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Fuel moisture content (FMC) is an important variable for predicting the occurrence and spread of wildfire.
Because FMC is calculated from the ratio of canopy water content to dry-matter content, we hypothesized
that FMC may be estimated by remote sensing with a ratio of a vegetation water index to a vegetation
dry-matter index. Four vegetation water indices, six dry-matter indices, and the resulting water/dry-matter
index ratios were calculated using simulated leaf reflectances from the PROSPECT model. Two water indices,
the Normalized Difference Infrared Index (NDII) and the Normalized Difference Water Index (NDWI), were
more correlated with leaf water content than with FMC, and were not correlated with leaf dry-matter con-
tent. Two dry-matter indices, the Normalized Dry Matter Index (NDMI) and a recent index (unnamed)
were correlated to leaf dry matter content, were inversely correlated with FMC, and were not correlated
with water content. Ratios of these water indices and these dry-matter indices were highly and consistently
correlated with FMC. Ratios of other water indices with other dry-matter indices were not consistently cor-
related with FMC. The ratio of NDII with NDMI was strongly related to FMC by a quadratic polynomial equa-
tion with an R2 of 0.947. Spectral reflectance data were acquired for single leaves and leaf stacks of Quercus
alba, Acer rubrum, and Zea mays; the relationship between FMC and NDII/NDMI had an R2 of 0.853 and was
almost identical to the equation from the PROSPECT model simulations. For the SAIL model simulations,
the relationship between NDII/NDMI and FMC at the canopy scale had an R2 of 0.900, but the quadratic
polynomial equation differed from the equations determined from the PROSPECT simulations and spectral
reflectance data. NDMI requires narrow-band sensors to measure the effect of dry matter on reflectance at
1722 nm whereas NDII may be determined with many different sensors. Therefore, monitoring FMC with
NDII/NDMI requires either a new sensor or a combination of two sensors, one with high temporal resolution
for monitoring water content and one with high spectral resolution for estimating dry-matter content.

Published by Elsevier Inc.

1. Introduction

Fuel moisture content (FMC) is one of the main parameters for
predicting the occurrence and spread of wildfire, because it is a critical
variable for both fire ignition and fire propagation (Hardy & Burgan,
1999; Keane et al., 2010; Rollins et al., 2004). FMC is the mass of
water per unit mass of dry matter in vegetation (Ceccato et al., 2003;
Chuvieco et al., 2002). As the foliarwater content in vegetation canopies
decreases, there is decreased absorption of shortwave-infrared radia-
tion, which may be monitored with remotely sensed data (Hunt &
Rock, 1989; Tucker, 1980; Ustin et al., in press). A major problem
restricting the use of remote sensing for estimating FMC is determining
the amount of dry matter in fresh leaves, because many species of
concern for fire management have more variation in leaf dry-matter
content than variation in leaf water content (Ceccato et al., 2003).

Currently, the most promising approach is retrieval of FMC by in-
version using leaf and canopy radiative-transfer models because leaf
water and dry-matter contents are model parameters (Riaño et al.,
2005; Yebra & Chuvieco, 2009; Yebra et al., 2008; Zarco-Tejada et
al., 2003). However, spectral indices have one advantage enabling
rapid analysis of large volumes of remotely sensed data. A number
of studies have found that vegetation water indices are correlated
with FMC because of the liquid water term in the numerator of FMC
(Ceccato et al., 2003; Chuvieco et al., 2002; Dennison et al., 2005;
Roberts et al., 2006). There are a large number of potential indices
for estimating either liquid water or dry-matter contents, several of
which are listed in Table 1. Half of the dry-matter indices in Table 1
were originally developed to detect crop residue or non-photosynthetic
vegetation based on the absorption features of lignin and cellulose.
Wang et al. (2011a, 2011b) recently proposed the Normalized Dry Mat-
ter Index (NDMI, Table 1) based on the C\H bond stretch overtone at
1722 nm (Peterson & Hubbard, 1992). C\H bonds are found in all leaf
biochemical constituents: carbohydrates (including cellulose), lignin,
proteins, lipids and nucleic acids.
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Because FMC is the ratio of water content to dry-matter content,
we hypothesized that a ratio of a remotely-sensed water index to a
remotely-sensed dry-matter index would better estimate FMC com-
pared to either water indices or dry-matter indices separately. Ideally,
dry-matter indices would be highly correlated with dry-matter con-
tent and not correlated with water content. Furthermore, ideal
water indices would be highly correlated with water content and
not correlated with dry-matter content. With an index ratio, many
of the factors that affect both the water and dry-matter indices may
cancel out, such as leaf structure, leaf angle distribution (LAD), and
Leaf Area Index (LAI). The problem is that both water and dry-matter
indices are both formulated using wavelengths in the shortwave infra-
red, so ratios of different water and dry-matter indices need to be eval-
uated. Radiative-transfer model simulations at the leaf scale were used
to test this hypothesis; results of the simulations were then evaluated
with spectral reflectance data acquired in the laboratory. Finally,
radiative-transfer model simulations at the canopy scale were used to
assess the potential for estimating FMC from satellites.

