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The purpose of this dissertation is to develop and apply results of both discrete cal-

culus and discrete fractional calculus to further develop results on various discrete

time scales. Two main goals of discrete and fractional discrete calculus are to extend

results from traditional calculus and to unify results on the real line with those on a

variety of subsets of the real line. Of particular interest is introducing and analyz-

ing results related to a generalized fractional boundary value problem with Lidstone

boundary conditions on a standard discrete domain Na. We also introduce new re-

sults regarding exponential order for functions on quantum time scales, along with

extending previously discovered results. Finally, we conclude by introducing and an-

alyzing a boundary value problem, again with Lidstone boundary conditions, on a

mixed time scale, which may be thought of as a generalization of the other time scales

in this work.
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Chapter 1

Introduction

The study of both discrete calculus and discrete fractional calculus provides perhaps

a more complete, beautiful, and general view of calculus than most get from a tradi-

tional study of calculus. It provides much added insight into the ideas of derivatives

and integrals as it shows the orders of derivatives and integrals need not be restricted

to whole numbers but can, in fact, be sensibly, consistently, and continuously defined

for any positive number (see [5], [38], and [39] for some insight). In this work, we

focus on analogues of calculus and of fractional calculus on discrete time scales, i.e.,

discrete calculus and discrete fractional calculus.

Discrete fractional calculus is a relatively young field of study that begins with

the analysis of calculus restricted to any generic closed subset of the real line. An

attractive feature of discrete fractional calculus is how many of the results can be

seen simply as generalizations of familiar results from calculus on the entire real line.

A small set of definitions opens the door to many different statements and theorems

that apply widely across various closed subsets. While many of these results are

similar across these various, chosen domains, many of the results interestingly prove

to look and behave quite differently with a simple domain change. Often, one must
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keep close track of the specified domains involved, as certain operators serve to shift

or otherwise alter the domain of a given problem–an issue that does not arise in tra-

ditional calculus. Two main features of calculus on time scales are the unification of

results from continuous and discrete domains and the extension of those results. Time

scales calculus itself can be used to model insect (or other) populations which have a

continuous growing season and then a dying out or dormancy season [19]. Fractional

calculus has been shown to be suitable in the descriptions and applications of prop-

erties of real materials such as polymers and rocks. Fractal theory and dynamical

systems also make use of fractional derivatives as do some biological applications.

Some other areas which make use of fractional calculus are rheology, viscoelasticity,

electrochemistry, and electromagnetism (see [2], [11], [36], and [39] for more about

these aforementioned applications). Where calculus concepts from the entire real line

show up, discrete calculus concepts and applications are not far behind.

We restrict ourselves here to analyzing results with respect to the delta difference,

though much of the work can carry over similarly when working with the nabla

difference (see [4], [8], and [30] for work with the nabla operator, while [28] and [29]

highlight some results with the delta-nabla operator). Outside of this introductory

chapter and any preliminary sections in other chapters, all work can be considered

to have been developed originally unless otherwise indicated (however, most of the

results in Section 3.2 are not new and can be found in sources such as [33], but

these results were developed independently of outside sources and later compared

and contrasted). In this chapter, we provide many well-known results that provide a

foundation for the results and applications in the following chapters. While much of

the general necessary background material for this work is presented in this chapter,

other, more specific, foundational material will be presented in later chapters. Much

of this can be found in [7], [19], [27], and [32], while other background, foundational,
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and related material can be found in [23] and [34].

Definition 1.1. A time scale, T, is any closed, nonempty subset of R.

Example 1.2. Some examples of time scales are as follows:

(i) R;

(ii) [0, 1] ∪ [5, 6];

(iii) the set of integers Z;

(iv) the Cantor set;

(v) Na := {a, a+ 1, a+ 2, . . . | a ∈ R};

(vi) Nb
a := {a, a+ 1, a+ 2, . . . b| a, b ∈ R s.t. b− a ∈ N};

(vii) aqN0 := {a, aq, aq2, . . .} for a fixed a > 0, q > 1;

(viii) {1/n |n ∈ N} ∪ {0}.

We may note that Q, R \Q, C, and (0, 1) are not time scales [19].

Definition 1.3. For a time scale T, the forward jump operator, σ, is defined as

σ(t) := inf{s ∈ T | s > t}.

If σ(t) = t (and σ(t) 6= supT), we say that t is right-dense. Otherwise t is right-

scattered. We also define σn(t), for n ∈ N0, as

σn(t) :=


σ(σn−1(t)), n ∈ N,

t, n = 0.
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Definition 1.4. For a time scale T, the backward jump operator, ρ, is defined as

ρ(t) := sup{s ∈ T | s < t}.

If ρ(t) = t (and ρ(t) 6= inf T), we say that t is left-dense. Otherwise t is left-scattered.

We also define ρn(t), for n ∈ N0, as

ρn(t) :=


ρ(ρn−1(t)), n ∈ N,

t, n = 0.

Remark 1.5. R is a time scale such that for every t ∈ R, t is dense, i.e., both

right-dense and left-dense.

Definition 1.6. For a time scale T, we define the graininess function µ(t) : T→ [0,∞)

by

µ(t) = σ(t)− t.

Remark 1.7. The time scales considered throughout this work will be ones in which

all elements are isolated points. In other words, for any time scale T here and for all

t ∈ T, we have µ(t) > 0.

Since in the chapters that follow, we will only deal with time scales whose elements

are all isolated points, i.e., points which are neither left nor right dense, we now define

the delta difference on a time scale of a function at an isolated point. This operation

can be thought of as an analogue to differentiation on R. In fact, if a point in a

time scale is right dense, the delta difference of a function at that point is defined to

coincide with the traditional definition of derivative at that point [19].
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Definition 1.8. Consider a function f : T→ R. We define the delta difference of f

at a point t ∈ T as

∆f(t) :=
f(σ(t))− f(t)

σ(t)− t
=
f(σ(t))− f(t)

µ(t)
.

We also define ∆nf(t) for, n ∈ N0, as

∆nf(t) :=


∆(∆n−1f(t)), n ∈ N,

f(t), n = 0.

Remark 1.9. Note that on the time scale Na, the focus of the following chapter, we

arrive at the definition

∆f(t) =
f(σ(t))− f(t)

µ(t)
= f(t+ 1)− f(t).

Since we have a notion of a delta difference which serves as an analogue to differ-

entiation, we now define the delta definite integral, an analogue to definite Riemann

integration on R. Here, we will define the definite integral on Na. The definite integral

on other time scales in this work will be defined in the appropriate chapter.

Definition 1.10. For f : Na → R and c, d ∈ Na, we make the definition

∫ d

c

f(s) ∆s :=


d−1∑
s=c

f(s)µ(s), d > c,

0, d ≤ c.

Remark 1.11. Note that the definite integral here is really just a left-hand Riemann

sum. The definite integral in future chapters will be defined similarly to give a left-

hand sum evaluated at points from the time scale.
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Remark 1.12. The definite integral above helps define an antidifference of f on Na,

namely
∫ t
a
f(s) ∆s. For

∆

∫ t

a

f(s) ∆s = ∆
t−1∑
s=a

f(s)

=
t∑

s=a

f(s)−
t−1∑
s=a

f(s)

= f(t).

As it will show up repeatedly in the next chapter, we present Euler’s Gamma

Function along with some of its properties.

Definition 1.13. For z ∈ C such that Re z > 0, Euler’s Gamma Function is defined

by the improper integral on R

Γ(z) :=

∫ ∞
0

e−ttz−1 dt.

Remark 1.14. As can be found readily in many sources, the following are useful

properties of Euler’s Gamma Function which will be used extensively in the next

chapter. The improper integral in the definition above converges for all z ∈ C such

that Re z > 0. Using property (ii) below, we extend the definition of Euler’s Gamma

Function to all z ∈ C \ {0,−1,−2, . . .}.

(i) For 0 < z ∈ R, Γ(z) > 0;

(ii) Γ(z + 1) = zΓ(z);

(iii) for n ∈ N0, Γ(n+ 1) = n!.

The following figure presents a graph of the Gamma function:
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Figure 1.1: The Real Gamma Function on (−5, 4]

A common application of the Gamma function in discrete calculus is the use of

“falling” notation.

Definition 1.15. For t ∈ R, tν , read as “t to the ν falling,” is defined as

tν :=
Γ(t+ 1)

Γ(t− ν + 1)

for any ν ∈ R such that the right-hand side makes sense. By convention, when t−ν+1

is a nonpositive integer and t+ 1 is not,

tν := 0

since for n ∈ N0,

lim
t→−n

|Γ(t)| =∞.

Remark 1.16. We may make the following notes regarding the falling function above:
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(i) when t, ν ∈ N,

tν =
t!

(t− ν)!
= t(t− 1)(t− 2) · · · (t− ν + 1);

(ii) νν = νν−1 = Γ(ν + 1);

(iii) for a ∈ R, ∆(t− a)ν = ν(t− a)ν−1;

(iv) for a ∈ R, ∆(a− t)ν = −ν(a− σ(t))ν−1;

(v) tν+1 = (t− ν)tν .

