table 3.2: Time Dependence Rubric x Effects of Change Rubric

would be unaffected by our improvements to KLEE. This particular paper presents a

technique to detect buffer-overflows in C programs [102]. As part of the initialization

process for their technique, the authors use Howard [109], a tool that builds on KLEE’s

code-base, to discover data structures in a binary. In this paper, the authors focused solely

on the execution time of their overflow detection technique, ignoring the initialization

time. The fact that such a small percentage of the papers (5%) were immune to the

impact of our improvements to KLEE shows that the cost of SymExe is almost always a

significant factor in determining the efficacy of a technique.

More generally, from this initial breakdown, it is clear that the papers that compare

KLEE to some other technique are much more likely to have their results negatively

affected (8 out of 12) by improvements to their implementations than the other evaluation

setups. In the next sections we look at each category in the Time Dependence Rubric

individually to see to what degree the study’s results and the conclusions they lead to

would be affected by the improvements.

3.2.3.1 Time Reported

When examining the results of applying the Time Dependence Rubric, there are four papers

in the Time Reported category. These papers are “proofs of concept,” using SymExe to

solve new problems. For example, one paper in this category examines how long it takes

for KLEE to explore a particular type of driver design [97]. Another looks at the time

required to create useful models from a more complicated system [99]. Overall, papers in
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these category use time to show that a particular application of KLEE is possible.

To understand why each of the papers in the category would likely be positively

affected by our improvements, we will use the paper KleeNet as an example [58]. In

this paper, the authors present the KleeNet tool, an extension of the original Klee tool

that is designed to handle “unmodified distributed sensor network applications. It

considers symbolic input values from the environment and generates execution paths of

participating nodes at high-coverage”. In their paper, the authors test their implementation

on five different network related bugs. In the end, KleeNet only has trouble finding one

of these five bugs. In this case, “KleeNet reached the configured 1GB memory cap after 22

hours of execution generating thousands of test cases”, none of which were useful. Only

by “applying domain knowledge...[could the authors] efficiently reduce this execution

complexity to a reasonable level”. Given the likely improvements for this particular setup

(as seen in Section 2.6, the Generic Regression setup achieved a 10X improvement), it is

possible that the problem could now be solved without “domain knowledge”, making

the technique more effective.

When examined in the light of the improvements we made to KLEE, we believe the

conclusions of the papers in this category are very robust. The reason for this is that none

of the papers in this category make a value judgement: declaring one technique to be

superior to another. Instead, each paper presents a new technique and argues that the

time required to solve the problem is acceptable. The setup of these studies means that

any improvements in the underlying infrastructure will, in turn, benefit the technique

itself.

3.2.3.2 Timeout Used

The Timeout Used category has five papers. As with the Time Reported category, this

category is also composed of papers that are “proofs of concept”. For example, one
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paper in this category builds a system on top of KLEE for finding flaws in floating point

programs [100]. In their evaluation the authors set a timeout and, because of this, several

executions are not completed. This paper shows that the difference between this category

and the Time Reported category is that authors determine at what point the cost/benefit of

a particular technique is no longer acceptable.

Of the five papers in the category, we believe that only one of them would have

its results negatively affected. This particular paper presents a technique specifically

designed to obfuscate code from SymExe analysis, using neural networks to make simple

predicate statements more complicated [64]. To test their technique, the authors use KLEE

to try to create a test case for both the True and False paths through an obfuscated if

statement. If this study was re-run with the improvements made to KLEE, we would

expect KLEE’s performance to increase by approximately 2X. This is because the setup of

their experiment is similar to the Generic Coverage setup we tested in Section 2.6. Despite

these improvements, however, it seems unreasonable to think that this increase would

alter the paper’s conclusion that their technique can be used to effectively obfuscate

full programs against KLEE and other SymExe analyses. This is because even if the

improvements would allow KLEE to pass through a single if statement before the timeout

was reached, the difficulty of doing so makes it highly unlikely that KLEE would be able

to scale to even the smallest of programs obfuscated in this way.

For the four papers that could be positively affected, there was one in particular

whose results seemed likely to drastically change. In this paper, the authors ran KLEE for

24 hours, generating thousands of tests to be used for a secondary analysis [26]. Were

this study to be run again, we would anticipate approximately a 10X increase in the

performance of KLEE. This is because the authors use of KLEE resembles the Generic

Regression setup we tested in Section 2.6. Given the magnitude of KLEE’s improvement, it

seems likely that the technique would be able to finish much more quickly. Therefore,
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we find it likely that the conclusions reached in this paper could have been significantly

strengthened. This illustrates an example where KLEE may have been an unnecessarily

limiting factor on the results of the paper and therefore limited the impact of their

findings.

For the remaining three papers that we believe would be positively affected, the likely

importance of the improvements is less than the previous two examples. In one case

the authors used exceptionally short timeouts, meaning the effects of the improvements

would be limited [101]. In other cases, the results were already so persuasive (e.g. One tool

“discovered inputs that generated 2091 floating-point exceptions” ”across the 467 functions”

[57]) that improving them further would seem to be of little note [61, 100]. Overall, the

results of these three did not rely on KLEE in such a way that our improvements would

alter their results enough as to significantly strengthen or weaken their conclusions.

As with the previous category, we believe that the conclusions of the papers in this

category are robust. Of the possible four papers whose results would likely be positively

affected by our improvements, we identified only one that may have have its conclusion

significantly strengthened [26]. In the worst case, it is possible that the potential impact of

this technique may have been reduced due the problems in KLEE. As for the one instance

where a paper’s results would likely be negatively affected by our improvements, we

find it unlikely that the changes would be drastic enough to significantly weaken its

conclusion [64]. Just like with the Time Reported category, these five papers all show that a

technique is possible. It would require a fundamental flaw to refute these types of results.

3.2.3.3 Time Compared

The Time Compared category has 12 papers. After analyzing each of them, we believe

that this category contains many more questions than the other categories in the Time

Dependence Rubric. Whereas only one of nine papers (11%) in the previous categories
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Figure 3.3: Reproduction of Figure 2 from the paper Postconditioned Symbolic Execution
[22]. This figure compares the time required to run KLEE combined with the technique

proposed in the paper (PSE) against the time to run base KLEE (KLEE).

had results that may be significantly altered (positively), 50% of the conclusions of the

papers in the Time Compared category could be significantly strengthened or weakened.

The main reason is that the previous two categories were about the possible whereas this

one is about better. Given the number of variables underlying many of these systems,

better can be a very difficult thing to pin down.

When looking at the papers that would likely be negatively affected, there are four

papers that, in some way, compensate for the test creation problems in KLEE. Each of

these papers is similar to the Generic Regression setup. Given that KLEE exhibited a 10X

improvement with this setup seen in Section 2.6, we believe the conclusions of these four

papers are questionable.

