
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications in Computer & Electronics
Engineering (to 2015)

Electrical & Computer Engineering, Department
of

2005

On The Performance of Turbo Codes With Convolutional On The Performance of Turbo Codes With Convolutional

Interleavers Interleavers

Sina Vafi
University of Wollongong

Tadeusz Wysocki
University of Wollongong, wysocki@uow.edu.au

Follow this and additional works at: https://digitalcommons.unl.edu/computerelectronicfacpub

 Part of the Computer Engineering Commons

Vafi, Sina and Wysocki, Tadeusz, "On The Performance of Turbo Codes With Convolutional Interleavers"
(2005). Faculty Publications in Computer & Electronics Engineering (to 2015). 3.
https://digitalcommons.unl.edu/computerelectronicfacpub/3

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in
Computer & Electronics Engineering (to 2015) by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/188087804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerelectronicfacpub
https://digitalcommons.unl.edu/computerelectronicfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/computerelectronicfacpub?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerelectronicfacpub/3?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

On The Performance of Turbo Codes With
Convolutional Interleavers

Sina Vafi, Tadeusz Wysocki
University of Wollongong Northfields Ave, Wollongong, NSW, Australia

{sv39,wysocki}@uow.edu.au

Abstract— In this paper, some issues governing the block-wise
performance of convolutional interleavers used in turbo codes are
presented. Two different constructions of convolutional interleaver
differing by the position of stuff bits in the interleaved data block
are considered here. The performance assessment is based on the
contribution of each weight to the overall code performance. For the
given turbo code and each utilized interleaver, weight contribution
is computed to finalize the code behavior in different signal to noise
ratios. Simulations have been performed to verify the conducted
analysis.

I. INTRODUCTION

Convolutional interleavers are introduced as the well-known
non-block interleavers, which apply a lower number of memories
compared to block interleavers and maintain synchronization with
correspondence deinterleavers [1][2]. Because of their non-block
characteristic, the continuous performance of the code is a vital
assumption, when they are utilized as a turbo code component.
In comparison to the block performance, this increases the
complexity of the code analysis and decoding procedure with
similar behavior to the block performance, especially for the
Recursive Systematic Convolutional (RSC) codes with the low
constraint length [3].

In order to contribute advantages of those interleavers in the
conventionally considered turbo codes, a block-wise operation of
the convolutional interleaver has been suggested through inserting
a number of stuff bits at the end of each data block to return the
interleaver memories to the zero state. However, certain number
of stuff bits that appear in the end part of the interleaved data can
be deleted to optimize overall number of stuff bits in the encoded
data [4].

So far, we have verified the performance of turbo codes with
non-optimized and optimized convolutional interleavers based on
iterative decoding performance. Recently, we have presented a
simple algorithm to calculate weight distribution of the code and
its application to analyze the code behavior at the error floor
region [5]. In this paper, we are utilizing the weight distribution
of the turbo code obtained by this algorithm in investigating the
effect of the optimized and non-optimized interleavers on the code
performance.

To precisely determine the turbo code performance at the error
floor region, it is important to know the percentage contribution

of each weight of the code to the overall code performance.
Similarly to most of the block interleavers, the non-optimized
interleaver produces a free distance value with high multiplicities
for the turbo code. In this case, a number of major contributing
weights depend on the interleaver length and the considered
signal to noise ratios. In contrast, applying an optimized convo-
lutional interleaver provides a lower free distance value with low
multiplicities such that only a few weights are dominated for the
code performance. The effect of these low weights can be reduced
by increasing the interleaver period. Therefore, it is expected that
for an equal number of stuff bits, the optimized interleaver creates
better performance for the code compared to the non-optimized
interleaver. This has been confirmed by simulation results for
different turbo codes.

The organization of the paper is as follows: Section 2 gives the
analysis of turbo code with non-optimized and optimized convo-
lutional interleavers based on computed weights contribution. In
section 3, analytical results are verified by simulations of the
iterative decoder performance. Finally, section 4, concludes the
paper.