Properties (iii) and (iv) above constitute the power rule for the delta difference oper-

ator.

We now turn our attention to defining a fractional sum. Before we can define

that, however, we define the nth-order sum on Na. First, though, we note that on R,

the unique solution to the nth-order initial value problem


y(n)(t) = f(t), t ∈ [a,∞),

y(i)(a) = 0,

where i = 0, 1, 2, . . . , n− 1 is given by n repeated definite integrals of f , i.e.,

y(t) =

∫ t

a

∫ τn−1

a

∫ τn−2

a

· · ·
∫ τ1

a

f(τ1) dτ1 dτ2 · · · dτn−1

=

∫ t

a

(t− τn−1)n−1

(n− 1)!
f(τn−1) dτn−1

=
1

Γ(n)

∫ t

a

(t− τn−1)n−1f(τn−1) dτn−1.
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Similarly, on Na, the unique solution to the nth-order initial value problem


∆ny(t) = f(t), t ∈ Na,

∆iy(a) = 0,

where i = 0, 1, 2, . . . , n− 1 is given by n repeated finite sums of f , i.e., for t ∈ Na

y(t) =

∫ t

a

∫ τn−1

a

∫ τn−2

a

· · ·
∫ τ1

a

f(τ1) ∆τ1 ∆τ2 · · ·∆τn−1

=
t−1∑

τn−1=a

τn−1−1∑
τn−2=a

τn−2−1∑
τn−3=a

· · ·
τ2−1∑
τ1=a

f(τ1)

=
t−n∑

τn−1=a

(t− σ(τn−1))n−1

(n− 1)!
f(τn−1)

=
1

Γ(n)

t−n∑
τn−1=a

(t− σ(τn−1))n−1f(τn−1),

which we will call the nth-order sum of f and denote as ∆−na f(t).

The nth-order sum above serves to motivate the definition of a νth-order fractional

sum. Despite use of the word “fractional,” ν may be any nonnegative real number

here.

Definition 1.17. For f : Na → R and ν > 0, the νth-order fractional sum of f (based

at a ∈ R) is given by

(∆−νa f)(t) = ∆−νa f(t) :=
1

Γ(ν)

t−ν∑
s=a

(t− σ(s))ν−1f(s),

where t ∈ Na+ν . Additionally, we define ∆−0
a f(t) := f(t) for t ∈ Na.

Remark 1.18. Notice that the domain of the fractional sum of f above is shifted by
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ν from the domain of f . We will also see that the domain of the fractional difference

of f will be similarly shifted. For more on discrete fractional initial value problems,

see [9].

We are now able to define a νth-order fractional difference. Though it is originally

defined in terms of a fractional sum, we can also arrive at a formula similar to, but

independent of, a fractional sum.

Definition 1.19. For f : Na → R, ν ≥ 0, and N ∈ N such that N − 1 < ν ≤ N , the

νth-order fractional difference of f (based at a ∈ R) is given by

(∆ν
af)(t) = ∆ν

af(t) := ∆N∆−(N−ν)
a f(t),

where t ∈ Na+N−ν .

Remark 1.20. If ν ∈ N0, we see that the definition above coincides with the definition

of a whole-order difference from Definition 1.8 as, for t ∈ Na,

∆ν
af(t) = ∆N∆−(N−ν)

a f(t) = ∆N∆−0
a f(t) = ∆Nf(t).

Additionally, we note that whereas whole-order differences are not based at any cer-

tain point a, fractional-order differences do. However, as demonstrated in [32], this

dependence on the base a vanishes as ν → N ∈ N0. Other domain issues, concerns,

and consequences of the definitions above which are not immediately important to

this work may be found in [32].

Remark 1.21. When analyzing νth-order fractional difference equations, we should

be aware of N ∈ N0 such that N − 1 < ν ≤ N , since a well-posed νth-order fractional
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difference equation requires N initial conditions, e.g., the equation ∆5.2
−0.8y(t) = f(t)

needs 6 initial conditions to determine y(t).

We have a version of Leibniz’ Rule in the following theorem (whose short proof will

be shown here) which is used in [32] to prove a theorem which unifies the definitions

of fractional sums and differences.

Theorem 1.22. For g : Na+ν × Na → R,

∆

(
t−ν∑
s=a

g(t, s)

)
=

t−ν∑
s=a

∆tg(t, s) + g(t+ 1, t+ 1− ν),

noting that the subscript in “∆t” is simply there to signify that the difference is being

taken with respect to t.

Proof. By direct computation,

∆

(
t−ν∑
s=a

g(t, s)

)
=

t+1−ν∑
s=a

g(t+ 1, s)−
t−ν∑
s=a

g(t, s)

=
t−ν∑
s=a

[g(t+ 1, s)− g(t, s)] + g(t+ 1, t+ 1− ν)

=
t−ν∑
s=a

∆tg(t, s) + g(t+ 1, t+ 1− ν).

The following well-known result unifies the definition of a fractional difference

with that of a fractional sum.

Theorem 1.23. For f : Na → R, ν ≥ 0, and N ∈ N such that N − 1 < ν ≤ N , the
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νth-order fractional difference of f (based at a ∈ R) is given by

∆ν
af(t) =


1

−ν

t+ν∑
s=a

(t− σ(s))−ν−1f(s), N − 1 < ν < N,

∆Nf(t), ν = N.

We now present some fractional power rules involving both a fractional sum and

difference, which may also be found in [27].

Theorem 1.24. For a ∈ R, µ ∈ R \ {0,−1,−2, . . .}, ν > 0, and N ∈ N such that

N − 1 < ν ≤ N , the following hold:

(i) ∆−νa+µ(t− a)µ = Γ(µ+1)
Γ(µ+1+ν)

(t− a)µ+ν, for t ∈ Na+µ+ν;

(ii) ∆ν
a+µ(t− a)µ = Γ(µ+1)

Γ(µ+1−ν)
(t− a)µ−ν, for t ∈ Na+µ+N−ν.

This completes the necessary background material needed to provide a foundation

for the following chapters in which we will analyze the Green’s Function of fractional

boundary value problems with Lidstone boundary conditions on both Na and a mixed

time scale and investigate many of these previous results and others on q-time scales.
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Chapter 2

Green’s Functions on Na with

Lidstone Boundary Conditions

In this chapter, we wish to develop a fractional discrete analogue to an ordinary

boundary value differential equation with Lidstone boundary conditions, which has

the form 
(−1)ny(2n)(t) = h(t),

y(2i)(0) = 0 = y(2i)(1),

(2.0.1)

where i = 0, 1, 2, . . . , n− 1 and t ∈ [a, b]. In [1] and [3], we may find some properties

and numerical applications of differential equations with Lidstone boundary condi-

tions. This particular boundary value problem can be shown to have the solution

y(t) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

G(t, τn)G(τn, τn−1) · · ·G(τ2, τ1)h(τ1) dτ1 dτ2 · · · dτn,
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where G is a Green’s function given by

G(t, s) :=


(1− t)s, 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,

as can be found in [21]. For more on determining Green’s functions for fractional

boundary value problems, see [10], [27], and [32].

2.1 Preliminaries

In the last section of this chapter (and in the last chapter), we will make use of the

following two theorems: a fixed point theorem attributed to Krasnosel’skii, which

may be found in [27] and [32], and the Banach contraction mapping theorem, which

may be found in [27], [32], and [35]. First, we define a cone as a subset of a Banach

space.

Definition 2.1. If B is a real Banach space and K ⊆ B, then K is a cone if K satisfies

both of the following conditions:

1. if x ∈ K and λ ≥ 0, then λx ∈ K, and

2. if x ∈ K and −x ∈ K, then x = 0.

Theorem 2.2. Let B be a Banach space, and let K ⊆ B be a cone. Suppose that Ω1

and Ω2 are bounded open sets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2. Then a

completely continuous operator T : K ∩ (Ω2 \ Ω1)→ K has at least one fixed point in

K ∩ (Ω2 \ Ω1) if either

1. ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2, or

2. ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2.
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Theorem 2.3. Let (X, d) be a complete metric space. If f : X → X is a contraction

mapping, where α ∈ [0, 1) is a constant such that for all x, y ∈ X,

d
(
f(x), f(y)

)
≤ αd(x, y),

then the following hold:

(i) f has a unique fixed point x0 ∈ X;

(ii) limn→∞ f
n(x) = x0 for all x ∈ X;

(iii) d(fn(x), x0) ≤ αn

1−αd(f(x), x) for all x ∈ X and n ∈ N.

2.2 Derivation of the Green’s Function

In the following theorem, we show how to develop and define the Green’s function for

a boundary value problem with Lidstone boundary conditions on Na. This problem

serves as an analogue to the BVP (2.0.1) from above. In [17] and [37], we may gain

insight into related higher-order equations on time scales, while here we discuss the

solutions to higher-order fractional equations on time scales.

