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Abstract
Parthenogenesis has been documented in all major jawed 
vertebrate lineages except mammals and cartilaginous fishes 
(class Chondrichthyes: sharks, batoids and chimeras). Re-
ports of captive female sharks giving birth despite being held 
in the extended absence of males have generally been as-
cribed to prior matings coupled with long-term sperm storage 
by the females. Here, we provide the first genetic evidence 
for chondrichthyan parthenogenesis, involving a hammerhead 
shark (Sphyrna tiburo). This finding also broadens the known 
occurrence of a specific type of asexual development (au-
tomictic parthenogenesis) among vertebrates, extending re-
cently raised concerns about the potential negative effect of 
this type of facultative parthenogenesis on the genetic diver-
sity of threatened vertebrate species. 

Keywords: asexual reproduction, automictic parthenogenesis, 
Chondrichthyes, Sphyrnidae, microsatellite DNA profiling, ge-
nomic imprinting

1. Introduction
The direct development of an embryo from an egg 

without male genetic contribution (i.e. parthenogen-
esis) has been documented in all jawed vertebrate lin-
eages (bony fishes, amphibians, reptiles and birds) 
except mammals and cartilaginous fishes (class Chon-
drichthyes: sharks, batoids and chimaeras). The absence 
of parthenogenesis in placental mammals is due to ge-
nomic imprinting (Kono 2006), but it remains unknown 
whether it is similarly absent in chondrichthyans or has 
simply never been detected. Although there are increas-
ing reports of female sharks producing living offspring 
in captivity despite extended isolation from males, these 
cases have been attributed to long-term sperm storage 
by the females with later fertilization, and have never 
been investigated further (Castro et al. 1988; Voss et al. 
2001; Heist 2004). 

In a widely publicized case that occurred on Decem-
ber 14, 2001, one of the three captive adult female bon-
nethead sharks (Sphyrna tiburo, family: Sphyrnidae 
(hammerhead sharks)) gave birth to a normally devel-
oped, live female pup which was apparently later killed 

by another fish in the aquarium. This birth is significant 
because the well-documented capture history of these 
sharks is inconsistent with sperm storage by the mother 
as the probable explanation. All three-candidate moth-
ers had been held in the absence of males for 3 years, 
since they were wild caught in the Florida Keys as im-
mature animals less than 1 year old. At least 2 years 
away from the age of first maturity, it is improbable that 
they were capable of sexual activity and sperm storage 
prior to capture (Parsons 1993). Moreover, the duration 
of sperm storage by adult female S. tiburo in the wild is 
relatively brief (five months; Manire et al. 1995). None 
of the candidate mothers showed any sign of even rudi-
mentary external male copulatory organs (claspers) that 
are typical of rare cases of intersexuality in sharks (Iglé-
sias et al. 2005), eliminating the possibility of self-fertil-
ization. These factors led us to consider the possibility of 
asexual reproduction. 

Vertebrate parthenogenesis is most easily detected 
and thus best known in unisexual, obligate partheno-
genetic species (Dubach et al. 1997); however, it has also 
been documented in species that normally reproduce sex-
ually (Olsen 1975; Schuett et al. 1997, 1998; Groot et al. 
2003; Watts et al. 2006). Apomictic parthenogenetic path-
ways can bypass or subvert meiosis to produce a zygote 
that is genetically identical to its mother (i.e. the maternal 
genome is transmitted to the embryo intact; Groot et al. 
2003). In contrast, automictic parthenogenetic pathways 
(automixis) documented in diapsids (birds and squamate 
reptiles) operate by fusion of post-meiotic products in 
the mother, leading to elevated homozygosity in the off-
spring (i.e. genetic diversity is lost in transmission; Olsen 
1975; Schuett et al. 1997, 1998; Watts et al. 2006). 

Recent studies have suggested the importance of un-
derstanding how frequently and under what conditions 
female reptiles engage in automixis, amidst concerns 
about its potential negative effects on genetic diversity 
in small threatened populations and in captive breed-
ing colonies (Watts et al. 2006). A better understand-
ing of the evolutionary breadth of this little-known par-
thenogenetic mode would also be useful to determine 
whether these concerns could be similarly valid for the 
management of genetic diversity in other threatened 
vertebrates. Here, we genetically confirm automictic 
parthenogenesis as the mechanism underlying the ham-
merhead shark birth, providing the first evidence for 
asexual reproduction in the most ancient jawed verte-
brate lineage. 