2. Methods

2.1. Remote sensing indices for FMC

Leaf FMC (dimensionless) was estimated from the ratio of leaf
water content Cw (g cm−2) to leaf dry-matter content Cm (g cm−2).
Eqs. (1)–(3) were used to calculate Cw, Cm and FMC:

Cw ¼ W f–Wdð Þ=A ð1Þ

Cm ¼ Wd=A ð2Þ

FMC ¼ W f–Wdð Þ=Wd ¼ Cw=Cm ð3Þ

where: Wf was the leaf fresh weight (g), Wd was the leaf dry weight
(g), and A was the leaf area (cm2). Canopy Cw and Cm were the leaf
Cw and Cm multiplied by Leaf Area Index (LAI). The ratio of Cw/Cm was
used for both leaves and canopies because leaf area canceled out.

Besides NDMI, other indices related to dry-matter content were
selected (Table 1): the Normalized Difference Tillage Index (NDTI;
van Deventer et al., 1997), the Cellulose Absorption Index (CAI;
Nagler et al., 2000), the Normalized Difference Lignin Index (NDLI;
Serrano et al., 2002), the Normalized Difference Nitrogen Index
(NDNI; Serrano et al., 2002), the Lingo-Cellulose Absorption Index
(LCA; Daughtry et al., 2005), and the Shortwave Infrared Normalized
Difference Residue Index (SINDRI; Serbin et al., 2009). Furthermore,
we used a recently-published unnamed index from Romero et al.
(2012), which for convenience was called the Dry Matter Content
Index (DMCI) for this study (Table 1).

Two normalized-difference indices and two ratio indices were
selected for analysis of leaf water content (Table 1), with one
normalized-difference index and one ratio index based on the
local absorption maximum of liquid water at 1240 nm, and one
normalized-difference index and one ratio index based on the
local absorption minimum at 1650 nm. The indices were the Nor-
malized Difference Infrared Index (NDII; Hardisky et al., 1983),
the Reciprocal of the Moisture Stress Index (RMSI; Hunt & Rock,
1989), the Normalized Difference Water Index (NDWI; Gao,
1996), and the Simple Ratio Water Index (SRWI; Zarco-Tejada et
al., 2003). RMSI was used instead of the Moisture Stress Index, be-
cause RMSI increases with increasing FMC allowing for better com-
parisons among water/dry-matter index ratios.

2.2. PROSPECT and SAIL model simulations

In order to generate water and dry-matter indices for various FMC,
the leaf radiative-transfer model, PROSPECT version 4 (Féret et al.,
2008; Jacquemoud et al., 2009), was used to simulate leaf reflectance
and transmittance from 400 to 2500 nm. For a total of 250 simula-
tions, input parameters (Cw, Cm and the leaf parameter N) were ran-
domly generated using a uniform distribution within a selected
range for each variable (Table 2). Total chlorophyll a and b content
(Cab) was held constant at 40 μg cm−2 because variation of Cab had
no effect on the indices used in Table 1. The range selected for each
parameter was set to exceed all reasonable combinations expected
to occur, based on data from ground measurements and the pub-
lished literature (Féret et al., 2011).

The Scattering by Arbitrarily Inclined Leaves (SAIL) model (Verhoef,
1984) was used to simulate canopy spectral reflectance as a function of
leaf reflectance and transmittance, soil background reflectance, LAI, and
LAD (Table 2). Spectral reflectances and transmittances from the 250
PROSPECT simulations were used as inputs to the SAIL model. A total
of 4500 simulations were made using the 250 PROSPECT simulations,
with 6 different LAI and 3 LAD (Table 2). The spectral reflectance of a
dry Othello silt loam (fine silty, mixed, active, mesic Typic Endoaquult)
from Salisbury, Maryland, was used for the background reflectance
(Daughtry, 2001). The background reflectances of this soil caused
many of the indices to be unstable at low LAI, therefore only LAI≥1.5
were used (Table 2).

2.3. Spectral reflectance measurements

Spectral reflectances of individual leaves and stacks of leaves were
used to determine the relationship between FMC and water/
dry-matter index ratios. Leaves of white oak (Quercus alba L.), red
maple (Acer rubrum L.) and maize (Zea mays L.) were collected at
the USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD.
Leaves (many more than were necessary for the measurements)

Table 1
Spectral indices for dry-matter (type=D) and water content (type=W) in leaves and canopies.