Theorem 2.4. Let the domains

Sj := {(t, s) ∈ Nb+j(ν−2)
j(ν−2) × Nb+(j−1)(ν−2)

(j−1)(ν−2) | s ≤ t− ν},

and

Tj := {(t, s) ∈ Nb+j(ν−2)
j(ν−2) × Nb+(j−1)(ν−2)

(j−1)(ν−2) | t− ν + 1 ≤ s},



16

and let the functions

uj(t, s) :=
1

Γ(ν)

(b− σ(s) + j(ν − 2))ν−1

(b+ ν − 2)ν−1
(t− (j − 1)(ν − 2))ν−1,

and

x(t, s) :=
1

Γ(ν)
(t− σ(s))ν−1.

Then if ν ∈ (1, 2] and y : Nb+n(ν−2)
n(ν−2) → R (or y : Nn(ν−2) → R), the solution for the

fractional boundary value problem



(−1)n∆ν
ν−2∆ν

2ν−4 · · ·∆ν
n(ν−2)y(t) = h(t), t ∈ Nb

0, n ∈ N,

y (n(ν − 2)) = 0 = y (b+ n(ν − 2)) ,

∆ν
(n−(i−1))(ν−2)∆

ν
(n−(i−2))(ν−2) · · ·∆ν

(n−1)(ν−2)∆
ν
n(ν−2)y ((n− i)(ν − 2)) = 0,

∆ν
(n−(i−1))(ν−2)∆

ν
(n−(i−2))(ν−2) · · ·∆ν

(n−1)(ν−2)∆
ν
n(ν−2)y (b+ (n− i)(ν − 2)) = 0,

where i = 1, 2, 3, . . . , n− 1, has solution

y(t) =

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

· · ·
b∑

τ1=0

Gn(t, τn)Gn−1(τn, τn−1) · · ·G1(τ2, τ1)h(τ1),

for

Gj(t, s) :=


uj(t, s)− x(t, s), (t, s) ∈ Sj,

uj(t, s), (t, s) ∈ Tj.

Proof. Consider n = 1. Then the problem is reduced to the following:


−∆ν

ν−2y(t) = h(t),

y(ν − 2) = 0 = y(b+ ν − 2),
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noting the domain of y is Nν−2. From [32], the general solution of the problem is then

y(t) = α0(t− a)ν−2 + α1(t− a)ν−1 −∆−νa h(t),

where t ∈ Na+ν−2. Since the domain of y here is Nν−2, we have that a = 0.

Note now that

∆−ν0 h(ν − 2) =
1

Γ(ν)

(ν−2)−ν∑
s=0

(ν − 2− σ(s))ν−1h(s) = 0

by our convention on sums. Now, using the first boundary condition, we have

0 = y(ν − 2)

= α0(ν − 2)ν−2 + α1(ν − 2)ν−1 −∆−ν0 h(ν − 2)

= α0
Γ(ν − 1)

Γ(1)
+ α1

Γ(ν − 1)

Γ(0)
−∆−ν0 h(ν − 2)

= α0Γ(ν − 1) + 0− 0

=⇒ α0 = 0.

Using the second boundary condition, we have

0 = y(b+ ν − 2)

= α1(b+ ν − 2)ν−1 −∆−ν0 h(b+ ν − 2)

=⇒ α1 =
∆−ν0 h(b+ ν − 2)

(b+ ν − 2)ν−1
.

Now, since the maximum t-value on our considered domain is b+ν−2, this implies

that t− ν + 1 ≤ b+ ν − 2− ν + 1 = b− 1 for all t that we are considering. Now when
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s = b− 1, note that

(b− σ(s) + (ν − 2))ν−1 = (b− b+ ν − 2)ν−1

= (ν − 2)ν−1

=
Γ(ν − 1)

Γ(0)

= 0,

and, similarly, when s = b, we have (b−σ(s) + (ν− 2))ν−1 = (ν− 3)ν−1 = Γ(ν−2)
Γ(−1)

= 0.

So when s = b − 1, b, we have s ≥ t − ν + 1, which implies G1(t, s) = 0 for these

s-values for any t-value in consideration here.

So now we have

y(t) =
∆−ν0 h(b+ ν − 2)

(b+ ν − 2)ν−1
tν−1 −∆−ν0 h(t)

=
tν−1

(b+ ν − 2)ν−1

1

Γ(ν)

(b+ν−2)−ν∑
s=0

(b+ ν − 2− σ(s))ν−1h(s)

− 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))ν−1h(s)

=
1

Γ(ν)

t−ν∑
s=0

[
(b+ ν − 2− σ(s))ν−1

(b+ ν − 2)ν−1
tν−1 − (t− σ(s))ν−1

]
h(s)

+
1

Γ(ν)

b−2∑
s=t−ν+1

[
(b+ ν − 2− σ(s))ν−1

(b+ ν − 2)ν−1
tν−1

]
h(s)

=
b−2∑
s=0

G1(t, s)h(s) =
b∑

s=0

G1(t, s)h(s).

So the theorem holds for n = 1.

To add some more insight into the specifics of this theorem, consider the case
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n = 2, which results in the following fractional boundary value problem:


∆ν
ν−2∆ν

2ν−4y(t) = h(t),

y(2ν − 4) = 0 = y(b+ 2ν − 4),

∆ν
2ν−4y(ν − 2) = 0 = ∆ν

2ν−4y(b+ ν − 2),

noting the domain of y is N2ν−4. Let w(t) = −∆ν
2ν−4y(t). Then we may consider the

problem 
−∆ν

ν−2w(t) = h(t),

w(ν − 2) = 0 = w(b+ ν − 2).

From the case n = 1, we have that

w(t) = −∆ν
2ν−4y(t)

=
b∑

s=0

G1(t, s)h(s).

Noting that we still have boundary conditions y(2ν − 4) = 0 and y(b+ 2ν − 4) = 0,

we can solve for y in terms of w. As in the n = 1 case, our general solution is given

by

y(t) = α0(t− a)ν−2 + α1(t− a)ν−1 −∆−νa w(t)

= α0(t− ν + 2)ν−2 + α1(t− ν + 2)ν−1 −∆−νν−2w(t),

where t ∈ N2ν−4.
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Note now that

∆−νν−2w(2ν − 4) =
1

Γ(ν)

2ν−4−ν∑
s=ν−2

(2ν − 4− σ(s))ν−1w(s)

=
1

Γ(ν)

ν−4∑
s=ν−2

(2ν − 4− σ(s))ν−1w(s) = 0,

by the convention on sums. Using the first boundary condition, we have

0 = y(2ν − 4) = α0(ν − 2)ν−2 + α1(ν − 2)ν−1 −∆−νν−2w(2ν − 4)

= α0(ν − 2)ν−2 + 0− 0

=⇒ α0 = 0.

Using the second boundary condition, we have

0 = y(b+ 2ν − 4) = α1(b+ ν − 2)ν−1 −∆−νν−2w(b+ 2ν − 4)

=⇒ α1 =
∆−νν−2w(b+ 2ν − 4)

(b+ ν − 2)ν−1
.

Since the maximum t-value on our considered domain is b + 2ν − 4, this implies

that t− ν + 1 ≤ b+ 2ν − 4− ν + 1 = b+ ν − 3 for all t that we are considering. Now

when s = b+ ν − 3, note that

(b− σ(s) + 2(ν − 2))ν−1 = (b− b− ν + 2 + 2ν − 4)ν−1

= (ν − 2)ν−1 = 0,

and, similarly, when s = b+ ν− 2, we have (b− σ(s) + 2(ν− 2))ν−1 = (ν− 3)ν−1 = 0.

Thus, when s = b+ ν − 3, b+ ν − 2, we have s ≥ t− ν + 1, which implies G2(t, s) = 0

for these s-values for any t-value in consideration here.
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Therefore, we have

y(t) =
∆−νν−2w(b+ 2ν − 4)

(b+ ν − 2)ν−1
(t− ν + 2)ν−1 −∆−νν−2w(t)

=
(t− ν + 2)ν−1

(b+ ν − 2)ν−1

1

Γ(ν)

b+ν−4∑
s=ν−2

(b+ 2ν − 4− σ(s))ν−1w(s)

− 1

Γ(ν)

t−ν∑
s=ν−2

(t− σ(s))ν−1w(s)

=
1

Γ(ν)

t−ν∑
s=ν−2

[
(b+ 2ν − 4− σ(s))ν−1

(b+ ν − 2)ν−1
(t− ν + 2)ν−1 − (t− σ(s))ν−1

]
w(s)

+
1

Γ(ν)

b+ν−4∑
s=t−ν+1

[
(b+ 2ν − 4− σ(s))ν−1

(b+ ν − 2)ν−1
(t− ν + 2)ν−1

]
w(s)

=
b+ν−4∑
s=ν−2

G2(t, s)w(s) =
b+ν−2∑
s=ν−2

G2(t, s)w(s)

=
b+ν−2∑
s=ν−2

G2(t, s)
b∑

τ=0

G1(s, τ)h(τ)

=
b+ν−2∑
s=ν−2

b∑
τ=0

G2(t, s)G1(s, τ)h(τ).

