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Global Network Inference from Ego Network 
Samples: Testing a Simulation Approach

Jeffrey A. Smith

Department of Sociology, University of Nebraska–Lincoln, Lincoln, Nebraska, USA

Abstract
Network sampling poses a radical idea: that it is possible to measure global network struc-
ture without the full population coverage assumed in most network studies. Network 
sampling is only useful, however, if a researcher can produce accurate global network 
estimates. This article explores the practicality of making network inference, focusing on 
the approach introduced in Smith (2012). The method uses sampled ego network data 
and simulation techniques to make inference about the global features of the true, un-
known network. The validity check here includes more difficult scenarios than previous 
tests, including those that go beyond the initial scope conditions of the method. I exam-
ine networks with a skewed degree distribution and surveys that limit the number of so-
cial ties a respondent can list. For each network/survey combination, I take a random ego 
network sample, run the simulation method, and compare the results to the true values 
(using measures of connectivity and cohesion). I also test the method on local measures 
of network structure. The results, on the whole, are encouraging. The method produces 
good estimates even in cases where the degree distribution is skewed and the survey is 
strongly restricted. I also find that is it better to not truncate the survey if possible. If the 
survey must be restricted, the researcher would do well to infer the missing data, rather 
than use the raw data naively.

Keywords: exponential random graph model (ERGM), simulation, social networks

1. Introduction

Network studies have traditionally been restricted to relatively small, bounded settings 
with full information on the population of interest. Network structure is easily measured 
under these ideal conditions, opening up questions about connectivity (i.e., disease/infor-
mation spread), group divisions and cohesion (Moody & White, 2003; Shwed & Bearman, 
2010; Mucha, Richardson, Macon, Porter, & Onnela, 2010; Adams, Moody, & Morris, 2013). 
In many cases, however, it is impractical to collect full network data on the population of 
interest (Frank, 1971; Koskinen, Robins, Wang, & Pattison, 2013). The network may be too 
large and the resources available too small to interview everyone, while electronic informa-
tion on social ties may be unavailable. This is especially true of comparative network stud-
ies. A study on social integration, for example, would need to measure network cohesion 
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across many neighborhoods, villages, or schools (Sampson & Raudenbush, 1997; Brown-
ing, Cagney, & Iveniuk, 2012; Verdery, Entwisle, Faust, & Rindfuss, 2012). Traditionally, a 
researcher would have to collect full network data in every context, a tall order by any sur-
vey method standard.

A small but growing literature on network sampling has raised the possibility of making 
inference on network structure without the full coverage assumed in most network studies 
(Frank, 1978; Handcock & Gile, 2010; Koskinen, Robins, & Pattison, 2010; Krivitsky, Hand-
cock, & Morris, 2011). Using sampled network data eases the burden of data collection con-
siderably but also raises difficult inference problems. Global network measures depend on 
all of the ties among individuals while sampled data, by definition, only provide sampled 
bits of the network. As a solution to this inferential problem, recent work has offered sim-
ulation techniques as a means of making inference from sampled network data (Lee, 2008; 
Morris, Kurth, Hamilton, Moody, & Wakefield, 2009; Smith, 2012; Merli et al., 2015).

This article examines the practical application of simulation to network inference. I fo-
cus on the method proposed in Smith (2012). The method uses ego network data to make 
inference about global network structure. Individuals are first randomly sampled from the 
population; they then answer questions about themselves (e.g., demographic information) 
and the people they are socially connected to, such as friends or confidants (Marsden, 1987; 
Smith, McPherson, & Smith-Lovin, 2014). Respondents also report on the ties between their 
named alters. The method uses this data to simulate networks consistent with the sampled, 
local information. For example, the survey yields an estimate of the degree distribution, 
or the number of ties per person, and the simulation is conditioned on this information. 
Finally, the method calculates the global statistics of interest on the generated networks, 
such as average distance, modularity, or cohesion. The approach has great potential as in-
dependently sampled data are easy to collect and can be incorporated into existing surveys.

There is also empirical reason to be optimistic, as the method performed quite well in a 
series of validity tests (Smith, 2012). These tests, while employing a large number of net-
works, adhered strongly to the initial scope conditions of the method. The original tests 
were limited to networks based on strong tie relationships, where individuals have a rel-
atively small number of social ties and can easily enumerate them within an ego network 
survey. Based on this strong tie assumption, the tests were limited to low-degree networks 
and assumed full information about respondents’ social contacts.

The goal of this article is to apply the approach to a wider set of contexts, even if those 
contexts fall outside the bounds initially specified by the method. For example, ego net-
work sampling may yield biased estimates when the network has a skewed degree distri-
bution so that a few individuals have a disproportionally large number of ties (Barabasi & 
Albert, 1999; Gould, 2002). High degree individuals have a large impact on network struc-
ture but are not any more likely to be sampled (as it is a random sample of the population). 
Thus, the sampling scheme may miss important nodes in highly skewed networks, lead-
ing to potential biases.

Additionally, surveys will often restrict the amount of information that is collected. A 
typical survey will limit the number of social contacts a respondent can name. This is done 
for practical reasons, for example, to reduce respondent fatigue and the cost of the survey 
(Burt, 1984). This will result in a truncated degree distribution, however. Even if one is lucky 
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enough to sample a high degree node, one would still have an inaccurate measure of their 
degree—as there is only information up to the truncated amount (say, 10 ties).

Here, I drop the simplifying assumptions of previous tests and show how degree skew 
and degree truncation affect the bias in the estimates. Is the method appropriate for all lev-
els of degree skew and survey truncation? More generally, what should a researcher do 
when faced with less than ideal conditions? I begin the article with a background section on 
ego network sampling and the simulation approach. I then discuss the experimental setup 
used to test the method, before moving to the results.

2. Ego Network Sampling

Figure 1 summarizes the problem of network sampling. Panel 1 in Figure 1 plots a typ-
ical (hypothetical) network structure. We can assume that the network represents friend-
ships among adolescents in a school. A researcher would normally collect information on all 
nodes, here adolescents, and all ties between nodes in the network. This information can be 
used to characterize the topology of the network. For example, the paths between nodes are 
easy to enumerate when the network is complete. Substantively, the path structure yields a 
measure of diffusion potential, where lower average distance and higher levels of connec-
tivity equals higher probabilities of global diffusion (Watts, 2002; Centola & Macy, 2007). 

Figure 1. Example network and ego network sample.
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But what if it is impractical to collect information on every individual in the network? In 
such cases, it is necessary to make inference from a sample. There are many ways to sample 
a network, such as snowball and subgraph approaches (Thompson & Frank, 2000; Good-
man, 2011), but I focus on the simplest possible option, the ego network sample (Marsden, 
1988).

In Panel 1, I have highlighted a hypothetical ego network sample from the full network. 
The grey nodes represent the randomly sampled respondents from the set of all individu-
als in the network. The white nodes represent the nonsampled respondents, and the black 
nodes are the friends of the respondents. The black nodes (here the friends of the respon-
dents) are not interviewed, but we receive information about them indirectly through the 
respondent’s reports on them. For example, we would know if the friends of the respon-
dents are themselves friends (Louch, 2000). The sample thus offers information on the grey 
nodes and the black nodes, leaving independent bits of the network. These sampled sub-
structures are plotted separately in Panel 2. The sampled parts of the network cannot be 
connected, as ego network surveys do not collect identifying information on the named 
friends (i.e., the black nodes).

Ego network sampling poses more than a missing data problem (Kossinets, 2006; Bor-
gatti, Carley, & Krackhardt, 2006; Smith & Moody, 2013). It is a problem of statistical infer-
ence, where almost all of the network information must be “filled in.” The question is how 
we can take information on the respondents and their friends, or these disconnected, rep-
resentative pieces of the network, and make inference about the entire graph (as one can-
not simply trace out the paths between nodes anymore).

2.1. Background on Simulation Approach
Smith (2012) provides a simulation solution to the problem of network inference. The 

method takes independently sampled ego network data, like that in Figure 1, and makes 
inference about the entire network structure.1 The simulation approach rests on a simple 
premise: that one should generate networks consistent with the local information found in 
the sampled data. A simulated network consistent with the local information should have 
similar macro features as the real network. The method ultimately works well because it 
utilizes so much of the information embedded in the network survey.

As with most surveys, an ego network sample will provide information about the demo-
graphic characteristics of the respondents, or the sampled grey nodes in our example net-
work. Individuals may be asked about their gender, race/ethnicity, education, age, and so 
forth. This information is useful in the simulation because it yields the demographic com-
position of the network.