2. Material and methods
Tissue samples were obtained from each of the three-candidate 

mothers (CM1–3) and the pup. Four moderately to highly polymor-
phic microsatellite marker loci described elsewhere for S. tiburo (6–35 
alleles per locus, observed population heterozygosities from 0.50 to 
0.87; Chapman et al. 2004) were used to genotype all specimens, with 
the aim of identifying the mother and detecting distinct paternal al-
leles in the pup’s genotype. We also used available genotype data 
from the microsatellite screening of 119 animals from the source pop-
ulation (West Florida, USA, Chapman et al. 2004) to estimate the prob-
ability of observing specific genotypes via normal sexual reproduc-
tion given the population allele frequencies. Multi-locus, amplified  
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fragment length polymorphism (AFLP) fingerprinting was employed 
to further survey the pup’s genome for possible paternal genetic con-
tribution. AFLP screening (on a Li-Cor dual-laser system) was carried 
out using the AFLP Core Reagent kit (Invitrogen) following manufac-
turer’s instructions using two selective EcoRI primers (E-ACA and E-
ACG). Resulting fragments were scored and analyzed (band sharing) 
using the GeneProfiler software (Scanalytics, Inc.). 

3. Results and discussion
The microsatellite genotypes of the pup and three-

candidate mothers at the four loci unambiguously iden-
tified CM2 as the mother; no allelic mismatches were 
observed between CM2 and the pup, whereas CM1 and 
CM3 were clearly excluded by allelic mismatches at 
three of the four loci (Table 1). Despite the collectively 
high allelic diversity and heterozygosity of these four 
markers in the source population (Chapman et al. 2004), 
the pup was uniformly homozygous for one of its moth-
er’s alleles. The composite pup microsatellite genotype 
strongly supports the absence of paternal genetic contri-
bution (i.e. asexual reproduction occurred) for two rea-
sons. First, the pup had no unique (paternal) alleles at 
these four loci. Second, the probability of the observed 
homozygous genotype at all four loci assuming biparen-
tal reproduction is vanishingly small (p < 1×10−7) given 
the population rarity of alleles possessed by the pup at 
two of the loci (Sti01 (allele 187, expected population ho-
mozygote frequency 0.0009), Sti10 (allele 304, expected 
population homozygote frequency 0.002)). Furthermore, 
although the probability of biparental allelic inheritance 
is not theoretically eliminated (i.e. extremely small but 
not zero), none of the wild 119 S. tiburo screened were 
homozygous at all four loci. In addition, any such the-
oretically possible individuals would be expected to ex-
hibit homozygous combinations of the most common al-
leles in the source population, rather than some of the 
rare ones seen in this pup. 

AFLP fingerprinting analysis also confirmed the 
identity of the CM2 as the mother because it shared a 
higher percentage of AFLP fragments with the pup 
(84%) than did the other two females (less than 69%; 
not shown). More importantly, all AFLP fragments ob-
served in the pup were also found in CM2, with no evi-
dence of any unique paternal bands. Finally, 16% of the 
bands observed in the mother were absent in the pup, 
which is consistent with the complete homozygosity ob-
served in the pup’s composite microsatellite genotype. 
Based on these observations, the alternative hypothesis 

that the pup’s very unusual, all homozygous microsat-
ellite composite genotype coupled with an absence of 
non-maternal AFLP fragments could have resulted from 
sexual reproduction is extremely improbable. 

The pup’s homozygosity at all four microsatellite loci 
and reduced number of AFLP fragments compared with 
its mother is consistent with an automictic rather than 
an apomictic parthenogenetic pathway. Automixis also 
produces homozygosity for sex chromosomes, and the 
documented cases in vertebrates (birds and reptiles) all 
have heterogametic females (ZW), and so only produce 
viable ZZ males and an equal proportion of inviable 
WW zygotes (Olsen 1975; Schuett et al. 1997, 1998). The 
contrasting heterogametic male system (XX females, 
XY males) should only produce viable females by au-
tomixis. The female sex of the S. tiburo pup is therefore 
consistent with automixis and female homogamety (XX) 
in carcharhiniform sharks as proposed from karyotyp-
ing (Maddock & Schwartz 1996). 