So the theorem holds for n = 2, and we have additional insight as to how the general

case comes about.

We know finish proving the result by induction. Suppose the result holds for some

n ∈ N. We then consider the problem for n+ 1:



(−1)n+1∆ν
ν−2∆ν

2ν−4 · · ·∆ν
(n+1)(ν−2)y(t) = h(t), t ∈ Nb

0, n ∈ N,

y ((n+ 1)(ν − 2)) = 0 = y (b+ (n+ 1)(ν − 2)) ,

∆ν
(n+1−(i−1))(ν−2)∆

ν
(n+1−(i−2))(ν−2) · · ·∆ν

(n+1)(ν−2)y ((n+ 1− i)(ν − 2)) = 0,

∆ν
(n+1−(i−1))(ν−2)∆

ν
(n+1−(i−2))(ν−2) · · ·∆ν

(n+1)(ν−2)y (b+ (n+ 1− i)(ν − 2)) = 0,

for i = 1, 2, 3, . . . , n.
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Let w(t) = −∆ν
(n+1)(ν−2)y(t). Then we may consider the problem



(−1)n∆ν
ν−2∆ν

2ν−4 · · ·∆ν
n(ν−2)w(t) = h(t), t ∈ Nb

0, n ∈ N,

w(n(ν − 2) = 0 = w(b+ n(ν − 2))

∆ν
(n+1−(i−1))(ν−2)∆

ν
(n+1−(i−2))(ν−2) · · ·∆ν

n(ν−2)w ((n+ 1− i)(ν − 2)) = 0,

∆ν
(n+1−(i−1))(ν−2)∆

ν
(n+1−(i−2))(ν−2) · · ·∆ν

n(ν−2)w (b+ (n+ 1− i)(ν − 2)) = 0,

for i = 2, 3, 4, . . . , n, which is equivalent to



(−1)n∆ν
ν−2∆ν

2ν−4 · · ·∆ν
n(ν−2)w(t) = h(t), t ∈ Nb

0, n ∈ N,

w(n(ν − 2) = 0 = w(b+ n(ν − 2))

∆ν
(n−(i−1))(ν−2)∆

ν
(n−(i−2))(ν−2) · · ·∆ν

n(ν−2)w ((n− i)(ν − 2)) = 0,

∆ν
(n−(i−1))(ν−2)∆

ν
(n−(i−2))(ν−2) · · ·∆ν

n(ν−2)w (b+ (n− i)(ν − 2)) = 0,

for i = 1, 2, 3, . . . , n− 1.

By assumption, we then have that

w(t) = −∆ν
(n+1)(ν−2)y(t)

=

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

· · ·
b∑

τ1=0

Gn(t, τn)Gn−1(τn, τn−1) · · ·G1(τ2, τ1)h(τ1).

Noting still that we have y ((n+ 1)(ν − 2)) = 0 and y (b+ (n+ 1)(ν − 2)) = 0 as

boundary conditions, all that remains to be shown is that

y(t) =
∑b+n(ν−2)

s=n(ν−2)Gn+1(t, s)w(s).
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As earlier, and from the fact that w(t) = ∆ν
(n+1)(ν−2)y(t), we have

y(t) = α0(t− a)ν−2 + α1(t− a)ν−1 −∆−νa w(t)

= α0(t− n(ν − 2))ν−2 + α1(t− n(ν − 2))ν−1 −∆−νn(ν−2)w(t),

where t ∈ N(n+1)(ν−2).

Note now that

∆−νn(ν−2)w((n+ 1)(ν − 2)) =
1

Γ(ν)

(n+1)(ν−2)−ν∑
s=n(ν−2)

((n+ 1)(ν − 2)− σ(s))ν−1w(s)

=
1

Γ(ν)

nν−2n−2∑
s=nν−2n

((n+ 1)(ν − 2)− σ(s))ν−1w(s)

= 0,

again using the convention on sums. Using the first boundary condition, we have

0 = y((n+ 1)(ν − 2))

= α0((n+ 1)(ν − 2)− n(ν − 2))ν−2 + α1((n+ 1)(ν − 2)− n(ν − 2))ν−1

−∆−νn(ν−2)w((n+ 1)(ν − 2))

= α0(ν − 2)ν−2 + α1(ν − 2)ν−1 = α0(ν − 2)ν−2

=⇒ α0 = 0.
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Using the second boundary condition, we have

0 = y((n+ 1)(ν − 2) + b)

= α1((n+ 1)(ν − 2) + b− n(ν − 2))ν−1 −∆−νn(ν−2)w((n+ 1)(ν − 2) + b)

= α1(b+ ν − 2)ν−1 −∆−νn(ν−2)w((n+ 1)(ν − 2) + b)

=⇒ α1 =
∆−νn(ν−2)w((n+ 1)(ν − 2) + b)

(b+ ν − 2)ν−1
.

Now, since b+ (n+ 1)(ν − 2) is the maximum t-value considered on our domain,

this implies that t − ν + 1 ≤ b + (n + 1)(ν − 2) − ν + 1 = b + n(ν − 2) − 1 for all t

that we are considering. Now when s = b+ n(ν − 2)− 1, note that

(b− σ(s) + (n+ 1)(ν − 2))ν−1 = (b− b− n(ν − 2) + (n+ 1)(ν − 2))ν−1

= (ν − 2)ν−1 = 0,

and, similarly, when s = b+ n(ν − 2), we have

(b− σ(s) + (n+ 1)(ν − 2))ν−1 = (ν − 3)ν−1 = 0.

So when s = b + n(ν − 2) − 1, b + n(ν − 2) we have s ≥ t − ν + 1, which implies

Gn+1(t, s) = 0 for these s-values for any t-value in consideration here.
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So now we have

y(t) =
∆−νn(ν−2)w((n+ 1)(ν − 2) + b)

(b+ ν − 2)ν−1
(t− n(ν − 2))ν−1 −∆−νn(ν−2)w(t)

=
(t− n(ν − 2))ν−1

(b+ ν − 2)ν−1

1

Γ(ν)

(n+1)(ν−2)+b−ν∑
s=n(ν−2)

((n+ 1)(ν − 2) + b− σ(s))ν−1w(s)

− 1

Γ(ν)

t−ν∑
s=n(ν−2)

(t− σ(s))ν−1w(s)

=
1

Γ(ν)

t−ν∑
s=n(ν−2)

[un+1(t, s)− x(t, s)]w(s) +
1

Γ(ν)

(n+1)(ν−2)+b−ν∑
s=t−ν+1

un+1(t, s)w(s)

=

(n+1)(ν−2)+b−ν∑
s=n(ν−2)

Gn+1(t, s)w(s) =

b+n(ν−2)−2∑
s=n(ν−2)

Gn+1(t, s)w(s)

=

b+n(ν−2)∑
s=n(ν−2)

Gn+1(t, s)w(s).

Remark 2.5. Note that Gj(j(ν− 2), s) = 0 and Gj(b+ j(ν− 2), s) = 0 for all s such

that (t, s) is in the domain of Gj:

Gj(j(ν − 2), s) =
(b− σ(s) + j(ν − 2))ν−1

Γ(ν)(b+ ν − 2)ν−1
(j(ν − 2)− (j − 1)(ν − 2))ν−1

=
(b− σ(s) + j(ν − 2))ν−1

Γ(ν)(b+ ν − 2)ν−1
(ν − 2)ν−1

=
(b− σ(s) + j(ν − 2))ν−1

Γ(ν)(b+ ν − 2)ν−1

Γ(ν − 1)

Γ(0)
= 0,
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and

Gj(b+j(ν − 2), s)

=
1

Γ(ν)

[
(b− σ(s) + j(ν − 2))ν−1

(b+ ν − 2)ν−1
(b+ j(ν − 2)− (j − 1)(ν − 2))ν−1

− (b+ j(ν − 2)− σ(s))ν−1

]
=

1

Γ(ν)

[
(b− σ(s) + j(ν − 2))ν−1

(b+ ν − 2)ν−1
(b+ ν − 2)ν−1 − (b+ j(ν − 2)− σ(s))ν−1

]
=

1

Γ(ν)

[
(b− σ(s) + j(ν − 2))ν−1 − (b+ j(ν − 2)− σ(s))ν−1

]
= 0.

2.3 Properties of the Green’s Function

In this section, we highlight some of the important properties of the Green’s function

which help us prove further results.

Theorem 2.6. For Gj(t, s) defined above, we have Gj(t, s) ≥ 0 on its domain for all

j ∈ N.

Proof. First, to add some insight into our method, let us look at the case when j = 1.