II. TURBO CODES ANALYSIS WITH CONVOLUTIONAL

INTERLEAVERS

A convolutional interleaver is constructed by T parallel lines
which define its period. Generally, the difference between number
of memories in two adjacent lines is considered constant and
referred to as a space parameter of the interleaver. Figure 1.(a)
shows the structure of the convolutional interleaver with the
period T = 4 and the space value M = 1.

Due to the unequal number of memories in different lines, at
the specific time, some data remains in the interleaver memories.
In order to construct an isolated interleaved data block, enough
zero stuff bits must be inserted at the end of each input bitstream
returning the interleaver memories to the zero state. Figure 1.(b)
shows the interleaved data obtained from an interleaver (T =
4,M = 1) with the length L = 24.

When the interleaver with the above structure is utilized in
turbo codes, the existence of stuff bits reduces the channel
bandwidth usage. Hence, an optimization can be carried out by

222

2005 Asia-Pacific Conference on Communications, Perth, Western Australia, 3 - 5 October 2005.

0-7803-9132-2/05/$20.00 ©2005 IEEE.

Published in 2005 Asia-Pacific Conference on Communications,
Oct. 5, 2005, Pages 222-226;
doi 10.1109/APCC.2005.1554052

Fig. 1. Convolutional interleaver structure a) Interleaver with period T = 4 and
space value M = 1 b) block interleaved data with length L = 24 c) Optimized
interleaved data with the length L = 24.

Fig. 2. Comparison of different parts of interleaved data at the output of the
interleaver with different lengths and similar period and Rem(L, T) values,i.e.
T = 4, Rem(20,4)=0, Rem(24,4)=0.

deletion of stuff bits located in the end part of the interleaved
data [4].

Figure 1.(c) shows the optimized interleaved data of the
Figure 1.(b). For turbo codes with the optimized convolutional
interleaver, we have presented an algorithm to compute its weight
distribution [5].

Since this interleaver has been basically constructed by the
non-optimized convolutional interleaver, the obtained weights for
the code with the non-optimized interleaver should also appear
at the optimized interleaver with the similar multiplicities. Thus,
the proposed weight distribution algorithm can be also applied for
the code with the non-optimized interleaver. In both interleavers,
depending on the interleaver period and the input bitstream
length, interleaved data is terminated at one of the interleaver
lines. The relevant line is determined by a Rem(L, T) value,
which represents the reminder of L

T operation. For different
interleaver lengths with similar period and Rem(L, T) values, the
interleaved data with the longer length L includes the interleaved
data from the interleaver with the shorter length plus an extra

TABLE I

WEIGHT-2 DISTRIBUTION OF TURBO CODES (1,5/7) WITH THE OPTIMIZED

AND NON-OPTIMIZATION INTERLEAVERS (T = 10, M = 1) AND LENGTH

L = 512.

weight Optimized Non-optimized
interleaver interleaver

d Nd Nd

11 1 0
12 0 0
13 2 0
14 1 0
15 2 0
16 3 0
17 2 1
18 5 0
19 2 0
20 5 0
21 6 0
22 7 0
23 4 0
24 1 1
25 9 1
26 340 336
27 2 0
28 5 0
29 9 0
30 340 357

part, which corresponds to increasing of the length.
Figure 2 shows specified parts of two different interleaved data

blocks with the similar period T = 4 and the Rem(L, T) = 0
value. The low weights are mainly produced by self-terminating
input bitstreams, i.e. input bitstreams that automatically return
the RSC encoder to the zero state without the effect of tail bits.
Increasing the length of these patterns will not increase the weight
of the codes. Indeed, increasing the length only increases number
of cyclical shifts which consequently increases multiplicities of
the code. As verified in [5], this issue is especially obvious for
input bitstreams that simultaneously return both RSC encoders
to the zero state. Therefore, it is expected that for different
input bitstream lengths, interleavers with the equal period and
Rem(L, T) values generate similar weight distributions for the
code. Based on this property we can compute the weight distribu-
tion of the code with short interleaver lengths and then extrapolate
the achieved results for the assigned higher interleaver length.