Index Abbreviation Type Equation a Reference

Normalized Dry Matter Index NDMI D (ρ1649−ρ1722)/(ρ1649+ρ1722) Wang et al. (2011a, 2011b)
Normalized Difference Tillage Index NDTI D (ρ1650−ρ2215)/(ρ1650+ρ2215) van Deventer et al. (1997)
Cellulose Absorption Index CAI D 0.5(ρ2031−ρ2211)−ρ2101 Nagler et al. (2000)
Normalized Difference Lignin Index NDLI D [log(1/ρ1754)− log(1/ρ1680)]/[log(1/ρ1754)+log(1/ρ1680)] Serrano et al. (2002)
Normalized Difference Nitrogen Index NDNI D [log(1/ρ1510)− log(1/ρ1680)]/[log(1/ρ1510)+log(1/ρ1680)] Serrano et al. (2002)
Ligno-Cellulose Absorption Index LCA D 2ρ2205−(ρ2165+ρ2330) Daughtry et al. (2005)
Shortwave Infrared Normalized Difference Residue Index SINDRI D (ρ2210−ρ2260)/(ρ2210+ρ2260) Serbin et al. (2009)
Dry Matter Content Index b DMCI D (ρ2305−ρ1495)/(ρ2305+ρ1495) Romero et al. (2012)
Normalized Difference Infrared Index NDII W (ρ860−ρ1650)/(ρ860+ρ1650) Hardisky et al. (1983)
Reciprocal of Moisture Stress Index RMSI W ρ860/ρ1650 Hunt and Rock (1989)
Normalized Difference Water Index NDWI W (ρ860−ρ1240)/(ρ860+ρ1240) Gao (1996)
Simple Ratio Water Index SRWI W ρ860/ρ1240 Zarco-Tejada et al. (2003)

a ρ is reflectance and the subscript is wavelength (nm).
b Romero et al. (2012) did not name this index; the name used here is for convenience only.
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were placed into sealable plastic bags and then placed into an insulat-
ed cooler, in order to minimize water loss per leaf during transport to
the laboratory. Directional–hemispherical spectral reflectances of the
adaxial leaf surface were measured with an Analytical Spectral
Devices FieldSpec 3 Portable Spectroradiometer (Analytical Spectral
Devices, Inc., Boulder, Colorado, USA) and an LI-1800-12 Integrating
Sphere (LiCor, Inc., Lincoln, Nebraska, USA). Leaf fresh and dry
weights were measured to the nearest 0.1 mg using an analytical bal-
ance and leaf area was measured with a LiCor LI-3100c Area Meter.

Spectral reflectances were measured on ten single leaves of white
oak, red maple and corn immediately upon return to the laboratory.
Then, the leaves were placed on a laboratory bench to lose water, so
that different Cw could be measured for each Cm. At frequent intervals
(about 30–45 min), weight and spectral reflectances were re-measured.
Finally, the leaves were dried in an oven at 50 °C for 24 h; Cw, Cm and
FMC were calculated according to Eqs. (1)–(3). A total of 140 spectral
measurements were made on the 30 leaves.

In separate experiments, 15 leaves of white oak and red maple
were collected to create three 2-leaf stacks and three 3-leaf stacks.
Spectral reflectances of the leaf stacks were made using the spec-
trometer and integrating sphere. Compared to a single leaf, a leaf
stack would have the same FMC, but higher Cw and Cm, so correlations
of FMC with water or dry-matter indices would be reduced. Then, the
leaf stacks were placed on the laboratory bench to lose water. The
stacks were kept together for a total of 102 measurements. At the
end of the experiments, area and dry weight were measured for
each leaf.

2.4. Statistical approaches

Correlation coefficients (r) were used to determine the association
among various leaf water indices, dry-matter indices, and their ratios
to the PROSPECT input parameters (Cw, Cm and the leaf parameter N)
and to FMC (Sokal & Rohlf, 1995). Least square regressions of the
index ratios were tested for predicting FMC. Various mathematical
transformations of the independent and dependent variables were
made to determine if simple linear regressions may be used, but the
results were not good. Therefore, polynomial regressions were used
to quantify the relationships between FMC and the water/dry-matter
index ratios:

FMC ¼ b3 water=dry�matter indexð Þ3
þb2 water=dry�matter indexð Þ2
þb1 water=dry�matter indexð Þ þ b0

ð4Þ

where: b3, b2, b1, and b0 are the regression coefficients; the water
index is either NDII, NDWI, RMSI, or SRWI; and the dry-matter
index is either NDMI, NDTI, CAI, NDLI, NDNI, LCA, SINDRI, or DMCI
(Table 1). The performance of each water/dry-matter index was eval-
uated by the coefficient of determination (R2) and the root mean
square error (RMSE). Two components of RMSE, systematic and
unsystematic, were calculated to evaluate regression model perfor-
mance (Willmott, 1981).

3. Results

3.1. Simulations using the PROSPECT model

Two dry-matter indices (NDMI and DMCI) were highly correlated
with leaf dry-matter content, but had smaller correlations with FMC
(Table 3). Furthermore, the correlation coefficients had opposite
signs with respect to FMC and dry-matter content (Table 3), which
was consistent with their definitions (Table 1). NDMI and DCMI
were not correlated with leaf water content; however, five of the pro-
posed dry-matter indices (NDTI, NDLI, NDNI, LCA, and SINDRI) were
more correlated with water content than with dry-matter content
(Table 3). All 4 water indices were highly correlated to water content,
were not correlated to dry-matter content, and had lower correla-
tions with FMC compared to the correlations with water content
(Table 3).