Note that when s = b− 1, b, we have G1(t, s) = 0 from the previous proof. Thus

if 0 ≤ t− ν + 1 ≤ s ≤ b− 2, then

(b− σ(s) + ν − 2)ν−1 = (b− (s+ 1) + ν − 2)ν−1 =
Γ(b− s+ ν − 2)

Γ(b− s− 1)
≥ 0,

since both b − s + ν − 2 ≥ ν > 1 and b − s − 1 ≥ 1. Also, since t − ν + 1 ≥ 0, then

tν−1 = Γ(t+1)
Γ(t−ν+2)

≥ 0. Therefore, when 0 ≤ t− ν + 1 ≤ s ≤ b, we have G1(t, s) ≥ 0.

We only need now to consider the case when 0 ≤ s ≤ t − ν ≤ b − 2. We wish to
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show

(b+ ν − 2− σ(s))ν−1

(b+ ν − 2)ν−1
tν−1 − (t− σ(s))ν−1 ≥ 0

⇐⇒ (b+ ν − 2− σ(s))ν−1

(b+ ν − 2)ν−1

tν−1

(t− σ(s))ν−1
≥ 1.

Thus, we consider, keeping in mind that t ≤ b+ ν − 2 and s ≤ t− ν,

(b+ ν − 2− σ(s))ν−1

(b+ ν − 2)ν−1

tν−1

(t− σ(s))ν−1

=
(b+ ν − s− 3)ν−1

(b+ ν − 2)ν−1

tν−1

(t− s− 1)ν−1

=
Γ(b+ ν − s− 2)

Γ(b− s− 1)

Γ(b)

Γ(b+ ν − 1)

Γ(t+ 1)

Γ(t− ν + 2)

Γ(t− ν − s+ 1)

Γ(t− s)

=
Γ(b)

Γ(b− s− 1)

Γ(b+ ν − s− 2)

Γ(b+ ν − 1)

Γ(t+ 1)

Γ(t− s)
Γ(t− ν − s+ 1)

Γ(t− ν + 2)

=
(b− 1)(b− 2) · · · (b− s− 1)Γ(b− s− 1)

Γ(b− s− 1)

· Γ(b+ ν − s− 2)

(b+ ν − 2)(b+ ν − 3) · · · (b+ ν − s− 2)Γ(b+ ν − s− 2)

· (t)(t− 1) · · · (t− s)Γ(t− s)
Γ(t− s)

· Γ(t− ν − s+ 1)

(t− ν + 1)(t− ν) · · · (t− ν − s+ 1)Γ(t− ν − s+ 1)

=
(b− 1)(b− 2) · · · (b− s− 1)

(b+ ν − 2)(b+ ν − 3) · · · (b+ ν − s− 2)

(t)(t− 1) · · · (t− s)
(t− ν + 1)(t− ν) · · · (t− ν − s+ 1)

=: A.

We wish to show A ≥ 1. To this end, consider y as some function of ν defined as

yn(ν) := (b+ν−2−n)(t−ν+1−n)
(b−1−n)(t−n)

, where n ∈ Ns
0. Then limν→1+ yn(ν) = (b−1−n)(t−n)

(b−1−n)(t−n)
= 1,

and

y′n(ν) =
−b− 2ν + 2 + n+ t+ 1− n

(b− 1− n)(t− n)
=
t− (b+ ν − 2)− ν + 1

(b− 1− n)(t− n)
≤ 0,
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since n ∈ Ns
0 and s ≤ t−ν ≤ b−2 (and noting ν ∈ (1, 2]). Therefore, yn is decreasing

for ν ∈ (1, 2], which implies 1
yn(ν)

= (b−1−n)(t−n)
(b+ν−2−n)(t−ν+1−n)

is increasing for ν ∈ (1, 2] and

limν→1+
(b−1−n)(t−n)

(b+ν−2−n)(t−ν+1−n)
= 1. Then A =

∏s
n=0

1
yn(ν)

≥ 1 since every factor in the

finite product is greater than or equal to 1. So

(b+ ν − 2− σ(s))ν−1

(b+ ν − 2)ν−1
tν−1 − (t− σ(s))ν−1 ≥ 0,

and, therefore, G1(t, s) ≥ 0 on its domain.

Now let us look at the case for arbitrary j ∈ N. From the previous proof, when

s = b + (j − 1)(ν − 2) − 1, b + (j − 1)(ν − 2), we have Gj(t, s) = 0, and when

(j − 1)(ν − 2) ≤ t− ν + 1 ≤ s ≤ b+ (j − 1)(ν − 2)− 2, we have

(b− σ(s) + j(ν − 2))ν−1 =
Γ(b− s+ j(ν − 2))

Γ(b− s+ j(ν − 2)− ν + 1)
≥ 0,

since both b − s + j(ν − 2) ≥ b − (b − 2 + (j − 1)(ν − 2)) + j(ν − 2) = ν > 1 and

b− s+ j(ν − 2)− ν + 1 ≥ b− (b− 2 + (j− 1)(ν − 2)) + j(ν − 2)− ν + 1 = 1. So when

(j − 1)(ν − 2) ≤ t− ν + 1 ≤ s ≤ b+ (j − 1)(ν − 2), we have Gj(t, s) ≥ 0.

We only need now to consider the case when (t, s) ∈ Sj, or, in other words, when

(j − 1)(ν − 2) ≤ s ≤ t− ν ≤ b− 2 + (j − 1)(ν − 2). We wish to show

(b− σ(s) + j(ν − 2))ν−1

(b− ν − 2)ν−1
(t− (j − 1)(ν − 2))ν−1 − (t− σ(s))ν−1 ≥ 0

⇐⇒ (b− σ(s) + j(ν − 2))ν−1

(b− ν − 2)ν−1

(t− (j − 1)(ν − 2))ν−1

(t− σ(s))ν−1
≥ 1.
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Therefore, consider

(b− σ(s) + j(ν − 2))ν−1

(b− ν − 2)ν−1

(t− (j − 1)(ν − 2))ν−1

(t− σ(s))ν−1

=
(b− s− 1 + j(ν − 2))ν−1

(b− ν − 2)ν−1

(t− (j − 1)(ν − 2))ν−1

(t− s− 1)ν−1

=
Γ(b− s+ j(ν − 2))

Γ(b− s+ j(ν − 2)− ν + 1)

Γ(b)

Γ(b+ ν − 1)

· Γ(t− (j − 1)(ν − 2) + 1)

Γ(t− (j − 1)(ν − 2)− ν + 2)

Γ(t− s− ν + 1)

Γ(t− s)

=
Γ(b)

Γ(b− s+ j(ν − 2)− ν + 1)

Γ(b− s+ j(ν − 2))

Γ(b+ ν − 1)

· Γ(t− (j − 1)(ν − 2) + 1)

Γ(t− s)
Γ(t− s− ν + 1)

Γ(t− (j − 1)(ν − 2)− ν + 2)

=
Γ(b)

Γ(b− s+ (j − 1)(ν − 2)− 1)

Γ(b− s+ (j − 1)(ν − 2) + ν − 2)

Γ(b+ ν − 1)

· Γ(t− (j − 1)(ν − 2) + 1)

Γ(t− s)
Γ(t− s− ν + 1)

Γ(t− (j − 1)(ν − 2)− ν + 2)

=
Γ(b)

Γ(b− k − 1)

Γ(b+ ν − 2− k)

Γ(b+ ν − 1)

Γ(t− s+ k + 1)

Γ(t− s)
Γ(t− s− ν + 1)

Γ(t− s− ν + k + 2)
,

where k = s− (j − 1)(ν − 2). Note k ∈ N0 for all s here.

Keeping in mind that t ≤ b− 2 + (j − 1)(ν − 2) + ν = b+ j(ν − 2) and s ≤ t− ν,
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we have

Γ(b)

Γ(b− k − 1)

Γ(b+ ν − 2− k)

Γ(b+ ν − 1)

Γ(t− s+ k + 1)

Γ(t− s)
Γ(t− s− ν + 1)

Γ(t− s− ν + k + 2)

=
(b− 1)(b− 2) · · · (b− k − 1)Γ(b− k − 1)

Γ(b− k − 1)

· Γ(b+ ν − 2− k)

(b+ ν − 2)(b+ ν − 3) · · · (b+ ν − 2− k)Γ(b+ ν − 2− k)

· (t− s+ k)(t− s+ k − 1) · · · (t− s)Γ(t− s)
Γ(t− s)

· Γ(t− s− ν + 1)

(t− s− ν + k + 1)(t− s− ν + k) · · · (t− s− ν + 1)Γ(t− s− ν + 1)

=
(b− 1)(b− 2) · · · (b− k − 1)

(b+ ν − 2)(b+ ν − 3) · · · (b+ ν − 2− k)

· (t− s+ k)(t− s+ k − 1) · · · (t− s)
(t− s− ν + k + 1)(t− s− ν + k) · · · (t− s− ν + 1)

=: A.

