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Rapid development of next-generation sequencing technology has led to an unprece-

dented growth in protein sequence data repositories over the last decade. Majority

of these proteins lack structural and functional characterization. This necessitates

design and development of fast, efficient, and sensitive computational tools and algo-

rithms that can classify these proteins into functionally coherent groups.

Domains are fundamental units of protein structure and function. Multi-domain

proteins are extremely complex as opposed to proteins that have single or no do-

mains. They exhibit network-like complex evolutionary events such as domain shuf-

fling, domain loss, and domain gain. These events therefore, cannot be represented

in the conventional protein clustering algorithms like phylogenetic reconstruction and

Markov clustering. In this thesis, a multi-domain protein classification system is

developed primarily based on the domain composition of protein sequences. Using

the principle of co-clustering (biclustering), both proteins and domains are simulta-

neously clustered, where each bicluster contains a subset of proteins and domains

forming a complete bipartite graph. These clusters are then converted into a network

of biclusters based on the domains shared between the clusters, thereby classifying

the proteins into similar protein families.

We applied our biclustering network approach on a multi-domain protein family,

Regulator of G-protein Signalling (RGS) proteins, where heterogeneous domain com-



position exists among subfamilies. Our approach showed mostly consistent clustering

with the existing RGS subfamilies. The average maximum Jaccard Index scores

for the clusters obtained by Markov Clustering and phylogenetic clustering methods

against the biclusters were 0.64 and 0.60, respectively. Compared to other clustering

methods, our approach uses auxiliary domain information of each protein, and there-

fore, generates more functionally coherent protein clusters and differentiates each

protein subfamily from each other. Biclustered networks on complete nine proteomes

showed that the number of multi-domain proteins included in connected biclusters

rapidly increased with genome complexity, 48.5% in bacteria to 80% in eukaryotes.

Protein clustering and classification, incorporating such wealth of additonal domain

information on protein networks has wide applications and would impact functional

analysis and characterization of novel proteins.
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Chapter 1

Introduction

Recent advancements in high throughput sequencing have resulted in a massive ac-

cumulation of biological sequence data. Universal Protein Resource Knowledge Base

(UniProtKB/TrEMBL), one of the fastest growing and globally maintained protein

public databases, currently records 33,995,348 protein sequence entries comprised of

10,924,561,758 amino acids [5]. This database alone has shown a two-fold increase

in the number of sequence entries just within the last two years. This exponential

growth in biological databases poses direct challenges and therefore demands highly

efficient and robust algorithms related to the major data mining components such

as data integration, management, prediction and classification. Although the most

important information for proteins is their functions, only a small portion of protein

sequences available in such databases has been functionally characterized. Therefore,

more accurate, sensitive, and efficient algorithms are necessary for the functional

classification of protein sequences.
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1.1 Proteins and their Domains

Proteins are polymers of amino acids that perform a wide variety of functions in

living organisms. Besides acting as enzymes, hormones, and antibodies, proteins also

perform the major regulatory functions in a cell. Some proteins contain recurring

fragments that have distinct conserved structures and functions. These fragments

within a protein are called “domains” and they act as fundamental units of protein

structure and function [6]. They occur in single or multiple copies in a protein. Figure

1.1 shows five hypothetical proteins with domains in various combinations. Each

protein maintains a unique combination and order of these domains. This unique

domain arrangement can also be termed as the domain architecture of the protein [7].

Multi-domain proteins are complex in its structure, function, and evolution compared

Figure 1.1: Five hypothetical proteins showing single to multiple copies of domains.
Each shape—rectangle, square, triangle, and circle represents distinct domains.

to single domain proteins. They constitute more than 65% of the protein databases

such as CATH [8]. It has been shown that eukaryotes contain a larger proportion

(approximately 70%) of multi-domain proteins in comparison to bacteria [9, 10]. High
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proportions of multi-domain proteins in animals and plants account for their diverse

and complex proteomes mediating functions such as protein-protein interaction, signal

transduction, etc.

1.2 Multi-domain Protein Clustering

Clustering of protein sequences are critical since similar proteins perform related func-

tions. Therefore, accurate and sensitive classification diverse proteins including those

whose functions have not been identified can help predict their functions based on

their similarities with known proteins [11]. However, prediction of their functions

are dependent mainly on the degree of primary sequence similarity between them.

Conventional clustering, such as phylogenetic clustering, is done based on informa-

tion on sequence similarities from a single comparable region or domain of proteins.

However, clustering and classification of multi-domain proteins are much more chal-

lenging as opposed to proteins with single or no domains. As illustrated in Figure

1.2, multi-domain proteins exhibit complex evolutionary events like domain shuffling,

domain loss (deletion) or domain gain (insertion) [12]. These events are analogous to

network properties and are not represented in conventional phylogenetic trees as phy-

logenetic reconstruction methods in general model evolutionary events that are passed

via vertical descents only. As a result, information on the complex domain evolution

such as horizontal transferring between proteins and duplications/deletions are lost

or completely ignored. Therefore, a protein clustering method that can incorporate

the similarity and difference in domain architectures is needed.
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Domain
insertion

Domain
insertion

Domain
deletion

Domain
duplication

        Duplication

        Duplication

        Duplication

Figure 1.2: Evolutionary events of multi-domain proteins. It illustrates an example of
a domain-containing protein evolving through various events such as domain insertion,
domain deletion and duplication.

1.3 Objectives

The main objective of this thesis is to develop a classification system that would en-

able clustering and classification of multi-domain proteins. Such a method should be

applicable to large-scale data at the multiple genome level. To achieve this goal an

initial clustering of the entire set of protein sequences in terms of their domain com-

position is accomplished by the principle of bi-dimensional clustering. This method

would enable us (a) to understand the complete evolutionary relationships between

proteins including multi-domain proteins, represented by evolutionary networks of

both proteins and domains at the same time, (b) to classify multi-domain proteins

representing different protein families on a large and global scale, and (c) to compare

such networks of all the protein families across multiple proteomes at varying levels
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of organismal complexity. To achieve the above mentioned research goals, this study

has the following objectives:

1. to develop a protein-domain biclustering network for a given set of proteins,

2. to evaluate the proposed method against Markov and phylogenetic clustering

methods, and

3. to compare multi-domain protein classes obtained from our method across dif-

ferent genomes of varying complexity.

Protein-domain biclustering network for a given set of protein sequences is devel-

oped by (a) identifying domains for each proteins and generating a protein-domain

binary matrix (Section 4.2), (b) generating protein-domain biclusters using a biclus-

tering algorithm Bimax [3], and (c) converting the set of clusters to a network of

isolated and connected biclusters using the methodology described in Section 5.1.

This method was first applied on a multi-domain protein family—Regulator of G-

protein Signalling (RGS) proteins, where heterogeneous domain composition exists

among subfamilies, as shown in Section 5.2. Comparison of biclusters against Markov

Clustering (MCL) [2] algorithm and maximum likelihood phylogenetic [13] method

showed a high Jaccard Index scores for both these methods against the biclusters.

These experiments are described in Section 5.2.1.

The final section of the results focusses on comparative analysis of protein-domain

biclustered network across nine genomes including seven bacterial, one fruit fly, and

one mouse genomes (5.3.2). Both bilcustering and MCL approaches were used to

assess the clusters obtained at varying levels of E-value and also with varying domain
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prediction overlap thresholds — overlap and non-overlap domain predictions (Section

5.4).

Contributions to Bioinformatics and Computer Science Research Cluster-

ing and classification of proteins and domains as well as studies on domain organi-

zation using graph algorithms have been done previously. Some of these works are

highlighted in Section 3. Nevertheless, these studies have focused so far on proteins

and domains independently, and have not utilized the entire domain information

when classifying multi-domain proteins. Only a handful of works have addressed

protein clustering with respect to domain compositions. However, these works only

focused on the representation of proteins and domains in a bipartite graph/biclus-

ters (complete/incomplete). The works that proposed bipartite networks of proteins

and domains were confined to a single species and their analyses solely focused on

the organization and properties of the network. None of the works (described in

Section 3) has attempted to establish any evolutionary or functional relationships be-

tween protein families based on protein-domain biclusters. In this study, we represent

protein-domain graphs as a foundation to classify proteins into functionally coherent

groups. A bicluster network approach is then developed (Section 5.1) to accomplish

the classification.

The overall organization of the rest of the thesis is as follows. Chapter 2 describes

the background information on sequence homology and similarity, protein classifica-

tion, and protein function prediction. It also describes the principles of bi-dimensional

clustering (Bimax) and Markov clustering of proteins. Chapter 3 analyzes related

works on domain graphs and phylogenetic profile methods. Chapter 4 explains the

methodologies in the construction of protein-domain similarity matrix, steps involved
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in developing a biclustering network, domain prediction algorithms, data sets used

and parameters for cluster comparison. Results are presented in Chapter 5. The

thesis concludes with Chapter 6, which includes overall discussion and future works.
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Chapter 2

Background

This chapter describes: (a) background information on sequence homology, simi-

larity, and protein functional classification (Section 2.1), (b) key features of profile

Hidden Markov Model (pHMM) based sequence similarity detection (Section 2.2),

(c) phylogeny of multi-domain proteins (Section 2.3), (d) Markov Clustering (MCL)

algorithm [2] (Section 2.4), and (e) a bi-dimensional clustering algorithm Bimax [3],

which is used for developing biclustered network of proteins and domains (Section

2.5).

