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Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and
transport in Choptank River watershed☆
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H I G H L I G H T S

• Ametabolite of commonly used herbicide
can trace the fate of agricultural nitrate-N.

• Streams preferentially drained crop-
lands in heavily ditched watersheds.

• A stable tracer demonstrates nitrate-N
to be highly conserved in the Choptank
estuary.

• The drainage status of cropland soils is
an important control on watershed N
export.
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Over 50% of streams in the Chesapeake Baywatershed have been rated as poor or very poor based on the index of
biological integrity. The Choptank River estuary, a Bay tributary on the eastern shore, is one such waterway,
where corn and soybean production in upland areas of the watershed contribute significant loads of nutrients
and sediment to streams. We adopted a novel approach utilizing the relationship between the concentration
of nitrate-N and the stable, water-soluble herbicide degradation product MESA {2-[2-ethyl-N-(1-
methoxypropan-2-yl)-6-methylanilino]-2-oxoethanesulfonic acid} to distinguish between dilution and denitri-
fication effects on the stream concentration of nitrate-N in agricultural subwatersheds. The ratio of mean
nitrate-N concentration/(mean MESA concentration * 1000) for 15 subwatersheds was examined as a function
of percent cropland on hydric soil. This inverse relationship (R2 = 0.65, p b 0.001) takes into consideration
not only dilution and denitrification of nitrate-N, but also the stream sampling bias of the croplands caused by
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extensive drainage ditch networks. MESA was also used to track nitrate-N concentrations within the estuary of
the Choptank River. The relationship between nitrate-N and MESA concentrations in samples collected over
three years was linear (0.95 ≤ R2 ≤ 0.99) for all eight sampling dates except one where R2 = 0.90. This very
strong correlation indicates that nitrate-N was conserved in much of the Choptank River estuary, that dilution
alone is responsible for the changes in nitrate-N and MESA concentrations, and more importantly nitrate-N
loads are not reduced in the estuary prior to entering the Chesapeake Bay. Thus, a critical need exists tominimize
nutrient export from agricultural production fields and to identify specific conservation practices to address the
hydrologic conditions within each subwatershed. In well drained areas, removal of residual N within the
cropland is most critical, and practices such as cover crops which sequester the residual N should be strongly
encouraged. In poorly drained areas where denitrification can occur, wetland restoration and controlled drained
structures that minimize ditch flow should be used to maximize denitrification.

Published by Elsevier B.V.

1. Introduction

According to a 2009 United States Environmental Protection Agency
(USEPA) water quality assessment, 44% of streams and rivers, 64% of
lakes and reservoirs, and 30% of bays and estuaries are impaired, as
defined by the 1972 Clean Water Act, and agriculture nonpoint source
pollution is a major contributor, especially of nitrogen (USEPA, 2009).
Reducing impairment by nonpoint source pollution is a major focus of
the Total Maximum Daily Load (TMDL) framework (NAS, 2001), but
this effort requires decreasing uncertainties in pollutant source predic-
tions and improving watershed loading estimates of nonpoint source

pollution. This will require innovative watershed modeling strategies
and measurement techniques to identify critical areas where conserva-
tion and mitigation practices are needed (NAS, 2001; SWCS, 2006).

The Chesapeake Bay is the largest estuary in the United States (US),
and over 50% of streams in the watershed have been rated as poor or
very poor based on the index of biological integrity (CBP, 2010;
USEPA, 2010a). Land use in the Chesapeake Bay watershed consists of
23% agriculture, 68% forested, 7% urban, and 2% waterways (CBP,
2012). The Choptank River (Fig. 1) is a tributary on the eastern
shore of the Chesapeake Bay, and land use in this watershed is heavily
dominated by intensive corn (Zea maize) and soybean (Glycine max)

Fig. 1.Map of Choptank RiverWatershedwith associated landscape features and the 15 subwatersheds and seven river sampling locations. Abbreviations of the subwatersheds are defined
in Table 1. (WDU = well-drained upland; PDU = poorly-drained upland; FGL = finely-grained lowland).

Nitrate-N
Well-drained upland
Poorly-drained upland
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production to support poultry and some dairy production (McCarty
et al., 2008). The Choptank River watershed is also a United States
Department of Agriculture (USDA), Agricultural Research Service
Benchmark Watershed and is part of the larger USDA Conservation
Effects Assessment Project to develop a scientific basis for managing the
agricultural landscape for environmental quality (NRCS, 2010). The
Choptank River estuary forms at the confluence of the two upper sub-
basins of the Tuckahoe Creek and Upper Choptank River. Like much of
the waters in the Chesapeake Bay watershed, the Choptank River has
been classified as impaired under the Clean Water Act (USEPA, 2010b).