Depending on the interleaver specifications, the minimum in-
terleaver length applied in the algorithm would be different. This
minimum value is achieved when all the interleaver memories
have valid data. For non-optimized and optimized interleavers, it
can be calculated by (T (T − 1)M)−Rem(L, T) and T (T−1)M

2
values, respectively. Table 1 gives weight-2 distribution of the 4-
state turbo code (1, 5/7) with the non-optimized and the optimized
interleaver (T = 10,M = 1) and the length L = 512. The
weights have been computed based on trellis termination and
truncation for the first and the second RSC encoders, respectively.

223

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

E
b
/N

0

R
el

at
iv

e
co

nt
rib

ut
io

n
of

 s
pe

ct
ra

l l
in

es
(%

)

d=17

d=18

d=19

d=20

d=21
d=22

Fig. 3. Weight contributions to BER for the 4-state turbo code (1,5/7) with the
non-optimized convolutional interleaver (T = 10, M = 1) and length L = 512.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

E
b
/N

0

R
el

at
iv

e
co

nt
rib

ut
io

n
of

 s
pe

ct
ra

l l
in

es
(%

)

d=20

d=22

d=24

d=25

d=26

Fig. 4. Weight contributions to BER for the 4-state turbo code (1, 5/7) with the
non-optimized convolutional interleaver (T = 15, M = 1) and length L = 1024.

In the considered turbo codes structure, stuff bits have been
inserted after trellis termination of the first RSC encoder since
they do not have any effect on weights of the systematic and
the first parity data. For the turbo code with the optimized
interleaver, due to the deletion of zero stuff bits from the end
part of the interleaved data, the distance between adjacent bits of
the input bitstream in the interleaved data is reduced. Hence, the
free distance value and some weights lower than the free distance
value of the code with the non-optimized interleaver have been
obtained. In fact, unlike non-optimized interleavers, optimized
interleavers generate low weights with low multiplicities, while
similar weights to the free distance value of the code with non-
optimized interleavers are maintained. Comparing the obtained
weights of the code from two different interleavers, it is con-
cluded that the optimized interleaver will rearrange some of the
input bitstreams related to the free distance value of the code
with the non-optimized interleaver to other low weights with low

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

E
b
/N

0

R
el

at
iv

e
co

nt
rib

ut
io

n
of

 s
pe

ct
ra

l l
in

es
(%

)

d=10

d=20

d=24

d=26

Fig. 5. Weight contributions to BER for the 4-state turbo code (1, 5/7) with the
optimized convolutional interleaver (T = 14, M = 1) and length L = 512.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

E
b
/N

0

R
el

at
iv

e
co

nt
rib

ut
io

n
of

 s
pe

ct
ra

l l
in

es
(%

)

d=10

d=20

d=25

d=26

d=24

Fig. 6. Weight contributions to BER for the 4-state turbo code (1, 5/7) with the
optimized convolutional interleaver (T = 20, M = 1) and length L = 1024.

multiplicities. In order to verify how the new generated weights
affect the code performance, the contribution of each weight to
BER in the code is computed and compared with the contribution
of low weights in the code with the non-optimized interleaver. As
indicated in [6], the contribution of each weight in the block-wise
performance of the turbo code can be determined by the following
equation:

Pd(γb) =
Ndω̃d

L
Q(

√
2dRγ) (1)

where R, γ = Eb

N0
, Nd and ωd denote the code rate, the signal to

noise ratio per information bit, number of multiplicities for weight
d and average weight of information of weight d, respectively.
Its relative contribution to the total BER is represented by:

P d(γb) =
Pd(γb)∑
d Pd(γb)

(2)

Weight distribution for each code has been calculated by self-

224

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized interleaver.(m=2,T=14,M=1)
Non−optimized interleaver.(m=2,T=10,M=1)
Optimized interleaver.(m=4,T=14,M=1)
Non−optimized interleaver.(m=4,T=10,M=1)

Fig. 7. Performance of full rate turbo codes with the interleaver length L = 512.