2.1 Sequence Homology, Similarity, and Protein

Functional Classification

Protein homologs are sequences that have arisen from a common ancestor. Sequence

and structural similarities are used commonly to infer homology of protein sequences

[14]. Identification of protein homologs has many practical applications. Protein

homologs that are similar to each other are known to perform shared or related func-

tions. Identifying diverse domains and protein sequences can help detect more remote
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homologs and therefore can provide information about the function, structure, and

evolution of these proteins. This is the underlying principle followed by protein func-

tion prediction algorithms. Protein homologs that are highly conserved exhibit a

higher degree of similarity and can be identified by sequence search algorithms like

Basic Local Alignment Search Tool (BLAST)[15]. BLAST searches common “words”

or k-tuples in the query and each database sequence. Using amino acid substitution

matrices significant alignments of these words are estimated, which are extended to

a larger stretch of sequence, until the High Scoring Pair (HSP) is found. However, as

the degree of sequence similarity decreases more sensitive search strategies employing

sequence profiles as in Position Specific Iterative BLAST (PSI-BLAST [16]) or pH-

MMs (e.g., HMMER [17]) are used that would enhance the sensitivity of the searches

made. In this study, we use pHMM-based search algorithm for domain identification.

Therefore, the following section discusses the structure and mechanism of a pHMM.

2.2 Profile Hidden Markov Models and Domain

Prediction

Sensitive search methods use information from a collection of similar proteins, such

as, position specific scoring matrices [16] or multiple sequence alignment (MSA),

rather than using a single sequence information. This composite information of mul-

tiple sequences is called a “profile”. To construct such a profile of multiple sequence

alignment, proteins that are similar to each other are aligned. For example, Figure

2.1 shows an example of multiple sequence alignment of seven protein sequences. A

pHMM is derived from such a multiple sequence alignment [18]. The first step in

constructing a pHMM is to define the states. The match state represents the residues
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123456789 
VGA--HAGE 
V----NVDE 
VEA--DVAG 
VKG------ 
VYS--TYET 
FNA--NIPK 
IAGADNGAG 
 

Figure 2.1: Multiple sequence alignment of seven protein sequences. First row of
numbers represent the columns of the alignment. Alphabets represent amino acids
and “-” symbols represent gaps in the alignment. In this example, columns 1-3 and
6-9 are “match” columns and coulmns 4 and 5 are “insert” columns. Modified from
http://www.cs.princeton.edu/~mona/Lecture/HMM1.pdf

that are aligned to a residue rather than a gap. Portion of the sequence in the align-

ment that do not match with anything in the model is named as insert state. Delete

state is the segment of the multiple sequence alignment that is not matched by any

residue. The length of the pHMM determined by the number of match columns is

estimated using several heuristics. One of the common heuristics is to include those

columns that have at least half of the sequences as match columns. In this example,

columns 1-3 and 6-9 are match columns making the length of the pHMM to be 7.

Once the states are defined, the pHMM model structure can be built by calculating

the transition and emission probabilities. Transition probability from state k to state

l is given by the following equation.

akl =
Akl∑
l
′ Akl′

, (2.1)

where, k and l are indices over the states, akl is transition probability and Akl is the

corresponding transition frequency. Transition probability aM1M2 in this example is

6
7
. Similarly, aM1D1 = 1

7
and aM1I1 = 0

7
, , where M1,M2 are match states, D1 and I1

http://www.cs.princeton.edu/~mona/Lecture/HMM1.pdf
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are delete and insert states, respectively, as shown in Figure 2.2. Emission probability

is given as,

ek(a) =
Ek(a)∑
a′ Ek(a

′)
, (2.2)

where Ek(a) is the frequency for the state k emitting the amino acid a. For example

in the match state M1 the probability of emitting amino acid V is given as, eM1V = 5
7
.

To avoid zero probabilities a pseudo-count of 1 is used, and after accounting pseudo-

count for each of the 20 amino acids, eM1V = 5+1
7+20

= 6
27

. Figure 2.2 shows the most

likely path of this MSA.

1

D D D D

I1.. I3 I4.. I5

B M1.. M3 M4.. M7 E

Figure 2.2: Structure of a pHMM. States include begin (B), match (squares), insert
(triangles), delete (circles), insert (triangles) and end (E). Arrows show the transition
probabilities between the states.

One of the main purposes of such a pHMM is to obtain significant match for a

sequence against this profile and test its membership for the particular pHMM. This

can be done by estimating the log-odds ratio of the probability of such a sequence x

belonging to the HMM model, M given by P (x |M) to that of the probability of the

sequence to a random (null, N) model, P (x | N).

S = log
P (x |M)

P (x | N)
, (2.3)
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HMMER and Pfam HMMER [17], a sequence to profile search algorithm, is used

in this thesis to identify domains for a given set of protein sequences. Pfam version

27.0 [19], a large collection of multiple sequence alignment and profile HMM libraries,

was used as the underlying domain profile database for all domain searches. Pfam-A

entry, used in this study is a high quality, manually curated 14,831 protein profiles

database.

E-value as the Similarity Measure In this study, E-values are used as the scores

of statistical significance showing a pair of sequence to be related or similar. The

probability of getting the alignment score x or higher is obtained as,

(S ≥ x) = 1− exp(−Kmne−λx), (2.4)

where K and λ are constants calculated from scoring matrix and amino acid compo-

sition (empirically calculated), and m and n are sequence lengths [20]. This is the

Karlin Altshul statistics. E-value is the expected number of sequences in the data

to have a score as high as or higher than the score S. In the case of pHMMs, Sean

R. Eddy [21] made two conjectures about Viterbi and Forward scores in the case of

full probabilistic models of local sequence alignment: (a) the Gumbel distribution of

Viterbi scores has fixed λ = logz, where z is the base of the logarithm of the log-

odds, and (b) the Forward scores is exponentially distributed with the same λ = logz.

HMMER3 uses filters called “Viterbi filter” and “Forward filter” to evaluate profile-

sequence comparisons. For the former, an optimal (maximum likelihood) gapped

alignment score is calculated and the sequence is passed to the next step only if the

score passes a set threshold. Forward filter calculates the likelihood by summing the

entire alignment using the Forward algorithm and converts the score to a bit score.
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A sequence is then evaluated based on this score.

2.3 Phylogeny of Multi-domain Proteins

Protein clustering algorithms generally perform a direct comparison of each sequence

against every other sequence and establishes a “all-against-all” relationships between

them (as in a similarity or distance matrix). These relationships are expressed in

terms of the number of changes in amino acids. Given a set of multi-domain proteins,

a phylogenetic tree is constructed based on the alignment of a common domain that

exists in all of them. As an example, Figure 2.3 shows a phylogeny of 21 proteins

that belong to the Regulator of G-protein Signaling (RGS) protein family [1]. While

all these proteins share the common RGS domain, as shown in the figure (to the

right), their domain architecture varies. Phylogenetic reconstruction of these protein

sequences is, however, based on the alignment of only the common RGS domain se-

quences, and the rest of the sequence information is completely ignored. It illustrates

that the phylogeny reconstructed only based on a small portion of protein sequences

could easily fail to establish the complex evolutionary relationships among proteins

that include mixed combinations of many domains. The evolutionary relationship

thus established via a bifurcating phylogeny is often incomplete in terms of protein

evolution.

2.4 Markov Clustering of Proteins

Markov clustering (MCL) algorithm is an unsupervised clustering algorithm for graphs

or networks and is based on simulation of stochastic flow in graphs [22]. Protein clus-

tering is one of the direct applications of MCL algorithm. TRIBE-MCL [2] uses the
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Figure 2.3: Phylogenetic relationship among RGS proteins. The domain architecture
of each protein is illustrated on the right. [1]

MCL algorithm to classify protein sequences. It first performs all vs. all protein

similarity search using BLASTp. A symmetric protein similarity matrix is generated
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C

Figure 2.4: Overview of the TRIBE-MCL method. (A) An example of a protein-
protein similarity graph for seven proteins (A–F). Circles represent proteins (nodes)
and lines (edges) represent detected similarities based on BLASTp E-values. (B) The
weighted transition matrix and (C) the derived column-wise transition probability
matrix for the seven proteins. Taken from [2].

by removing the relations that violate symmetry in the matrix. This similarity ma-

trix represents protein-protein similarity relationships, which can be considered as a

weighted similarity graph as shown in Figure 2.4a. A weighted transition matrix is

generated from BLAST E-values where a weight is calculated as (− logE) (Figure

2.4b). Then the values in the matrix are transformed into column-wise transition

probabilities (Figure 2.4c).