In contrast to single indices, FMC was highly and consistently cor-
related with ratios of the four water indices (NDII, NDWI, RMSI, and
SWRI) to either NDMI or DMCI (Table 4). Ratios of the water indices
with LCA were consistently correlated with FMC, but the correlation
coefficients were lower, and ratios of water indices with either CAI
or SINDRI were not correlated with FMC.

All ratios of the four water-content indices with the dry-matter in-
dices, NDTI, NDLI and NDNI, were expected to have positive correla-
tions, but correlations among FMC and the index ratios were not
consistent (Table 4). Whereas the ratios of NDWI/NDTI, NDII/NDTI,
NDWI/NDLI, and NDII/NDLI were positively correlated with FMC,
the correlations of FMC with either SWRI/NDTI or SWRI/NDLI were
negative, and there was no correlation of FMC with either RMSI/
NDTI or RMSI/NDLI (Table 4). The correlation coefficients for
water-index/NDNI ratios were significantly negative for ratios with
three of the four water indices (Table 4). The negative correlations
may be an indication that any positive correlations with FMC may
have been spurious.

The six water/dry-matter indices with the highest correlations
from Table 4 were assessed for the potential to predict FMC based
on the PROSPECT simulations (Fig. 1). The relationships with FMC
were nonlinear and polynomial regressions yielded the smallest
RMSE and the highest R2 (Fig. 1). Cubic polynomial equations were

Table 2
Input parameters for PROSPECT and SAIL model simulations. The parameters for
PROSPECT simulations were randomly selected to obtain variation in water and
dry-matter contents. The leaf reflectances and transmittances from the PROSPECT sim-
ulations were inputs for the SAIL model simulations.

Model Parameters Values

PROSPECT
(n=250)

Leaf structure parameter (N) 1–3
Chlorophyll content
(Cab, μg cm−2)

40

Water content (Cw, g cm−2) 0.004–0.034
Dry matter content
(Cm, g cm−2)

0.002–0.018

SAIL
(n=4500)

Leaf Area Index (LAI) 1.5, 2.0, 3.0, 4.0, 5.0, and 6.0
Leaf angle distribution (LAD) Erectophile, spherical, and

planophile
Fraction of direct solar irradiance 0.8
Background reflectance Othello silt-loam
Solar declination 0°
Latitude 36°
View zenith angle Nadir
Time of day 10:00 AM

Table 3
Correlations of the indices for water and dry-matter content with leaf parameters and
fuel moisture content from PROSPECT model simulations (n=250). Critical values of
the correlation coefficient (r) are 0.123 for P=0.95 and 0.165 for P=0.99.

Index Leaf structure
parameter (N)

Dry matter
content (Cm)

Water
content (Cw)

Fuel moisture
content (FMC)

NDMI −0.326 0.897 −0.0349 −0.599
NDTI −0.500 0.279 0.792 0.274
CAI −0.306 0.458 0.119 −0.119
NDLI 0.287 0.112 0.902 0.456
NDNI 0.121 −0.287 0.897 0.684
LCA 0.759 −0.100 −0.626 −0.268
SINDRI 0.0794 0.531 −0.832 −0.808
DMCI 0.394 −0.847 0.102 0.589
NDII −0.381 0.0628 0.919 0.478
RMSI −0.406 0.0496 0.899 0.476
NDWI −0.382 −0.106 0.927 0.593
SWRI −0.386 −0.108 0.923 0.595
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better for NDWI/DMCI (Fig. 1B) and NDII/DMCI (Fig. 1D), whereas
quadratic polynomial equations were better for the other water/
dry-matter indices (Fig. 1A,C,E, and F). The critical range for
predicting FMC is from about 0.3 to 1.2 (30% to 120%; Jolly, 2007),
so while RMSI/NDMI (Fig. 1E) had the highest R2 and lowest RMSE
overall, there was much more scatter at low FMC than at high FMC.

3.2. Spectral reflectances of drying leaves and leaf stacks

With a few exceptions, correlations among indices and FMC from
spectral reflectance data (Tables 5 and 6) followed the same trends
as the correlations from the PROSPECT simulations (Tables 3 and 4).
Two dry-matter indices, NDMI and DMCI, were highly correlated
with dry-matter content, and were inversely correlated with FMC, al-
though NDMI had a small negative correlation with water content
(Table 5). The four water indices were significantly correlated with
water content and FMC, and were not significantly correlated with
dry-matter content (Table 5). Furthermore, the correlations of the
four water indices with water content were higher than the correla-
tions with FMC. NDII had the highest correlation with water content;
two dry-matter indices (NDTI and NDNI) had higher correlations with
water content than the other three water indices (Table 5).