The Choptank River watershed is located on Mid-Atlantic Coastal
Plain soils (Ator et al., 2005)with parentmaterials defined by the super-
position of Quaternary age upper-delta-plain sands and gravel deposit-
ed on Miocene and Pliocene age marine-inner-shelf sands and surficial
unconfined aquifers ranging in depth from 8 to more than 30 m. The
nature of these soils strongly influences the hydrology and chemistry
of the Choptank River and its headwater streams (Bachman and
Phillips, 1996; Phillips and Bachman, 1996; Phillips et al., 1993). The
two major land uses in the watershed are cropland and forest. Forested
lands are primarily located on poorly drained soils. Cropland production
soils include the Othello series (fine-silty, mixed, active, mesic typic
endoaquults) which are poorly drained with moderately-low perme-
ability, and the Mattapex series (fine-silty, mixed, active, mesic aquic
hapludults) which are moderately well drained with moderate or
moderate permeability (Table 1). Soils that are considered poorly
drained generally require extensive drainage to be used in corn and
soybean production.

Watershed stream flow and water quality is an assemblage of
numerous ecosystem outputs resulting from highly-dynamic stream-

water hydrology and chemistries. Pollutant fate and transport can
vary temporally and spatially because different vadose zone and
groundwater sources containing pollutants move, interact with the en-
vironmental matrix, are transformed, and respond to changing climatic
conditions (Denver et al., 2010; Phillips and Bachman, 1996). Identify-
ing an agricultural indicator can provide an essential frame of reference
for analysis. This indicator should meet these criteria: (1) be highly
correlated with relevant agricultural activities, (2) be conserved within
the watershed, and (3) behave as a transport analog, i.e., respond
similarly to ecosystem changes.

Metolachlor is a widely-used pre-emergent herbicide in corn and
soybean production in the US (Thelin and Stone, 2013; Gilliom, 2007)
and typically is applied to crops with nitrogen fertilizers. Glutathione
conjugation is the common detoxification method for metolachlor in
plants (Cole, 1994; Field and Thurman, 1996) and for its microbial deg-
radation pathway in soil unsaturated zones (Aga and Thurman, 2001;
Aga et al., 1996; Aly and Schröder, 2008; Domagalski et al., 2008). In
both plant and microbial degradation, glutathione-S-transferase
mediates glutathione nucleophilic substitution at the chlorinated
carbon of metolachlor. Under aerobic conditions and through a variety
of enzymatic cleavages, this conjugate gives rise to several compounds,
one of which is MESA {2-[2-ethyl-N-(1-methoxypropan-2-yl)-6-
methylanilino]-2-oxoethanesulfonic acid} (Al-Khatib et al., 2002; Feng,
1991; Field and Thurman, 1996; Graham et al., 1999).

Like nitrate-N, MESA is very soluble (2.12*105 mg/L) (Bayless et al.,
2008), has a low sorption coefficient (calculated log Koc = 1.13)
(Bayless et al., 2008), and has been classified as highly mobile (Capel
et al., 2008; Domagalski et al., 2008; Huntscha et al., 2008). In contrast
to nitrate-N, once MESA enters ground water, it is very stable (Phillips

Table 1
Conceptual model of landscape characteristics that influence transport, processing, and delivery of nitrate-N and MESA to headwater streams of the Choptank River (Ator et al., 2005;
Bachman and Phillips, 1996; Denver et al., 2010, in press; Phillips and Bachman, 1996; Phillips et al., 1993).

Land use/condition Land management Local hydrology Impact on water fate

Cropland on well drained
soils (high permeability
soils)

Low intensity ditch network and incised
streams provide drainage required for
crop production

Predominant movement of precipitation into
shallow groundwater due to high soil permeability

Oxic groundwater flow paths to local streams through
surficial aquifers; deeper flow paths to regional
groundwater via high permeability sediments

Cropland with low
permeability soils (prior
converted wetlands)

High intensity ditch network provides
drainage required for crop production

Predominantmovement of precipitation by vadose
zone interflow to drainage ditches; low percolation
potential

Preferential ditch flow through landscape provides
rapid transport to the local streamnetwork, impacting
water chemistry

Forest land with low
permeability soils
(forested wetlands)

Undrained with high density of naturally
occurring forested wetlands

Predominant storage of precipitation in wetlands
due to limited drainage networks and low
permeability sediments

Preferential loss of stored water to evapotranspiration
during in the growing season; anoxic groundwater flow
paths to local streams through surficial aquifers

Table 2
Land area, use, and characteristics, and mean (standard deviation) of nitrate-N and MESA concentrations for 15 headwater subwatersheds in the Choptank River.