Again, we wish to show A ≥ 1. As before, let us define yn(ν) := (b+ν−2−n)(t−s−ν+k+1−n)
(b−1−n)(t−s+k−n)

for n ∈ Nk
0. Then limν→1+ y(ν) = (b−1−n)(t−s+k−n)

(b−1−n)(t−s+k−n)
= 1, and

y′n(ν) =
−b− 2ν + 2 + n+ t− s+ k + 1− n

(b− 1− n)(t− s+ k − n)
=
t− (b+ ν − 2 + s− k)− ν + 1

(b− 1− n)(t− s+ k − n)
≤ 0,

since n ∈ Nk
0 and s ≤ t − ν ≤ b − 2 + (j − 1)(ν − 2) = b − 2 + s − k (and still

noting ν ∈ (1, 2]). We can also note that both factors of the denominator in the
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above inequality are positive since

b− 1− n ≥ b− 1− k

= b− 1− s+ (j − 1)(ν − 2)

≥ b− 1− (b− 2 + (j − 1)(ν − 2)) + (j − 1)(ν − 2) = 1,

and t > s and k ≥ n. Thus, for ν ∈ (1, 2], yn is decreasing, which implies both that

1
yn(ν)

= (b−1−n)(t−s+k−n)
(b+ν−2−n)(t−s−ν+k+1−n)

is increasing and limν→1+
(b−1−n)(t−s+k−n)

(b+ν−2−n)(t−s−ν+k+1−n)
= 1.

Then A =
∏k

n=0
1

yn(ν)
≥ 1 since every factor in the finite product is greater than or

equal to 1. Also, we may note that all factors are positive as t− s ≥ t− s− ν+ 1 ≥ 0

(since s ≤ t− ν) and b+ ν − 2− k ≥ b− k− 1 = b− s+ (j − 1)(ν − 2)− 1 ≥ 0 (since

s ≤ b− 2 + (j − 1)(ν − 2)). So

(b− σ(s) + j(ν − 2))ν−1

(b+ ν − 2)ν−1
(t− (j − 1)(ν − 2))ν−1 − (t− σ(s))ν−1 ≥ 0,

and, therefore, Gj(t, s) ≥ 0 on its domain. Since j ∈ N was arbitrary, the result holds

for all j ∈ N.

We can note that in previous results, we have shown that Gj(t, s) = 0 when we

have t = j(ν − 2), b + j(ν − 2) or when s = b + (j − 1)(ν − 2)− 1, b + j(ν − 2). We

now show that Gj is positive everywhere else on its domain, and we will also find the

maximum of Gj on its domain.

Theorem 2.7. For each s ∈ Nb+(j−1)(ν−2)−2
(j−1)(ν−2) we have Gj(t, s) is strictly increasing for

t ∈ Ns+ν−1
j(ν−2) and strictly decreasing for t ∈ Nb+j(ν−2)−1

s+ν , and

max
t∈Nb+j(ν−2)

j(ν−2)

Gj(t, s) = Gj(s+ ν − 1, s).
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Proof. We will assume b ≥ 2 to keep the domains from being trivial. Let t−ν+1 ≤ s.

We will show ∆tGj(t, s) > 0. Now, Γ(b− s+ j(ν − 2)) > 0 since Γ(x) > 0 on (0,∞)

and

b− s+ j(ν − 2) ≥ b− (b+ (j − 1)(ν − 2)− 2) + j(ν − 2) = ν ∈ (1, 2].

Also, b− s− 1 + (j− 1)(ν − 2) ≥ b− (b+ (j− 1)(ν − 2)− 2)− 1 + (j− 1)(ν − 2) = 1,

so Γ(b− s− 1 + (j − 1)(ν − 2)) > 0.

Let C := (b−σ(s)+j(ν−2))ν−1

(b+ν−2)ν−1 . Then note

C =
Γ(b− s− 1 + j(ν − 2) + 1)

Γ(b− s− 1 + j(ν − 2) + 1− ν + 1)

Γ(b+ ν − 1− ν + 1)

Γ(b+ ν − 1)

=
Γ(b− s+ j(ν − 2))

Γ(b− s− 1 + (j − 1)(ν − 2))

Γ(b)

Γ(b+ ν − 1)

> 0.

We may now consider

Γ(ν)∆tGj(t, s) = ∆t

[
(b− σ(s) + j(ν − 2))ν−1

(b+ ν − 2)ν−1
(t− (j − 1)(ν − 2))ν−1

]
= ∆t

[
C(t− (j − 1)(ν − 2))ν−1

]
= C(ν − 1)(t− (j − 1)(ν − 2))ν−2 > 0

since C, ν − 1 > 0 and

(t− (j − 1)(ν − 2))ν−2 =
Γ(t− (j − 1)(ν − 2) + 1)

Γ(t− (j − 1)(ν − 2) + 1− (ν − 2))

=
Γ(t− (j − 1)(ν − 2) + 1)

Γ(t− j(ν − 2) + 1)

> 0,
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keeping in mind that

t ≥ j(ν − 2)

=⇒ t− (ν − 2) ≥ (j − 1)(ν − 2)

=⇒ t− (j − 1)(ν − 2) ≥ ν − 2

=⇒ t− (j − 1)(ν − 2) + 1 ≥ ν − 1 > 0.

Therefore, ∆tGj(t, s) > 0 for t− ν + 1 ≤ s.

Now let s ≤ t− ν. We will show that ∆tGj(t, s) < 0. We want to show

Γ(ν)∆tGj(t, s) = C(ν − 1)(t− (j − 1)(ν − 2))ν−2 − (ν − 1)(t− σ(s))ν−2 < 0

⇐⇒ C(t− (j − 1)(ν − 2))ν−2 < (t− s− 1)ν−2

⇐⇒ C
(t− (j − 1)(ν − 2))ν−2

(t− s− 1)ν−2
< 1.

Note that the inequality’s direction is preserved in the last step since

t ≥ s+ ν

=⇒ t ≥ s+ 1

=⇒ Γ(t− s)
Γ(t− s− ν + 2)

= (t− s− 1)ν−2 > 0.
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We can see the inequality above holds by the following argument:

C
(t− (j − 1)(ν − 2))ν−2

(t− s− 1)ν−2

=
(b− s− 1 + j(ν − 2))ν−1

(b+ ν − 2)ν−1

(t− (j − 1)(ν − 2))ν−2

(t− s− 1)ν−2

=
Γ(b− s+ j(ν − 2))Γ(b+ ν − 1− ν + 1)Γ(t− (j − 1)(ν − 2) + 1)Γ(t− s− ν + 2)

Γ(b− s+ j(ν − 2)− ν + 1)Γ(b+ ν − 1)Γ(t− (j − 1)(ν − 2) + 1− ν + 2)Γ(t− s)

=
Γ(b− s+ j(ν − 2))

Γ(b− s+ (j − 1)(ν − 2)− 1)

Γ(b)

Γ(b+ ν − 1)

· Γ(t− (j − 1)(ν − 2) + 1)

Γ(t− j(ν − 2) + 1)

Γ(t− s− ν + 2)

Γ(t− s)
.

Now let k := s− (j − 1)(ν − 2), and note that k ∈ N0. So we have

C
(t− (j − 1)(ν − 2))ν−2

(t− s− 1)ν−2

=
Γ(b− k + ν − 2)

Γ(b− k − 1)

Γ(b)

Γ(b+ ν − 1)

Γ(t+ k − s+ 1)

Γ(t+ k − s− ν + 3)

Γ(t− s− ν + 2)

Γ(t− s)

=
[Γ(b− k + ν − 2)](b− 1)(b− 2) · · · (b− k − 1)Γ(b− k − 1)

[Γ(b− k − 1)](b+ ν − 2)(b+ ν − 3) · · · (b+ ν − k − 2)Γ(b+ ν − k − 2)

· (t− s+ k)(t− s+ k − 1) · · · (t− s)Γ(t− s)
(t− s− ν + k + 2)(t− s− ν + k + 1) · · · (t− s− ν + 2)Γ(t− s− ν + 2)

· [Γ(t− s− ν + 2)]

[Γ(t− s)]

=
(b− 1)(b− 2) · · · (b− k − 1)

(b+ ν − 2)(b+ ν − 3) · · · (b+ ν − k − 2)

· (t− s+ k)(t− s+ k − 1) · · · (t− s)
(t− s− ν + k + 2)(t− s− ν + k + 1) · · · (t− s− ν + 2)

< 1.

The final inequality above holds since we have b − 1 < b + ν − 2 ⇐⇒ 1 < ν and

t − s + k ≤ t − s − ν + k + 2 ⇐⇒ 0 ≤ 2 − ν. Thus, each fraction in the product

is composed of k + 1 factors in both the numerator and denominator such that each

factor in the numerator of the first fraction can be shown to be less than a distinct
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factor in the denominator, and each factor in the numerator of the second fraction can

be shown to be less than or equal to a distinct factor in the denominator. Therefore,

Gj(t, s) is strictly increasing for t− ν + 1 ≤ s and strictly decreasing for s ≤ t− ν.