An ego network survey will also ask respondents to name their alters, or those individ-
uals to whom they are socially connected. The alters are defined as friends in Figure 1. The 

1 It is important to note that the method is only appropriate for well defined populations with a sam-
pling frame. The population of interest is thus assumed to be nonhidden (i.e., not female sex work-
ers or drug injectors), and the size of the population is assumed to be known. The method also 
assumes that the relationship of interest is symmetric, so that if i nominates j, then j nominates i.
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node on the top right of Panel 2 would list four alters, or have degree 4, while the node on 
the bottom right would list two alters, or have degree 2. This yields an estimate of the de-
gree distribution, equal to the number of alters per respondent. The alter list also offers in-
formation on differential degree, or the mean degree by demographic group. This can be 
inferred from the data because there is information on degree and the demographic char-
acteristics of the sampled respondents. The highly educated may have more ties than those 
with less education (e.g., Lizardo, 2006; McPherson, Smith-Lovin, & Brashears, 2006).

Ego network samples also provide information on the demographic characteristics of 
the alters. For example, for the top-right respondent, a researcher may ask about the race, 
gender, and age of the four friends. Respondents are often asked to report on only a subset 
of their alters. A respondent may list 15 friends but only be asked about the demographic 
characteristics of the first five (e.g., Marsden, 1987). This is done to limit respondent burden.2 
The alter demographic data are important for the simulation because they offer informa-
tion on homophily, or the tendency for demographically similar individuals to be socially 
connected (McPherson, Smith-Lovin, & Cook, 2001; Smith et al., 2014).3 The data show if 
respondents and their alters have the same race/gender/age/etc.; we can thus ask if there 
is strong homophily along religious lines, for example (Cheadle & Schwadel, 2012). The 
data also capture the pattern of ties among demographic groups (Rosenfeld, 2008). Thus, 
we can ask if ties between Whites and Asians are more likely than ties between Whites and 
Blacks (Qian, 2002; Qian & Lichter, 2007).

Finally, ego network data provide information on the ties between alters. Respondents 
are asked about the ties that exist between alter 1 and 2, 1 and 3, 2 and 3, and so on. Again, 
the surveys are often limited to curtail respondent burden. A respondent may be asked 
about a subset of all ties that exist between alters (i.e., the ties that exist among the first five 
friends). For our top-right respondent, we would know that two of their friends are tied to-
gether; we would also know that these two friends are not tied to the other two friends, who 
are not tied to each other. The alter–alter tie data offer information about the local struc-
tural patterns in the network. Are individuals tied to the respondent also tied to each other, 
so a friend of a friend (the respondent) is also a friend (Goodreau, Kitts, & Morris, 2009)?

One of the contributions of Smith (2012) was its unique characterization of the alter–
alter tie data. Past work has generally relied on density (the number of ties amongst al-
ters divided by the total number of possible ties) to measure the structure of ego networks 
(Fischer, 1982; Mardsen, 1987; although see Louch, 2000, for an exception).4 Unfortunately, 
this does not offer a precise enough measure for the purposes of the simulation: many net-
works with the same local density have very different global structures (Smith, 2012). As 

2 It can be quite tedious to describe the demographic characteristics of many alters along many de-
mographic dimensions.

3 One can estimate the strength of homophily as one knows the characteristics of the respondents 
and the respondents’ alters.

4 This is largely because ego network data provide biased estimates for many typical triadic mea-
sures; such as global transitivity, defined as the proportion of two-step paths where there is also 
a one-step path (Soffer & Vazquez, 2005; Bansal, Khandelwal, & Meyers, 2009). Thus, for our top-
right respondent, there is one tie out of a possible six.
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the networks are generated from the local information, it is important to have a discerning 
measure of local structure.

Smith (2012) offered an alternative measure of ego network structure, one that encapsu-
lates all of the information available from the sampled data. The basic idea is to form a dis-
tribution of ego network configurations from the alter–alter tie data (see Holland & Lein-
hardt, 1976, and Middendorf, Wiggins, & Honig, 2005, for similar intuition). Figure 2 plots 
a hypothetical ego network configuration distribution. The histogram is limited to four al-
ters for the sake of space considerations, but the actual distribution is not limited by size. 
Each respondent is placed into a distinct structural type, based on the size of the ego net-
work and the pattern of ties between alters. For example, our top-right respondent would 
fall into the 10th configuration from the left (four alters with one tie between them), while 
the top-left respondent would fall into the 11th configuration. 

Formally, let Yp be a square matrix of dimensions m × m, consisting of the alters in the 
ego network of respondent p. Define Ypij = 1 if a tie exists between alter i and j. The ego net-
work configuration can then be defined by the unique combination of: 

1. Sizep = m
2. (di)p = Ypi+ ,  where di is the degree of alter i
3. Tp = ∑ Ypij  *  Ypjk  *  Ypik ,  where t is set of all triads in Yp              
                   t

A distribution of ego network configurations offers a more discriminating measure be-
cause it fully captures the structural features of the ego networks. Ego networks of the 
same size and density can exhibit very different structural patterns, but this is obscured us-
ing traditional measures. For example, there are four distinct configurations with four al-
ters and three ties between alters. Substantively, the forces that constrain the real network, 
such as transitive closure (where a friend of a friend is a friend) will also constrain the ego 
network configurations, making it more likely that the simulated network will reflect the 
properties of the true network (as the simulated networks are conditioned on the ego net-
work configurations).

Figure 2. Example ego network configuration distribution. Note: This figure is a based on a hypotheti-
cal ego network configuration distribution. Ego is not included in the ego network types. I only include 
ego network types of size four or less to make the figure legible.

{
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The simulation generates full networks that are consistent with the information ex-
tracted from the ego networks: the degree distribution, differential degree, homoph-
ily, and the ego network configuration distribution. A network consistent with this 
local information should have similar global features as the true network—as the sim-
ulated networks are heavily constrained by the empirical data. The method draws on 
two models to simulate the networks, exponential random graph models (ERGMs) and 
case control logistic regression. I briefly discuss both models before moving to the de-
tails of the approach.

2.2. ERGM
ERGMs offer a statistical approach to modeling network data. The model form is quite 

general, and can be used to test hypotheses about network structure/formation (Holland 
& Leinhardt, 1981; Frank & Strauss, 1986; Wasserman & Pattison, 1996; Snijders, Pattison, 
Robins, & Handcock, 2006; Handcock, Goodreau, Hunter, Butts, & Morris, 2008). Formally, 
we can define a network, Yij, over the set of nodes N (N = 1, 2, … n), such that Yij = 1 if a 
tie exists and 0 otherwise. Let y be the observed networks. Y is then a random graph on N, 
where each possible tie, ij, is a random variable. An ERGM will model the Pr(Y = y). The 
“independent variables” are counts of local structural features in the network (Robins, Sni-
jders, Wang, Handcock, & Pattison, 2007; Goodreau et al., 2009), such as the volume of ties, 
homophily (e.g., the number of ties that match on race), or transitivity (e.g., the number of 
transitive triads). The model can be written as: 

P(Y = y) =
 exp(θT g(y))

                                                                       κ(θ)

where g(y) is a vector of network statistics, θ is vector of parameters, and κ(θ) is a normal-
izing constant.

Typically, ERGMs are used to test hypotheses about the formation of the network, but 
it is also possible to simulate networks from an underlying model. The coefficients cap-
ture the effect of different local processes on the formation of the network. We can then 
use those coefficients to predict the presence of ties between individuals in a constructed 
network.

Prior to a simulation, a researcher must specify the model terms and coefficients used 
to generate the network. The model should be specified with the end goal in mind. In this 
case, the goal is to simulate networks consistent with the local network information. The 
model terms should reflect the information available from the ego network sample, while 
the coefficients should generate networks with the right local features.

2.3. Case Control Logistic Regression
The second model, case control logistic regression, is used to estimate the initial coef-

ficients for the ERGM (Smith et al., 2014). The case control model is specifically used to 
estimate the coefficients for the homophily terms. The model is also used to adjust the 
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homophily coefficients during the simulation (see Merli et al., 2015, for an example). Case 
control models are often used in medical research to study rare conditions that are diffi-
cult to capture through random sampling (Breslow & Day, 1980). The models compare the 
cases, a set of individuals with the “disease” (e.g., cancer), to the controls, a set of individ-
uals without the “disease.” A case control model is ideal for ego network data because the 
sample captures the rare event of interest, the social relationships between actors. The cases 
are all respondent–alter pairs, or those pairs with a known social relationship (the “disease” 
of interest). The controls represent a random sample of pairs that do not have a known so-
cial relationship. This is formed by randomly pairing the sampled respondents together, 
capturing random mixing in the population.

The case control model compares the cases to the controls on some behavior or con-
dition of interest (e.g., smoking). Here, the condition of interest is the sociodemographic 
distance between individuals in a pair. For numerical variables, like age, this is measured 
as the absolute distance between i and j. For categorical variables, like race or religion, 
distance is measured as a matching term (are i and j the same race?) or a set of dummy 
terms, describing the rate of contact between all categories (e.g., what is the rate of so-
cial contact between Whites and Blacks, Whites and Asians, and so forth?). The sociode-
mographic distance between the respondents and alters, or the cases, is compared to the 
sociodemographic distance between randomly paired respondents, or the controls. The 
model thus compares the sociodemographic distance observed in the data to that expected 
under random mixing in the population (Smith et al., 2014). The model is a simple logis-
tic regression, where the 1s are the respondent–alter pairs and the 0s are the random re-
spondent pairings. Formally 

ln
 (    p(Y )    ) 

= θD                                                      1 – p(Y)

where Yij is the presence or absence of a tie, Dij is the sociodemographic distance between 
i and j for each dyad, and θ is the vector of coefficients.