One paper uses state matching “to identify and eliminate common path suffixes that
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are shared by multiple test runs” [22]. The authors report reduction in the number test

cases of around 5X. In addition, they report that their technique “can have a significant

speedup over state-of-the-art methods in KLEE”. With this they imply that their technique

is the best of both worlds: not only does it reduce the number of tests that have to be run

but these tests are generated faster. Their technique does have significant overhead. They

provide a graph, reproduced in Figure 3.3, that compares the time to run KLEE versus

KLEE with their technique added. As can be seen, there is a tipping point when the

costs of SymExe become high enough to warrant their technique. Upon applying the 10X

improvement seen for this setup, it is possible that this tipping point is never reached. This

in turn would call into question “the trade-offs between effective redundancy removal

and the computational cost of detecting and eliminating such redundancy”.

Another paper creates a test reduction technique by first identifying important “states

under test from concrete executions ... and then symbolically” executing them [24].

They claim that their technique significantly reduces the time required to generate a

test suite while only reducing test coverage a small amount. For example, in one of

their experiments, their technique takes “30 minutes which includes 3.5 minutes for state

selection and 26.5 minutes for test generation.” When examining a larger set of “6000

states ... selected using the random strategy. It takes 1 day [after which] only two new

test cases are generated”. Our improvements call into question the cost benefit analysis

presented in the paper. If the time required to produce tests can be reduced by 10X, then

these missing test cases may end up being worth the extra time.

A third paper attempts to “discov[er] a test case chain - a single test case that covers a

set of multiple test goals and minimises overall test execution time” [55]. In order to do

this, they compare several techniques, including KLEE, against their own technique. The

results of their experiment can be seen in Figure 3.4. This figure shows the five techniques

they tested (ChainCover, FShell, Random, and KLEE) and the number of test cases in



53

Figure 3.4: Reproduction of Table 1 from the paper Chaining Test Cases for Reactive System
Testing * [55]. The table shows KLEE’s performance (KLEE) relative to other techniques at

creating test case chains.

the chain (tcs), the length of the test case chain (len), and the time it took to find the

chain. When the half hour timeout is reached, the maximum coverage achieved so far is

output. While they were many complexities to how they used KLEE, in the end they say

“exhaustive exploration (i.e. Klee) is not suitable for our problem”. As proof of this they

state that despite the fact “Klee found test case chains on a few of the benchmarks in very

short time, [it] did not achieve full coverage within an hour on half of the benchmarks”.

We find it highly likely that a 10X faster KLEE would have a much greater chance of

finishing many of these benchmarks. If this were the case, it might call into question the

conclusion reached in their paper that ChainCover was the superior tool.

Finally, the fourth paper creates an entirely new Symbolic Execution tool, using its

ability to output more tests and achieve greater coverage in a set amount of time as proof

that their implementation is superior [25]. The authors test a single test artifact in two

different ways, in the end observing that their tool is “10 to 28 times faster than KLEE in

terms of test case generation speed”. Considering that there were instances of programs
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Figure 3.5: Reproduction of Figure 6 from the paper Automated Software Testing of Memory
Performance in Embedded GPUs [23]. This figure tracks the ability of three different

techniques to discover memory performance issues over time. Pure Random Testing is
fuzzing the GPU with concrete values. Symbolic Random Testing is testing the GPU with

GKLEE. GUPT is the authors proposed approach.

that took up to 68X less time to complete in our study, their assertion that “The speed of

test case generation by CREST-BV was 28 times faster than that of KLEE” is now highly

questionable.

Each of these four papers each attempted to circumvent KLEE’s original test creation

process in different ways. In the process, they likely mistook a mis-application on KLEE’s

part as an opportunity for discovery. By applying the Complete Solution Re-computation

Optimization and the turning off Default Enabled no-prefer-cex, however, KLEE’s test creation

difficulties are dramatically reduced. Given this reduction, we believe the conclusions of

the four papers could be significantly weakened.

Another paper that we believe could have its conclusions significantly weakened

presents a technique designed to “[detect] the inefficiency of...software developed for

embedded GPUs” [23]. In order to expose these problems, the authors create their own

tool, combining a static analyzer with GKLEE, and compare its performance with a base

version of GKLEE. In the experiments, the authors note “the performance problems are
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detected early during our test generation” while “the efficacy of symbolic [execution]

is slowly growing”. The authors provide a representative graph that can be seen in

Figure 3.5. The figure compares the effects of running their approach (GUPT) versus

GKLEE (Symbolic Random Testing) and Pure Random Testing. On the y-axis is the

number of faults a technique is able to find and on the x-axis is the time, in seconds,

required to find the faults. When examining this figure, it seems that the newly proposed

technique is running about 2X as fast as base GKLEE. We believe that our improvements

would enhance this base GKLEE by approximately 2X since it is similar to the Generic

Coverage setup seen in Section 2.6. While it is likely that their version would also speed

up, the overhead of the static analyzer would mean that the difference between the two

techniques would be reduced. This reduced performance might mean that the additional

complexity of their technique is no longer justified.

Several things are clear from these five papers whose conclusions we believe might be

significantly weakened by our improvements. First, it is clear that KLEE is so complex

that even when directly looking at and working with a mis-application, it is often difficult

to identify it. This is obvious in the fact that four separate papers addressed KLEE’s

test output problems without discovering the underlying cause. We ourselves admit to

working with KLEE for over two years before locating these improvements. Second, it

seems that new features (discovery) are favored over maintenance (application). While

these potential improvements remain unaddressed, more and more techniques are piled

up on top.

Of the papers that were positively affected by the improvements we made to KLEE,

we believe that only one of them could have its conclusions significantly strengthened.

This particular paper uses test suites generated by SymExe to find faults in file system

checkers [59]. In their evaluation, the authors compare their work against a test suite

that accompanied one of the checkers. The setup they describe is similar to the Generic
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Regression setup we tested, that resulted in a 10X speed up. In their discussion, they

observe that “applying [our technique] to the file system checker led to a lower code

coverage than that obtained with the...test suite”. The authors don’t necessarily view

this as a failure, saying the “results are nonetheless positive for [our technique]”. We

believe, however, given the magnitude of the likely improvements in KLEE, that either the

coverage would dramatically increase or the time required to run the technique would

be dramatically reduced. Therefore, if these improvements had been made sooner, it is

possible that the technique would have produced a larger impact.

