Photographic Interpretation Handbook, United States Forces: Section 11 Plotting from Photos

Robert L. Bolin Depositor
University of Nebraska-Lincoln, rbolin2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/dodmilintel

[^0]$11.01-11.99$

PLOTTING

 RADIAL LINE PLOT (cont.)

3a. Begin the preliminary radial plot. (All lines shown in $3 a, 3 b, 4 a$, 4 b , to be drawn on the cellulose sheet in red, using a pencil).
3b. Freliminary radial plot extended.

4a. Preliminary radial plot extended.
4b. Freliminary radial plot concluded. Now draw polyconic projection to the average scale of the flight. (The projection lines and the scale o be left in pencil, see Plate 7.) All ground control signals are plotted and marked with a small red circle (about $1 / 4$ inch diameter), using red cellulose ink. (This sheet is the MASTER SHEET.)

PLOTTING

 a small blue circle (about $1 /$ inch diameter) , using blue cellulose $^{\text {ind }}$ ink, the principal points of all photographs aremarked with a small red circle (about $1 / 16$ inch diameter), using red cellulose ink. All points marked.on reverse side of master sheet. The projection lines on the master sheet are inked (black cellulose ink) and the scale is inked (red cellulose ink).
tracing detall from photos to work sheet
PROCEDURE:

1. Select additional points to control planimetric detail (detail points). Such points may be along shore line, outlying rocks, drainage ines, buildings and other critical points necessary for tracing detail. 2. Transfer these detail points to each succeeding and preceding print. (1/4 green circles)
. Place photo under work sheet and orient it according to cente point and intersections of picture control points on work sheet. Then get radial intersection of detail points by same method as picture control intersections were obtained. ($1 / 4 \mathrm{green} \mathrm{circles} \mathrm{)}$
2. Place each pair of photographs under stereoscope and outline ground detail desired by drawing on photographs.
3. Place photograph under work sheet in its proper orientation.
4. When tracing detail, move detail point of intersection on sheet exactly over the corresponding detail point on the photograph, keeping in line with the principal point. Then trace the detail around this detail point and gradually move the work sheet so that when tracing arrives at the next detail point, the detail point on the work sheet is exactly over the same detail noint on the photograph. This movement from point to point, should be from the principal point, in or out, as the case may be.
Three conditions are required:
5. Precise focal length
6. Flying height
7. Visible horizon

PROCEDURE:

(tapparent tilt + dip angle)
tan of apparent tilt $=$ PH1 measured on photo in inches focal length in inches
Dip angle in minutes $=.98$ altitude in feet
Distance PH is found from formula

$$
\mathrm{PH}=\mathrm{f} \tan \vartheta
$$

Line $P H$ is perpendicular to the apparent horizon.
Draw a line thru H parallel to the apparent horizon.
II Erect a construction line AA, parallel to the true horizon thru point cif(Diagram on following page).

HG in inches $=\frac{\text { Altitude }}{\cos \Theta} \times$ Scale
Scale Scale of grid
Example: Scale - $1^{\prime \prime}$ on grid $=660^{\circ}$ on ground
Altitude - 5,000
Tilt - 30°
$H G=\frac{5000}{856} \times \frac{1 "}{660^{\prime}}=9.99 "$
Point G is plotted along a line thru P. The construction line $A A^{\prime}$ parallel to the true horizon is drawn thru G.

PLOTTING
method of making base map from an oblique
Four conditions are requir ed:

1. Precise focal length
2. Flying heighth
3. Visible horizon
4. Comparatively flat terrain

Fstablish true horizon
$\theta=$ Apparent tilt + dip angle
(Same as Canadian grid)

PLOTTING
 TRI-METROGON

RESTRICTED
tri•metrogon photography \& MAPPING

In trimetrogon photography an assembly of three cameras is used. One camera is directed vertically downward and two are mounted at an angle of 30° from horizontal and perpendicular to the line of flight. The two oblique cameras are so placed that they photograph both the horizon and a small area covered by the vertical camera. All cameras are exposed simultaneously, so that the area from horizon to cameras perpendicular to the line of flight, is covered by the three photographs.

For maping large areas at a small scale ($1: 1,000,000$ to 1:250,000) trimetrogon photography has the following advantages:

1. The distance between flight lines can be much greater than in single lens photography (about 25 miles apart at 20,000 feet.)
2. Fiight lines need not be flown as accurately as in single lens photography.
3. Less ground control needed
4. More economical for mapping large areas (less film, fewer flying hours.)

TRI-METROGON

TRI-METROGON PHOTOGRAPHY \& MAPPING

In trimetrogon photography an assembly of three cameras is used. One camera is directed vertically downward and two are mounted at an angle of 30° from horizontal and perpendicular to the line of flight. horizon and a small area covered by the vertical camera. All cameras horen and perpendicular to the line of flight, is covered by the three photo graphs.

For mapping large areas at a small scale (1: 1,000,000 to 1:250,000) trimetrogon photography has the following advantages:

1. The distance between flight lines can be much greater than in single lens photography (about 25 miles apart at 20,000 feet.)
2. Fiight lines need not be flown as accurately as in single lens photography.
3. Less ground control needed
4. More economical for mapping large areas (less film, fewer flying hours.)

[^0]: Bolin, Robert L. Depositor, "Photographic Interpretation Handbook, United States Forces: Section 11 Plotting from Photos" (1944). DOD Military Intelligence. 14.
 http://digitalcommons.unl.edu/dodmilintel/14