Subwatershed Area (ha) Cropland (%) Hydric soils (%) Cropland on hydric soils (%) Mean nitrate-N (mg/L) Mean MESA (μg/L)

Well drained
German branch GB 5662 64 65 55 4.8 (0.9) 3.8 (0.4)
Cordova CO 2614 73 47 42 6.8 (1.9) 4.5 (0.7)
Norwich NO 2480 61 67 58 3.2 (0.9) 3.8 (0.9)
Downes DO 2245 79 32 26 8.1 (1.2) 3.6 (0.6)
Blockston BL 1737 59 62 49 6.9 (1.7) 3.7 (0.6)
Kitty's Corner KC 1587 64 58 53 3.5 (0.9) 3.5 (0.7)
Piney Branch PB 1242 74 44 40 8.7 (1.0) 5.0 (0.7)
Oakland OL 1035 84 29 26 9.2 (1.8) 4.4 (0.8)
South Forge SF 808 62 54 42 5.3 (0.9) 4.4 (1.0)

Mixed drainage
Spring Branch SB 1143 65 41 31 5.5 (1.2) 2.2 (0.3)

Poorly drained
Long Marsh LM 4305 48 82 74 4.8 (0.5) 3.8 (1.0)
North Forge NF 2404 56 70 62 2.7 (0.5) 3.8 (0.6)
Beaver Dam BD 2259 58 84 77 4.3 (0.6) 5.1 (0.8)
Broadway BW 1491 52 73 64 1.4 (0.7) 3.9 (0.7)
Oldtown OT 1166 48 73 59 3.0 (1.1) 3.7 (1.1)
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et al., 1999; Steele et al., 2008); MESA persists over decadal time scales
(Denver et al., 2010). In surfacewater, themodeled half-life for allMESA
processing (phototransformation, transport, etc.) within the Lake
Greifensee (Switzerland) epilimnion was 100–200 days (Huntscha
et al., 2008). Finally, a similar transport process was responsible
for MESA and nitrate-N delivery to streams in several US agricultural
watersheds (Domagalski et al., 2008). Thus, because the major
metabolite of metolachlor, MESA, is exceptionally stable and soluble,
has a low Koc, and is formed in the unsaturated zone where nitrate-N
is transported, it is an ideal transport analog for assessing the fate of
agricultural nitrate-N.

Here, we consider additional data concerning MESA fate relative to
nitrate-N in a small research catchment in the Chesapeake Bay water-
shed (Angier et al., 2002, 2005; Gish et al., 2005). We then investigated
its potential use as a transport analog of agricultural nitrate-N from the
Choptank River headwaters to the estuary. Previously, we reported re-
sults in studies tracking nitrate-N andMESA concentrations over several
years at seven stations in the Choptank River estuary (Whitall et al.,
2010) and at the stream outlets of 15 headwater subwatersheds
(Fig. 1) (Hively et al., 2011). The hydrogeomorphology, land use (e.g.,
croplands, forest, developed, wetlands), and soil properties of the
subwatersheds have been characterized and previously reported
(Hively et al., 2011); some of these data are shown in Table 2 and
Fig. 1. Using these datasets, we examined the relationship of MESA
with nitrate-N: 1) to discern nitrate-N fate in and its sources to the
estuary, 2) to reveal critical areas where enhancing nitrate-N uptake
and reduction in the subwatersheds would be beneficial to meet
TMDL requirements (MDE, 2012), and using this information, 3) to
identify the most appropriate conservation practices for each area.

2. Materials and methods

2.1. Small research catchment in the coastal plain within the Chesapeake
Bay

Groundwater samples were collected from piezometers installed a
small, well-characterized, 70-ha research catchment located on the
western shore of the Chesapeake Bay in the Maryland inner coastal
plain (Angier et al., 2002, 2005; Gish et al., 2005). Two sets of nested pi-
ezometers at different sites within the riparian area of this catchment
were sampled at various times during the year. The first set contained
two piezometers which were sampled three times (September and
November 2003, and January 2004); the second set contained three pi-
ezometerswhichwere sampled twice (April andAugust 2001). Samples
were collected as described previously (Gish et al., 2005). Briefly,
piezometers were pumped at least one full water volume and allowed
to fully recover; 20-mL samples were collected for nitrate-N analysis,
whereas 1-L samples were needed for MESA analysis which often
required hours to obtain. The samples were processed (within 24 h)
and analyzed as described below.