In total, only six of the 12 papers in the Time Compared category are unlikely to have

their conclusions significantly affected by our improvements to KLEE. The reasons that

these papers are able to do this varies. Some papers addressed the underlying theoretical

problems of SymExe: running up against the limits of SMT Solvers [63] or tackling

the path explosion problem [96]. In other cases, KLEE’s performance does not affect

the outcome of the research questions being investigated [102, 103]. For example, in

Directed Symbolic Execution the authors are investigating different search strategies to

reach particular lines in test artifacts [103]. They include KLEE’s search strategy in their

study, implementing it in their own SymExe tool. While the do test how well KLEE

does on these test artifacts, they seem only to include KLEE as an implicit endorsement

that their version was implemented correctly. Finally, in A Synergistic Analysis Method for

Explaining Failed Regression Tests [104], the runtimes are short enough to limit the amount

of improvement seen in the technique.

3.3 Discussion

After conducting this study, there are three points that we believe should be taken away.

First, there seems to be a disconnect between research that is intended to benefit SymExe
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in general and the application of these techniques into SymExe tools. We saw this in

Section 3.2.1.2 where over half of the papers in the SymExe Dependent category, whether

explicitly stated or implied, believe that their techniques could benefit a number of these

tools. In actuality, it is very rare for a technique to be implemented in more than the one

tool that is required for evaluation and publication. Indeed, only three of the 27 papers in

the SymExe Dependent category went so far as to incorporate and test their technique on

multiple tools. Following the publication of a paper, there seems to be even less chance

that a technique will be implemented across the set of SymExe tools: we couldn’t find any

of the techniques proposed by the papers within this category in KLEE’s code-base. This

disconnect leaves the community open to both duplication and confounding techniques.

Second, after examining the information provided by papers in the KLEE Dependent

category, we believe it would be very difficult to replicate the results reported in many

of them. In an ideal world it would be easy to identify the dependencies in a particular

experiment so that it can be understood in the context of future work. This would in turn

make it easier to understand the data-points presented in each paper and synthesize it

into a complete picture of the field. Instead, we often had to infer, based on incomplete

evidence, what was being asked of KLEE in many of these papers. When making these

decisions we tried to be as conservative as possible, but the reality is that it often difficult

to understand how important KLEE is to the overall system. This in turn makes it difficult

to understand how improvements may affect the presented results.

Finally, when examining how the improvements made to KLEE would likely affect the

21 papers we examined, there was a clear dichotomy. As can be seen in Table 3.3, papers

that address the possible are highly robust to improvements to their underlying parts.

Short of finding a bug that makes the output incorrect or a drastic misunderstanding of

the problem being addressed, few things can change the results of whether something is

possible or not. In contrast, experiments that used time to make value judgements such
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– Weakened Unaffected Strengthened Total
Time Reported 0 4 0 4

Timeout Used 0 4 1 5

Time Compared 5 6 1 12

Table 3.3: Time Dependence Rubric x Likely effects of improvements on conclusions.
Weakened stands for papers whose conclusions we believe could be significantly

weakened. Strengthened stands for papers whose conclusions we believe could be
significantly strengthened. Unaffected stands for papers whose conclusions we believe are

not likely to be significantly affected in either direction.

as better are much more susceptible to performance improvements affecting their results.

The problem is that, as a community, we cannot simply rely on experiments that show

what is possible. Experiments that show what is better push the performance of different

parts of the field. They allow researchers to judge the relative merits of a technique, in

turn enabling experiments that make more things possible. Speed matters because speed

leads to possibility. Unfortunately, speed is also contingent on a whole host of factors.

From the clock rate of the CPU all the way up to the configuration details of a tool, with

many variables interacting in highly complicated ways. How best to achieve progress in

such fluid and complicated environments is an exceptionally difficult question.

The lack of application of discovered techniques makes it difficult to be sure which

problems have been solved and which problems remain. The lack of documentation

makes it difficult to understand the dependencies within these systems, obscuring the

effects of proposed techniques. Finally, the push for discovery multiplies these problems,

moving research forward without enough opportunity to reflect on the state of the

systems being tested. Only by taking deliberate steps can these difficulties be overcome.

In the next chapter, we examine various ways that these problems can be addressed.
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Chapter 4

Lessons Learned and Moving Forward

The previous three chapters have given evidence that there were opportunities for sig-

nificant improvement in a foundational research tool that were the result of an under-

emphasis of the application phase of scholarship in Software Engineering. In addition,

we analyzed 100 papers to attempt to understand how the state of the art was affected

by these improvements. From this analysis, we made three observations. First, there

seems to be many newly proposed techniques that do not end up being implemented into

the tool. Second, when examining papers that included the tool in their study, we often

had difficulty understanding how it was being used. Finally, even when conservatively

estimating how these studies use the tool, there were many whose conclusions we believe

could be significantly strengthened or weakened due to the improvements.

In this chapter, we examine how our case-study fits into the context of two larger

systematic questions. First, we look at what lessons can be drawn from our study

about the communities coherence to the principles of replication. Second, we examine

four different proposals to re-align academia’s current incentive structure. For each

of these proposals, we discuss how they would affect the continued development and

improvement of KLEE. Finally, we present related work to our study and our plans for
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future work.

4.1 Replication

Replication has been presented as an evolution that changes along with the maturity of

the topic being investigated [110]. In “immature experimental disciplines”, it is important

to closely follow the original experiments [6]. This initial replication makes sure that the

reported results aren’t due to randomness. This initial replication also allows researchers

to isolate variables within the code-base in order to better understand how the tool

works. Over time, as the important variables are identified and tuned, the code base will

mature. It is at this point that the code-base can may be combined with other “less similar

replications” in order to understand more general principles.

Our study provides a strong example of the positives that come from following

the principles of replication. The improvements made to KLEE in Chapter 2 were an

actualization of the replication process; we were able to closely follow the experiments

presented in the original KLEE paper [13] and identify small changes to improve the

tool. In addition, as the code base continues to mature, KLEE can increasingly be used

to identify principles that extend beyond the tool itself. For example, a mature KLEE

could be compared with other white-box testing tools to examine the limits of this class of

analysis. This evolution is possible because the developers of KLEE enabled the replication

of their experiments, providing the code, artifacts, and configuration documentation used

in the original KLEE paper.

Our analysis of 100 papers that cite KLEE, on the other hand, shows the problems

that come from ignoring the principles of replication. As we discussed in Section 3.2.2,

only two of the 26 papers that use KLEE included all the necessary information to fully

replicate their KLEE-base experiments experiments. Attempting to “closely follo[w] the



61

baseline experiment” [6] for the remaining 24 papers would vary in difficulty. Some

provide enough information so that, after a little bit of effort, the original experiment

could likely be closely followed. Most, however, are missing critical pieces of information

that make following the original experiment very difficult. The inability to understand

how a technique works on all but the most theoretical level makes it very difficult to

assess. On the one hand, it is very difficult to refute the study, since it is always possible

that the replicating experiment missed some key detail. On the other hand, this lack of

specificity limits the study’s scientific value, preventing the variables within the technique

from being isolated and understood, making it difficult for more general principles being

uncovered.