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized interleaver.(m=2,T=14,M=1)
Non−optimized interleaver.(m=2,T=10,M=1)
Optimized interleaver.(m=4,T=14,M=1)
Non−optimized interleaver.(m=4,T=10,M=1)

Fig. 8. Performance of half rate turbo codes with the interleaver length L = 512.

terminating input bitstreams with weights no greater than 4. The
interleaver specifications are designed in such a way that the
overall number of generated stuff bits has no major influence on
the code rate. As an assumption, the maximum number of stuff
bits has been considered to be no more than 5% of the whole
number of the encoded data. Figures 3 and 4 show contribution
of the calculated weights for the turbo code (1,5/7) with the
non-optimized convolutional interleaver lengths L = 512 and
L = 1024, respectively. Similarly to previously obtained results
of the turbo code performance with block interleavers, for the
short interleaver lengths, many weights contribute to the code
performance, while with increasing length, fewer weights are
important.

The optimized interleavers are designed in a way that they
produce a similar number of stuff bits with the applied non-
optimized interleavers. Figures 5 and 6 show weights contribution
of the 4-state turbo codes with the optimized interleaver (T =
14,M = 1) and (T = 20,M = 1) for the length L = 512 and

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

m=2,T=20,Optimized
m=2,T=15,Non−optimized
m=4,T=20,Optimized
m=4,T=15,Non−optimized

Fig. 9. Performance of full rate turbo codes with the interleaver length L =
1024.

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

m=2,T=20,Optimized
m=2,T=15,Non−optimized
m=4,T=20,Optimized
m=4,T=15,Non−optimized

Fig. 10. Performance of half rate turbo codes with the interleaver length L =
1024.

L = 1024, respectively.
For the code with the interleaver length L = 512, the optimized

interleaver (T = 14,M = 1) has two major weights that
contribute to the code performance, while the non-optimized
interleaver has many weights. In this case, the obtained free
distance value is 10 with 3 multiplicities, and its effect is almost
dominant for all signal to noise ratios. In this code, weight 20
with 321 multiplicities has the second major contribution, while
in the code with the non-optimized interleaver (T = 10,M = 1)
weight 20 has the highest contribution with 196 multiplicities for
signal to noise ratios lower than 7dB.

For the higher interleaver length L = 1024, the code with the
non-optimized interleaver (T = 15,M = 1) has the free distance
value 20 with 585 multiplicities whose effect is dominant for
the code performance. Applying the optimized interleaver (T =
20,M = 1) with higher period and a similar number of stuff bits,
i.e. 190 bits, reduces the free distance to 10 with 3 multiplicities.

225

In addition, the code also has weight 20 with 846 multiplicities
and lower contribution than the corresponding weights in Figure
4, especially in signal to noise ratios greater than 2 dB.

The graphs represent that although the code with the optimized
interleaver generates some lower weights than the free distance
value of the code with the non-optimized interleavers but due
to their low multiplicities, they do not have a major influence
on the code performance for low signal to noise ratios. Similar
conclusions can be reached from the weight 20 of Figure 6. Since
the distance of this weight to the free distance value is relatively
high, its effect on the code performance is different from the
identical weight in the code with the non-optimized interleaver.

The obtained graphs for the optimized interleaver imply that
patterns (00..011100..0)L and (00..0100100...0100100..0)L with
length L have major contributions to the code performance, which
respectively produce the free distance value 10 and the weight
20.

From the obtained results, one can conclude that the optimized
interleaver generates a low free distance value and the effect of
other weights on the code performance is approximately voided,
particularly in the medium to high signal to noise ratios. In
addition, apart from the end part of the optimized interleaved
data, where the free distance value is obtained, increasing the in-
terleaver period will increase the distance between adjacent bits of
the input bitstream in the interleaved data. This will create higher
weights and reduce multiplicities of other low weights having
major contributions to the code performance. Therefore, with a
suitable selection of the interleaver characteristics, performance
of the code can be improved.