Now, this means the maximum ofGj(t, s) must be either at t = s+ν or t = s+ν−1.

In the following, we will see that the maximum actually occurs at t = s+ ν − 1:

Γ(ν)(Gj(s+ ν − 1, s)−Gj(s+ ν, s))

= C((s+ ν − 1− (j − 1)(ν − 2))ν−1 − (s+ ν − (j − 1)(ν − 2))ν−1)

+ (s+ ν − s− 1)ν−1

= C((s+ ν − 1− (j − 1)(ν − 2))ν−1 − (s+ ν − (j − 1)(ν − 2))ν−1) + Γ(ν)

= C

(
Γ(s+ ν − (j − 1)(ν − 2))

Γ(s+ 1− (j − 1)(ν − 2))
− Γ(s+ ν − (j − 1)(ν − 2) + 1)

Γ(s+ 2− (j − 1)(ν − 2))

)
+ Γ(ν)

= C

(
(s+ 1− (j − 1)(ν − 2))Γ(s+ ν − (j − 1)(ν − 2))

Γ(s+ 2− (j − 1)(ν − 2))

− Γ(s+ ν − (j − 1)(ν − 2) + 1)

Γ(s+ 2− (j − 1)(ν − 2))

)
+ Γ(ν)

=
C

Γ(s+ 2− (j − 1)(ν − 2))

[
(s+ 1− (j − 1)(ν − 2))Γ(s+ ν − (j − 1)(ν − 2))

− (s+ ν − (j − 1)(ν − 2))Γ(s+ ν − (j − 1)(ν − 2))
]

+ Γ(ν)

= C
Γ(s+ ν − (j − 1)(ν − 2))

Γ(s+ 2− (j − 1)(ν − 2))

[
s+ 1− (j − 1)(ν − 2)

− (s+ ν − (j − 1)(ν − 2)
]

+ Γ(ν)

= C
Γ(s+ ν − (j − 1)(ν − 2))

Γ(s+ 2− (j − 1)(ν − 2))
(1− ν) + Γ(ν)

= C
Γ(k + ν)

Γ(k + 2)
(1− ν) + Γ(ν)

> 0,
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which is equivalent to

Γ(ν) >
CΓ(k + ν)

Γ(k + 2)
(ν − 1)

⇐⇒ Γ(ν)Γ(k + 2)

CΓ(k + ν)(ν − 1)
> 1

⇐⇒ Γ(ν − 1)Γ(k + 2)

CΓ(k + ν)
> 1

⇐⇒ Γ(ν − 1)Γ(k + 2)

Γ(k + ν)

Γ(b− s+ (j − 1)(ν − 2)− 1)Γ(b+ ν − 1)

Γ(b− s+ j(ν − 2)Γ(b)

=
Γ(ν − 1)Γ(k + 2)

Γ(k + ν)

Γ(b− k − 1)Γ(b+ ν − 1)

Γ(b− k + ν − 2)Γ(b)

=
Γ(k + 2)Γ(ν − 1)

(k + ν − 1)(k + ν − 2) · · · (ν)(ν − 1)Γ(ν − 1)

· [Γ(b− k − 1)](b+ ν − 2)(b+ ν − 3) · · · (b+ ν − k − 2)Γ(b+ ν − k − 2)

[Γ(b− k + ν − 2)](b− 1)(b− 2) · · · (b− k − 1)Γ(b− k − 1)

=
(k + 1)(k) · · · (1)

(k + ν − 1)(k + ν − 2) · · · (ν − 1)

(b+ ν − 2)(b+ ν − 3) · · · (b+ ν − k − 2)

(b− 1)(b− 2) · · · (b− k − 1)

> 1,

since the first fraction in the product is greater than 1 if ν < 2 and the second fraction

is greater than 1 if ν > 1. Therefore, for each s ∈ Nb+(j−1)(ν−2)
(j−1)(ν−2) ,

max
t∈Nb+j(ν−2)

j(ν−2)

Gj(t, s) = Gj(s+ ν − 1, s).

To help condense and notationally simplify some future expressions, we make the

following definition.
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Definition 2.8. Let

Gn(t, τn) := Gn(t, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

b+(n−3)(ν−2)∑
τn−2=(n−3)(ν−2)

· · ·

b∑
τ1=0

Gn−1(τn, τn−1)Gn−2(τn−1, τn−2) · · ·G1(τ2, τ1).

Corollary 2.9. For any τn ∈ Nb+(n−1)(ν−2)
(n−1)(ν−2)

max
t∈Nb+n(ν−2)

n(ν−2)

Gn(t, τn) = Gn(τn + ν − 1, τn)

= Gn(τn + ν − 1, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1) · · ·
b∑

τ1=0

G1(τ2, τ1).

Proof. For each s ∈ Nb+(j−1)(ν−2)
(j−1)(ν−2) , we have, from Theorem 2.7,

max
t∈Nb+j(ν−2)

j(ν−2)

Gj(t, s) = Gj(s+ ν − 1, s),

and from Theorem 2.6, Gj(t, s) ≥ 0 on its domain. So for all t ∈ Nb+n(ν−2)
n(ν−2) , we have

Gn(t, τn)

= Gn(t, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1)

b+(n−3)(ν−2)∑
τn−2=(n−3)(ν−2)

Gn−2(τn−1, τn−2)

· · ·
b∑

τ1=0

G1(τ2, τ1)

= Gn(t, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1)

b+(n−3)(ν−2)∑
τn−2=(n−3)(ν−2)

Gn−2(τn−1, τn−2)

≤ Gn(τn + ν − 1, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1)

b+(n−3)(ν−2)∑
τn−2=(n−3)(ν−2)

Gn−2(τn−1, τn−2),
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and

Gn(τn + ν − 1, τn)

= Gn(τn + ν − 1, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1)

b+(n−3)(ν−2)∑
τn−2=(n−3)(ν−2)

Gn−2(τn−1, τn−2).

Thus, we have our result.

2.4 Existence and Uniqueness Theorems

We can find results related to the existence of solutions of fractional differential equa-

tions in [13], [14], [15], [16], and [22]. Here, we will discuss the existence and unique-

ness of positive solutions of nonlinear fractional difference equations.

While nearly all of the results in this work would be either trivial or undefined for

b = 0 or b = 1, perhaps it should be said that we are really only considering b-values

that one could use to gather interesting or well-defined results, i.e., those values of

b ∈ N2. In anticipation of our existence and uniqueness results, let us define the

following domain:

Definition 2.10. For j ∈ N0,

Dj := [b/4 + j(ν − 2), 3b/4 + j(ν − 2)] ∩ Nj(ν−2),

unless b = 2, in which case let Dj := {j(ν − 2)}.

Lemma 2.11. There exists γ ∈ (0, 1) such that for any τn

min
t∈Dn
Gn(t, τn) ≥ γ

(
max

t∈Nb+n(ν−2)
n(ν−2)

Gn(t, τn)

)
= γGn(τn + ν − 1, τn).
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Proof. For any t ∈ Dn, a set of a finite number of points, we have

Gn(t, τn)

max
t∈Nb+n(ν−2)

n(ν−2)

Gn(t, τn)
=

Gn(t, τn)

Gn(τn + ν − 1, τn)
∈ (0, 1],

since max
t∈Nb+n(ν−2)

n(ν−2)

Gn(t, τn) ≥ Gn(t, τn) for any t ∈ Nb+n(ν−2)
n(ν−2) and Gn(t, τn) 6= 0 for

t ∈ Dn ⊆ Nb+j(ν−2)−1
j(ν−2)+1 as a result of Theorem 2.7. Since t (and τn) comes from a

domain with a finite number of points, we can find γ such that

0 < γ < min
t∈Dn

Gn(t, τn)

Gn(τn + ν − 1, τn)
≤ 1.

Therefore, we have γ ∈ (0, 1) such that

min
t∈Dn
Gn(t, τn) ≥ γ

(
max

t∈Nb+n(ν−2)
n(ν−2)

Gn(t, τn)

)
= γGn(τn + ν − 1, τn).

We consider a fractional boundary value problem of the form



(−1)n∆ν
ν−2∆ν

2ν−4 · · ·∆ν
n(ν−2)y(t) = f(t, y(t+ n(ν − 2))), t ∈ Nb

0, n ∈ N,

y (n(ν − 2)) = 0 = y (b+ n(ν − 2)) ,

∆ν
(n−(i−1))(ν−2)∆

ν
(n−(i−2))(ν−2) · · ·∆ν

(n−1)(ν−2)∆
ν
n(ν−2)y ((n− i)(ν − 2)) = 0,

∆ν
(n−(i−1))(ν−2)∆

ν
(n−(i−2))(ν−2) · · ·∆ν

(n−1)(ν−2)∆
ν
n(ν−2)y (b+ (n− i)(ν − 2)) = 0,

(2.4.1)

where i = 1, 2, 3, . . . , n− 1, and f : Nb
0 × R→ R (and, still, ν ∈ (1, 2]).