Therefore, given the benefits that came from being able to replicate the experiments

in the original KLEE paper, combined with the difficulty we had understanding papers

whose studies, at best, could only be approximated, it is clear that the replication

movement is vital to the progress of our field. Fortunately, there has been a lot of recent

progress in this area. “[S]everal ACM SIGPLAN conferences (OOPSLA, PLDI, and POPL)

and closely related conferences (SAS, ECOOP, and ESEC/FSE) have ... initiated an artifact

evaluation process that allows authors of accepted papers to submit software as well as

many kinds of non-software entities (such as data sets, test suites, and models) that might

back up their results” [37].

There are five different ways that software can be submitted to these conferences in

order to be considered “replicable”, including binaries, virtual machines, and websites

[111]. We believe, however, that the best way to live up to the principles of replication for

systems based research is through the highest fidelity option possible. Given this, virtual

machines should be preferred over the other current options. Just as we showed how

changes to KLEE could affect a large proportion of the studies that relied on it, it is also

possible that changes to the lower level-systems on which KLEE relies (such as LLVM,
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uClibc, Linux, or even memory configurations) could affect its results. A virtual machine

creates a snap-shot of all of the libraries and dependencies that support the artifact being

studied. This snap-shot best allows researchers to understand the interaction between the

layers of complicated pieces of software, meaning the conditions within the entire system

be understood and controlled as much as possible. This level of control will enable work

to mature and evolve proposed techniques, in turn providing a greater understanding of

the field.

Finally, it seems clear that enabling replication, by itself, is not enough [5]. Simply

making experiments replicable does not imply that the tools underlying them will mature.

This can be seen in the fact that several very important improvements went unnoticed

since KLEE’s release in 2009. This shows that there have to be incentives to go into the

code-base and mature these tools and techniques. Only then can the full potential of the

replication movement be reached.

4.2 Misaligned Incentives

Unfortunately, the current system rewards discovery much more than it rewards appli-

cation in the form of maintaining and improving existing code-bases. Grants, students,

publications, and jobs all flow from pioneering research, overlooking the fact that good

engineering can have a significant impact on the effectiveness of a tool [2]. This mentality

leads to three problems.

First, unnecessary complexity ends up being added to the tool. This can be seen in the

fact that four separate papers addressed KLEE’s test generation difficulties through new

techniques when debugging and existing techniques would have led to similar or better

outcomes. We ourselves almost fell into this trap as detailed in Section 2.8. At the bare

minimum it leads to wasted effort. Unchecked, this has the potential to lead to layers of
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techniques that correct the mis-applications of the techniques below [112].

Another problem with the current system is that there is little incentive to add a

newly proposed technique to more than one tool. As we discuss in Section 3.2.1.2,

there is a common practice of asserting that a technique, once shown to be effective on

one tool, will therefore be effective on all tools. Despite these assertions, the technique

can remain un-implemented years later. This can be seen in the fact that two of our

optimizations remained unimplemented in KLEE years after they were proposed. While

the results we presented in a new paper might be strong, it is also possible that the

reported effectiveness might be reduced or even eliminated by previously proposed, and

similarly unimplemented, techniques.

Finally, the lack of implementation of existing techniques raises questions about the

strength of experiments that use KLEE to argue that SymExe in general is ill-suited

for a particular problem. The results we achieved by implementing just a few of these

existing techniques were an integral part of the 2-11X improvements we saw in Section

2.6. Overall, to reject the possibility of Symbolic Execution, overlooking much of the

progress that has been made in the field since 2008, creates a low bar for techniques to be

considered “successful” [113].

4.2.1 Potential Solutions

There has been a lot of work detailing the mis-aligned incentives as well as investigating

ways to rectify the problems they create. In the sections below, we investigate four of

these proposals and examine how they might affect KLEE’s development.
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4.2.1.1 Cite Papers and Tools

The practice of citation is used as a means of “authentication and authority” and as a

“provision of credit and acknowledgment” [29]. This “academic reputation economy” [7]

is used in both hiring and tenure decisions [3]. Unfortunately, “activities that facilitate

science ... are not currently rewarded or recognized” [29] having “detrimental effects on

funding, future library development, and even scientific careers” [114].

To combat this effect, several proposals have been made to increase the visibility of

work that maintains and improves software. The main idea of most of these is to prevent

a static list of developers from becoming associated with a particular project, ignoring

outside contributions. One system suggests citing the actual location of projects rather

than simply citing the paper that accompanied the tool. Within the repository that stores

the tool, a list of authors can then be consulted to see whose work enabled the project

in its current form [112]. Another proposal goes even further, discussing a system of

transitive credit, where the author of a tool rewards underlying systems and authors with

a percentage of the credit [29]. This idea extends the programming language R’s practice

of suggesting developers include a citation function that can then be used to create a list

of citations of all packages used in an analysis [115].

It is not enough, however, to merely acknowledge software improvements. These

suggestions are predicated on changes in the way the institution understands and values

application. There have been several attempts to communicate the importance of these

changes to the community at large and facilitate their adoption. For example, two papers

[2, 3] discuss how hiring and tenure review committees should interpret different types

of scholarship beyond discovery. In addition, COIN-OR is a non-profit foundation that

was originally created to “create and disseminate knowledge related to all aspects of

computational ... research” [28]. The foundation “classifie[s software] on a scale from



65

0 to 5 according the level of development of the project” [116]. The hope is that this

classification will allow reviewers to quickly understand the importance and maturity of

a particular project [2].

Applying the more modest of these proposals would likely require minimal changes

on KLEE’s part. While the GitHub [117] repository that stores KLEE does not currently

have a list of authors, people would simply have to examine the commit history provided

by GitHub.1Instead, the change would have to come from the community at large. We

would have to change the way that we cite these tools and how we interpret and use

these citations.

Adopting more aggressive proposals, such as transitive credit, would require effort

from the KLEE community. While the main developers are quick to provide credit to

outside help, it would likely require some intense discussion to quantify how much credit

different projects and developers should receive.

4.2.1.2 Increase Institutional Support

Another suggestion to incentivize the application phase of scholarship is to pay people to

act as stewards of the tool [7]. This approach would create a staff of dedicated developers

whose job is to maintain and improve the code. While there are many current instances

of this model [30, 31, 32], the fact that the improvements we made to KLEE weren’t

discovered sooner suggests that their roles would likely have to change in order to

become an acceptable solution.