The transition probability matrix is passed through the MCL algorithm to identify

protein clusters as follows. The algorithm finds the cluster structure in a graph by a

bootstrapping process. It first computes the probabilities of random walks through

the sequence similarity graph. It uses two operators, inflation and expansion, to
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transform a set of probabilities into another. A stochastic column matrix is M ∈

Rk×k,M ≥ 0 and the sum of each column elements sum up to 1. Given the matrix

M and a real number r > 1, after inflation, the resulting matrix is written as ΓrM

, where Γr is the inflation operator with power coefficient r. Γr : Rk×k → Rk×k is

defined by,

(ΓrM)pq =
(Mpq)

r∑k
i=1 (Miq)r

. (2.5)

For values of r > 1, inflation changes the probabilities for a particular group of

random walks by choosing more probable walks over less probable walks [2]. Given

a start node and a destination node, expansion represents the path lengths of the

random walks. Expansion scatters the stochastic flow within the clusters, where as

inflation eliminates flow between the clusters. Iteration of inflation and expansion

separates the graph into segments. An equilibrium state is reached when no change

is observed in the matrix after a series of expansion and inflation.

This method has been shown to detect protein families accurately on a large scale

dataset. A large proportion of protein families from the human genome was classi-

fied using this method. However, both this method and the phylogenetic clustering

approaches fail to include the complete domain information of a protein. When phy-

logeny uses the common domain information, MCL uses the most significant region

between the proteins. These methods therefore, ignores the auxiliary domain infor-

mation of all the multi-domain proteins in the respective clusters.

2.5 Bidimensional Clustering (Biclustering)

This method was first introduced by the name “direct clustering” where voting

data was clustered to the states that voted similar candidates with respect to the
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years [23]. The concept of biclustering in biological samples was first introduced by

Cheng and Church where they used simultaneous row-column clustering to cluster

gene expression data [24] to isolate genes (rows) that are expressed in certain similar

conditions or samples (columns). The name “biclustering” is also interchangeably

used with co-clustering, bidimensional clustering, subspace clustering, etc [25]. Even

though several biclustering algorithms have been developed for most predominantly

clustering gene expression data, this concept is also widely used in the field of text

mining, web mining, etc [26].

2.5.1 Definitions

Let us consider two variable setsX, Y whereX = {x1, x2, . . . , xn}, and Y = {y1, y2, . . . , ym}.

Given these two sets, the problem of biclustering is formally defined as finding the set

of biclusters B = {B1, B2, . . . , Bk} such that Bl = (Xl, Yl) where Xl ⊆ X and Yl ⊆ Y

and l ∈ {1, 2, . . . , k}. The variables X and Y could represent different variables such

as genes-conditions, texts-words, webpages-contents, and proteins-domains.

Bicluster data as a bidimensional matrix. Let us consider a general case of

two-dimensional matrix A with n rows and m columns. The variable sets X and Y

could represent the respective rows and columns of the matrix and the cells bear a

real value attribute type. That is, let the matrix A has the set of rows to be X where

X = {x1, x2, . . . , xn}, and set of columns to be Y where Y = {y1, y2, . . . , ym}.

A bicluster Bl = (Xl, Yl) is a submatrix of A such that, ∀aij ∈ AXlYl , i ∈ Xl and

j ∈ Yl. A biclustering problem can be formally defined as the problem of finding

a set of sub-matrices {(X1, Y1), (X2, Y2), . . . , (Xk, Yk)} of the matrix A = (X, Y ),

where Xi ⊆ X and Yi ⊆ Y ;∀i ∈ {i, . . . , k}, such that every submatrix meets a given

pattern or homogeneity criterion (e.g., a certain significant E-value threshold for a
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protein-domain matrix described in Section 4.2).

Bicluster data as a bipartite graph A bipartite graph is a graph G = (U ∪V,E)

with two disjoint vertex sets U and V such that every edge in E connects a vertex

from U to V . A bilcluster data can be transformed into a bipartite graph G
′

=

(X ∪ Y,E ′
) (Figure 2.5) where the variable sets X and Y (the rows and columns in

a matrix) form the vertex sets of the bipartite graph G
′
, and the edges are the real

value attributes of the matrix cells.

A bicluster Bl = (Xl, Yl) is a subgraph g = (Xl ∪ Yl,Wl) of G
′

such that ∀wij ∈ Wl,

x4

x3

x2

x1

 y2

y1

xm

 yn.

.

.

.

Figure 2.5: Bicluster data represented as a bipartite graph. A bipartite graph G =
(X ∪ Y,E ′

), where two variable sets X and Y are shown with the colors green and
red, respectively.

Wl ⊆ E
′
, i ∈ Xl and j ∈ Yl. A biclustering problem thus formally defined as the

problem of finding a set of subgraphs {(X1∪Y1,W1), (X2∪Y2,W2), . . . , (Xk∪Yk,Wk)}

of the bipartite graph G
′

= (X ∪ Y,E ′
), where Xi ⊆ X ∧ Yi ⊆ Y and Wi ⊆ E

′
;∀i ∈

{i, . . . , k}, such that every subgraph meets a given pattern or homogeneity criterion.
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2.5.2 Biclustering Approaches.

Although the run time complexity of biclustering problems varies depending on how

the problem is formulated, almost all of the biclustering problems are NP-complete

[25]. For a given binary matrix M , with mij ∈ {0, 1}, a bicluster here is equivalent

to a biclique or complete bipartite graph. For instance, the problem of finding a

maximum sized biclique can be transformed to the problem of finding maximum edge

biclique in a bipartitie graph. This problem is a known NP-complete problem [27].

A few heuristic approaches in biclustering two-dimensional data are described below.

The method developed by Cheng and Church, one of the earliest, clustered gene

expression data using a brute force method. The key idea was to find the largest

submatrix with the lowest mean squared residue [24]. There are several modifications

of this algorithm. One of them is XMOTIF. In this method each bicluster represents

a conserved gene expression motif, which contains a subset of genes whose expression

patterns are simultaneously conserved for a subset of samples (e.g., from different

tissues) [28]. If genes and samples are represented by rows and columns in a matrix,

respectively, this is equivalent to a set of rows that shares a specific range of values for

a specific set of columns. Another method (Samba), developed by Tanay et al [29],

looks for heavy subgraphs in a bipartite graph. It uses the idea of maximum bounded

biclique to find the maximum bounded bipartite subgraphs. Given a bipartite graph,

G with two sets of vertices representing genes and conditions, it finds the maximum

weight subgraphs (not necessarily complete) of G, where the vertices from the gene

side maintains a certain vertex degree. The Order-Preserving Submatrix (OPSM)

algorithm [30] generates submatrices where, each submatrix is preserved in terms of

its order such that for the set of columns the sequence of values of the rows is strictly

increasing. In contrast to the values of a cluster in XMOTIF where the values of the
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rows are within a specific range, in this method the values of the rows with respect

to the column is strictly positively correlated. The common feature in all of these

algorithms is that clustering is based on the real valued attribute type that relates

the two sets of variables in a bicluster. Unlike all of the above mentioned approaches,

Bimax clusters a binary model into submatrices where members of both the row and

column sets are connected to each other [3]. Detailed description of this algorithm is

given in Section 2.5.3

2.5.3 Binary Inclusion-Maximal Biclustering (Bimax)

Inclusion-maximal biclusters are defined as those that are not strictly contained in

any other biclusters. Two biclusters Bi and Bj are inclusion maximal if,

Bi = (Xi, Yi) 6⊆ Bj = (Xj, Yj).

Biclusters here are also completely connected bipartite graphs, where every vertex of

the first set Xi (e.g., proteins) are connected to the second Yi (e.g., domains). For

example, from a bipartite graph shown in Figure 2.6a inclusion-maximal biclusters

shown in Figure 2.6b can be derived. Bimax is a heuristic algorithm that finds all the

inclusion-maximal biclusters from a two-dimensional matrix. It works on a binary

model by the divide and conquer strategy [3]. The algorithm works as follows. It

first chooses a row as the template and partitions the column set C into CU and

CV (Figure 2.7, left). The heuristic is to choose a row i such that the statement,

0 <
∑

j∈C eij <| C | holds true. In the example shown in Figure 2.7, the first row is

chosen as the template. CU contains the columns in which the template has 1s (dark

cells in Figure 2.7). CV = C −CU . Then, it sorts rows into three sets—GU , GW , and

GV (Figure 2.7, right). GU is the set of rows that have 1s in CU only, GV in CV only,



21

A

x4

x3

x2

x1

y2

y3

y1

x5

x6

x1

x2

x3

x4

x5y2

y1

x1

x2

x3

x4

x4

y3

x5

x6

y1

y1

y3

x5

y2

y1

y3

x4

B

Figure 2.6: Inclusion-maximal biclusters. (A) A bipartite graph with two sets of ver-
tices {x1, . . . , x6} (green) and {y1, y2, y3} (red). (B) six inclusion maximal biclusters
are derived from the bipartite graph shown in A.

Figure 2.7: Bimax algorithm. Submatrices U and V are marked as boxes with solid
and dashed lines, respectively, within the matrix to the right. Taken from [3]

and GW where 1s are present in both CU and CV . The key idea is to partition the

matrix into three submatrices, U = (GU ∪GW , CU) , V = (GW ∪GV , CU ∪ CV ), and

those that contain only 0-cells. As is the case in Figure 2.7, if GW is not empty, the

matrix V contains parts of biclusters that are in U . Regarding that the algorithm finds

the biclusters that are inclusion-maximal, it considers biclusters in V that extends

over CV . This process is then applied recursively on the matrices U and V until all
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the cells in the submatrix are 1s.