The case control model is useful because of its flexible form: The controls are constructed 
independently from the cases, making it easy to alter the comparison. This makes the ini-
tial estimation straightforward, and, more importantly, makes it possible to update the co-
efficients during the simulation itself.

3. Methods Overview

The simulation approach draws on both models to generate networks consistent with 
the sampled information. I describe the approach here in some detail but see Smith (2012) 
for a complete discussion.

The method has three basic parts: first, summarizing the sampled data prior to the sim-
ulation; second, setting up the simulation; and third, simulating the full networks. The first 
part gathers information from the sampled ego networks, while the second and third parts 
generate full networks that are consistent with the local, sampled information. I assume, 
when describing the method, that the survey has collected demographic information on 
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both the respondents and alters. I also assume that there is information on the number of 
alters and the ties between alters.

The method begins by calculating the degree distribution from the sampled data. The 
degree distribution is taken directly from the sampled data itself. Thus, the proportion of 
respondents with 0, 1, 2, etc., alters is used as the estimate of the degree distribution. This 
is a quite simple approach, but it is also possible to use more complicated, model-based 
methods when estimating the degree distribution (e.g., Zhang, Kolaczyk, & Spencer, 2014). 
Thus, one could estimate the generating function of the degree distribution, take draws 
from that model, and use that as the degree distribution for the network. This would serve 
to smooth out the distribution from the sample. In the case of a truncated survey design 
(e.g., where only 10 names are collected), it will be particularly important to use a model-
based approach—as the sample degree distribution will not offer a good approximation of 
the true degree distribution.

As a second step, the method calculates the ego network configuration distribution from 
the sampled data (see formula and discussion above).

The next series of steps sets up the simulation. Here, the method first generates a net-
work of size N with the correct degree distribution, already calculated from the ego net-
work data.5 The size of the population is assumed to be known.6 The method then assigns 
demographic characteristics to the nodes in the simulated network. A sampled respondent 
is first selected at random; a node from the seeded network is then selected with the same 
degree as the sampled respondent. The selected node is assigned all of the characteristics 
of the selected respondent, such as race, gender and education. This maintains differential 
degree in the simulated network, as demographic groups with high average degree in the 
sample will also have high average degree in the network (as characteristics are assigned 
to nodes based on degree).7 The initially simulated network will thus have the right size, 
degree distribution, demographic composition, and differential degree (where everything 
but size is based on the sampled data).

The method then specifies an ERG formula to simulate the full network from. The ERG 
formula specifies which local features are used to form the full network of interest. The 
terms in the model should reflect all of the local information available from the ego network 

5 This initial simulation can be done within an ERGM framework or using a stub-based algorithm 
(Newman, Strogatz, & Watts, 2001; Viger, Latapy, & Wang, 2005).

6  See Pattison, Robins, Snijders, and Wang (2013) for approaches that do not require the size of the 
network to be known.

7 It is important to note that the number of people in the simulated network is larger than the number 
of sampled respondents. This means that a sampled respondent may be seeded multiple times in 
the simulated network. This is unlikely to cause problems, however, as the network ties are prob-
abilistically determined; thus, nodes in the simulated network with the exact same set of charac-
teristics need not be tied together. Or, there is no definitional reason that a node seeded multiple 
times will have to be tied to herself. Any nodes with similar characteristics will have a high prob-
ability of being tied together. More substantively, it may be the case that many people have the 
same race and grade in a school; in which case the simulation does not deviate far from the empir-
ical setting. Future work could, however, explicitly deal with this duplication of nodes by mod-
eling how the characteristics go together, rather than simply drawing them from the data itself.
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sample: differential degree, homophily, and the ego network configuration distribution. 
There are two steps here: first, determining which terms should be included; second, cal-
culating the initial coefficients for those terms.

The model will include homophily terms for each demographic dimension available in 
the data. The homophily terms take the form of an absolute difference if they are continuous, 
like age. Thus, we would be interested in the absolute age difference between respondents 
and their alters. The method uses a mixing matrix to capture homophily if the terms are cat-
egorical, like race or gender. The mixing matrix reflects the number of social ties between 
each category. For example, the terms for race may include Black–Black, Black–Hispanic, 
White–White, and so forth, capturing the number of social ties between each racial group.

The model also includes a term for geometrically weighted edgewise shared partner 
(GWESP) distribution. GWESP counts the number of shared partners that i and j have (as-
suming i and j are themselves tied), or the number of common associates. GWESP substan-
tively captures higher order transitivity in the network, or the tendency for local clusters 
to emerge. The GWESP term is designed to capture the ego network configuration distri-
bution. GWESP is an appropriate choice as it mirrors many of the structural features of the 
ego networks. For example, the shared partner distribution in an ego network is the same 
as the degree distribution of the alters (from the point of view of the respondent), a key 
component in defining the ego network configurations.

The method then sets the initial coefficients for each term. The homophily coefficients are 
estimated using case control logistic regression (Smith et al., 2014). The GWESP coefficient, 
in contrast, cannot be easily set prior to the simulation; this is the case as it is not possible 
to analytically solve for the value that will yield the right ego network configuration dis-
tribution. Rather, GWESP is set at an initial value and is updated during the simulation as 
the method looks for a better fitting network.8 The degree distribution and differential de-
gree (specified while seeding the network) are also maintained throughout the simulation.

The framework takes the initial ERGM (coefficients, terms, and constraints) and simu-
lates a network. The simulated network is then checked to make sure the homophily rates 
are correct. The homophily coefficients (and network) are updated if any discrepancies are 
found. The simulated networks may have incorrect homophily rates because the initial case 
control model only includes homophily terms. The initial homophily coefficients are thus 
unconditioned. The simulated networks, however, have a nonzero GWESP coefficient, mak-
ing the homophily coefficients biased when simulating the networks.

Formally, the case control model is used to update the coefficients, comparing the true 
rates of homophily to those in the simulated network and adjusting accordingly. Coeffi-
cients are decreased if there are too many ties among groups and increased if there are too 
few. The method takes the tied dyads from the simulated network and the respondent–alter 
dyads from the sampled data and forms a combined dataset. This dataset includes the de-
mographic characteristics of each person in the dyad. The dataset also includes a 0/1 vari-
able: equal to 0 if the dyad comes from the simulated network and 1 if the dyad comes from 

8 The method calculates a starting value by estimating a dyadic independent ERGM on the ego net-
works. It is also possible to use other terms than GWESP.
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the empirical sample. The method then runs a logistic regression, predicting the 1s as a func-
tion of the sociodemographic distance between individuals in the dyads. Substantively, the 
logistic regression compares the sociodemographic distance from the empirical sample (i.e., 
between respondents and alters) to the sociodemographic distance between tied individuals 
in the simulated network. For example, for categorical variables, a positive coefficient means 
that the simulated network has too few ties between those groups. The estimated coefficients 
are then added to the original homophily coefficients. This adjusts the original homophily co-
efficients up or down, depending on the bias in the simulated network. The network is then 
updated based on these new coefficients. (See Smith, 2012, for more formal details.)

The simulated network is then evaluated on how well it captures the ego network con-
figuration distribution from the sampled data. The ego network configurations found in 
the simulated network are compared to the observed distribution in the sample using a chi-
square value.9 Specifically, the chi-square calculation has two parts: first, calculate the ego 
network configuration distribution from the simulated network, and second, compare the 
ego network configuration distribution from the simulated network to the distribution from 
the sampled data (calculated prior to the simulation). We can write the chi-square value as 

                                                                           n  
∑  (Oi – Ei)2

                                                                          i=1       Ei

where Oi is the observed frequency in the simulated network, Ei is the frequency found 
in the sample, and n is the total number of possible ego network configurations. The chi-
square value will be large, and the fit poor, if is there is a large difference between the true 
distribution and the distribution from the simulated network.

The coefficient on GWESP is then updated to find a better fitting network, if possible. A 
better fitting network will have ego network configurations that match the true distribu-
tion more closely, condition on the other local features in the sampled data. As the simula-
tion looks for a better fitting network, it is necessary to compare the homophily rates in the 
simulated network to the rates in the sampled data.