In the context of KLEE, it seems likely the bugs we found could have been discovered

by a team of dedicated engineers. When it comes to effectively integrating proposed

optimizations into the code-base, however, it seems likely that the people who discovered

the technique should be involved. The reason for this is that the information provided by
1https://github.com/klee/klee/pull/205
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researchers is often not enough to successfully replicate a technique [27]. Bringing together

the people who understand the tool and the people who understand the technique would

likely increase the chances of success.

4.2.1.3 Promote Competition

One potential solution is to rely on competitions, and the incentive of winning them,

to realign the discovery and application phases of scholarship. This model was used

in the verification community, “facilitat[ing] the proliferation of different...approaches,

algorithms and implementations” [33]. At every competition, a winner is chosen and

the lessons learned are quickly integrated into the community. The success of these

competitions led to the creation of software testing and verification specific competitions

[34, 35]. In SVComp, C-based SymExe tools are evaluated alongside model-checkers and

other program analysis tools on a large corpus of C programs [34]. The Unit Testing Tool

Competition uses java programs for their test artifacts [35]. As with SVComp, all types of

testing tools are welcome.

Given the infrastructure currently in place, it would be possible to include KLEE

in competitions such as these. At this point, however, it seems that competitions has

very little traction within the SymExe community; so far only three SymExe tools have

competed in SVComp and none have competed in the Unit Testing Tool Competition [35].

The reason for this lack of traction is that SymExe has been established as a powerful

technique within the testing community. Therefore, there is relatively little to gain by

competing in the competition and a lot to lose. What seems more likely to benefit the

community is a competition among SE tools. This way the lessons drawn from a winning

tool would be more easily transferred.
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4.2.1.4 Create Maintenance Track

Another potential solution is adding a maintenance specific track to every major confer-

ence. Papers submitted to this category would be judged on three criteria: importance,

magnitude, and scope. Importance is a measure of how important the tool is to the

community at large: fixing a tool used centrally in hundreds of experiments deserves

more recognition than fixing one that was used only a few times. Magnitude is the

degree to which a program is improved with larger improvements being favored over

smaller improvements. Finally, the scope of the improvements would relate to how well

the authors explore the impacts of their fixes and what effect it has on the community’s

understanding of the state-of-the-art. Therefore, this track would not only reward work

that improves important tools, it would also serve as a forum through which “artifactual”

[6] techniques can be identified.

The reason for the creation of a separate track is that papers that claim something new

are much more likely to be published [1, 5]. By creating a maintenance track, the com-

munity would be incentivizing application through the traditional reward mechanisms

in Science: publication. These papers would be given the same visibility at a conference

as traditional discovery papers, making it easy to fit into the current hiring and tenure

practices [3].

In terms of KLEE, parts of this document is likely very similar to the types of papers

that would be submitted to the application track. In the first half of the paper, the authors

would provide the improvements they have made and discuss what the magnitude of

these changes were (seen in Chapter 2). In the second half of the paper, work that depends

on KLEE would be re-examined to find whether the improvements had any impact on

their conclusions (seen in Chapter 3).
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4.3 All Together Now

We believe that combining further efforts to implement the replication movement along

with re-aligning the incentive structure to reward the scholarship of application has the

potential to yield benefits greater than those that would be achieved by each individu-

ally. Since replicating experiments becomes easier, it would also be easier to re-run an

experiment given a certain bug-fix or optimization The scope and impact of these tool

improvements could therefore be quickly assessed, removing unnecessary techniques

and strengthening the evidence of the efficacy of others. This would result in a continual

process of vetting and improving both tools and the state-of-the-art. False starts would be

more quickly identified and improvements would be more quickly integrated. In the end,

this would allow the community to more effectively understand the state-of-the-art and

what needs to be done to improve it.

4.4 Related Work

There has been a long history of papers suggesting structural changes to increase the

veracity of scientific results. Perhaps the most recent example is Why Most Published

Research Findings are False [113], in which the author argues that “most research findings

are false for most research designs and for most fields”. Software Engineering exhibits

many of the practices that the author attributes to generating false results, such as small

sample sizes, large numbers of untested variable relationships, flexible experimental

setups, and conflicts of interest (financial or otherwise).

When focusing on Science and its dependence on software, there has been a lot

of recent work on “sustainable software” [112, 36]. There is a particular focus on the

misaligned incentives for improving software [29]. As an example, in one paper [7],
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the authors investigate how Blast [118], a bioinformatics tool, has been maintained and

improved since its release in 1990. They conclude that those motivated by academic

credit are less likely to integrate their improvements back into the original tool. While the

software sustainability movement attempts to benefit a large number of fields, Software

Engineering’s relationship with computation is more complicated than most since we

often evaluate the artifacts we create. This means that dealing with these misaligned

incentives is particularly important for our community.

Finally, there has been a lot of recent work in understanding and arguing for greater

coherence to the principles of replication [6, 36, 119, 110, 120]. Two papers in particular

that highlight the problems are Reproducible Research–What, Why and How [27] and Re-

peatability and Benefaction in Computer Systems Research [38]. In the first paper, the authors

detail their efforts to do a meta-analysis of code-reading techniques. Upon compiling 18

different studies, the authors were unable to determine which technique was the best.

This revelation leads them to “strongly advocate the adoption of [replicable research] by

software engineering and computer science researchers and data analysts.”

In the second paper, Proebsting et al. compile a set of 601 papers “from ACM

conferences and journals” [38]. After an extensive web-search, hundreds of emails,

and a lot of work, Proebsting et al. determined that they could locate and build the

code associated with 48.3% of these papers. While our paper is similar to this study

because we examine the replicability of a set of papers, what we do with this information

differs. Proebsting et al. focus on “weak repeatability” since they do not attempt to verify

any of the results in the paper; they are focused on merely building the objects that

were used in the studies. We, on the other hand, attempt to use the ability to replicate

previous experiments in order to understand the effects of changes to their underlying

implementations. In terms of “weak repeatability” we were able to find code associated

with 26% of the papers in the KLEE Dependent category (see Figure 3.1). This compares
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favorably with the 27% of code that Proebsting et al. were able to find following links in a

paper in an initial web search. We did not, however, go the extra step of attempting to

contact authors that increased their build-rate from 27% to 48.3%. We instead relied on

approximation to understand the effects of our changes.

In their communications with the authors of the papers in their study, Proebsting et

al. encountered many of the same problems we did, including versioning issues and

commercial tools whose code could not be released. At the end of their study, they say

the reason the community “do[es] not produce solid ready-to-share artifacts or attempt

to replicate the work of ... peers [is] because there is little professional glory to be gained

from doing so”. They conclude that “finding new reward structures that encourage us

to produce solid artifacts, to share these artifacts, and to validate the conclusions drawn

from the artifacts” is the only way to avoid these problems. We believe that this study

forms a very solid base but doesn’t go far enough. Proebsting et al. are concerned with

raising the level of computer science research incrementally: requiring the release of code

that can be built and examined is a first, necessary step. As noted in Section 4.1, however,

merely providing replicable experiments does not incentivize researchers to examine the

code or update the tools on which so much of our discipline depends. By addressing

both problems, replication and application, the amount of wasted effort will be reduced

and progress by the community at large will be increased.