Biclustering in biology. Biclustering algorithms in biology are most commonly

used to cluster gene expression data. As described in Section 2.5.2, numerous al-

gorithms were developed just for the application of clustering genes with respect to

biological samples [24, 30, 28, 29, 3]. However, biclustering on protein-domain data

has been studied only in limited cases. A study on yeast proteins using bipartite

network model of proteins and domains were used to identify co-occurring domain

sets [31]. Later, it were demonstrated that unlike domain graphs that follow a scale

free distribution, protein-domain networks have much more complex patterns. Using

the human proteome, they showed that when the degree distribution for the number

of domains shared by certain k proteins has a power law distribution, the degree

distribution for the number of proteins composed of k types of domains follows an

exponential decay [32]. However, these works were limited to the study of network

properties and co-occurring domain sets in protein-domain networks and were not on

clustering proteins into similar protein families.
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Chapter 3

Related Works

This chapter describes: a few fundamental concepts and current research findings on

(a) protein-domain clustering including phylogenetic profile method (Section 3.1), (b)

domain clustering (Section 3.2), and (c) protein-domain networks (Section 3.3).

Several graph-clustering and network-based approaches have been developed to

classify and predict functions of complex multi-domain proteins. Domain organi-

zation, co-occurrence, and orders have been intensively studied using domain graphs

[33, 34, 35]. Besides evolutionary relationships of protein families, protein and domain

co-occurrence networks contribute to functional classification of proteins [36, 37, 38].

Even though protein and domain graphs are studied intensively, complete association

of the proteins to domains and also their relations to their functions remain to be

explored. In the phylogenetic profile method, GDDA-BLAST [4], domain information

of a protein is encoded as a profile. It is a multiple sequence alignment free method in

classifying proteins. This chapter summarizes few key works on domain graphs and

functional prediction of proteins.
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3.1 Phylogenetic Profile Methods

Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST)

developed by Chang et al [4] constructs evolutionary relationships among highly di-

vergent protein sequences including multi-domain proteins. This method is based

Figure 3.1: Workflow of the phylogenetic profile method with GDDA-BLAST. Taken
from [4]

on phylogenetic profiles constructed for each of protein sequences. It is independent

of multiple sequence alignment, which is required for conventional phylogeny recon-

struction methods (Section 2.3).

As illustrated in the Figure 3.1, the method compares each of query sequences

against the domain profile data set. The profile data can be obtained from, for

example, from National Center for Biotechnology Information Conserved Domain
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Database 24,280 domain profiles. Each query sequence is first modified as follows.

Seed sequences are generated from each profile by taking N- and C-terminal portions

(e.g., 3-50%) of one of the sequences. These seed sequences are inserted between each

amino acid position of a query producing modified query sequences as many as the

total number of amino acid in the sequence. Then the optimal pairwise alignment is

generated using reverse PSI-BLAST [39] between each of the modified query sequence

and each profile. For each comparison between a profile and a query, a composite

score is defined as the product of mean percent coverage, mean percent identity,

and the normalized hit number. All scores between queries and domain profiles are

represented in an N x M matrix, where N is the total number of queries and M is

the total number of profiles. This matrix is then converted into an Euclidean distance

matrix and a phylogenetic tree inference method is used to construct the phylogeny.

Comparison of the GDDA-BLAST based phylogeny to a phylogeny constructed by

using a regular method based on the multiple sequence alignment of the common

domain in all the 88 sequences aligned using Dialign [40] showed a high similarity in

their topology. The GDDA-BLAST based method could establish relationships for

extremely diverse sequences that were used in the study. However, GDDA-BLAST’s

scalability is questionable as it is tested on a very small subset of 88 sequences.

3.2 Domain Networks

Domain clusters or topology of domain networks generated from a specific genome

or from large scale databases have been studied comprehensively in the past (e.g,

[41, 33]).

A domain graph Gd = (Vd, Ed) is defined as an undirected graph that consists of a
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Figure 3.2: Domain graph. Two proteins with their domain organizations (A). The
domain graph is generated with domains (vertices) in each protein forming a clique
(B). The five domains from the two proteins form a graph with four vertices.

vertex set Vd representing all domains in a given set of proteins and a set of edges Ed.

Two vertices are linked with an edge if the two domains are both present in at least

one protein 3.2. The degree k of a vertex is the number of other vertices a vertex is

linked to. Wutchy [41] demonstrated that the connectivity distribution P (k) of nodes

decays as a power-law given by,

P (k) ∼ k−γ. (3.1)

Domain graphs were further used to compare and study domain organization of

proteins in various organisms [33]. They analyzed structure, connectivity, and mod-

ularity of domain graphs across several genomes. Some of the key findings from this

work were that the number of domains, the number of domain combinations, and the

size of the largest component increase with the complexity of the organisms. Wutchy

and Alamas [34] identified evolutionary cores of domain graphs by developing a k-

core decomposition method that isolated globally central (highly connected domains

in the central cores) from the locally central (highly connected domains in the pe-
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ripheral cores) domains through an iterative method [34]. The k-core of a graph is

the largest subgraph where every node has at least k links. This method recursively

prunes all the nodes with degree less than k, for a given k. This study showed that

the innermost k-core is not populated by the largest hubs, which indicated that a hub

alone does not imply a central placement in the network.

Protein domain organization was also later studied by adding directionality to

the graphs to represent the specific order by which the domains exist in proteins

[35]. Evaluation of these directed network graphs was performed by comparing the

observed values of global network properties to those expected at random. Random

graphs were generated to emulate the scale-free behavior of observed graphs. The

algorithm developed maintains the degree distribution of the nodes but removed all

the original edges. Through a series of iteration, the algorithm randomly selects a

node pair each from an in and out degree list, and defines a new edge and there by

completes the new graph. One of the novel findings from this work was the presence

of domain pairs to exist in both forward and reverse orders in proteins more often

than random in contrast to what previous studies had shown.

3.3 Protein-Domain Networks and Protein

Functions

Protein-domain networks, in contrast to protein networks or domain co-occurrence

networks, provide comprehensive representations of both proteins and domains si-

multaneously and also their associations. These networks provide information such

as co-occurring domain sets, domain distribution, and domains shared across protein

families. These networks can further be used to classify proteins into functionally
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coherent groups, as domains are functional units of proteins. Unlike conventional

protein or domain clustering methods, these networks can provide insight into com-

plex evolutionary events such as domain recombination, domain shuffling, domain

gain, and loss. Literature review shows that only a limited number of works have

been done to study such networks.

A study on yeast proteins using a bipartite network model of proteins and domains

was conducted to identify co-occurring domain sets [31]. Later, it was demonstrated

that unlike domain graphs that follow a scale free distribution, protein-domain net-

works have much more complex pattern [32]. Using the human proteome, they showed

that, when the degree distribution for the number of domains shared by certain k pro-

teins has a power law distribution, the degree distribution for the number of proteins

composed of k types of domains follows an exponential decay [32]. However, these

works are limited to the study of network properties and co-occurring domain sets in

protein-domain networks. A network of both proteins and domains connected with

respect to the shared domain types is the potential novelty that we would accomplish

in our work.
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Chapter 4

Methods

This chapter describes all the methodologies used in this thesis in developing a

protein-domain network for a given set of multi-domain proteins. It describes: (a)

an overview of the protein-domain biclustering and the subsequent network approach

developed that clusters proteins into groups of similar protein families (Section 4.1),

(b) the structure of protein-domain binary matrix (Section 4.2), (c) domain identifi-

cation and overlapping and non-overlapping domain predictions (Section4.4), (d) the

data sets used (Section 4.5), and (e) the evaluation of the methods (Section 4.7).

4.1 Domain Content Based Clustering of

Proteins – the Workflow

Figure 4.1 shows the complete workflow of the protein-domain biclustering and net-

work construction. It starts with the domain identification for a set of proteins using

profile HMM search using the HMMER (version v3.1) programs against the domain

database Pfam (version 27) (A). A protein-domain binary matrix is constructed based

on a given E-value threshold (B). E-value is a score of statistical significance which
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determines whether two sequences are significantly similar to each other or not (Sec-

tion 4.3). Protein-domain inclusion maximal bicliques are identified using Bimax (C).

After these steps, biclusters are converted into a network (D) with biclusters (nodes)

connected by edges with the number of their shared domains (E). Steps (D) and (E)

are described in Section 5.1.

4.2 Protein-Domain Binary Matrix and Bimax

We consider a protein-domain matrix M , with r rows (proteins) and c columns (do-

mains) as shown in Table 4.1. Let the sets of rows and columns be P = {p1, p2, · · · , pr}

and D = {d1, d2, · · · , dc}, respectively. These two sets are analogous to the variable

sets X and Y defined in Section 2.5.1. Every cell mij holds a value, e.g., similarity

measure such as percentage identity or an E-value obtained from domain prediction

algorithms such as HMMER. Such a two-dimensional matrix becomes the basis of

generating a set of biclusters B = {B1, . . . , Bk}. In the context of proteins and do-

mains, a bicluster Bn = (Pn, Dn) (defined in Section 2.5.1) is a sub-matrix MPnDn

of M such that Pn ⊆ P and Dn ⊆ D and all the cell values mij maintain a pattern

of similarity, for example, having E-values all within a certain threshold. In order

Table 4.1: Matrix representation of proteins and domains.