Ratios of water indices to NDMI had consistently the highest cor-
relations with FMC, particularly NDII/NDMI (Table 6). Ratios of
water indices to DMCI had significant negative correlations with
FMC as expected. Whereas index ratios with CAI and SINDRI were
not significantly correlated with FMC in the PROSPECT simulations
(Table 4), the ratios of water indices to SINDRI were positively corre-
lated with FMC, and the ratios of water indices to CAI were negatively
correlated to FMC (Table 6). Similar to the PROSPECT simulations
(Tables 3 and 4), the ratios of the four water indices (NDII, NDWI,
RMSI, and SWRI) with NDMI (Table 6) had much higher correlations
with FMC than did the individual indices (Table 5).

Because the water/dry-matter index ratio, NDII/NDMI, had the
highest correlation with FMC using the spectral reflectance data
(Table 6), NDII/NDMI was used to predict FMC using a polynomial re-
gression (Fig. 2). With single-leaf and stacked-leaf datasets pooled,
FMC was best predicted with a quadratic polynomial regression
(Table 7). Furthermore, the coefficients from polynomial regression
were almost identical to those from the PROSPECT simulations
(Fig. 1D, Table 7).

Pooled data may have spurious correlations when no actual corre-
lation exists within the individual datasets, so the datasets were ana-
lyzed separately (Fig. 2). The quadratic regression equations from
both the pooled spectral reflectance data and the PROSPECT simula-
tions (Table 7) were similar for each dataset (Fig. 2). There was little

variation of either FMC or NDII/NDMI for leaves and leaf-stacks of
Q. alba (Fig. 2A), so the number of terms for a polynomial regres-
sion could not be determined. However, the quadratic regression
equations from the pooled data and from the PROSPECT simulations
went through the centers of the point clusters (Fig. 2A). In contrast,
there were large ranges of variation in both FMC and NDII/NDMI for A.
rubrum (Fig. 2B) and Z. mays (Fig. 2C), and the quadratic equations
fitted the data for both species.

RMSE for predicted FMC from the pooled regression equation was
0.307 and RMSE from the PROSPECT simulations was 0.560 (Table 7).
However for the Q. alba and A. rubrum datasets individually, predicted
FMC had a range of RMSE from 0.126 to 0.195 using the pooled re-
gression equation and had a range of 0.137 to 0.259 using the regres-
sion from the PROSPECT simulations (Table 8). The larger overall
RMSE for the two equations was from the Z. mays leaf data, which
had RMSE of 0.910 for the pooled regression equation and 0.919 for
the equation from the PROSPECT simulations (Table 8).

Because the regression equations were not derived for each reflec-
tance dataset, RMSE for each dataset included both random, unsystematic
errors and biased, systematic errors (Table 8). The unbiased RMSE
was greater than systematic RMSE for each dataset using the pooled
regression equation (Table 8). Therefore, pooling the spectral reflec-
tance data to determine a single regression equation was valid. Ex-
cept for the A. rubrum leaf data, systematic RMSE was greater than
unbiased RMSE using the regression from the PROSPECT simulations
(Table 8).

3.3. Simulations using the SAIL model

In contrast to the PROSPECT simulations (Table 4) and the spectral
reflectance data (Table 6), all of the water/dry-matter index ratios
were significantly correlatedwith FMC from the SAILmodel simulations
(Table 9). Furthermore, the correlations were positive or negative as
expected from the index definitions (Table 1). The index ratios with
the highest correlations with simulated FMC were NDII/NDMI and
RMSI/NDMI (Table 9).

The relationship between simulated FMC with NDII/NDMI showed
much more scatter overall (Fig. 3) compared to the PROSPECT simula-
tions (Fig. 1D) or the spectral reflectance data (Fig. 2). A quadratic poly-
nomial regression provided the best prediction of FMC (Table 7).
Regressions with NDII/NDMI had higher R2 and lower RMSE compared
to any other water/dry-matter index ratio (data not shown). Whereas
the correlation between RMSI/NDMI and FMC was the second highest
(Table 9), the quadratic polynomial regression using RMSI/NDMI had
negative coefficients for the squared and linear terms, and therefore
the equation had no similarity to the regression equation from the
PROSPECT simulations (Fig. 1E).

In Fig. 3, the regression lines from the PROSPECT model simulations
and the leaf spectral reflectance data predicted lower FMC at a given
NDII/NDMI, with more divergence at high FMC (Fig. 3). The effects of
LAI and LAD on the regression equation were assessed by including
these as independent variables (data not shown). The linear regression
coefficients for LAI and LADwere both significant at Pb0.05, but the two
terms together only explained about 1% of the explained variation,
based on a comparison of R2, so it was likely that the significance of
the LAI and LAD linear terms was caused by the very large number of
SAIL model simulations.

Most of the scatter in Fig. 3 is at very high FMC, whereas the im-
portant range of FMC is from 0.3 to 1.2 (Jolly, 2007). Using the SAIL
model simulations at FMC≤2.0, FMC was near-linearly related to
NDII/NDMI with an R2 of 0.890 and an RMSE of 0.167 (data not
shown). However, the slope of the regression was higher than the
equations for the pooled spectral reflectance data and the PROSPECT
simulations, so equations developed at the leaf scale could not be
used at the canopy scale.