4.5 Future Work

There are many things to do in order to better understand the scope and applicability

of the observations made in this documents. First and foremost we plan on further

investigating the seven papers whose conclusions we believe could be significantly

strengthened or weakened. We were unable to obtain the configuration information, code,
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and documentation associated with six of these seven papers. Therefore, we plan on

attempting to contact the authors of each of these six studies so that we can fully replicate

their experiments and understand how our improvements affected them without any

qualifications. When all of this information is assembled, we plan on following each study

as closely as possible in order to definitively understand the effects of our improvements.

Second, we plan on investigating the papers discussed in Section 3.2.2.4 that provided

enough information to make it clear that replication of their studies would be difficult.

Understanding the effects of our improvements on these papers will generate extra data

points, providing a much clearer picture about the robustness of papers in the KLEE

Dependent category.

Finally, we plan on investigating other research tools in Software Engineering. As we

have previously discussed, we believe that the KLEE community has done everything

expected of an influential research tool. This would imply that other tools are likely to

have similar opportunities for improvement. By investigating other tools, we can provide

further insight into extent of the problems caused by the current incentive structure.
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Chapter 5

Conclusion

In this thesis, we presented evidence that a foundational tool in Software Engineering has

been under-developed in the years since it was first released. We believe, based on the

fact that is KLEE is one of the most developed and tested SymExe tools available, that

these problems are not unique to a single tool. Instead, the current incentive structure

favors discovery over application. Since a significant portion of Software Engineering

research involves testing systems that are written by humans, mis-application may be

misidentified as discovery. Without more effort being put into correct implementation,

papers that rely on these foundational tools are resting on shaky ground.

To address these problems, we examine several proposals designed to increase the

emphasis on application. The goal of each of these proposals is to reward researchers

for doing the necessary work of strengthening these tools. We believe that combining

these proposals with further improvements in the replication movement will lead to

significant gains for the community at large. It will become easier to test and verify

existing techniques. The capability of tools will more accurately reflect their true potential.

Finally, as code-bases mature, they can be used as sources from which generalized

knowledge can be produced.
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The truth is that the system in its current form is self-correcting. Eventually bad ideas

will be discarded and good ideas will catch on. By recognizing and rewarding application

as a form of scholarship, however, the speed of progress can be increased. There will be

a much greater understanding of the problems that have been solved and the problems

that remain. In the end making these changes will make foundations of research more

robust, improving both past and future knowledge.
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Appendix A

Factorization of Bit-Vectors

In this appendix, we discuss how factorization works in general, and discuss the par-

ticular details of adapting it to bit-vector constraints [121]. This information is used to

supplement the discussion in Section 2.2. The information is used in Section 2.2 to explain

how the first filter in KLEE’s Solver Chain works.

In concept, factorization is fairly simple. It works by breaking down a constraint set

into smaller independent subsets where each subset is only composed of constraints

with variables that reference each other. If all of the subsets resulting from factorization

are SAT, then the original constraint set is also SAT. If, instead, one of the subsets is

UNSAT, then the original constraint set is also UNSAT. For example, given the constraint

set {(a 6= 4) ∧ (a 6= 5) ∧ (x = 10) ∧ (x = y) ∧ (y = z)}, the constraint (a 6= 4) would be

put into the same subset as (a 6= 5) since they deal with the variable a. In addition, the

constraints (x = 10), (x = y), and (y = z) would be put into a second subset since the

constraint on x transitively affects the value of z. Since each independent subset is SAT,

the original constraint set is SAT as well.

When factorizing bit-vector constraints, as long as the indices of the arrays being

accessed are concrete, then everything is the same as the concept explained above. This is
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because we can separate the individual elements of arrays, since they can be identified as

different variables. For example, the constraint set {(arr[1] < 6) ∧ (arr[2] > 8)} could be

broken down into two separate subsets because the value contained in arr[1] could never

affect the value in arr[2].

When dealing with symbolic indices, however, things become more complicated.

Consider what happens when we add the constraint (arr[x] < 10) to the constraint set

above. In this case, it is possible that arr[x] is referring to arr[1]. It is also possible that

arr[x] is referring to arr[2]. Therefore, in order to be safe, SymExe tools will group these

three accesses into a single constraint set. This illustrates how symbolic indices can

cause otherwise independent subsets to be grouped together. Indeed, it is common for a

single symbolic index to cause dozens of otherwise independent subsets to collapse into a

single, much larger, constraint set. While this is unfortunate, since it makes it much more

expensive for the SMT solver to produce an answer, it is the simplest way to guarantee

correct results.

In order to formally present how bit-vector constraints with symbolical indices have

traditionally been handled, we will expand upon the work presented in [66]. In this paper,

the authors used a graph reachability approach to define how to factorize linear integer

constraints [121]. We first need to define three functions.

Let sym be a function that takes a constraint as an input and returns all of the array

accesses that involve symbolic indices in the constraint as a set of pairs 〈x, y〉 where x

is the array that is accessed and y is the symbolic index that is accessed. For example,

sym
(
(arr[x] = arr[7])

)
would return {〈arr, x〉}

Let access be a function that takes a constraint as an input and returns all of the array

accesses in the constraint as a set of pairs 〈x, y〉 where x is the array that is accessed and y

is the index, symbolic or concrete, that is accessed. For example access
(
(arr[x] = arr[7])

)
would return {〈arr, x〉, 〈arr, 7〉}.
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{(x, y)|x, y ∈ CS, access(x) ∩ access(y) 6= ∅ ∨ f (sym(x)) ∩ f (access(y)) 6= ∅}

Figure A.1: Traditional Factorization Definitions

Finally, let f be a function that takes a set of pairs and returns a set consisting only of

the first element. For example, f
(
〈1, 2〉

)
would return 1.

With these helper functions defined, we will create the function traditionalBVFactor.

Let traditionalBVFactor be a function that takes two inputs: a constraint C and a constraint

set CS. The function returns all constraints in the constraint set CS that reference C

(directly or transitively) and therefore should be in the same independent subset as C.

We define the function as follows. Create a graph G = (V, E) where the vertices V are

the constraints in the constraint set CS. We define the set of edges E using the formula

seen in Figure A.1. Return the set of constraints that are reachable in G from the input

constraint C.
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Appendix B

Further Factorization of Bit-Vectors

In this appendix, we present a more precise way to factorize bit-vector constraint sets.