2.2. Sampling of subwatersheds and river stations

All Choptankwatershed sampling occurred at or near base flow con-
ditions in the watershed tributaries, at least two days after any signifi-
cant (greater than 10 mm) rainfall event and when flow was less than
5 m3/s at the two local USGS stream gauge stations: Upper Choptank
near Greensboro, MD (01491000) and Tuckahoe Creek near Ruthsburg,
MD (01491500) (Figs. 1, 2). Using a small research vessel, estuarine

Fig. 2.Hydrograph separated flow for Tuckahoe Creek andUpper ChoptankRiver (Greensboro gauge)with river and subwatershed sampling dates. Hydrograph separationwas performed
using digital filter models as described by (Lim et al., 2005).
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water samples were collected betweenMarch 2005 and April 2008 just
below the water surface (0.1 m) from a transect running the length of
the navigable and tidal portion of the Choptank River (Fig. 1, Table 3)
(Whitall et al., 2010). Subwatershed samples were collected at the out-
lets of 15 non-tidal upland subwatersheds of the Choptank River that
were drained by third and fourth order streams (Fig. 1) (Hively et al.,
2011). Nine watersheds fell mostly within the well drained hydrogeo-
morphic region, fivewithin the poorly drained region, and one included
mixed portions of both well and poorly drained regions (Table 2). Col-
lection occurred on a monthly or bimonthly basis from September
2005 to May 2007; samples were taken from the center of the stream.

Salinitywasmeasured in situ using an YSI 556multi-parameter field
meter (Geotech Environmental Equipment, Inc., Denver, CO) or an YSI
6600 multi-parameter Sonde (YSI, Yellow Springs, Ohio), except for
December 5, 2005. The limit of quantitation for salinity was 0.01.
Water samples were collected with a stainless steel pail, stored in
glass (nutrient analysis) or stainless steel containers (MESA analysis)
on ice, and transported to the laboratory for processing within 24 h.
Only sampling events where both nitrate-N and MESA concentration
data were available (river sampling events n = 8; subwatershed
sampling events n = 12) were included in this analysis.

2.3. Sample processing and analysis

Nitrate-N (Quickchem Method 12-107-01-1-B) concentrations were
determined colorimetrically with a Quickchem automatic flow injection
ion analyzer (Lachat Instruments, Milwaukee,WI). The limit of quantita-
tion for nitrate-N was 0.01 mg N/L. MESA was analyzed using proce-
dures published previously (McConnell et al., 2007). Briefly, samples
were filtered through 0.7 μm GF/F filter paper (Whatman, Inc., Florham
Park, NJ) prior to processing. MESA extraction was conducted using a
solid phase extraction cartridge (Oasis HLB, Waters Corp., Milford, MA)
and triphenylphosphate (Supelco Inc., Bellefonte, PA) as an extraction
surrogate. Concentrations were measured by high performance liquid
chromatography/triple quadrupole mass spectrometry using [13C]2,4-
Dichlorophenoxyacetic acid (100 μg/mL) (Cambridge Isotope Laborato-
ries, Andover, MA) as an internal standard. The limit of quantitation for
MESA was 0.01 μg/L. Single variable linear regression (R2) was used to
assess the correlations using SigmaPlot® 12.3 (Systat Software, Inc.,
Chicago, IL) or Microsoft® Excel 2007 software (http://office.microsoft.
com). Confidence values (p) were determined using SigmaPlot® 12.3.

2.4. Land use data development

A high-resolution geospatial coverage of watershed land cover was
developed through on-screen digitizing in ArcMap 9.3 (ESRI, Redlands,
CA) using the 1998 National Agricultural Imagery Program digital
orthophoto quad imagery (1:12,000 scale) as a base map (APFO,
2010). Identified land use categories included: cropland (i.e., grain, for-
age, vegetable, and nursery crops); forest (deciduous and evergreen);
developed areas (i.e., residential development, urban areas, industrial
operations); and water (i.e., ponds, streams, drainage ditches). Land
cover was prepared as total area and percent of subwatershed area
(Table 2) (Hively et al., 2011). Additional geospatial data layers were
developed for landscape analysis (Table 2) including hydric soils (soil

classes C and D) from the Soil Survey Geographic (SSURGO) soils cover-
age (NRCS, 2008); and cropland on hydric soils through comparison of
the previously mentioned land cover and hydric soils maps.

The 2009 and 2010 USDA-National Agricultural Statistics Service,
National Cropland Data Layer were used to examine the cropland man-
agement gradient across the 15 subwatersheds (Boryan et al., 2011).
Specifically, the percentage of cropland devoted to each of the three
dominant summer crops (corn, soybean, double crop winter grain/
soybean) were analyzed. From 2009 to 2010, the acreage of corn and
full season soybean increased on all subwatersheds, while double crop
small grain/soybean decreased, likely due to changes in market drivers.
The occurrence of corn increased slightly more in the well drained
subwatersheds (44% and 51% in 2009 and 2010, respectively), relative
to the poorly drained watersheds (37% and 40%) with corresponding
decreases in the occurrence of full season soybean.