The ego network configuration distribution thus serves as the benchmark by which to 
judge the simulated networks. The question is what coefficient on GWESP will yield a net-
work with the lowest chi-square value. The minimization process begins by simulating a 
sample of networks with different values for GWESP; the values are set above and below 
the initial value for GWESP. The method then adjusts the simulated networks for any ho-
mophily bias and calculates the chi-square value, comparing the true ego network configu-
ration distribution to the distribution in the simulated network. The coefficients on GWESP 
and the chi-square values are then used to fit an OLS regression. The chi-square values are 
regressed on linear and quadratic terms of the GWESP coefficients. Formally 

χ
i
2 = β0 + β1 (Gi) + β2 (Gi)2

9 A good fit means that the ego network configurations in the simulated network are found at the 
same rate as in the sampled data.
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where χi
2 is the chi-square value for network i, and Gi is the coefficient on GWESP for net-

work i. The regression coefficients are then used as inputs into an optimization routine; the 
method uses the Nelder-Mead algorithm to find the GWESP coefficient that yields the low-
est chi-square value. The coefficient that minimizes the equation is then used as the start-
ing point for the next iteration of the simulation. This process is repeated until it is impos-
sible to improve the fit by changing the GWESP coefficient and updating the homophily 
coefficients. In general, the simulation rests on a kind of approximated likelihood ratio test: 
The coefficients are updated to find a more likely network, where a network is considered 
more likely if the ego network configuration distribution more closely matches the true dis-
tribution from the sample.

In the end, the simulation will yield a network with the same local properties as the sam-
pled ego network data: It will match the degree distribution, differential degree, homoph-
ily and the ego network configuration distribution. The researcher can then calculate the 
global statistics of interest on the generated network.

4. Analytical Setup: Testing the Method

The key question is how closely the method reproduces the true network. A test of the 
simulation approach has four steps: first, select a known, complete network as a test case; 
second, take an ego network sample from the known network; third, use the simulation 
approach to estimate network properties of interest; and fourth, compare those estimates 
to the true values on the known network.

I use this general setup to examine two validity threats to the approach: skewed degree 
distributions and truncated survey designs. A degree distribution is skewed when a few 
nodes have very high degree relative to the rest of the population. A network with a skewed 
degree distribution may be difficult to simulate accurately. A random sample of the popula-
tion could miss the high degree nodes (because they are not any more likely to be sampled 
than anyone else), but these actors are disproportionally important for network structure. 
Those with high degree are connected to many people and are likely to connect disparate 
parts of the network. A researcher is likely to underestimate the global connectivity of the 
network if the sample misses these important hubs.

Similarly, survey designs will often limit the number of alters a respondent can name. A 
person with 15 friends may only be able to list five or 10. This is done to limit respondent bur-
den, but it also makes it hard to infer the true degree distribution. Even if a researcher was for-
tunate and sampled a high degree node, they would not discover this information if the sur-
vey was limited to a small number of alters. This will be especially consequential for networks 
based on weaker relationships, where an individual can maintain a large number of social ties.

I incorporate varying levels of degree skew and survey truncation into the larger frame-
work for testing the method. Degree skew and truncation are the only variables allowed to 
vary during the analysis (along with the researcher’s response to these problems). I divide 
the discussion into two parts. I first describe aspects of the test that are held fixed through-
out the analysis. I divide this discussion into three subsections: the known network; the 
sample from the known network; and the global network properties of interest. I then de-
scribe the experimental setup itself, describing how degree skew and survey truncation are 
allowed to vary. I also discuss what steps the researcher can take to limit the level of bias.
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4.1. Known, Complete Network
I use networks simulated from an underlying ERGM as the basis for the test.10 I gen-

erate networks from a known model (as opposed to using an empirical network) because 
simulated networks can be fully controlled, making it easier to represent the different fea-
tures in the experimental setup (Borgatti et al., 2006). The generated networks are 500 nodes 
and the model includes terms for transitive closure and homophily on grade and race. The 
composition of the generated networks and the coefficients in the ERGM are modeled after 
an empirical Add Health network (e.g., Haynie, 2001; Moody, 2001; Schaefer, Kornienko, 
& Fox, 2011). The network is also assumed to be symmetric. The degree distribution is al-
lowed to vary by experimental condition (see below), while all other features are held con-
stant throughout the analysis. The networks thus have empirically realistic features but are 
easily manipulated to satisfy the test conditions. I will assume, for ease of exposition, that 
the generated networks come from a school setting, representing adolescent friendships.

4.2. Sampling Setup
I assume that a 20% ego network sample is taken from the full, known networks. The 

hypothetical survey has 100 “respondents” and is assumed to collect the following infor-
mation: the number of alters per respondent, the race and grade of the respondent, the re-
spondent’s report on the race and grade of the alters, and the respondent’s report on the 
ties between alters. The survey is hypothetical in the sense that no respondents are actually 
interviewed and all information on the sampled nodes is taken from the true network.11 
For both the alter–alter ties and the demographic information, the respondent “reports” 
on only five alters. In this way, the hypothetical survey mimics real data collection limita-
tions—where respondent fatigue is a concern. Since this is not an actual survey, the five al-
ters are randomly selected from the set of all alters for that node (acting as the five alters 
they chose to report on).

4.3. Network Properties of Interest
I include five global measures in the test: component size, defined as the largest set of 

nodes connected by at least one path; bicomponent size, defined as the largest set of nodes 
connected by at least two independent paths (Moody & White, 2003); mean distance, defined 
as the length of the shortest path between nodes (on average); and reachability, defined as 
the proportion of nodes reachable X steps out into the network (on average). I include two 
measures of reachability, one going three steps out into the network and the other going 
five steps out into the network. I also include results for the full distance distribution, de-
fined as the proportion of dyads that are 0, 1, 2, etc., distance apart. These represent typical 

10 Note that the simulations here are not part of the inferential process, but are rather used to gener-
ate networks to make inference about.

11 Specifically, because this is a hypothetical survey, we do not have the respondent’s report on alter 
race, gender and the alter–alter ties. I thus use information from the actual network as a (perhaps 
idealistic) proxy of what a respondent would report for the characteristics of their alters. Similarly, 
the number of alters is their degree from the true network.
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measures of global connectivity and diffusion potential in a network. Bicomponent size of-
fers a measure of cohesion, showing how robust the network is to disconnection.

I also include a set of more local network measures, as many researchers will be inter-
ested in local network structure. The local measures include: the mean, standard deviation 
and skew of the degree distribution, density, the number of two-paths, transitivity, the pro-
portion of open triads, the proportion of closed triads, and the geometrically weighted dyad 
shared partner (GWDSP) distribution. The degree distribution is measured as the propor-
tion of people with degree 0, 1, 2, and so forth. The mean, standard deviation and skew 
measures are summaries of the full degree distribution. Density is defined as the num-
ber of observed ties in the network divided by the number of possible ties. A two-path ex-
ists between i and j if there exists a tie between i – k and k – j; the summary measure is the 
count of two-paths in the network. Transitivity is the proportion of two-step paths where 
there is also a one-step path. The proportions of unclosed and closed triads summarize the 
triad census: an unclosed triad is defined as a triad with two ties (as the networks are un-
directed), while a closed triad is defined as a triad with three ties. The dyad shared part-
ner distribution is defined by the number of nodes that i and j are both connected to, or the 
number of shared friends. This leads to a distribution of shared partners (at the level of the 
dyad), which is summarized as a geometrically weighted summation. I set alpha to 1 when 
calculating the summation.

5. Experimental Setup

Three variables are manipulated in the experimental setup: the baseline networks, rang-
ing from low degree skew to high degree skew; the survey design, ranging from no trunca-
tion to strong truncation; and the researcher’s response to truncation, ranging from nothing 
to inferring the missing data. There are three conditions for each experimental variable, leav-
ing a 3 × 3 design and nine data points overall. The experiment captures the negative effect 
of degree skew on the estimates; it also recognizes that the rate of degradation is conditioned 
on the available survey information and the researcher’s response to the survey conditions.

5.1. Varying the Networks of Interest
The three test networks range from low degree skew to high degree skew. Figure 3 plots 

the degree distributions for the three baseline networks. The top-degree nodes range from 
26 in the low skew network to 47 in the medium skew network to 75 in the high skew net-
work. Similarly, the skew in the degree distribution increases as we move down the plot. 
The bulk of the degree values are still between 0 and 20 in the medium and high skew net-
works, but the tails are much longer. One or two people now collect a much larger propor-
tion of the total number of ties. 

The method was initially designed with strong tie relationships in mind. Relationships 
based on trust and emotional support, such as close friendships or confidants, require large 
time/energy investments; this limits the number of ties an individual can maintain. Net-
works based on strong tie relationships are appropriate for the method precisely because it 
is difficult to maintain many strong ties. The degree distribution will have a short tail, and it 
is relatively easy to list of all one’s social contacts—minimizing problems of fatigue and the 
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necessity of truncating the survey. This makes the high skew network a particularly diffi-
cult test. The high skew network includes individuals with 75 ties, and represents networks 
based on weak social relationships, such as acquaintanceship. The question is whether the 
method will work even in situations where individuals maintain a large number of ties.