This information is used to supplement the discussion in Section 2.8. The information is

used in Section 2.8 to explain how we used the output from KLEE to identify a way to

reduce the number of times an SMT solver was required during a normal execution. This

reduction in SMT invocations reduces the time required to use KLEE.

The main idea for this technique is to use constraints within the constraint set to prove

that symbolic index of an array (of the form arr[x] ) could not access other parts of an

array. This increased precision allows us to further factorize constraint sets, meaning that

the solver is required to handle simpler and fewer constraint sets.

For example, consider the constraint set {(arr[x] = 2) ∧ (x < 3) ∧ (arr[4] ≤ 127)}.

Given that (x < 3), we know that x could not possibly be 4 and therefore arr[x] could

not possibly refer to arr[4]. Therefore, the constraint set can be broken down into 2 inde-

pendent subsets ({(arr[x] = 2) ∧ (x < 3)} and {(arr[4] ≤ 127)} ) rather than the single

constraint set that would normally be caused by a symbolic index.

Formally, our approach is designed to create fewer edges then the naı̈ve definition

presented in Appendix A and therefore limit the number of constraints that can be
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1. {(x, y)|x, y ∈ CS, access(x) ∩ access(y) 6= ∅}

2. {(x, y)|x, y ∈ CS, f (sym(x)) ∩ f (access(y) 6= ∅ ∧ SAT(s(sym(x)), s(access(y)), r(x, G1), r(y, G1))}.

Figure B.1: Factorization Definitions

reached. In order to define how our process works, we need to define functions in

addition to those defined in Appendix A.

First, let s be a function that takes a set of pairs and returns a set consisting only of

the second element. For example, s
(
〈1, 2〉

)
would return 2.

Second, let SAT
(
a, b, x, y

)
be a function that takes two values, a and b, and two

constraint sets, x and y, and returns true if a could possibly be equal to b given the

constraint in x and y and false otherwise. For example, SAT
(
x, y, {(x > 7)} , {(y < 6)}

)
would return false since x could never be equal to y.

Finally, let r be a function that takes a constraint and a graph of constraints as inputs

and returns a constraint set of all constraints that are reachable within the graph from the

input constraint.

With this minutia out of the way, we create the function newBVFactor to highlight

our intuition. Let newBVFactor be a function that takes two inputs: a constraint C and

a constraint set CS. The function returns all constraints in the constraint set CS that

reference C (directly or transitively) and therefore should be in the same independent

subset as C. We define the function as follows. Create a graph G1 = (V1, E1) where the

vertices V are the constraints in the constraint set CS. We define the set of edges E1 as

seen in item one of Figure B.1. After this, we create a second graph G2 = (V2, E2) where

the vertices V2 are the constraints in the constraint set CS. We define the set of edges

E2 as seen in item two of Figure B.1. Finally, we create a graph G3 = (V3, E3) where the

vertices V3 are the constraints in the constraint set CS and E3 = E1 ∪ E2. Return the set of

constraints that are reachable in G3 from the input constraint C.
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Our definition differs in the way we handle arrays that have symbolic indices. In the

naı̈ve algorithm (discussed in Appendix A), all constraints that contain an array that has

a symbolic index are automatically grouped into a single constraint set. Here, instead,

we check to see whether the constraints that are directly associated with a particular

symbolic index might end up making it impossible for it to be equal to another value. If

this is the case, then the two constraints can remain separate.

When testing this more accurate technique on the constraint sets sent by KLEE to the

SMT solver1, we found that there were many opportunities for further factorization.2After

further separating these “naı̈ve” subsets, we discovered that there was up to a 3X reduction

in the number of times an SMT solver was required to solve all of the constrain sets. The

reason for this extreme reduction is that the more accurate factorization led to previously

indivisible, unique constraint sets being broken down into smaller, precomputed pieces.

Unfortunately, the overhead required to identify these independences is many times

the cost of just sending the original constraint set to the SMT solver. When attempting to

do this for every constraint set, the time required was an order of magnitude greater than

the naı̈ve approach. Given the costs associated with proving independence, it became

clear that a more light weight technique was required.

1For these experiments, we used the Generic Regression setup. We tested our approach on the output of
13 bin-util programs

2Code and instructions on how to re-run these experiments available at https://github.com/

holycrap872/green-solver

https://github.com/holycrap872/green-solver
https://github.com/holycrap872/green-solver
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Appendix C

A Heuristic for Further Factorization of

Bit-Vectors

In this appendix, we present the heuristic we developed in order to capitalize on the

opportunities for further factorization discussed in Appendix B. This information is

used to supplement the discussion in Section 2.8. The information is used in Section

2.8 to explain how we used the formal definition for further factorization (described in

Appendix B) to come up with a heuristic that could be used to reduce the execution costs

of KLEE.

In order to understand the heuristic, it is necessary to understand a few particular

aspects of KLEE. As discussed in Section 2.2, KLEE builds the constraint sets associated

with a particular path incrementally. Therefore, the newest constraint in a constraint

set can be differentiated from the older constraints. Further, by removing the newest

constraint from the original constraint set, what remains is the constraint set associated

with the parent of the current state. As discussed in Section 2.4.2, the solution to this

constraint set is already cached and can be quickly accessed.

Consider the example {(arr[x] = 2) ∧ (x < 3) ∧ (arr[4] ≤ 127)}. From this constraint



96

set we can deduce several things. First, based on KLEE’s conventions, we know that

(arr[4] ≤ 127) is the newest constraint added to the path, since it is the last element in

the list of constraints. Second, we know that the constraint set {(arr[x] = 2) ∧ (x < 3)} is

the parent of the full constraint set and therefore is both SAT and has its solution stored

somewhere in the Solver Chain. Finally, while we cannot be sure {(arr[4] ≤ 127)} is in the

Solver Chain, its small size increases the chances of a cache hit. Even if there isn’t a cache

hit, the small size means it will be faster for the solver to handle.

Understanding these facts allowed us to come up with a heuristic that is both simple

and effective. Whenever the most recent constraint in a constraint set is involved in a

factor that has an array with a symbolic index, we assume that, given enough time, they

could be proven to be independent. By assuming this, we can simply find the solutions to

the two factors that would result from this assumption.1We then stitch these two solutions

together, just like in the Complete Solution Re-computation Optimization in Section 2.4. Upon

creating a single solution, we can then evaluate it on the entire constraint set. If our

assumption that the factors were independent is correct, then this synthesized solution is

guaranteed to evaluate to True. If, instead, the new solution evaluates to False, then we

simply forward the constraint set to the SMT solver.