3. Results and discussion

3.1. MESA and nitrate-N fate in an anaerobic environment

Previous studies have shown that no relationship exists between
ground water age and MESA concentration, i.e., the MESA is stable in
ground water (Steele et al., 2008). We have also examined the fate of
MESA relative to nitrate-N as part of a larger study to assess the effec-
tiveness of riparian areas in mitigating agricultural nitrate-N. This
well-characterized small catchment of 70 ha consisted of a small first
order stream within a riparian wetland that received ground water
from the 20 ha of catchment cropland that were under continuous
corn production (Angier et al., 2002, 2005; Gish et al., 2005).
Metolachlor and various forms of agricultural nitrogenwere applied an-
nually (Gish et al., 2005). The hydrology of this catchment has beenwell
characterized; most notably, oxic groundwater from the sand aquifer
below the riparian wetland exfiltrated through vertical flow paths
(Angier et al., 2002; Gish et al., 2005). Two sets of nested piezometers
within the riparian wetland were analyzed for nitrate-N and MESA
over several months (Fig. 3). Sequential consumption of oxygen and
then nitrate-N was observed (Angier et al., 2005; Gish et al., 2005),
and concomitantly, MESA concentrations remained stable (Fig. 3). In
addition, the resulting streamwater attenuated nitrate-N concentration
relative to the groundwater without evidence for MESA diminishment
(data not shown). These observations in conjunction with previous
studies (Denver et al., 2010; Phillips et al., 1999; Steele et al., 2008;
McConnell et al., 2007) indicate that 1)MESA is stable even in anaerobic

Fig. 3. Relationship between nitrate-N and MESA concentrations along flow paths of
exfiltrating groundwater at two upwelling sites in a riparian wetland. The first set
contained two piezometers and were sampled three times (September and November
2003, and January 2004); the second set contained three piezometers and were sampled
twice (April and August 2001). Error bars indicate standard error amongst sampling
dates of each piezometer.

Table 3
Sampling station locations, water depths, and salinity with standard deviation.

Station Latitude (north) Longitude (west) Water depth (m) Salinity

1 38.60267 76.11892 10 10.5 ± 1.8
2 38.57791 76.06641 7 9.4 ± 1.8
3 38.75618 75.99879 4 6.3 ± 2.1
4 38.63382 75.98284 12 1.9 ± 1.6
5 38.81958 75.88142 5 0.5 ± 0.6
6 38.82539 75.90348 2 0.4 ± 0.5
7 38.85670 75.92215 6 0.2 ± 0.1
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environments and 2) MESA can serve as an effective transport analog
for nitrate-N.

3.2. MESA and nitrate-N concentrations in the subwatersheds

Baseflow water samples were collected from the outlets of 15
subwatersheds within the Choptank River watershed, five draining
into the Upper Choptank River sub-basin, nine draining into Tuckahoe
Creek sub-basin, and one draining near the Upper Choptank–Tuckahoe

confluence (Figs. 1, 2) (Hively et al., 2011). The mean nitrate-N and
MESA concentrations are shown in Table 2. Previous results indicated
significant differences in nitrate-N concentrations between the well
drained and poorly drained subwatersheds, however, no such trend
was observed with MESA concentrations (Hively et al., 2011). Further-
more, seasonal trends of nitrate-N and MESA concentrations were
essentially non-existent (Hively et al., 2011). Nitrate-N concentrations
were positively correlated with percent cropland area, whereas MESA
concentrations were surprisingly unrelated to percent cropland area
(Hively et al., 2011), which suggests that additional factors, such as
differences in drainage and geomorphology, may be influencing the de-
livery of agricultural waters to the sampling sites. Multivariate analyses
of these data (Hively et al., 2011) along with prior regional studies
(Bachman and Phillips, 1996; Böhlke and Denver, 1995; Denver et al.,
2010; Phillips et al., 1993) have suggested that multiple factors
influence nitrate-N concentrations in the stream waters. Agricultural
drainage, percentages of agricultural, forested, developed and conserva-
tion reserve lands, and percentages of hydric soils and forestedwetlands
were examined, but in these previous analyses, no definitive causal
relationships were discernible among these factors.

3.3. Simple models to assess the influence of cropland and hydric soils on
nitrate-N in headwater streams

Comparative subwatershed studies can be a powerful tool for
assessing the influence of landscape parameters on water quality. In
an obvious simple model, the amount of nitrate-N exported by a
subwatershed stream can be correlated to the amount of fertilizer-N
applied and may therefore be strongly correlated with the amount of
cropland in the subwatershed. Such a conclusion may be supported by
strong correlation between the nitrate-N concentration and percent
cropland in the 15 subwatersheds (Fig. 4a; R2 = 0.68, p b 0.001). This
model however, does not take into account loss processes, such as deni-
trification of the residual agricultural N, nitrate-N not utilized by the
crop. Metrics related to landscape biogeochemistry, such as the extent
of hydric soils where denitrification is favored due, could also be impor-
tant predictors of streamwater nitrate-N concentration. Hydric soils are
frequently anaerobic due to saturation and/or ponding, but can become
less anaerobic if artificially drained (NRCS, 2012). In the Choptank River
subwatersheds, nitrate-N is inversely correlated to percent hydric soils,
although not as strongly as agricultural land percent (Fig. 4b; R2 = 0.60,
p b 0.001).