I have plotted the three networks in Figure 4. The nodes are colored according to grade 
and sized according to degree; larger nodes have higher degree. It is clear in all of the net-
works that the system is organized along grade levels. Grade 12 is separated from Grade 
11 and Grade 10, which form a loosely connected group of their own. It is also clear that 
the top degree in each network increases as move from the low skew network to the high 
skew network. In the high skew network, the highest degree node is found in Grade 12. 
This node plays a large role in connecting the Grade 12 students to each other. The high 
skew network exhibits lower average distance and higher reachability than the low/me-
dium skew networks.12 

Figure 3. Degree distribution for test networks: Low to high skew.

12 Note that even though the top degree is larger in the high skew network, homophily is still quite 
important in organizing the social structure of the school.
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5.2. Varying the Survey Design
Given the networks of interest, I also vary the amount of information assumed to be col-

lected in the ego network survey. The experimental design includes three survey types: 
strong truncation, medium truncation and no truncation. The surveys vary how many 
friends the respondents are allowed to name—up to 10 friends (strong truncation), up to 25 
friends (medium truncation), or no limit (no truncation). For example, if a sampled node has 
30 friends in the full network, we would know about the first 10 under strong truncation, 
the first 25 under medium truncation, and all 30 under no truncation.13 In the simulation 

Figure 4. Networks used to test simulation method.

13 Even in the low skew network there could be differences across survey conditions as many indi-
viduals have more than 10 friends. Across all survey conditions, I assume that alter demographic 
information is only recorded for five alters.
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experiment, a node with degree 30 would appear in the sample as a node with degree 10, 
25, or 30, depending on the level of truncation.

5.3. Varying the Researcher’s Response to Survey Truncation
The final variable in the experimental design is the researcher’s response to the survey. 

Surveys will often truncate the alter listing to limit respondent burden. A researcher may 
react in a number of ways to this (potential) validity threat. The experiment varies the re-
searcher’s response to reflect different courses of action.

As a baseline, the researcher could do nothing, taking the data as is. Here, if the survey 
truncates the alter listing at 10, then the maximum degree recorded for the respondents will 
be 10—even if they really have 15 ties. In the simulation, a sampled node with degree 15 
would be recorded as degree 10. Thus, there will be a mass of people at the truncated value.

Alternatively, the researcher could fill out the truncated degree distribution. The basic 
idea is to fit a model to the known, truncated data and then use that model to impute the 
truncated portion. Specifically, the researcher assumes that the true degree distribution fol-
lows a negative binomial distribution.14 They then estimate the parameters of the full dis-
tribution, inferring the mean and size parameter from the truncated data.15 They then use 
this model to impute the degree of all individuals who report the truncated amount.16 The 
researcher takes a draw from the inferred model and assigns the respondent a value greater 
than or equal to the truncated value (say 13 if the survey is truncated at 10 and the respon-
dent lists up to 10 alters). As the “researcher” in the experiment, I apply this approach to 
all sampled nodes with degree greater than or equal to the truncated amount. Thus, nodes 
with degree less than the truncated amount are treated as before, with the value taken di-
rectly from the sampled data.

Finally, a researcher could use categorical responses to deal with the truncated survey 
(e.g., Handcock & Jones, 2004). Here, respondents who list the maximum number of friends 
(or, in the simulation, have higher degree than the truncated value) are asked an additional 
question. They are asked to estimate how many friends they actually have. They are given 
the following categorical options: 11–25, 26–40, 41–60, 61–80, and 81–100+. The categorical 
options will vary depending on the level of truncation. For example, there is no 11–25 op-
tion if the survey is truncated at 25. The researcher then takes a draw from a Poisson dis-
tribution with mean set at the mean of the categorical response.17 Since this is not an actual 

14 Past work has shown that the process of gaining and losing ties will often yield a Poisson distribu-
tion for the total number of ties (McPherson, 2009); a negative binomial distribution offers a more 
flexible form for fitting the data, but is still theoretically close to a Poisson distribution, making it 
an ideal option.

15 The best parameters will generate the observed degree distribution, once we collapse all of the 
values above the truncated value (say 10) into the truncated value. Thus, the model should gen-
erate a distribution with the right proportions in each value, including the right proportion above 
the truncated value.

16 The simulated value is not allowed to fall below the truncated amount. In this way, respondents 
cannot have values below the number of alters they listed.

17 The simulated values are restricted to the range of the categorical response.
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survey, and respondents are not actually answering the question, I assume that the “respon-
dent” accurately records their degree. If they really have 30 ties in the full network, then I 
record 26–40 as their answer. I (playing the role of the researcher) would then take a draw 
from a Poisson distribution with mean of 32.

The experimental setup is thus a 3 × 3 × 3, and we can think of the test being repeated 
for each level of truncation with three networks and three types of responses.18 The test in-
cludes 100 iterations per condition to account for variation in the estimates. For each iter-
ation, I take a completely independent ego network sample and repeat the process again. 
The key question is how much the estimates are affected by increasing degree skew and 
truncation. It is also important to see if the researcher can limit the level of bias. Is it better 
to impute the degree distribution or to do nothing under a truncated survey? Or is it worth 
asking one more question and employing categorical responses?

6. Results: Global Network Measures

I begin the results section by focusing on measures of global network structure. The first 
set of results focus on the effect of degree skew and truncation on the validity of the esti-
mates. I initially ignore the role of the researcher in the estimation process. The initial sec-
tion thus presents the worst case scenario: how would the results look if one did nothing 
in response to the truncation found in the surveys.

6.1. Results Part 1: Researcher Does Nothing in Response to Degree Truncation
Figure 5 presents a snapshot view of the results. The figure is organized by global mea-

sure of interest. There is a separate set of boxplots for component size, bicomponent size, 
distance, three-step reachability, and five-step reachability. The x-axis in each subplot cor-
responds to truncation level, moving from strong truncation (at 10) to medium truncation 
(at 25) to no truncation. Each boxplot captures the difference between the true values and 
the estimates taken from the simulation. The boxplot values are positive if the simulation 
overestimates the true value. The boxplots are also divided by network of interest, ranging 
from low skew to high skew. Boxplots corresponding to the same network have the same 
color (e.g., white = low skew). I have placed the true value for each network/measure un-
derneath the boxplots as a point of reference. The estimates for each network/truncation 
level are good if they are centered around 0 and have low variance. 

I begin with component and bicomponent size. Here the results are encouraging. 
The method successfully produces good estimates, and this is true for every network 
and every level of truncation. It is not the case, as we might expect, that the estimates 
deteriorate as truncation increases. It is even possible to estimate the size of the larg-
est component and bicomponent when the network is highly skewed and degree is 
truncated at 10. Thus, a researcher interested in component or bicomponent size could 
make inference using sampled data even under particularly difficult conditions. (Note 

18 Although it is important to note that under no truncation the researcher response is not varied, as 
there is nothing to try and “fill in.”
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that there are also analytical solutions showing if there is a giant component in the net-
work; Grannis, 2010.)

The distance results are more heterogeneous, dependent on both the level of skew in the 
network and the level of truncation in the survey. Beginning with the low skew (white) net-
work, there is little bias under no truncation and medium truncation (close to no trunca-
tion for the low skew network). There is, however, some bias when the survey is strongly 
truncated, allowing only 10 alters to be named. Thus, as long as degree is not strongly trun-
cated, it is possible to produce accurate estimates for distance on the low skew network. 
Even when the survey is strongly truncated, the bias is under 5%. The medium skew net-
work offers a similar story, with severe bias only when the degree distribution is truncated 
at 10, and essentially no bias with no truncation. We begin to see systematic bias in the high 
skew network. The true distance is 3.67 while the mean estimate is 4.40 under strong trun-
cation (see Table A3 in the Appendix). The bias clearly decreases as the level of truncation 
decreases: The mean estimate is 4.01 when truncating at 25 and 3.84 with no truncation. 
Yet there is still residual bias even when the researcher has full information on the sample. 
Under no truncation, the interquartile range (IQR) is (3.67, 4.03), just barely including the 
true value. Figure A1 in the Appendix presents the full distance distribution. The method 
once again reproduces the true distance between nodes when there is no truncation, but 
overestimates distance under strong truncation. For example, in the medium skew network 
under strong truncation, the simulated networks underestimate the number of nodes that 
are separated by two or three paths and overestimate the number separated by four or five 
paths—but this is not the case when there is no or weak truncation in the survey.

Figure 5. Estimates for global measures by network and truncation type: No researcher response.
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Reachability offers similar results. There is noticeable bias for the low skew network 
only when the survey is strongly truncated (limited to 10 alters); the high skew net-
work, in contrast, has some bias and large variance even when there is no limit on the 
number of alters a respondent can name. Similarly, there is little bias in the medium 
skew network when there is no truncation but significant bias when the survey is trun-
cated at 10. The method generally underestimates the true value. For example, the true 
value in the medium skew network is .327 while the mean estimate is .286 (under me-
dium truncation).