Table 4
Correlations of water-index/dry-matter-index ratios with fuel moisture content (FMC)
from PROSPECT model simulations (n=250). The water-index numerator is shown
along the columns and the dry-matter-index denominator is shown along the rows.
The value in each cell is the correlation coefficient (r) between FMC and the water/
dry-matter index (column/row). Critical values of r are 0.123 for P=0.95 and 0.165
for P=0.99.

Dry-matter index Water index

NDWI NDII SWRI RMSI

NDMI 0.966 0.961 0.716 0.899
NDTI 0.809 0.734 −0.207 0.064
CAI −0.097 −0.091 −0.083 −0.087
NDLI 0.523 0.356 −0.335 0.010
NDNI 0.166 −0.126 −0.537 −0.478
LCA 0.369 0.308 0.256 0.279
SINDRI 0.048 0.049 0.046 0.047
DMCI −0.922 −0.903 −0.689 −0.882
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4. Discussion

As hypothesized, ratios of vegetation water/dry-matter spectral
indices were usually better correlated to FMC than were the water in-
dices or dry-matter indices separately. Ratios of two narrow-band
spectral indices were originally tested for assessing crop nitrogen sta-
tus (Daughtry et al., 2000; Eitel et al., 2008; Haboudane et al., 2002;
Zarco-Tejada et al., 2004). Whereas some vegetation indices were
highly correlated to chlorophyll content for leaves, the correlations

were reduced at the canopy scale because of the effects of LAI, LAD,
and soil spectral reflectance. Some other vegetation indices were
found to be much more sensitive to canopy structure than they
were to chlorophyll content, so ratios of a chlorophyll index with a
canopy-structure index were found to be better related to crop nitro-
gen requirements than single vegetation indices (Daughtry et al.,
2000; Eitel et al., 2008; Haboudane et al., 2002; Zarco-Tejada et al.,
2004). This study was the first to test index ratios for FMC estimation;
furthermore, the indices were selected based on their previously-

Fig. 1. PROSPECTmodel simulations of leaf fuel moisture content (FMC) compared towater-index/dry-matter index ratios (n=250). The two dry-matter indices are the Normalized Dry
Matter Index (NDMI: A, C and E) and the Dry Matter Content Index (DMCI: B, D and F), and the three water indices are the Normalized Difference Water Index (NDWI: A and B), the
Normalized Difference Infrared Index (NDII: C and D), and the Reciprocal of the Moisture Stress Index (RMSI: E and F). The solid lines in each panel are the least-square regressions
with the coefficient of determination (R2) and root mean square error (RMSE).
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determined biophysical relationships to either foliar water content or
dry-matter content.

In general, correlation analyses are difficult to interpret because,
by definition for Pb0.05, about one of 20 correlations of random num-
bers will be significant. Furthermore, correlations only show the re-
latedness of two variables (Sokal & Rohlf, 1995) and do not show
causation. The PROSPECT simulations were important in this study
because the key input parameters, leaf dry-matter and water con-
tents, were themselves not correlated. As a result, the four water indi-
ces used in this study were consistently correlated to water content
and were not correlated to dry-matter content. Furthermore, two
dry-matter indices (NDMI and DMCI) were consistently correlated
to dry-matter content and were not correlated to water content,
whereas some other dry-matter indices were actually better correlat-
ed with leaf water content. For real leaves, water and dry-matter con-
tents are correlated because both variables are affected by leaf
thickness. With the spectral reflectance data, correlations among
water content, dry-matter content and FMC were reduced by drying
and stacking the leaves. In the SAIL model simulations, there were
larger ranges of canopy dry-matter and water contents per ground
area because of the range in LAI. However, the expected correlations
between canopy dry-matter and canopy water contents caused by
variation in LAI were reduced because leaf transmittances and reflec-
tances from the PROSPECT model simulations were used.

From the correlations, two dry-matter-content indices stood out:
NDMI (Wang et al., 2011a, 2011b) and DMCI (Romero et al., 2012).
The ratio of NDII/NDMI had the highest correlation with FMC from
the leaf data (Table 6) and from the SAIL model simulations (Table 9),

Table 5
Correlations of water and dry-matter indices from spectral reflectances of drying leaves
of Quercus alba, Acer rubrum and Zea mays, and from spectral reflectances of leaf stacks
of Q. alba and A. rubrum (n=242). Stacks of 2 or 3 leaves have the same FMC, but
higher Cw and Cm compared to single leaves. Critical values of r are 0.123 for P=0.95
and 0.165 for P=0.99.