In order to illustrate how this works, we will again use the example above. We

first assume that {arr[4] ≤ 127} is in a different factor from {(arr[x] = 2) ∧ (x < 3)}.

Therefore, we attempt to solve each factor separately. For the factor {(arr[4] ≤ 127)} we

could get the solution {0, 0, 0, 0, 127}. For the factor {(arr[x] = 2) ∧ (x < 3)} we could get

the solution {2, 0, 0, 0, 0}. Stitching these two solutions together produces the complete

solution {2, 0, 0, 0, 127}. Finally, we check to see if this synthesized solution evaluates to

True on the original constraint set. In this case it does, meaning we don’t have to send the
1If a solution does not exist for either factor, than the entire constraint set must be UNSAT. In this case,

we could skip the rest of the heuristic and simply return UNSAT.
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original, full constraint set to the solver. Instead, there are two possible outcomes. In one

case, if (arr[4] ≤ 127) is in a cache somewhere in the Solver Chain, then the solver doesn’t

need to be invoked at all. If, instead (arr[4] ≤ 127) is not stored anywhere in the Solver

Chain, the fact that we have reduced the number of constraints associated with it means

that the solver can return an answer more quickly.
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Appendix D

Evaluation of a Heuristic for Further

Factorization of Bit-Vectors

In this appendix, we evaluate how the heuristic explained in Appendix C affected the

performance of KLEE. This information is used to supplement the discussion in Section

2.8. The information is used in Section 2.8 to explain how the heuristic we developed

ended up being completely dependent on a particular command-line option in KLEE. In

the end, it turns out that this particular option was erroneously enabled in the versions

we were examining since was is very costly while providing little gain for the average

user.

In our evaluation we tested the performance of a KLEE instance with our heuristic and

compared it with a KLEE instance without our heuristic. As mentioned in 2.8, however,

at the point we started to evaluate our technique, we had just discovered the existence

of the no-prefer-cex option. Therefore, due to our reservations about the usefulness of

the technique, we ran two experiments: one with the no-prefer-cex enable (the default

behavior), and one with no-prefer-cex disabled. Other than this difference, both tests used

the Generic Regression setup discussed in Section 2.5.
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In addition, it should be noted that the we were not comparing our heuristic against a

version of KLEE untouched by any of our other optimizations. We instead were comparing

a version of KLEE that had the Quick Cache Bug, the Complete Solution Re-computation

Optimization, and the Array Factory Bug (described in Section 2.4) against a version of KLEE

that included all of these improvements plus our heuristic. The reason for this decision

was two-fold. First, our heuristic is dependent on these three improvements. Second,

these improvements are the ones that we had discovered prior to implementing our

heuristic (we found the other improvements described in Section 2.4 later). Comparing

our heuristic with all of these improvements against a version of KLEE without any of

the improvements would give an unfair picture of the capabilities of our technique.

We set up our experiments in the same way as described in Section 2.5. The “finish

line” for each experiment was determined by running the instance of KLEE that had

our heuristic enabled for one hour configured using the Generic Regression setup. We

recorded the number of forks that this experiment was able to reach and then used that

as the “finish line” for the instances without our heuristic. For test subjects, we used the

core-utils programs that were presented in the original KLEE paper [13].

D.1 Results

The results for our experiments can be seen in Table D.1. Both box plots show the relative

performance increase of an instance of KLEE using our heuristic relative to an instance of

KLEE not using the heuristic. The label Enabled shows the improvement when no-prefer-cex

is enabled. The label Disabled shows the improvement when no-prefer-cex is disabled.

When no-prefer-cex is enabled, the average improvement is 2.2X and the median

improvement is just over 2X. The only program that runs slower is yes which goes from

903 seconds to 3792 seconds. The greatest improvement is seen in dircolors which goes
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Figure D.1: Box-plots showing the relative improvement of an instance of KLEE that uses
our heuristic over an instance of KLEE without our heuristic. The Enabled plot illustrates
the relative improvement when no-prefer-cex is enable (its default position). The Disabled

plot illustrates the relative improvement when no-prefer-cex is disabled

from 45660 seconds to 8281 seconds.

When no-prefer-cex is disabled, however, the average and median improvements are

less than 1%. The worst degradation in performance is yes, which goes from 518 to 3603

seconds. The largest improvement was seen in wc which went from 3497 seconds to 2292

seconds.

D.2 Discussion

The results of our evaluation shows that our heuristic is completely dependent on the

no-prefer-cex option being enabled. As previously discussed in Section 2.4, we determined

that this option was unnecessary for the average user and it has since been switched

to default disabled in the main KLEE distribution. Therefore, our heuristic, rather than

providing a generalizable improvement to all SymExe engines, was instead dependent on
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f o r each symbolic array in s t a t e
f o r each byte in symbolic array

c o n s t r a i n t = (0 ≤ byte ≤ 127 )
i f SAT( s t a t e . c o n s t r a i n t S e t ( ) ∧ c o n s t r a i n t )

s t a t e . addToConstraintSet ( c o n s t r a i n t )
re turn s t a t e

Figure D.2: no-prefer-cex Algorithm

an unnecessary default option in a particular SymExe tool.

In order to understand the reason for this drastic shift, it is important to understand

what the logic controlled by the no-prefer-cex option does. As previously explained, the

goal of the no-prefer-cex logic is to sanitize the inputs in every test case in order to make

them as human-readable as possible. Figure D.2 shows the basic logic. In general, for

each byte of a test case, KLEE attempts to bound it to be between the ranges of 0 and 127.

If the character can be bound in this way with the overall test case remaining SAT, then

the constraint on the character is retained. Otherwise, it is simply dropped.

Knowing this, we can examine the running example in Appendix C. We chose this

example because it is representative of the type of constraint sets generated by KLEE when

no-prefer-cex is on. First there is almost always a series of complicated constraints that

contain arrays with symbolic indices, represented by the first two constraints, (arr[x] = 2)

and (x < 3). This can be thought of as the path that the state took through the program.

Second, there is an attempt to bound a character in the array to be human readable,

as seen by the constraint (arr[4] ≤ 127). Finally, there are some elements in the array

that were never referenced on the path the state took through the test program. This is

represented by the fact that x could never equal 4. This means our optimistic assumption

that the two factors were independent is correct and we are able to generate a satisfying

solution from these two smaller pieces.

A realistic example of this process occurs when testing the core-utils program ls
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with a 10 element symbolic array as suggested by KLEE’s website [68]. There are many

command-line options to ls that do not require 10 characters. Therefore, the latter elements

in the array are often never referenced. Attempts to constrain these latter elements of the

array would, therefore, be independent from the computation done on the beginning of

the array. Once the no-prefer-cex option is disabled, however, these opportunities vanish

completely.
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