Collinearity between landscape metrics can, however, confound in-
terpretation of regression models and inhibit assessment of the causal

Fig. 4. Regressionmodels for nitrate-N as a function of land use and land characteristics in
15 subwatersheds of the Choptank River (n = 12 sampling events): a) Mean nitrate-N
concentration versus percent cropland; b) mean nitrate-N concentration versus percent
hydric soils; c) mean nitrate-N concentration versus percent cropland on hydric soils.
(PDU = poorly-drained upland; WDU = well-drained upland; SB = south branch, a
mixed drainage subwatershed).

Fig. 5. Percent cropland as a function of percent hydric soils within 15 subwatersheds
(PDU = poorly-drained upland; WDU = well-drained upland; SB = south branch, a
mixed drainage subwatershed).
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factors that affect water quality. An evaluation of the percent area of
subwatershed cropland areas with respect to overall percent area of
hydric soils within each subwatershed revealed a strong inverse
relationship (Fig. 5; R2 = 0.81, p b 0.001). This strong collinearity,
therefore, inhibits efforts to separate the parameter effects on nitrate-
N content in streams using simple regression models.

Prior to the 1600's, the Choptank River watershed contained exten-
sive wetland complexes (Benitez and Fisher, 2004). Estimates are that
approximately half of these wetlands have been lost (Lang et al.,
2008), mainly due to drainage and subsequent agricultural conversion.
Thus, a large portion of croplands in this region are on hydric soils.
The landscape metric of percent area of hydric soils includes not only
cropland but also hydric soil complexes in non-cropland areaswith pre-
sumably less interaction with agricultural nitrate. A metric gauging the
amount of cropland on hydric soils should be amore sensitive indicator
of the biogeochemical potential for denitrification of agricultural N than
percent hydric soils, because of the strong root zone and vadose zone
interactions as nitrate-N moves into groundwater under the croplands
(Denver et al., in press). However, this parameter lacks any consistent
measure of agricultural intensity in the subwatersheds, and only a
moderate inverse relationship was observed between nitrate-N and
cropland on hydric soil (Fig. 4c; R2 = 0.54, p b 0.01). This simple
model lacks information concerning the transport of agricultural waters
from the croplands to the stream headwaters and concomitantly the
effects of dilution on nitrate-N concentration.

3.4. A conceptual model for connection of croplands to headwater streams

The analysis of upstreamwater quality as a function of landscape pa-
rameters often involves the implicit assumption that the cumulative
stream discharge represents an unbiased integration of contributions
from all the various landscape elements. These analyses are typically
based on the amount of land surface area; however, they do not gener-
ally consider the proportion of surficial groundwater contribution to
headwater streams relative to delivery to deeper regional groundwater.

Flow generation in the headwater streams of the Choptank River
watershed is generally dominated by contributions from the surficial
aquifer, which is an unconsolidated sand and gravel deposit of the
Quaternary period (Trapp and Horn, 1997). In the cropland areas, the
surficial aquifer is under heavy influence from agrochemical application
to fields (Graphical Abstract, Table 1) (Bachman and Phillips, 1996;
Denver et al., 2010, in press; Phillips and Bachman, 1996; Phillips
et al., 1993). Cropland areas with well drained soils contribute more to
deeper regional groundwater resources than cropland areas on poorly
drained soils, and thus theproportion of surficial groundwater contribu-
tion from cropland will be less in well drained areas than in poorly
drained areas (Table 2). These factors may lead to cropland contribu-
tions to stream flow that are lower than expected based on land use.
In the well drained areas, non-agricultural and non-ditched portions
of the subwatersheds will also contribute to the deeper regional
groundwater.

Greater ditching exists in the poorly drained land areas as compared
to the well drained areas (Hively et al., 2011). Ditch and tile drainage,
which bydesignwill cause preferentialwatermovement to the streams,
reduces surficial groundwater movement to deeper groundwater aqui-
fers. As a result, cropland contributions to stream flow will be greater
and not proportional to land surface area, and concomitantly, drainage
from other unditched land uses in the subwatershed will be less repre-
sented in the stream flow. This interaction between ditch drainage and
hydrogeomorphological classes of the subwatersheds results in differ-
ing amounts of cropland contribution to the headwater stream flow.
We surmise then that an inherent bias in landscape sampling is gener-
ated by landscape position and ditch drainage; streams in poorly
drained areas over-sample croplands, and streams in well drained
areas under-sample croplands. Non-ditched areas in poorly drained

subwatersheds are generally forested and often result in increasedwet-
land extent and storage of surface water (Table 1) (Hively et al., 2011).