Index or index
ratio

Dry-matter content
(Cm)

Water content
(Cw)

Fuel moisture content
(FMC)

NDMI 0.726 −0.262 −0.562
NDTI 0.452 0.559 0.009
CAI 0.350 0.322 0.312
NDLI −0.057 0.227 −0.183
NDNI 0.062 0.525 0.251
LCA −0.522 −0.342 −0.314
SINDRI 0.307 0.026 −0.358
DMCI −0.802 0.119 0.508
NDII −0.0429 0.599 0.299
RMSI −0.038 0.426 0.251
NDWI −0.00133 0.419 0.263
SWRI −0.040 0.398 0.243

Table 6
Correlations of water-index/dry-matter-index ratios with fuel moisture content (FMC)
from the spectral reflectance data (n=242). The water-index numerator is shown
along the columns and the dry-matter-index denominator is shown along the rows.
The value in each cell is the correlation coefficient (r) between FMC and the water/
dry-matter index (column/row). Critical values of r are 0.123 for P=0.95 and 0.165
for P=0.99.

Dry-matter index Water index

NDWI NDII SWRI RMSI

NDMI 0.732 0.890 0.674 0.775
NDTI 0.232 −0.064 −0.003 −0.036
CAI −0.367 −0.174 −0.360 −0.270
NDLI 0.282 0.199 −0.041 0.047
NDNI 0.079 0.044 −0.058 0.057
LCA 0.403 0.205 0.408 0.323
SINDRI 0.498 0.469 0.478 0.474
DMCI −0.539 −0.486 −0.500 −0.505

Fig. 2. Measured FMC versus NDII/NDMI calculated from leaf spectral reflectance data
for: (A) Q. alba, (B) A. rubrum and (C) Z. mays. Data from leaf stacks were included with
the leaf data in (A) Q. alba and (B) A. rubrum. The solid lines show the pooled polyno-
mial regression combining the 5 datasets (n=242) and the dashed lines show the re-
gression equation from the PROSPECT simulations (Table 7).

Table 7
Polynomial regression coefficients and summary statistics for the pooled leaf and
leaf-stack spectral reflectance data, PROSPECT leaf model simulations, and SAIL canopy
model simulations. The quadratic polynomial equation is FMC=b2 (NDII/NDMI)2+b1
(NDII/NDMI)+b0. RMSE, R2 and n are the root mean square error, coefficient of deter-
mination, and the number of points, respectively.

Source b2 b1 b0 n R2 RMSE

Reflectance data 0.0221 0.0645 0.0210 242 0.853 0.307
PROSPECT 0.0188 0.0934 0.0772 250 0.947 0.560
SAIL 0.0163 0.441 −0.900 4500 0.900 0.765
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and was among the best water/dry-matter indices from the PROSPECT
simulations (Table 4). Not only were the correlations highly significant,
they were consistent with the index correlations to water and
dry-matter contents (Tables 3 and 5). Furthermore, good correlations
were found with the other water/dry-matter index ratios (Tables 4, 6
and 9) indicating that the relationships between NDII/NDMI and FMC
were not artifacts from the correlation analyses.

Because FMC is the ratio of water content to dry-matter content,
vegetation water indices alone may be used to determine wildfire po-
tential (Ceccato et al., 2003; Chuvieco et al., 2002; Dennison et al.,
2005; Roberts et al., 2006). Within similar vegetation types, variations
of dry-matter content may be predictable so that FMC may be deter-
mined from water indices alone. However, canopy water content
varies strongly with LAI (Yilmaz et al., 2008a, 2008b), so reductions
of water content detected by remote sensing do not necessarily corre-
spond to reductions of FMC. In this study, NDII was more correlated
with water content than FMC and the NDII/NDMI index ratio was
more correlated with FMC than water content, which indicated that
NDMI adds information for predicting FMC compared to a water
index alone. However, NDII is also an important index for the remote
sensing of snow cover and flooded areas (Delbart et al., 2005, 2006;
Xiao et al., 2002a, 2002b), so NDII/NDMI must be constrained season-
ally to be effective at monitoring FMC.

Multiple linear regressions usingwater indices or inversions of spec-
tral reflectanceswithMODIS datawere able to achieve RMSE about 0.15
for prediction of FMC in chaparral and shrublands (Peterson et al., 2008;
Yebra & Chuvieco, 2009; Yebra et al., 2008). At FMC≤2.0 for the data of
Q. alba and A. rubrum (Table 8) and the SAIL model simulations, predic-
tions of FMC from NDII/NDMI polynomial regressions were accurate
within an RMSE from 0.126 to 0.259, so potential accuracy may be
comparable to current methods. However, RMSE was greater than
0.9 for Z. mays leaves, so NDII/NDMI will not be useful for some vegeta-
tion types at the canopy scale. Furthermore, the effects of different soil
background reflectances, particularly wet and dry non-photosynthetic
vegetation, need to be evaluated before accuracies of water/dry-matter
indices may be assessed.