Five-step reachability yields much lower bias than three-step reachability and is easier 
to estimate on the whole. It is even possible to estimate five-step reachability on the high 
and medium skew networks, as long as the survey is not truncated at 10. The low skew net-
work is estimated quite well at all levels of truncation.

In short, it is clear that some measures/networks are easier to estimate than others (e.g., 
bicomponent size versus distance; low skew versus high skew networks) while truncated 
surveys lead to worse estimates. Encouragingly, a researcher can accurately estimate many 
global measures even if they do nothing in response to survey limitations (i.e., the low and 
medium skew networks when the survey is not strongly truncated).

6.2. Results Part 2: Filling in the Truncated Degree Distribution
Figure 6 presents the results for the imputed tail analysis. The figure has the same form 

as Figure 5, but now the researcher imputes the truncated portion of the degree distribution. 

Figure 6. Estimates for global measures by network and truncation type: Simulate truncated tails.
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As before, the method produces excellent estimates for component and bicomponent size 
across all networks and survey designs. 

The results for distance are quite different than in Figure 5, where there was no response 
from the researcher. Here, there is no bias when estimating distance in the low skew net-
work, even when the survey is truncated at 10. The bias is also reduced in the medium skew 
network, although there is still some bias under strong truncation. The results for the high 
skew network show little improvement, however. The full distance distribution (see Fig-
ure A2 in the Appendix) offers an analogous story. There is only bias for the medium skew 
network under strong truncation (again, underestimating the number of shorter paths in 
the network), and none for the low skew network.

The results are similar for three-step reachability: there is no bias for the low skew net-
work across all survey designs, while the medium skew network shows lower bias than 
before (for both strong and medium truncation). The five-step reachability results are very 
similar across the no response and imputed tails figures.

Overall, filling in the degree distribution improves the estimates in every case but the 
high skew network. It is now possible to estimate the medium skew network for all survey 
designs expect the strong truncation case, while there is no bias for the low skew network, 
independent of survey design.

6.3. Results Part 3: Using Categorical Responses
Figure 7 presents the results for the categorical response analysis. Here, the researcher 

asks the respondents to estimate their number of alters (if above the truncated number); 
they then use that information to fill in the truncated portion of the degree distribution. 

Figure 7. Estimates for global measures by network and truncation type: Use categorical responses.
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Once again, component size and bicomponent size are accurately estimated for all net-
works and survey designs. The distance results, however, largely favor the categorical re-
sponse approach—both compared with doing nothing and imputing the tails of the distri-
bution (although this does not hold for the medium skew network at medium truncation). 
Using categorical responses, one can accurately estimate distance for the low skew and me-
dium skew networks under any level of truncation. Similarly, the bias for the high skew 
network is much reduced under the categorical response approach. For example, the true 
distance in the high skew network is 3.67; the IQR is (3.91, 4.10) when imputing the tails 
and (3.61, 4.07) when using categorical responses (under medium truncation). The story 
is similar for three-step reachability. It is possible to estimate reachability well for the me-
dium skew network at all levels of truncation, although the best estimates still come when 
there is no truncation. There is essentially no bias for five-step reachability, and this holds 
for all networks and all truncation levels.

Tables A1–A5 in the Appendix focus more explicitly on the role of the researcher. The 
tables are organized around measures, with one table per global statistic of interest. Within 
the tables, the columns correspond to different researcher responses: no researcher response; 
impute truncated tails; use categorical responses. The rows capture the level of skew in the 
network and the level of truncation in the survey.

Beginning with distance (Table A3 in the Appendix), it is clear that the categorical re-
sponse approach offers the lowest bias when there is strong truncation (at 10) and the net-
work has medium or high skew. For example, the true distance score in the medium skew 
network is 3.90. Under strong truncation, the mean estimate is 4.29 when doing nothing, 
4.15 when imputing the tails, and 4.00 when using categorical responses. This general pat-
tern also holds for reachability. There is thus good reason to use categorical responses when 
the survey has a strongly truncated degree design. Similarly, the high skew network is al-
most uniformly handled best by the categorical response approach.

It is not the case, however, that categorical responses will always offer the best option. 
For example, in the medium skew network under medium truncation (truncated at 25), fill-
ing out the degree distribution is generally preferable to using categorical responses. Simi-
larly, the low skew network is handled equally well by both approaches (and both are bet-
ter than doing nothing). In general, the categorical response approach is most appropriate 
when the information about the network is limited: so that truncation is strong or the skew 
of the network is high. Either active approach (i.e., imputing the tails or using categorical 
responses) is better than doing nothing, which is only appropriate when the network is not 
skewed and there is no survey truncation.

7. Results: Local Network Measures

The global network results are encouraging, but it is important to see if the same trends 
hold for the local measures. Collectively, the local measures capture: (a) the properties of 
the degree distribution (or the number of ties per person), (b) the level of local closure (is 
a friend of a friend a friend?), and (c) the level of higher order clustering (i.e., how many 
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friends does i and j have in common?). Measures of cohesion and connectivity exhibit a reg-
ularity that the local measures often lack (as they are more robust to small changes), mak-
ing this a more difficult test of the method.

Figures 8 to 10 present the results for the local network measures (see also Tables A6–
A13 in the Appendix.) The top line of Figures 8 to 10 presents the results for the mean, stan-
dard deviation and skew of the degree distribution. It is clear from the figure that mean 
degree is accurately estimated in the low and medium skew networks when there is no 
truncation. The estimates for mean degree are only slightly biased downwards when trun-
cation is weak (truncated at 25). Under strong truncation, it is important for the researcher 
to take some action. For example, for the low skew network, under strong truncation, the 
mean bias is about 3% under the actual value based on categorical responses but 10% if the 
researcher does nothing. The results are similar for the high skew network, although the 
bias is higher at every level of truncation. Note that the density plot is a scaled version of 
the mean degree plot, and offers identical results. 

The bias is higher for the standard deviation and skew of the degree distribution: there is 
little bias in the low and medium skew networks under no truncation, but some bias when 
the survey is truncated, even when imputing the tails or using categorical responses. The 
bias is particularly noticeable for the medium skew network. It is even harder to estimate 

Figure 8. Estimates for local measures by network and truncation type: No researcher response.
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the skew and standard deviation in the high skew network. This is true at all levels of trun-
cation and for all researcher responses (although categorical responses fares the best of the 
three). For example, the bias in standard deviation is upwards of 25% under weak trun-
cation. The results suggests three things: first, that the sample is missing the high degree 
nodes in the high skew network; second, that the method is underestimating the degree 
of the truncated cases in the medium skew network; and third, that the high degree nodes 
have a large impact on the shape of the degree distribution.

The remaining measures capture local clustering and reachability in the network.
The first measure, number of two-paths, is estimated quite well in the low skew net-

work, especially when simulating the tails of the distribution (with bias under 1%). The 
worst estimate is the case of strong survey truncation and no researcher response. Similarly, 
the medium skew network is estimated well under weak truncation (when simulating the 
tails of the distribution) and no truncation (bias under 5%). The largest bias clearly resides 
with the high skew network, where the number of two-paths is underestimated across the 
board. This is the case as high degree nodes create many two-paths; missing those high de-
gree nodes means underestimating the extent of local reachability.

In a similar manner, the proportion of unclosed triads is estimated well in the low and 
medium skew networks and underestimated in the high skew network. For example, in the 

Figure 9. Estimates for local measures by network and truncation type: Simulate truncated tails.
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low skew network, the bias under no truncation is 2%. The closed triad estimates are even 
better, with little bias for the low and medium skew networks under weak or no truncation. 
Under strong truncation, the estimates are still quite good for the low skew network, save 
in the case of no researcher response. The bias is also much lower for the high skew net-
work; under no truncation, the bias is 5% for closed triads but 20% for unclosed triads. The 
unclosed triads are more sensitive to missing high degree nodes because high degree nodes 
often connect people who are themselves not connected (just as we saw with two-paths).

The final plot presents the results for the geometrically weighted dyad shared partner 
distribution. The measure captures higher-order clustering in the network, or the tendency 
for individuals to have more than one friend in common. The high skew network, once 
again, offers the worst estimates, with bias of 16% under no truncation. The method per-
forms quite well otherwise, even though ego network data do not directly capture these 
wider connections. There is very little bias for the low skew network, and this holds for all 
levels of truncation (under categorical responses or simulating tails). Similarly, the method 
estimates GWDSP well for the medium skew network under no truncation. Under strong 
truncation, the categorical response approach performs best, with bias around 11%; under 
weak truncation, simulating the tails performs best, with bias around 5%.