3.5. Utilizing MESA as an indicator of agricultural water and dilution in the
subwatersheds

MESA is formed in the root zonewhere residual agricultural nitrogen
is released to the surficial waters and can be used to indicate transport
and dilution effects on nitrate-N versus reduction (Graphical Abstract,
Table 1). The ratio of mean nitrate-N concentration/(mean MESA con-
centration *1000) for each subwatershed was examined as a function
of percent cropland on hydric soil. This inverse relationship (Fig. 6a;
R2 = 0.65, p b 0.001) takes into consideration not only dilution and
denitrification of nitrate-N, but also the stream sampling bias of the
croplands caused by drainage ditch networks. Based on this new
model, we hypothesize that smaller nitrate-N concentrations from
poorly drained subwatersheds are due to greater nitrate-N reduction
within the subwatershed and not simply due to less cropland and there-
fore less nitrate-N application. Furthermore, for the well drained
subwatersheds, larger nitrate-N concentrations are not only a response
to larger percents of cropland in each subwatershed and thereforemore
nitrate-N application, but also the result of less nitrate-N reduction.

The collinearity of hydric soils and croplands (Fig. 5) provides an
explanation for the apparent unpredictability of MESA concentrations
in the subwatersheds when using percent land use (Fig. 7a–c;
R2 = 0.04, 0.01, and 0.04 for percent cropland, hydric, and cropland

Fig. 6. Regressionmodels for nitrate-N as a function of land use and land characteristics in
15 subwatersheds of the Choptank River (n = 12 sampling events): a) Mean nitrate-N
concentration/(mean MESA concentration * 1000) versus percent cropland on hydric
soils; b)meannitrate-N concentration/(meanMESA concentration * 1000) versus percent
cropland. (PDU = poorly drained upland; WDU = well drained upland; SB = south
branch, a mixed drainage subwatershed).
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on hydric soils, respectively). Subwatersheds with a larger percent of
hydric soils have a lower percent of cropland, but also have more effi-
cient delivery of agricultural waters to streams via ditching, and there-
fore increased the sampling of croplands. Conversely, subwatersheds
with a larger percent cropland area and lower percent of hydric soils
have less ditching, and therefore less sampling of cropland and subse-
quent influence on the agrochemical magnitude in the headwater
streams. The seemingly random values of MESA concentration actually
afford information about the interaction between drainage and percent
cropland and provide an unambiguous method to measure the sam-
pling bias of headwater streams (Fig. 6a; B, R2 = 0.47, p b 0.01).

MESA provides amethod to disentangle the complex landscape interac-
tions that affect nitrate-N concentrations in stream water.

Finally, the mean MESA concentration for the mixed drainage
subwatershed, Spring Branch (SB), is significantly less than
the mean MESA concentration of all the other observations
([MESA]SB = 2.2 ± 0.3 μg/L; [MESA]Allothers = 4.1 ± 0.9 μg/L).
Relative to the other subwatersheds, SB has amoderate amount of crop-
land and a very low percentage of hydric soils and cropland on hydric
soil; most of the cropland in SB is in the well drained area. These obser-
vations are consistent with our model. The combination of a moderate
amount of cropland and low percent of cropland on hydric soil (less
connection to streams) leads to lower MESA in stream water, yet at
the same timedue to the very low amount of hydric soils leads to higher
nitrate-N concentration values.

3.6. Nitrate-N in the Choptank River estuary

Tracking the fate of agricultural nitrogen in tidal estuaries is fre-
quently confounded by tidal mixing and dilution of upland dissolved
constituents. A typical approach to account for dilution in such settings
is the use of saline gradient measurements obtained from estuarine
transects with application of a two endmember mixing model. A linear
fit to the model is indicative of conservative behavior for a dissolved
constituent, whereas a nonlinear curve indicates non-conservative dy-
namic, i.e., the constituent is transformed or leaves the dissolved
phase (Officer and Lynch, 1981).