III. SIMULATION RESULTS

Simulations have been conducted for the 4- and 16-state turbo
codes (m = 2, 1, 5/7)(m = 4, 1, 35/23), where m represents
number of memories for the RSC encoders. The encoded data
have been decoded using Soft Output Viterbi Algorithm (SOVA)
as selected iterative decoding method by 8 iterations in the pres-
ence of Additive White Gaussian Noise (AWGN). Figure 7 shows
performance of full rate 4- and 16-state turbo codes with the
interleaver length L = 512. It can be observed that the optimized
interleaver (T = 14,M = 1) has improved performance of both
codes by 0.5 dB. In addition, the 4-state code with the interleaver
(T = 14,M = 1) has better performance than the 16- state code
with the interleaver (T = 10,M = 1) in low signal to noise
ratios with less complexity in the encoder structure and decoding
process. Similar results have been achieved for the half rate turbo
codes with similar interleavers and are presented in Figure 8.
These results show that, the 4-state code with the optimized
interleaver has 0.25 dB better performance than 16- state code
with the non-optimized interleaver in all signal to noise ratios.

Similar turbo codes to the above examples have been examined
with higher interleaver length, L = 1024. For the full rate 4-
state turbo codes, as shown in Figure 9, the optimized interleaver

(T = 20,M = 1) slightly improves the code performance
compared to the non-optimized interleaver (T = 15,M = 1)
for Eb

N0
≤ 2dB, while for Eb

N0
> 2dB, both interleavers have

similar performance. This behavior can be easily explained by
the weight contributions presented in Figures 4 and 6. In these
figures, the weight ω = 20 has the highest contribution to BER. In
the mentioned signal to noise ratio ranges, this weight in the code
with the optimized interleaver has the slightly lower contribution
than for the code with the non-optimized interleaver. Hence,
better performance for the code with the optimized interleaver
is expected. After Eb

N0
=2dB, the contribution of this weight is

replaced by weight 10 with low multiplicity, which creates similar
performance to the weight 20 with high multiplicity. However, for
the 16- state turbo code, the optimized interleaver has improved
the code performance by 0.5 dB. Simulations of the half rate
code have been illustrated in Figure 10. In contrast to the results
obtained for the full rate codes, the optimized interleavers have
improved their performances from 0.25 to 0.5 dB.

From the conducted simulations, it can be concluded that in
the case of similar numbers of stuff bits, the optimized interleaver
leads to better performance of the turbo code. This is mainly
achieved due to the existence of a free distance value with low
multiplicities, that contributes the most to the code performance.
The proposed optimized interleaver can be designed such that the
higher free distance value for the code is produced, while other
properties are maintained. For this purpose, some modifications
to this interleaver have been suggested in [7][8].

IV. CONCLUSIONS

In this paper, an analysis of the turbo codes with two different
models of convolutional interleavers has been presented based
on the contribution of each weight to the code performance. For
different codes, the results obtained from the proposed analysis
have been verified by several simulations to select the suitable
interleaver for the required code.

REFERENCES

[1] G.D.Forney, “Burst-correcting codes for the classic bursty channel,” IEEE
Trans. on Commun., vol. COM-19, pp. 772–781, Oct. 1971.

[2] E.K.Hall and G.Wilson, “Stream-oriented turbo codes,” IEEE Trans. on
Inform.Theory., vol. 47, no. 5, pp. 1813–1831, July 2001.

[3] S. Benedetto and G. Montorsi, “Performance of continuous and blockwise
decoded turbo codes,” IEEE Communications Letters, pp. 77–79, May 1997.

[4] S. Vafi and T. Wysocki, “Iterative turbo decoder design with convolutional
interleavers,” 4th International Symposium on CSNDSP,Newcastle,UK., pp.
124–127, July 2004.

[5] S.Vafi and T.Wysocki, “A simple method for approximation of weight
distribution of turbo codes with convolutional interleavers,” Submitted to
IEE Proceedings Communications.

[6] W.Feng, J.Yuan, and B.Vucetic, “A code-matched interleaver design for turbo
codes,” IEEE Trans. on Commun., vol. 50, no. 6, June 2002.

[7] S.Vafi and T.Wysocki, “Performance of convolutional interleavers with
different spacing parameters in turbo codes,” Australian Communications
Theory Workshop, pp. 8–13, Feb. 2005.

[8] S.Vafi and T.Wysocki, “Generalized convolutional interleaver and its perfor-
mance in turbo codes,” Submitted to IEEE Communications Letters.

226

	On The Performance of Turbo Codes With Convolutional Interleavers
	

	tmp.1252084214.pdf.Brd3B