Domain 1 . . . Domain j . . . Domain c
Protein 1 m11 . . . m1j . . . m1c

Protein . . . . . . . . . . . . . . . . . .
Protein i mi1 . . . mij . . . mic

Protein . . . . . . . . . . . . . . . . . .
Protein r mr1 . . . mrj . . . mrc

to apply Bimax, all cells values in the matrix are binarized to 0 or 1 with respect

to the chosen E-value threshold. For instance, all the cells with E-values greater
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Figure 4.1: Workflow of protein-domain biclustering and network construction. (A)
Domain identification from proteins using HMMER3 against the Pfam Database.
(B) Domain predictions represented in a matrix with rows as proteins and domains
as columns. Cells contain E-values for domain identification from each protein. Pre-
dictions below a defined E-value threshold are binarized (dark cells are 1 and light
cells are 0). (C) Bimax algorithm is run on the matrix. (D) Network of multi-domain
proteins containing connected (e.g., C1, C2) and isolated (e.g, I) biclusters (B1-B7).
Shared domains are colored grey and the edges that join the shared domains con-
necting biclusters is colored blue. (E) Network reconstruction where each bicluster
forms the vertex and the edge weight is proportional to the number of shared domains
between them.
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than 1.0 (low similarity) are set to 0 and the rest (high similarity) to 1. This binary

matrix can be used as the input of Bimax. Detailed description of the algorithm

is given in Section 2.5.3. The C library implementing Bimax was downloaded from

http://people.ee.ethz.ch/~sop/bimax/.

4.3 E-value as the Similarity Measure

E-value is defined as the expected number of of sequences in the sequence data to

have a score as high as or higher than a particular alignment score. It is otherwise

the score of statistical significance which shows a pair of sequence to be related or

similar. Protein-domain biclusters differ in number, composition and structure with

respect to varying levels of E-value. These differences are compared at three levels of

E-value: 10, 1, and 0.001, respectively.

4.4 Overlapping and Non-overlapping Domain

Predictions

Depending on how domains are modeled, it is possible to have predicted domain re-

gions to be overlapped within a protein sequence. To examine the effect of this prob-

lem, we analyzed protein-domain biclusters with and without allowing overlapping

domain predictions as follows: (1) including all domain predictions identified within

a given E-value threshold regardless of overlapped or not, (2) excluding domain pre-

dictions whose overlaps are longer than 5% of the protein length (if the protein length

is 1000 amino acids, only 50 amino acids or shorter overlaps are allowed; for domains

that have longer overlaps, only those with the highest E-values are kept), and (3)

including only strictly non-overlapping domains. Figure 4.2A illustrates when all

http://people.ee.ethz.ch/~sop/bimax/
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Figure 4.2: Overlapping domain predictions. (A) For a protein sequence (red bar),
domains (blue bars) are predicted by HMMER. Some protein regions are predicted to
have more than one domain. They are called “overlapped” . (B) In order to choose
non-overlapping domains, first “domain 1” that has the lowest E-value is chosen and
the two overlapping domains with the domain 1 are discarded (marked with “x”).
Next the domain that has the second lowest E-value (domain 2) is chosen and the
process is repeated. (C) Finally, three non-overlapping domains (green bars) are
chosen for this protein.

predicted domains above the E-value threshold (blue bars) are included. To choose

a set of non-overlapping domains first the domain with the lowest E-value (domain

1 in Figure 4.2B) is chosen and other overlapped domains are removed. Next the

domain with the second lowest E-value (domain 2 in Figure 4.2B) is chosen and the

process is repeated until no domain remains. Finally, as illustrated in Figure 4.2C,

three non-overlapping domains (green bars) are chosen.

4.5 Data Sets used in this study

Two types of protein data sets were used in this study. The data set of 66 proteins

from the Regulator of G-protein Signalling (RGS) family proteins from the mouse

(Mus musculus) genome and the respective domain predictions are listed in Table A.1.

These proteins contain at least one RGS (Pfam ID: PF00615) or RGS-like domain
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(Pfam ID: PF09128). Fifty five non-overlapping domains were identified from the 66

of mouse RGS proteins (Table A.1).

Nine complete protein sets were also examined in this study. They were obtained

from seven bacterial and two eukaryotic (Drosophila melanogaster and Mus musculus)

genomes. Bacterial genomes were downloaded from National Center for Biotech-

nology Information (www.ncbi.nlm.nih.gov/). The complete protein set of the

Drosophila melanogaster genome (version r5.52) was downloaded from the FlyBase

database (flybase.org). The complete mouse genome (Taxonomy ID 10090) was

downloaded from National Center for Biotechnology Information (www.ncbi.nlm.

nih.gov/. From each data set, domains were identified using HMMER and PFAM

with different inclusion strategies for overlapping domains. These data sets are listed

in the Table 4.2.

Table 4.2: The nine complete protein data sets used in this study.

Genomes Total proteins #Overlap
domainsa

#Overlap do-
mains (5%)b

#Non-overlap
domainsc

Bacillus subtilis strain 168p 4251 5095 3098 2822
Staphylococcus aureus strain COLp 2680 3898 2306 2097
Staphylococcus epidermidis strain FRI909p 2268 3696 2086 1905
Streptococcus pyogenes strain MGAS10270p 1964 2993 1784 1645
Escherichia coli strain ATCC 33849p 4588 4720 3128 2909
Yersinia pestis strain D106004p 3642 4301 2833 2636
Treponema pallidum strain SS14p 1028 1767 1088 983
Drosophila melanogaster e 29,217 8277 6545 5931
Mus musculuse 29,281 9806 7654 6885
a: The domain data set includes all overlap domains below the E-value threshold of 1. b: The domains below
the E-value threshold of 1 and with less than 5% of overlap are included. c: Only non-overlap domains below the
E-value threshold is 1 are included. p: prokaryotes. e: eukaryotes.

www.ncbi.nlm.nih.gov/
flybase.org
www.ncbi.nlm.nih.gov/
www.ncbi.nlm.nih.gov/
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4.6 Evaluation of Protein-Domain Clustering

4.6.1 Phylogenetic Clustering

As described in Section 2.3, reconstructing phylogeny requires a multiple sequence

alignment generated from the domain sequences shared among all proteins. There-

fore, this method can be used only for the RGS protein set in this study. A multiple

sequence alignment of RGS protein sequences was generated using MAFFT (ver-

sion v7.050b [42]) using the L-INS-i algorithm with the default parameters. The

maximum-likelihood phylogeny was reconstructed as implemented in PHYML (ver-

sion v3.0 [13]) using the following options:

phyml -i rgs.ph -d aa -m LG -a e -b 1000,

where “rgs.ph” is the multiple sequence alignment of RGS proteins. The option “-m

LG” uses the LG amino-acid substitution model, “-a e” specifies the gamma distribu-

tion shape parameter with the maximum-likelihood estimate, and “-b 1000” specifies

the bootstrap analysis with 1000 pseudoreplicates. We used a bootstrap of 70% to

define the clusters of RGS sequences. For example, the sequences that has a boot-

strap support of 70% or higher belong to a cluster and the rest form clusters, each

with a single protein. A total of 20 clusters were obtained from this process as shown

in Figure 5.5.

4.6.2 Markov Clustering

The Markov Clustering (MCL) algorithm is used for comparing the protein clusters

with the biclusters. The library for MCL algorithm is downloaded from the webpage

www.micans.org/mcl. The details of TRIBE-MCL were described in Section 2.4. It

includes the following steps: (a) for a set of proteins, a hit table is generated using

www.micans.org/mcl
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the blastp program, (b) the program mcxdeblast is used to parse and construct the

all-against-all similarity matrix based on an E-value threshold of 1.0, (c) the program

mcxassemble further generates a probability matrix from the blast matrix and also

checks for the symmetry for each cell in the matrix. These steps are required for the

final clustering, and (d) the program mcl is then used to cluster the matrix.

4.7 Evaluation Metric for Cluster Comparison

We used the maximum average Jaccard Index [3] to assess the performance of bi-

clustering compared against the protein clusters generated by MCL as well as by

phylogenetic clustering. Given two sets of protein clusters, B from Bimax and M

from an alternative method, the average maximum Jaccard Index against the alter-

native method is given by,

S(B,M) =
1

| B |
∑
B1∈B

max(M1)∈M
| B1 ∩M1 |
| B1 ∪M1 |

. (4.1)
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Chapter 5

Results

This chapter describes: (a) the network approach developed for converting the biclus-

ters into a network of connected and isolated bilcusters (Section 5.1), (b) application

of the bicluster network method developed for multi-domain proteins to the RGS

family proteins and comparison of the RGS bicluster network with the clusters ob-

tained by other methods including TRIBE-MCL and a phylogenetic method (Section

5.2), (c) application of the bicluster network method to multiple proteomes and its

evaluation (Section 5.3), and (d) analysis of overlaping and non-overlaping domain

predictions and its effect on proteome biclusters (Section 5.4).