With this discovery of parthenogenesis in a cartilag-
inous fish, asexual reproduction has now been dem-
onstrated in all major jawed vertebrate lineages ex-
cept mammals (Spurway 1953; Olsen 1975; Schuett et al. 
1997, 1998; this study), where its absence is due to ge-
nomic imprinting. The maternal and paternal genomes 
in the mammalian zygote are imprinted and differen-
tially expressed, thus both genomes are required for 
normal fetal development (Kono 2006). This imprint-
ing is believed to have evolved in response to conflicts 
that develop between the embryonic maternal and pa-
ternal genomes with regard to maternal resource allo-
cation in lineages where there is a direct maternal–em-
bryonic connection, such as a placenta (Moore & Haig 
1991; Haig 2004). The same intergenomic conflict and 
selection for imprinting could reasonably be hypothe-
sized to operate in placental sharks with their long evo-
lutionary history of this mode of development (Hamlett 
& Koob 1999; Feldheim et al. 2004). Our finding of suc-
cessful parthenogenesis in the placentally viviparous S. 
tiburo argues that genomic imprinting in this species is 
absent, or at least does not occur to the extent that de-
velopment of a gynogenetic embryo is prevented. This 
observation raises questions about whether genomic im-
printing is absent in sharks generally, despite relatively 
common placental viviparity in this lineage. Given the 
wide range of reproductive modes from oviparity to 
placental viviparity in elasmobranchs (Hamlett & Koob 
1999), further investigation into the occurrence of par-
thenogenesis across this lineage could provide valuable 
insights into the role of reproductive mode in the evolu-
tion of genome imprinting. 

Parthenogenesis is difficult to detect in ordinarily 
sexually reproducing vertebrate species, and its preva-
lence and potential effects on population genetic diver-
sity are poorly understood. Our results suggest that ac-
cumulating cases of female sharks producing healthy 
offspring in the absence of males (Castro et al. 1988; 
Voss et al. 2001; Heist 2004) warrant genetic evaluation 
to determine how common asexual reproduction, espe-
cially automixis, is among these ancient fishes. In some 
of these cases, females have produced several viable off-

Table 1. Genotypes of the three S. tiburo candidate mothers 
(CM1–3) and pup at four microsatellite loci. (CM1 and CM3 
are excluded as the mother by allelic mismatches at three of 
the four loci (non-bold) in each case. CM2 is the mother of the 
pup, as shown by the allelic matches between this pair of in-
dividuals at each locus (alleles). The pup is homozygous for a 
maternal allele at each locus.) 

shark	  Pgl02 	 Sti01 	 Sti04	 Sti10

CM1 	 124/124 	 181/189	 101/098 	 374/278
CM3 	 121/130 	 181/189	 107/107	 315/291
CM2 	 124/127	 181/187	 107/107	 327/304
Pup 	 124/124 	 187/187 	 107/107 	 304/304
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spring over multiple reproductive cycles (Castro et al. 
1988; D. Sweet 2005, Detroit Aquarium personal com-
munication), suggesting that parthenogenesis may be 
facultative in situations where female sharks have dif-
ficulty encountering suitable mates (e.g. a possibility 
in the wild due to low population densities caused by 
overexploitation or in emerging captive breeding pro-
grams for endangered sharks). A similar recent discov-
ery of automictic parthenogenesis in Komodo dragons 
(Varanus komodoensishas) raised concerns about the pos-
sible negative effects of this form of asexual reproduc-
tion on the genetic diversity in small natural or cap-
tive populations of this and other endangered reptiles 
(Watts et al. 2006). Our finding for a shark extends the 
known evolutionary occurrence of automictic parthe-
nogenesis to a major basal vertebrate lineage, indicating 
that these concerns about the conservation of genetic di-
versity could apply to threatened species over a much 
broader range of vertebrate taxa. 
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