Figure 10. Estimates for local measures by network and truncation type: Use categorical responses.
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8. Conclusions

Network sampling holds great promise for network scholars and public policy practitio-
ners. The benefits of sampling are clear: a researcher no longer needs a census to analyze 
the network structure of a system (Handcock & Gile, 2010). Network sampling can be quite 
difficult, however, and we are still trying to understand when accurate inference is possi-
ble and when it is not (Smith & Moody, 2013). Ego network data pose an extreme example 
of the network sampling tradeoff. Ego network data are easy to collect for the very reason 
inference is hard: the sample only collects bits of information about the respondents and 
their social connections. The question is how far one can push ego network data and simu-
lation techniques in making inference about global network properties—such as cohesion, 
diffusion potential or group structure.

Past work has demonstrated the validity of simulation techniques on a restricted range 
of networks. The simulation approach of Smith (2012) yields accurate estimates for net-
works without a skewed degree distribution and surveys that do not truncate (or limit) 
the number of alters named. The test here explored a wider range of circumstances: I 
systematically varied the level of degree skew in the network and the level of truncation 
in the survey when evaluating the method. I also asked if the researcher could limit the 
level of bias.

The low skew network represents the case closest to previous tests. Here, the top-de-
gree node has less than 25 ties. Low skew networks characterize many networks of inter-
est, including networks based on close friendship, confidants, and social support (Well-
man & Wortley, 1990; Smith et al., 2014). The results suggest that one can accurately 
make global network inference in low skew networks under all survey conditions. The 
researcher must, however, treat the data in some way (using categorical responses or im-
puting the tails) when the survey is strongly truncated. Similarly, there is little bias for 
the local clustering measures. This holds for all truncation levels, as long as the researcher 
does something to deal with the truncation in the survey (with imputing the tails offer-
ing the better option).

The results for the medium skew network are similarly encouraging. The medium skew 
network has a high degree around 50, representing networks of weak friendship or regu-
lar affiliation (Moody, 2004). The model produces accurate global network estimates when 
there is no degree truncation. When there is degree truncation, the results clearly depend 
on the response of the researcher. The categorical response approach offers accurate esti-
mates across all survey designs, while imputation is a viable option for all but the strongest 
level of truncation. It is, however, quite difficult to produce unbiased estimates when the 
researcher does nothing in response to survey truncation (although one can still estimate 
component and bicomponent size without bias). The method also performs well for more 
local network measures, although the bias is generally higher than with the global mea-
sures. The method is particularly appropriate for local clustering measures when there is 
no/weak truncation, but less appropriate if the survey is strongly truncated.

Taken together, simulation based inference is appropriate for many empirical settings 
of interest—ranging from the close ties of friendship and cohabitation to the wider ties of 
regular affiliation and association.
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High skew networks reflect considerably weaker relationships, and represent the least 
appropriate case for ego network data.19 Component and bicomponent size show little bias 
across survey/response conditions, but other network measures are harder to estimate. The 
method produces biased estimates for distance and reachability (5% for distance and 10% 
for reachability) even when there is no truncation in the survey. The ego network samples 
often miss the high degree nodes, leading to inaccurate estimates. This is particularly clear 
when looking at the local network measures: where it is difficult to estimate the properties 
of the degree distribution in the high skew network, even under no truncation. This also 
makes it difficult to capture local clustering measures in the high skew network, like num-
ber of two-paths or proportion of unclosed triads.

What are the larger implications of the results? First, it is always better to collect full de-
gree information if possible. The low skew and medium skew networks had little or no bias 
when there was no survey truncation. The estimates were always worse (or at best equal) 
when the survey was truncated.

Second, if the survey must be truncated, the researcher should infer the truncated por-
tion of the data. Across the board, the imputed tails and categorical response results were 
better than using the truncated degree distribution from the sample. Often the results were 
just as good as if the survey had not been truncated at all. The categorical response approach 
is particularly appropriate when the network is highly skewed or the survey is strongly 
truncated. The researcher only adds one question to the survey but receives information 
on the high degree nodes.

And third, the researcher may need to collect additional data if they believe the network 
has a skewed degree distribution. The level of bias in Tables A1–A13 in the Appendix may 
be acceptable to a researcher, given their particular research question; but a study requir-
ing a higher level of accuracy would need to consider alternative kinds of networks or sam-
pling schemes. For example, it may be necessary to collect a larger sample, thus increasing 
the probability of sampling the high degree nodes. Alternatively, one could embed a two-
step sample within the larger ego network survey. Thus, for a subset of the initial sample 
(say 20%), the researcher would contact the reported alters of the respondents. This second 
step would capture most of the high degree nodes (as individuals with high degree are dis-
proportionately named as alters), and should improve the estimates. This will be particu-
larly important in trying to capture local network measures.

Overall, the results are encouraging. It is possible to accurately estimate local and global 
network features, like GWDSP, component size or reachability, from independently sam-
pled network data. The difficulty of the task clearly increases as the skew of the degree dis-
tribution increases and the survey becomes more truncated, but in most cases the researcher 
can make appropriate adjustments and produce accurate network estimates.

The results, while encouraging, rest on a number of assumptions, and it is important for 
future work to consider those assumptions more carefully. For example, I assume that re-
spondents accurately report the number of alters they have. In reality, respondents may 
list fewer (or more) social contacts than actually exist (Marin, 2004). One way of capturing 

19 The high degree nodes approach 75 ties, well beyond the number found in strong tie networks for 
which the method was initially designed.
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this uncertainty is to add a disturbance term to the reported degree; this would produce 
bounds on the estimated network statistics (based on individuals under or over estimating 
their degree). More generally, a researcher concerned about the degree data could model the 
degree distribution, rather than use the sampled data as is. Of course, a more robust name 
generator would also improve the reported data and make it less necessary to smooth out 
the distribution (Marin & Hampton, 2007).

In a similar manner, truncating the survey may lead to artificial spikes in the degree dis-
tribution: if the survey asks for five people, then respondents may be inclined to “find” five 
friends, instead of listing the actual number of associates. It is, however, fairly straightfor-
ward to avoid such spikes. The key is not revealing how many alters the respondent can 
list; by probing for more alters, but not telling them when they will stop, individuals are 
not cognitively biased towards a certain number of alters.

I also assume that respondents accurately report on the characteristics of their alters. This 
is likely true in some but not all cases. Respondents may report demographic characteris-
tics, such as age or gender, accurately but have more difficulty with behavioral/cultural 
characteristics, such as political attitudes. Similarly, I also assume that respondents can ac-
curately report on the ties between alters. The reported ties may, however, be biased to-
wards transitive relations, as individuals cognitively try to maintain social balance in their 
personal network (Krackhardt & Kilduff, 1999). This is likely to be exasperated in content-
specific relations (do i and j talk about politics?), where the respondent may be unaware if 
a tie exists, and minimized in more general relations (do i and j know each other?), where 
it is easier to observe an existing tie.

A researcher concerned with the validity of the self-reports could take two paths. First, 
they could collect more data, going out one more step in the network and interviewing the 
alters of the original respondents; this would provide first hand reports of the alter charac-
teristics and social connections. Second, the researcher could induce error into the reported 
alter–alter ties and alter characteristics; they would then rerun the analysis, using those sim-
ulations to put bounds on the estimates. This would capture some of the uncertainty in the 
estimates, but not force the researcher to collect more data.

Moving forward, the hope is that ego network sampling and simulation will become a 
general option for network scholars. The long-term agenda is to make comparative network 
studies more feasible. A researcher would first collect sampled network data in multiple 
contexts as opposed to census data in one context (as is typically done). They would then 
infer the network structure in each setting, using those estimates to measure contextual vari-
ation in cohesion or connectivity. Cohesion/connectivity could then be used as a contex-
tual level predictor of health, suicidality and the like (Bearman & Moody, 2004; Wray, Co-
len, & Pescosolido, 2011). In this way, more studies could incorporate social structure into 
their analyses, with data limitations no longer standing in the way.
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Appendix: Supplementary Tables and Figures

Table A1. Bias Table, Component Size

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 473 472.378 .001 471.130 .004 473.477 .001
Medium 10 482 481.432 .001 480.317 .003 481.136 .002
High 10 475 474.797 .000 474.230 .002 474.805 .000
Low 25 473 474.901 .004 471.130 .005 471.414 .003
Medium 25 482 478.64 .007 480.317 .001 479.828 .005
High 25 475 476.548 .003 474.230 .001 474.454 .001
Low None 473 471.434 .003 471.434 .003 471.434 .003
Medium None 482 480.159 .004 480.159 .004 480.159 .004
High None 475 476.228 .003 476.228 .003 476.228 .003

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A2. Bias Table, Bicomponent Size

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 447 446.544 .001 445.312 .004 446.301 .002
Medium 10 447 449.358 .005 444.889 .005 447.595 .001
High 10 447 447.587 .001 445.444 .003 447.163 .000
Low 25 447 447.663 .001 442.354 .010 444.419 .006
Medium 25 447 442.419 .010 447.068 .000 444.809 .005
High 25 447 450.133 .007 443.181 .009 445.599 .003
Low None 447 445.204 .004 445.204 .004 445.204 .004
Medium None 447 446.709 .001 446.709 .001 446.709 .001
High None 447 448.840 .004 448.840 .004 448.840 .004