5.1 Protein-Domain Biclusters to Network

Protein-domain biclusters obtained by applying the Bimax algorithm (described in

Section 2.5.1) exist as inclusion maximal biclusters, where populations of both pro-

teins and domains are redundant (not unique). However, how these biclusters repre-

sent protein relationships in terms of the number of shared domains (similarities) is

not clear at this stage. In this section we describe how we generate protein-domain
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bicluster network that clarifies (a) biclusters that are connected by shared domains,

and (b) isolated biclusters that lack any shared domains. The biclusters (bicliques)

derived from Bimax are processed to derive these networks as illustrated in Figure

5.1:

1. In this example, the protein set contains 10 proteins (p1–p10) with 11 domains

in various compositions (Figure 5.1A).

2. Bimax generates the inclusion maximal bicliques (Figure 5.1B). Same proteins

are included in multiple bicliques as indicated for p5.

3. Biclusters are refined with respect to their unique domain compositions. From

the initial set of biclusters, protein membership across all the bicusters are

made unique by removing the overlapping proteins from the bicluster that has

the smallest domain set. That is, for every two biclusters in the set, where

Bi = (Pi, Di) and Bj = (Pj, Dj), ∀i 6= j and Pi ∩ Pj 6= ∅, common proteins

are removed. Protein p, if p ∈ Pi and Pj, is retained in the bicluster Bi, if

| Di |>| Dj |. This is repeated for all pair of biclusters. In Figure 5.1B,

for example, protein p5 marked with boxes is present in three biclusters. After

removing two redundant p5s in Figure 5.1C, only one p5 is retained in the cluster

that has the largest domain set {d1, d2, d3}.

4. Next, biclusters with common domains are connected to form components of

connected biclusters (Figure 5.1D). Two biclusters Bi = (Pi, Di) and Bj =

(Pj, Dj) are connected via a domain dc, if dc is present in both Di and Dj.

For example, in Figure 5.1D, three edges marked with yellow arrows to the

domain d10 connect three biclusters that share the domain. In Figure 5.1D, all
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such shared by more than one biclusters are colored grey and every edge that

connects two proteins through a shared domain is colored blue.

5. In the final step, each bicluster is converted to a node (Figure 5.1E). Each nodes

are connected by an edge where edge weight increases with the number of shared

domains between the biclusters.

In this example, biclustering of 10 proteins resulted in seven biclusters (B1-

B7), two connected clusters (C1 and C2) and one isolated (I) bicluster. These

connected biclusters could represent multi-domain protein families that are sim-

ilar to each other with respect to varying numbers of shared domains. These

protein subfamilies connected by the shared domains represent complex and

larger protein superfamilies.
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Figure 5.1: Generation of protein-domain biclustering network. (A) Ten proteins
with various domain compositions. Domains are represented by red circles. (B) The
inclusion maximal bicliques derived from Bimax. Proteins are represented by green
circles. Three biclusters, for example, contain a common protein p5, which is shown
in boxes. (C) The seven biclusters (B1-B7) after removing the shared redundant pro-
teins. Protein p5 for example, is retained only in the bicluster B2 that contains the
domain set {d1, d2, d3}, the largest among the three that included p5 in the original
biclusters. (D) The network containing connected clusters (C1, C2) and isolated bi-
clusters (I). For example, the shared domain d10 connects the three biclusters B4, B5

and B6. The edges connecting these biclusters are marked by yellow arrows. All
shared domains are colored grey and the edges that connect biclusters are colored
blue. (E) Each bicluster is converted into a node. Edges between the biclusters are
weighed based on the number of shared domains between them. Wider edges indicate
stronger connections between biclusters in terms of shared domains.
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5.2 Bicluster Network of RGS Protein family

The biclustering network algorithm was applied to the set of 55 RGS proteins. Figure

5.2 shows how these proteins (green nodes) were grouped into 17 biclusters (B1–B17).
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Figure 5.2: Network of Mouse RGS Protein Biclusters. 17 biclusters (B1−B17) of 55
proteins (green) are biclustered with their respective domains (red). All the proteins
contain at least one RGS (blue) or RGS-like (yellow) domain.
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Figure 5.3: Network of Mouse RGS Protein Biclusters. (A) Blue edges connect the
biclusters through the common domain(s). (B) Network representing biclusters as
nodes. Edges are weighed based on the number of shared domains between the
clusters. The biclusters B4, B5 and B6 share four domains and hence are connected
by thicker edges compared to the biclusters that share one domain (B1 and B2).

Since all RGS proteins have either RGS or RGS-like domain, all proteins in this

network are connected to at least the RGS (blue) or RGS-like (yellow) domain. The

largest bicluster (B1, Figure 5.3 A) has 20 proteins where each protein contains the
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RGS domain. Even though all the 55 proteins belong to a single RGS protein family,

proteins in different clusters are dissimilar to each other with respect to their varying

number of domain combinations. For example, 20 proteins containing just one RGS

domain form one cluster and are more similar to each other compared to the protein

NP 001230152.1 (circled in Figure 5.3)A. This protein has gained a domain PF15171

(Pexin) in addition to the RGS domain and exists in a different cluster. This unique

cluster therefore accounts for its dissimilarity from the rest of the 20 proteins. Such

a biclustered network of multi-domain proteins therefore provides an explicit account

of all the domain gain and/or loss evolutionary events across these proteins.

Bicluster network of proteins and domains are reconstructed in Figure 5.3)B. Each

node in this network represents a bicluster and the edge between biclusters are weighed

with respect to the number of domains shared between them. For instance, biclus-

ters B4, B5 and B6 share four domains including the RGS domain (PF00615) and

therefore the weight of the edges connecting these three biclusters is also four. These

relationships between the biclusters provide an insight to the functional coherence of

the proteins present in these clusters. Otherwise, as these biclusters share relatively

larger number of domains, we speculate that the proteins in these clusters may also

perform similar or related functions and hence belong to similar protein subfamily.

Gene Ontology (GO) [45] annotation of these proteins were analyzed to support our

hypothesis. It is clear that all the three proteins in these biclusters are annotated as

“sorting nexin“ and share majority of the top GO terms (green, Table5.1). This is a

direct evidence that supports the fact these biclustering network besides generating

consistent clusters in comparison to other clustering algorithms, it also differenti-

ates the clusters into functionally coherent groups and effectively classifies complex

multi-domain proteins into similar protein families.
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Table 5.1: GO analysis of three RGS biclusters.

Bicluster Protein ID Domains Annotation GO terms
B4 NP 001014973.2 PF08628, PF00787,

PF02194, PF00615,
PF02284

Snx13,
sorting
nexin 13

GO:0005768, GO:0005769,
GO:0006810, GO:0006886,
GO:0007154, GO:0008289,
GO:0009968, GO:0015031,
GO:0016020, GO:0035091,
GO:0038032, GO:0043547

B5 NP 997096.2 PF08628, PF00787,
PF02194, PF00615,
PF12761

Snx25,
sorting
nexin 25

GO:0003674, GO:0005575,
GO:0005768, GO:0006810,
GO:0007154, GO:0015031,
GO:0016020, GO:0035091,
GO:0038032

B6 NP 766514.2 PF08628, PF00787,
PF02194, PF00615

Snx14,
sorting
nexin 14

GO:0003674, GO:0005575,
GO:0006810, GO:0007154,
GO:0015031, GO:0016020,
GO:0016021, GO:0035091,
GO:0038032

Domains shared between the biclusters are represented as bold fonts. GO terms with green color
are common in all the three biclusters. GO terms with blue color are common in the biclusters B4

and B5. GO terms with yellow color are common in the biclusters B5 and B6.
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5.2.1 Comparison of RGS Protein Biclustering with MCL

and Phylogenetic Clustering.

To evaluate the protein-domain biclustering, the same set of RGS proteins were clus-

tered using MCL (Section 4.6.2) and maximum likelihood phylogenetic method (ex-

plained in Section 4.6.1). MCL algorithm considers only the most significant similar

region between each protein prior to clustering. Similarly, for the maximum likeli-

hood phylogeny method, a multiple sequence alignment is generated based on the

domain sequences present in all the proteins. In contrast, biclustering incorporates

all the domain information and as a result they provide a clear distinction between

proteins with their varying domain composition. For instance, Figure 5.4A shows how

seven RGS-like containing proteins are grouped (red circles) into three clusters based

on their unique domain compositions. MCL groups the same seven proteins into a

single cluster (Figure 5.4B, red circle). These two clustering approaches are largely

consistent. Among 55 proteins, 8 of them are grouped 100% consistently (boxed in

the figure) in both methods. The clustering based on a phylogenetic method for the

same set of seven proteins containing RGS-like domains showed that they are grouped

into two clusters (Figure 5.5, arrows) as opposed to three in the biclustering network.

A detailed list of the clusters and the respective protein membership is given in the

Table 5.2.
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Table 5.3: Comparison of bicluster, MCL and phylogeny methods based on the Average
Maximum Jaccard Index scores.