The reflectance signal for dry-matter content is weaker than that of
water content, in part because the amount of dry matter in most fresh
leaves is much less than the amount of water (Féret et al., 2011), and
in part because the absorption coefficient for dry matter is less than
that of water (Féret et al., 2008; Jacquemoud et al., 2009). However, at
about 1722-nm wavelength, the absorption coefficient of dry matter
in the PROSPECT model is about equal to that of water (Féret et al.,
2008; Jacquemoud et al., 2009), which is why this wavelength was se-
lected for NDMI (Wang et al., 2011a, 2011b). One of the wavelengths
used by DMCI (1495 nm) is located at the edge of a strong water
vapor absorption feature (Green et al., 1998); therefore, it will be harder
to use with data from airborne and satellite sensors. Four of the
dry-matter indices used in this study were originally developed for
the remote sensing of crop residue on the soil surface (NDTI, CAI, LCA,
and SINDRI; Table 1). Lignin and cellulose are major components of
dry matter, and indices based on absorption features from 2100 nm to
2500 nm wavelengths are correlated to leaf dry-matter content
(Romero et al., 2012). However at these wavelengths, the absorption
coefficients of dry matter are high, so larger differences in FMC may
be required before detection using remote sensing.

Thewidth of the 1722-nmabsorption feature for dry-matter content
is small, so a requirement for determining NDMI, and hence FMC, is the
availability of a narrow-band sensor with a very high signal-to-noise
ratio, such as the planned NASA Hyperspectral Infrared Imager
(HyspIRI) mission (National Research Council, 2007). Current research
on analysis of imaging spectrometer data is directed towards inversions
of radiative transfermodels, whichmay be used to estimate FMC direct-
ly without resorting towater/dry-matter indices. However, HyspIRI has
a planned 19-day repeat schedule, and with cloud cover, HyspIRI data
may be acquired too infrequently for monitoring FMC. The Moderate
Resolution Imaging Spectroradiometer (MODIS) and the Visible Infra-
red Imaging Radiometer Suite (VIIRS) sensors have several bands
which may be used for water indices, but these sensors do not have
the spectral resolution for determining NDMI. Current data fusion
methods, such as STARFM which combines Landsat and MODIS data
(Gao et al., 2006), require both sensors to have similar bands, so it is un-
likely that these methods will provide HyspIRI spectral resolution at
VIIRS temporal resolution. Therefore, future FMCmonitoring by remote
sensing could be accomplishedwith combination of water indices from
many different sensors and NDMI from HyspIRI.

Table 8
Comparison of RMSE and component terms, systematic RMSE (RMSEs) and unbiased
RMSE (RMSEu), for prediction of FMC in each spectral-reflectance dataset using: the
pooled polynomial regression equation; and the polynomial regression from the
PROSPECT model simulations (Table 7).

Dataset Pooled data regression PROSPECT regression

RMSE RMSEs RMSEu RMSE RMSEs RMSEu

Q. alba leaves 0.126 0.027 0.118 0.137 0.133 0.116
Q. alba leaf-stack 0.162 0.038 0.137 0.256 0.160 0.129
A. rubrum leaves 0.178 0.034 0.176 0.175 0.097 0.168
A. rubrum leaf-stack 0.195 0.065 0.175 0.259 0.200 0.171
Z. mays leaves 0.910 0.381 0.839 0.919 0.652 0.639

Table 9
Correlations of water-index/dry-matter-index ratios with fuel moisture content (FMC)
from SAIL model simulations (n=4500). The water-index numerator is shown along
the columns and the dry-matter-index denominator is shown along the rows. The
value in each cell is the correlation coefficient (r) between FMC and the water/
dry-matter index (column/row). Critical values of r are 0.062 for P=0.95 and about
0.081 for P=0.99.

Dry-matter index Water index

NDWI NDII SWRI RMSI

NDMI 0.706 0.952 0.760 0.950
NDTI 0.467 0.568 0.142 0.684
CAI −0.327 −0.228 −0.199 −0.239
NDLI 0.426 0.366 0.109 0.413
NDNI 0.456 0.359 0.400 0.397
LCA 0.403 0.350 0.353 0.360
SINDRI 0.518 0.254 0.173 0.210
DMCI −0.597 −0.755 −0.445 −0.691

Fig. 3. SAIL model simulations of canopy FMC compared to the NDII/NDMI
water-index/dry-matter-index ratio. The solid line shows the polynomial regression
equation based on the SAIL model simulations (n=4500) and the dashed lines show
the regression equations from the PROSPECT model simulations and leaf spectral re-
flectance data (Table 7).
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5. Conclusions

FMC is the ratio ofwater content to dry-matter content; therefore,we
hypothesized that the ratio of awater index to a dry-matter indexwould
better estimate FMC than either index alone. The results of leaf spectral
reflectance data and simulations using the PROSPECT and SAIL models
showed that the ratio of the water index NDII with the dry-matter
index NDMI was strongly related to FMC. We also hypothesized that
the effects of leaf area and other canopy variables for predicting FMC
would be reduced with a NDII/NDMI ratio, but SAIL model simulations
did not support this second hypothesis. NDMI requires narrow-band
data to measure the effect of dry matter on reflectance at 1722 nm, so
monitoring FMC requires either a new sensor or a combination of two
sensors, one with high temporal resolution for water content and one
with high spectral resolution for dry-matter content.
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