Samples were collected at seven monitoring stations (Fig. 1) within
the estuarine portion of the Choptank River on eight sampling dates
(March 2005–April 2008) along a transect from near the mouth of the
Choptank River main stem, beyond the confluence of the Tuckahoe
Creek and the Upper Choptank River, to their northern most navigable
portions; all stations were tidal (salinity range = 0.06–12) (Whitall
et al., 2010). For each date, nitrate-N concentrations were examined as
a function of salinity. As reported previously, a curvilinear relationship
was observed for nitrate-N in the summer months, suggesting a biolog-
ical processing during transport. However, the Choptank River is fed by
two major upland sources, the Upper Choptank River (655 km2 water-
shed) and Tuckahoe Creek (395 km2 watershed) (Fig. 1); regional
groundwater also contributes to the river estuary (Lindsey et al.,
2003). Thus, a more appropriate mixingmodel for this complex estuary
requires at least a three end-member model without a unique solution,
and conclusions based on the two end-member model may be
misleading.

3.7. MESA as an indicator of agricultural water in the estuary

As shown above and elsewhere (Denver et al., 2010; McConnell
et al., 2007; Phillips et al., 1999; Steele et al., 2008),MESA is a stable, sol-
uble indicator for agricultural waters and has a long half-life in surface
waters (Huntscha et al., 2008). The residence time of waters in the
Choptank River estuary has been estimated to be 19 days (Bricker
et al., 2007). Thus, MESA provided a more accurate assessment of
nitrate-N fate in the estuary than commonly-used salinity mixing
curves. Nitrate-N concentrations relative to MESA concentrations
along the estuary transect were linear for all eight sampling dates
(0.95 ≤ R2 ≤ 0.99 for all sampling dates except 25-Sep-2006 where
R2 = 0.90; 0.0001 N p N 0.044; Fig. 8). This strong correlation indicates
that nitrate-N was conserved in much of the Choptank River estuary on
all sampling dates and that dilution is responsible for the changes in
nitrate-N andMESA concentrations. An alternative, yet highly improba-
ble, explanation is that the rates for nitrate-N loss and MESA degrada-
tion in the river are exactly the same.

Although somewhat unusual, nitrate conservation in estuaries has
occurred elsewhere, for example, the Conwy estuary and Waterford
Harbor in Ireland (Raine and LeB Williams, 2000) and the Delaware
Bay (Fisher et al., 1988). The lack of nitrate-N reduction in the estuarine
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Fig. 7. MESA concentration as a function of land use and land characteristics: a) Mean
MESA concentration versus percent cropland; b) mean MESA concentration versus per-
cent hydric soils; c) mean MESA concentration versus percent cropland on hydric soils
(PDU = poorly-drained upland; WDU = well-drained upland; SB = south branch, a
mixed drainage subwatershed).

480 G.W. McCarty et al. / Science of the Total Environment 473–474 (2014) 473–482

image of Fig.�7


portion of the Choptank River raises some concern because nitrate-N
will drain into the Chesapeake Bay where its negative effects have
been amply documented (CBP, 2010; Fisher et al., 1988; USEPA,
2010b). Newly developed TMDLs for the Chesapeake Bay and its tribu-
taries indicate that by 2017, the state of Maryland will be required to
reduce nitrogen loads to the Bay from the croplands by 23% from 7700
to 5900 metric tons per year (MDE, 2012).

4. Conclusion

Our new findings suggest that effective agricultural non-point man-
agement strategies should include methods to curb nitrate-N losses
prior to release of nutrients into the Choptank River estuary, where
nitrate-N transport is conservative. Agricultural conservation efforts
should focus on reducing nutrient loading and enhancing denitrification
further upstream, in the cropland areas of the headwater subwatersheds.
Using MESA as an indicator of agricultural drainage water and dilution
processes in the subwatersheds, when combined with information on
land use and hydrogeomorphology, may lead to more effective imple-
mentation of conservation practices targeted to reduce nitrogen leaching
in critical areas of the landscape.

The results here indicate that in well drained areas, the removal of
residual N needs to be accomplished prior to entering surficial ground-
waters. For example, winter cover crops can be used to reduce the loss
of residual nitrogen from well drained agricultural areas. (Hively et al.,
2009). In the poorly drained areas where denitrification is prevalent,
wetland restoration and use of controlled drained structures that mini-
mize ditchflow should bequite useful inmaximizing denitrification and
minimizing the amount of nitrate-N reaching the stream outlets
(Denver et al., in press; Fisher et al., 2010; Lang et al., 2012).

Extrapolation of this method to other Chesapeake Bay tributaries
may provide a means to compare nitrate-N processing in watersheds
across this important and complex landscape. The specific ratio of
nitrate-N and MESA leaving cropland is expected to vary regionally
according to local patterns of agricultural management and should be
characterized within watersheds of interest. The demonstrated rela-
tionship between agricultural nitrate-N and MESA could also be used
to observe nitrate-N processing in or the in-flux of downstream N
sources to other riverine ecosystems and estuaries dominated by local
corn and soybean production.
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