Biclusters (17) MCL Clusters (10) Phylogeny Clusters (20)a

Biclusters 1.00 0.40 0.70
MCL Clusters 0.64 1.00 0.83
Phylogeny Clusters 0.60 0.50 1.00

Total number of clusters from each method is given in the parenthesis.a: Proteins within 70%
bootstrap support threshold belong to a cluster and rest of them form clusters of singleton
proteins.

The number of clusters by biclustering is larger compared to that in MCL. While

biclustering network had 17 biclusters, MCL clustered the proteins into 10 clusters.

The number of biclusters is proportional to the number of distinct domain compo-

sitions present in the data set. However, as MCL clusters the sequences based on

the most significant region between them, the number of clusters are not as discrete

as in the biclusters. This could be the reason for the number of clusters from the

biclusters to be larger. As shown in Table 5.3, the average maximum Jaccard Index

(Section 4.7) of MCL clusters against the biclusters is larger (SMCL−BI = 0.64) than

the relevance of biclusters in MCL (SBI−MCL = 0.40). Significant difference in the

cluster sizes contribute to the low value of SBI−MCL than SMCL−BI . For the same

reason biclusters are more similar to the phylogenetic clusters than to MCL (SBI−PHY

= 0.70).
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5.3 Biclustering Network on Nine Genomes

5.3.1 Comparison of Biclusters and Markov Clusters

We compared the results of protein clustering by biclustering against MCL algorithm

for all the nine proteome data sets. The average maximum Jaccard Index scores were

calculated for measuring the similarity of protein clusters in the biclusters to that

of respective MCL clusters (SBI−MCL) and vice versa (SMCL−BI) within an E-value

threshold of 1. All the biclusters were generated based on the 5% overlap threshold

(defined in Section 4.4).

Number of clusters obtained from the biclustering method is larger com-

pared to that from MCL method. For all the nine genomes the number of

clusters derived from the biclusters were exceedingly high in comparison to MCL

clusters. For example, as given in Table 5.4, total number of biclusters from the

mouse genome was 11,763 compared to only 4843 clusters from the MCL method.

This increase is observed to be independent of the size of the protein set used. As

previously mentioned the number of clusters from the biclustering approach is directly

proportional to the number of distinct domain compositions present in the data.

Protein clusters from MCL method are more similar to biclusters than

biclusters are to MCL. Irrespective to the genome complexity and domain types

(overlap or non-overlap) used, the similarity of protein clusters of MCL to that of

the biclusters are much higher (Average SMCL−BI = 0.70) compared to the score of

biclusters in MCL (Average SBI−MCL = 0.42). It is interesting that these features

are consistent with what was observed for the RGS biclusters and MCL clusters. The

Average Maximum Jaccard Index score is not a symmetric measure. However, we
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do observe a significant difference in SMCL−BI and SBI−MCL. We speculate that the

large difference in the total number of clusters obtained from these two methods could

contribute to its difference in the Average maximum Jaccard Index scores.

Table 5.4: Comparison of bicluster and MCL clusters from prokaryotic and eukaryotic genomes.

Proteome datasets Bicluster and MCL clusters
Species Domain Type∗ #Biclustersa #MCL Clusters b SBI−MCL

c SMCL−BI
d

Bacillus subtilis
Overlap 3577 1256 0.33 0.64
Non-overlap 2753 1256 0.41 0.71

Staphylococcus aureus
Overlap 2268 796 0.34 0.63
Non-overlap 1863 796 0.40 0.70

Staphylococcus epidermidis
Overlap 2001 690 0.37 0.61
Non-overlap 1628 690 0.40 0.70

Streptococcus pyogenes
Overlap 1661 652 0.38 0.67
Non-overlap 1404 652 0.42 0.70

Escherichia coli
Overlap 3598 1402 0.37 0.66
Non-overlap 2796 1402 0.44 0.72

Yersinia pestis
Overlap 3095 1130 0.35 0.64
Non-overlap 2446 1130 0.41 0.70

Treponema pallidum
Overlap 812 381 0.44 0.73
Non-overlap 756 381 0.49 0.76

Drosophila melanogaster
Overlap 11,027 5355 0.42 0.74
Non-overlap 8772 5355 0.46 0.69

Mus musculus
Overlap 15,188 4843 0.27 0.64
Non-overlap 11,763 4843 0.33 0.66

∗: Overlap domain type is the complete set of domain predictions and non-overlap is the domain type that has an
overlap length less than 5% of the respective protein length. Detailed definitions are given in the Section 4.4. a: Total
number of clusters in the biclustering network of the respective genome, b: Total number of clusters obtained from the
MCL method, c,d: Cluster evaluation metric described in Section 4.7.

5.3.2 Network of Protein-Domain Biclusters of Nine

Complete Proteomes

The biclustering network algorithm was applied for the complete protein sets of nine

genomes (Section 4.5). These nine proteomes varied in their complexity in terms

of the number of proteins: from smaller bacterial genomes (average protein number

2917) to much larger eukaryotic genomes (average protein number 29,249).

Figure 5.6 shows a complete network of biclusters of Staphylococcus aureus. It

clearly shows both isolated (black arrow) and connected biclusters (red arrow) that
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are present in a network of complete proteome.

Numbers of biclusters increase with genome complexity. In bacteria, the

average number of proteins represented in a single bicluster on average is approxi-

mately 1. For example, for a total of 2431 proteins of Staphylococcus aureus, 1863

biclusters were derived with an average number of proteins in a single cluster of 1.3.

In contrast, in eukaryotes (Mus musculus and D. melanogaster), such a ratio is 3

(Figure 5.7).

Proportion of multi-domain proteins representing complex protein families

increases with genome complexity. Interestingly, the proportion of the biclus-

ters that form the components of connected biclusters and isolated clusters also vary

from bacteria to eukaryotes. A complete list of the data derived from the biclustering

network of each genome is given in Table 5.5. When in T.pallidum, the number of

connected biclusters are 317, this value increases tremendously to 10,167 connected

biclusters in the mouse genome. Proportion of multi-domain proteins forming such

connected components also varies with a minimum of 35.31% in T.pallidum to a

maximum of 82.90% in M.musculus. Besides the number of connected proteins these

networks also provide information on the number of biclusters (Figure 5.7) obtained

with each genome. These numbers also increase with genome complexity.

This proportions of multi-domain proteins within these genomes are consistent

with previously established studies. It has been shown that eukaryotes contain a larger

proportion (approximately 70%) of multi-domain proteins in comparison to bacteria

[9, 10]. The proportions vary as each study has different approaches and domain

databases in used for clustering the proteins. In general, multi-domain proteins occur

at (a) two-thirds to four-fifths in eukaryotes, and as (b) two-fifths to two-thirds in
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Figure 5.6: Protein-domain network of Staphylococcus aureus. Total of 1863 biclusters
comprised of 2431 proteins (green) and 2306 domains (red), out of which 948 biclusters
form components of connected biclusters (red arrow). The remaining biclusters are
isolated (black arrow).

prokaryotes [43]. This is consistent with the data we have obtained and supports

the fact that the proportion of multi-domain proteins representing complex protein

families are higher in eukayotes compared to that found in bacteria.
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Figure 5.7: Genome complexity (number of proteins) versus domains, biclusters, con-
nected biclusters and connected proteins. X-axis is the total number of proteins with
at least one domain prediction. Y-axis is the number of domains, biclusters, connected
biclusters or connected proteins. “Connected biclusters” are the number of members
of connected components in the network. “Connected proteins” are the number of
proteins in the connected components of the network. Each data point represents
a species in the increasing order of protein numbers—Treponema pallidum, Strepto-
coccus pyogenes, Staphylococcus epidermidis, Staphylococcus aureus, Yersinia pestis,
Bacillus subtilis, Escherichia coli, Drosophila melanogaster and Mus musculus.
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5.4 Overlapping and Non-overlapping Domain

Predictions

To analyze the impact of overlapping and non-overlapping domain predictions on bi-

clustering, clustering has been done based on different domain identification strategies

described in Section 4.4.
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Figure 5.8: Overlapping and non-overlapping domain predictions from the Es-
cherichia coli (A) and Mus musculus (B) genomes. The number of proteins that
have given numbers of domains based on overlapped or non-overlapped prediction is
plotted.

Number of biclusters are higher for domain types with overlap predictions.