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |
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Table A3. Bias Table, Distance

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 3.875 4.054 .046 3.869 .002 3.941 .017
Medium 10 3.899 4.293 .101 4.149 .064 4.001 .026
High 10 3.666 4.395 .199 4.228 .154 3.878 .058
Low 25 3.875 3.886 .003 3.845 .008 3.916 .011
Medium 25 3.899 4.018 .031 3.940 .011 3.977 .020
High 25 3.666 4.012 .095 3.998 .091 3.851 .051
Low None 3.875 3.866 .002 3.866 .002 3.866 .002
Medium None 3.899 3.899 .000 3.899 .000 3.899 .000
High None 3.666 3.844 .049 3.844 .049 3.844 .049

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A4. Bias Table, % Reachable, Three Steps

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 .297 .248 .165 .305 .025 .286 .039
Medium 10 .327 .213 .349 .254 .224 .297 .092
High 10 .381 .186 .512 .224 .412 .330 .134
Low 25 .297 .303 .020 .310 .041 .291 .020
Medium 25 .327 .286 .127 .314 .042 .303 .075
High 25 .381 .281 .262 .286 .250 .338 .113
Low None .297 .305 .027 .305 .027 .305 .027
Medium None .327 .322 .016 .322 .016 .322 .016
High None .381 .343 .102 .343 .102 .343 .102

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |
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Table A5. Bias Table, % Reachable, Five Steps

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 .857 .829 .032 .844 .015 .844 .015
Medium 10 .867 .803 .074 .820 .054 .847 .023
High 10 .875 .760 .131 .791 .096 .841 .039
Low 25 .857 .856 .001 .846 .013 .840 .019
Medium 25 .867 .838 .034 .858 .010 .846 .025
High 25 .875 .834 .046 .827 .055 .842 .037
Low None .857 .846 .012 .846 .012 .846 .012
Medium None .867 .862 .006 .862 .006 .862 .006
High None .875 .850 .028 .850 .028 .850 .028

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A6. Bias Table, Mean Degree

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 6.312 5.669 .102 6.211 .016 6.117 .031
Medium 10 6.404 5.460 .147 5.969 .068 6.111 .046
High 10 6.152 5.070 .176 5.449 .114 5.879 .044
Low 25 6.312 6.289 .004 6.310 .0003 6.086 .036
Medium 25 6.404 6.172 .036 6.319 .013 6.225 .028
High 25 6.152 5.812 .055 5.740 .067 5.863 .047
Low None 6.312 6.301 .002 6.301 .002 6.301 .002
Medium None 6.404 6.341 .010 6.341 .010 6.341 .010
High None 6.152 5.939 .035 5.939 .035 5.939 .035

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A7. Bias Table, Standard Deviation of Degree

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 4.337 3.005 .307 4.369 .007 3.966 .086
Medium 10 5.452 2.906 .467 4.055 .256 4.796 .120
High 10 6.597 2.819 .573 3.686 .441 5.541 .160
Low 25 4.337 4.235 .024 4.331 .001 4.155 .042
Medium 25 5.452 4.684 .141 5.040 .076 4.858 .109
High 25 6.597 4.69 .289 4.829 .268 5.593 .152
Low None 4.337 4.237 .023 4.237 .023 4.237 .023
Medium None 5.452 5.165 .053 5.165 .053 5.165 .053
High None 6.597 5.586 .153 5.586 .153 5.586 .153

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |
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Table A8. Bias Table, Skewness of Degree

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 1.147 –0.082 1.071 1.186 .035 .927 .191
Medium 10 2.700 0.091 .966 1.225 .546 2.278 .156
High 10 4.714 0.26 .945 1.247 .735 3.076 .347
Low 25 1.147 1.059 .076 1.107 .035 1.158 .010
Medium 25 2.700 1.521 .437 1.840 .319 1.916 .290
High 25 4.714 2.032 .569 2.191 .535 3.018 .360
Low None 1.147 1.102 .040 1.102 .040 1.102 .040
Medium None 2.700 2.229 .174 2.229 .174 2.229 .174
High None 4.714 3.178 .326 3.178 .326 3.178 .326

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A9. Bias Table, Number of Two Paths

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 13076 8899.049 .319 12962.522 .009 11793.245 .098
Medium 10 16069 8221.248 .488 11646.036 .275 13714.447 .147
High 10 18781 7159.127 .619 9590.866 .489 15205.758 .190
Low 25 13076 12834.591 .018 13136.986 .005 12123.673 .073
Medium 25 16069 13537.751 .158 14952.708 .069 14239.320 .114
High 25 18781 12567.329 .331 12717.645 .323 15350.508 .183
Low None 13076 12903.668 .013 12903.668 .013 12903.668 .013
Medium None 16069 15308.785 .047 15308.785 .047 15308.785 .047
High None 18781 15528.971 .173 15528.971 .173 15528.971 .173

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A10. Bias Table, Transitivity

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 .178 .166 .066 .181 .019 .186 .042
Medium 10 .185 .191 .029 .213 .149 .200 .077
High 10 .153 .198 .291 .204 .328 .188 .225
Low 25 .178 .184 .035 .182 .020 .185 .037
Medium 25 .185 .206 .110 .197 .064 .202 .089
High 25 .153 .195 .271 .191 .248 .181 .181
Low None .178 .182 .024 .182 .024 .182 .024
Medium None .185 .198 .070 .198 .070 .198 .070
High None .153 .181 .180 .181 .180 .181 .180

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |
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Table A11. Bias Table, Proportion of Unclosed Triads

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 .00051 .00036 .309 .00051 .014 .00046 .107
Medium 10 .00063 .00032 .492 .00044 .300 .00053 .161
High 10 .00077 .00027 .639 .00037 .520 .00060 .220
Low 25 .00052 .00051 .027 .00052 .001 .00048 .081
Medium 25 .00063 .00052 .180 .00058 .084 .00055 .131
High 25 .00077 .00049 .362 .00050 .353 .00061 .205
Low None .00052 .00051 .019 .00051 .019 .00051 .019
Medium None .00063 .00059 .063 .00059 .063 .00059 .063
High None .00077 .00062 .197 .00062 .196 .00062 .196

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A12. Bias Table, Proportion of Closed Triads

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 3.75E-5 2.37E-5 .366 3.81E-5 .017 3.53E-5 .057
Medium 10 4.80E-5 2.53E-5 .472 3.99E-5 .167 4.41E-5 .080
High 10 4.63E-5 2.27E-5 .509 3.15E-5 .320 4.50E-5 .028
Low 25 3.75E-5 3.82E-5 .019 3.86E-5 .031 3.61E-5 .036
Medium 25 4.80E-5 4.52E-5 .058 4.77E-5 .006 4.61E-5 .039
High 25 4.63E-5 3.91E-5 .156 3.91E-5 .155 4.37E-5 .056
Low None 3.75E-5 3.81E-5 .0156 3.81E-5 .0156 3.81E-05 .0156
Medium None 4.80E-5 4.90E-5 .021 4.90E-5 .021 4.90E-05 .021
High None 4.63E-5 4.42E-5 .045 4.42E-5 .045 4.42E-05 .045

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |

Table A13. Bias Table, Geometrically Weighted Dyad Shared Partner Distribution

                                                                No researcher             Impute truncated               Use categorical  
                                                                    response                            tails                              responses

Network  True Mean Relative Mean Relative Mean Relative 
skew  Truncation value estimate biasa estimate biasa estimate biasa

Low 10 11257.844 8313.961 .261 11311.449 .005 10480.317 .069
Medium 10 13273.617 7576.140 .429 10013.939 .246 11739.427 .116
High 10 15745.660 6587.430 .582 8383.076 .468 12838.329 .185
Low 25 11257.844 11268.902 .001 11519.546 .023 10718.811 .048
Medium 25 13273.617 11442.981 .138 12584.982 .052 12068.162 .091
High 25 15745.660 10767.273 .316 10950.629 .305 13044.604 .172
Low None 11257.844 11371.809 .010 11371.809 .010 11371.809 .010
Medium None 13273.617 12891.368 .029 12891.368 .029 12891.368 .029
High None 15745.660 13221.088 .160 13221.088 .160 13221.088 .160

The values for mean estimate, SE, bias, and relative bias are calculated over 100 independent samples, where 
each sample yields one estimate of the network measure.

a. Relative Bias = | (E(estimates) – True Value) / True Value |
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Figure A1. Estimates for distance distribution by network and truncation type: No researcher 
response.

Figure A2. Estimates for distance distribution by network and truncation type: Simulate truncated 
tails.
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Figure A3. Estimates for distance distribution by network and truncation type: Use categorical 
responses.
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