Number of proteins with single domains are significantly higher when non-overlapping
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domain predictions are used. As shown in Figure 5.8A, for example, E. coli has 2388

proteins containing a single domain for non-overlapping predictions compared to only

1041 such proteins for overlapping domain prediction. For mouse number of proteins

with single domain for non-overlapping predictions are 10,290 compared to 4292 for

overlap domain prediction. On the other hand, number of domains predicted in a

protein are much higher for overlapping domain predictions. One protein in E. coli , for

example, has 128 domains with overlapping domain prediction and the same protein

has only 96 domains when non-overlapping prediction is done. Similar patterns were

observed regardless of the genomes.
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In comparison to non-overlap domain prediction type, overlap predictions result in

larger domain sets. For instance, total number of domains predicted from Bacillus

subtilis proteome is 3098 for the non-overlapping domain prediction, compared to

5095 for the overlapping domain prediction. Complete list of the domain prediction

numbers for both the prediction strategies can be found in Table5.5 (non-overlap)

and Table 5.6 (overlap). This in turn has a direct impact on the number of biclusters

generated. Number of biclusters derived from the overlapping domain predictions

are higher compared to those with non-overlappings. For the RGS protein clusters,

overlapping domain predictions have 66 RGS proteins with 24 biclusters (Figure A.1)

in contrast to 55 proteins and 17 biclusters when non-overlapping predictions are used

(described in Section 5.2). Similar results were observed for the complete proteome

data sets used (see Table 5.6). When domain overlaps were allowed, the number of

proteins that form components of connected biclusters are significantly higher. For

example, as shown in Table 5.5, the proportion of proteins constituting connected

components of biclusters was 52.51% for Bacillus subtilis with an allowed overlap

threshold of 5% length of the protein. The proportion with overlap domain predictions

increased up to 80.94% as listed in Table 5.6. Using non-overlapping threshold showed

a much higher number of clusters compared to that of 5% overlap threshold (Table

A.2).

Varying levels of E-value thresholds also have an interesting effect on the biclusters

and on the proportion of proteins found in the connected components of biclusters.

The E-value thresholds of 1 and 10 have a moderate effect on the number of proteins

representing connected multi-domain protein families. The E-value threshold of 0.001

significantly reduces the number of biclusters and also the proportion of proteins

representing complex protein families.
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Chapter 6

Discussion

The problem of multi-domain classification into similar protein families has been

studied intensively in bioinformatics research. However, this problem still poses nu-

merous challenges especially when it comes to identifying or clustering large scale

protein sequences into similar families based on their domain composition. All the

proteins that share a single domain do not always imply that they perform the same

or related functions [44]. In fact, proteins that contain the same domain architecture

or even the same domain composition are functionally more similar than the ones that

share single domain. Conventional protein clustering algorithms, such as phylogeny

and MCL are based on only domains shared across almost all proteins or the most

significant region between the proteins for their clustering process. Therefore, the

phylogeny and the clusters derived from MCL fail to represent the exact evolutionary

relationships accurately or classify them into specific functionally coherent clusters

In this thesis, a protein classification method for mutli-domain proteins has been de-

veloped using protein-domain bicluster network approach. Such networks at a genome

level classifies the complete proteome data into groups of similar protein families. It
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not only addresses the domain combinations of multi-domain proteins, but also ac-

counts for the evolutionary events such as domain gains and losses accurately. In

addition to classifying proteins at single protein family (e.g., using the RGS protein

sequences), this method can be also applied for classifying proteins at the complete

proteome level. Comparison and evaluation of protein biclusters with MCL and phy-

logenetic clustering methods showed a higher Jaccard Index scores, both at a single

protein family and at a complete genome level. One of the direct applications of this

method would be its use on large-scale protein databases. Classification of such large

protein databases into similar protein families could have numerous analytical and

functional applications. One of the caveat in this approach though is its complete

dependence on the underlying domain prediction algorithm. Protein clusters gener-

ated in this study, for instance, is solely based on the HMMER search algorithm.

Therefore, use of more than one or more sensitive domain prediction algorithms such

as HHsearch [11] will improve the accuracy of biclusters and eventually on the protein

classes derived.

It would also be interesting to define the functional roles of the connected and iso-

lated protein families. This could be accomplished by using the functional annotaion

datatabse, e.g., Gene Ontology (GO) [45]. Establishing the functional coherence of

the clusters and a functional level analysis would also be a direct application of this

method.
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Table A.1: RGS protein IDs with their domain compositions.

Protein ID Domaina

NP 033088.2, NP 035397.2, NP 001030608.1,
NP 075019.1, NP 067349.2, NP 001182677.1,
NP 064305.2, NP 080656.2, NP 001155294.1,
NP 056626.2, NP 080694.1, XP 894544.3,
NP 001074212.1, NP 033087.2, NP 033089.2,
NP 064342.1, NP 080722.1, XP 921002.3,
NP 694811.1, NP 001171266.1

PF00615

NP 036068.2, NP 061357.3, NP 001106182.1,
NP 062370.2, NP 036011.3, NP 001033107.1

PF00069, PF00615

NP 001123624.1, NP 001123623.1, NP 032514.1,
NP 001123625.1, NP 001123622.1

PF00621, PF09128, PF15405

NP 001185932.1, NP 036010.2, NP 001074538.1,
NP 001159406.1, NP 035398.2

PF00610, PF00615, PF00631

NP 001152958.1, NP 835177.2, NP 001152957.1 PF00169, PF00621, PF00435,
PF14604, PF07653, PF00615,
PF13716, PF00018

NP 056547.3, NP 033863.2, NP 001153070.1 PF00615, PF00778, PF08833
NP 001156984.1, NP 058038.2 PF02188, PF02196, PF00615
NP 796052.2, NP 570933.1 PF00169,PF00615
NP 001003912.1 PF00595, PF11333, PF00621,

PF09128, PF13180
NP 081420.2 PF03938, PF00595, PF00621,

PF09128, PF13180, PF13476
NP 599018.3 PF00595, PF03153, PF00615
NP 775578.2 PF02188, PF11470, PF00595,

PF00640, PF02196, PF00615,
PF13180

NP 766514.2 PF00615, PF08628, PF00787,
PF02194

NP 001014973.2 PF08628, PF00787, PF02284,
PF02194, PF00615

NP 997096.2 PF08628, PF00787, PF02194,
PF00615, PF12761

NP 001230152.1 PF15171, PF00615
NP 056627.1 PF06718, PF00610, PF00615,

PF02234, PF00631
∗NP 598838.3 PF14605, PF00642, PF13893,

PF10337, PF10978, PF00076,
PF14259, PF01480, PF08777

∗NP 001207426.1, XP 987134.2, XP 003945709.1,
NP 061217.3, NP 001160118.1, XP 003945710.1,
XP 001474919.1, NP 001207427.1,
NP 001160073.1, XP 986693.2

PF04803

a: Domain ID derived from the HMMER prediction for each sequence against the Pfam
Database. ∗: Sequences that are present in overlapping domain prediction set only.
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A.2 Figures
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Figure A.1: Protein-domain biclustering network of RGS proteins based on over-
lapping domain prediction type. Proteins are colored green and domain nodes are
colored red. Black and red arrow shows the RGS and RGS-like domains, respectively.
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(a) S. aureus, Overlap (b) S. aureus, Non-overlap

(c) S. epidermidis, Overlap (c) S. epidermidis, Non-overlap

Figure A.2: Comparison of biclustered genome network profile. (a) and (b) Biclus-
tered protein-domain (green-red) network profiles of the genome Staphylococcus au-
reus with overlap and non-overlap domain predictions, respectively. (c) and (d) Bi-
clustered protein-domain (blue-red) network profiles of the genome Staphylococcus
epidermidis with overlap and domain predictions. Non-overlap threshold — 5% of
the protein length.
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(a) S. pyogenes, Overlap (b) S. pyogenes, Non-overlap

(c) B. subtilis, Overlap (c) B. subtilis, Non-overlap

Figure A.3: Comparison of biclustered genome network profile. (a) and (b) Biclus-
tered protein-domain (yellow-red) network profiles of the genome Streptococcus pyo-
genes with overlap and non-overlap domain predictions, respectively. (c) and (d)
Biclustered protein-domain (cyan-red) network profiles of the genome Bacillus sub-
tilis with overlap and domain predictions. Non-overlap threshold — 5% of the protein
length.
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(a) E. coli, Overlap (b) E. coli, Non-overlap

(c) Y. pestis, Overlap (c) Y. pestis, Non-overlap

Figure A.4: Comparison of biclustered genome network profile. (a) and (b) Biclus-
tered protein-domain (pink-red) network profiles of the genome Escherichia coli with
overlap and non-overlap domain predictions, respectively. (c) and (d) Biclustered
protein-domain (purple-red) network profiles of the genome Yersinia pestis with over-
lap and domain predictions. Non-overlap threshold — 5% of the protein length.
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(a) T. pallidum, Overlap

(b) T. pallidum, Non-overlap

Figure A.5: Comparison of biclustered genome network profile. (a) and (b) Biclus-
tered protein-domain (blue-red) network profiles of the genome Treponema pallidum
with overlap and non-overlap domain predictions, respectively.
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(a) D. melanogaster, Overlap

(b) D. melanogaster, Non-overlap

Figure A.6: Comparison of biclustered genome network profile. (a) and (b) Bi-
clustered protein-domain (black-red) network profiles of the genome Drosophila
melanogaster with overlap and non-overlap domain predictions, respectively. Non-
overlap threshold — 5% of the protein length.
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(a) M. musculus, Overlap

(b) M. musculus, Non-overlap

Figure A.7: Comparison of biclustered genome network profile. (a) and (b) Biclus-
tered protein-domain (grey-red) network profiles of the genome Mus musculus with
overlap and non-overlap domain predictions. Non-overlap threshold — 5% of the
protein length.
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