We can note that y solves this fractional boundary value problem if and only if y
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is a fixed point of the operator T : B → B defined by

Ty :=

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn)f(τ1, y(τ1 + n(ν − 2)))

=

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1) · · ·

b∑
τ1=0

G1(τ2, τ1)f(τ1, y(τ1 + n(ν − 2))),

and where

B := {y : Nb+n(ν−2)
n(ν−2) → R | the boundary conditions of (2.4.1) hold} (2.4.2)

along with the supremum norm, ‖·‖, which, as in [27], is a Banach space. Let us define

the following constants (again, where b ≥ 2) which will appear in the next proof:

η :=

(
b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(τn + ν − 1, τn)

)−1

,

λ :=

(
b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(n(ν − 2) + 1, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1) · · ·

b+ν−2∑
τ2=ν−2

G2(τ3, τ2)
∑
τ1∈D0

G1(τ2, τ1)

)−1

.

Since G is nonzero and positive at least at some points in a nontrivial domain, both

η and λ will be positive real numbers. Also, consider two conditions regarding f that

will be used in the next theorem:

(C1) There exists a number r > 0 such that f(t, y) ≤ ηr whenever 0 ≤ y ≤ r.

(C2) There exists a number r > 0 such that f(t, y) ≥ λr whenever t ∈ D0 and

γr ≤ y ≤ r, where γ is as in Lemma 2.11.
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Remark 2.12. We may note that in what follows, we will be supposing that the

conditions above hold for different r-values. A function f may satisfy (C1) for r = r1,

and f might also satisfy (C2) at r = r2 such that r1 < γr2. Thus, (C1) indicates that

f is bounded above on one region while (C2) indicates that f is bounded below on

a second disjoint region. Thus, there are easily functions f which satisfy the above

conditions at distinct values of r. Also, it is important to note that a positive solution,

as referred to below, may take on the value of 0 but only at the endpoints.

Theorem 2.13. Suppose there exist positive and distinct r1 and r2 such that (C1)

holds at r = r1 and (C2) holds at r = r2. Suppose also that f(t, y) ≥ 0 and continuous.

Then the fractional boundary value problem (2.4.1) has at least one positive solution,

y0, such that ‖y0‖ lies between r1 and r2.

Proof. Without loss of generality, suppose 0 < r1 < r2. We will now consider the

set K := {y ∈ B | y(t) ≥ 0,mint∈Dn y(t) ≥ γ‖y‖} ⊆ B, where γ is as in Lemma 2.11.

Note that K is a cone: given y ∈ K, any positive scalar multiple of y is also in K,

and, since for y ∈ K we have y(t) ≥ 0, if −y ∈ K, then y ≡ 0. Now whenever y ∈ K,

we have (Ty)(t) ≥ 0, and

min
t∈Dn

(Ty)(t) = min
t∈Dn

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn)f(τ1, y(τ1 + n(ν − 2)))

≥ γ

 b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(τn + ν − 1, τn)f(τ1, y(τ1 + n(ν − 2)))


= γ

 max
t∈Nb+n(ν−2)

n(ν−2)

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn)f(τ1, y(τ1 + n(ν − 2)))


= γ‖Ty‖,

i.e., Ty ∈ K. So T : K → K. We can also note that T is a completely continuous
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operator.

Now let Ω1 := {y ∈ B : ‖y‖ < r1}. For y ∈ ∂Ω1, we have ‖y‖ = r1; therefore,

condition (C1) holds for all y ∈ ∂Ω1. Thus, for y ∈ K ∩ ∂Ω1, we have

‖Ty‖ = max
t∈Nb+n(ν−2)

n(ν−2)

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn)f(τ1, y(τ1 + n(ν − 2)))

≤
b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(τn + ν − 1, τn)f(τ1, y(τ1 + n(ν − 2)))

≤ ηr1

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(τn + ν − 1, τn)

= r1

= ‖y‖.

Therefore, ‖Ty‖ ≤ ‖y‖ whenever y ∈ K ∩ ∂Ω1, which implies that T is a cone

compression on K ∩ ∂Ω1.

Now let Ω2 := {y ∈ B : ‖y‖ < r2}. For y ∈ ∂Ω2, we have ‖y‖ = r2; therefore,
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condition (C2) holds for all y ∈ ∂Ω2. Thus, for y ∈ K ∩ ∂Ω2, we have

‖Ty‖

≥ (Ty) (n(ν − 2) + 1)

=

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn (n(ν − 2) + 1, τn) f(τ1, y(τ1 + n(ν − 2)))

=

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(n(ν − 2) + 1, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1) · · ·

b∑
τ1=0

G1(τ2, τ1)f(τ1, y(τ1 + n(ν − 2)))

≥
b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(n(ν − 2) + 1, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1) · · ·

∑
τ1∈D0

G1(τ2, τ1)f(τ1, y(τ1 + n(ν − 2)))

≥ λr2

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(n(ν − 2) + 1, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1) · · ·

∑
τ1∈D0

G1(τ2, τ1)

= r2

= ‖y‖.

Therefore, ‖Ty‖ ≥ ‖y‖ whenever y ∈ K ∩ ∂Ω2, which implies that T is a cone

expansion on K ∩ ∂Ω2. So now, by Theorem 2.2 we have that T has a fixed point,

which implies that our fractional boundary value problem has a positive solution y0

such that r1 ≤ ‖y0‖ ≤ r2.

Now we introduce a Lemma that will help show uniqueness under a Lipschitz

condition.
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Lemma 2.14. For Gn(t, τn) defined previously, we have

max
t∈Nb+n(ν−2)

n(ν−2)

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn) ≤
[

(b+ n− 2)nΓ(b+ ν)

bΓ(ν + 1)

]n
.

Proof. We have

Gj(τj + ν − 1, τj) =
1

Γ(ν)

(b− σ(τj) + j(ν − 2))ν−1

(b+ ν − 2)ν−1
(τj + ν − 1− (j − 1)(ν − 2))ν−1

=
1

Γ(ν)

(b− τj − 1 + j(ν − 2))ν−1

(b+ ν − 2)ν−1
(τj + ν − 1− (j − 1)(ν − 2))ν−1

=
1

Γ(ν)

Γ(b− τj + j(ν − 2))

Γ(b− τj + j(ν − 2)− ν + 1)

Γ(b)

Γ(b+ ν − 1)
(τj + ν − 1− (j − 1)(ν − 2))ν−1.

Now τj ∈ Nb+(j−1)(ν−2)
(j−1)(ν−2) , so when τj = b+ (j − 1)(ν − 2)− 1,

b− τj + j(ν − 2)− ν + 1 = b− b− (j − 1)(ν − 2) + 1 + j(ν − 2)− ν + 1 = 0,

and when τj = b+ (j − 1)(ν − 2),

b− τj + j(ν − 2)− ν + 1 = b− (b+ (j − 1)(ν − 2)) + j(ν − 2)− ν + 1 = −1.

Thus, for these two values of τj

Γ(b− τj + j(ν − 2))

Γ(b− τj + j(ν − 2)− ν + 1)
= 0,

noting that b− τj + j(ν − 2) will not be an integer except in the case that ν = 2, in

which case our work would be simplified from the beginning. Also note that when
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τj = b+ (j − 1)(ν − 2)− 2, we have

Γ(b− τj + j(ν − 2))

Γ(b− τj + j(ν − 2)− ν + 1)
=

Γ(ν)

Γ(1)
= Γ(ν) ≤ 1.

Now for τj ∈ Nb+(j−1)(ν−2)−3
(j−1)(ν−2) we have

b− τj + j(ν − 2) ≥ b− (b+ (j − 1)(ν − 2)− 3) + j(ν − 2) = ν + 1 > 2,

and

b− τj + j(ν − 2) ≤ b− τj

≤ b− (j − 1)(ν − 2)

= b+ (j − 1)(2− ν)

≤ b+ (j − 1)(1) = b+ j − 1,

while

b− τj + j(ν − 2)− ν + 1 ≥ b− (b+ (j − 1)(ν − 2)− 3)− ν + 1

= −(j − 1)(ν − 2)− ν + 3 + 1

= −j(ν − 2) + 2 ≥ 2.

Thus, for τj ∈ Nb+(j−1)(ν−2)−3
(j−1)(ν−2) , we have

Γ(b− τj + j(ν − 2))

Γ(b− τj + j(ν − 2)− ν + 1)
≤ Γ(b− τj)

Γ(2)
≤ Γ(b+ j − 1) = (b+ j − 2)!,
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so for all τj ∈ Nb+(j−1)(ν−2)
(j−1)(ν−2) ,

Γ(b− τj + j(ν − 2))

Γ(b− τj + j(ν − 2)− ν + 1)
≤ (b+ j − 2)!.

Therefore,

Gj(τj + ν − 1, τj)

=
1

Γ(ν)

Γ(b− τj + j(ν − 2))

Γ(b− τj + j(ν − 2)− ν + 1)

Γ(b)

Γ(b+ ν − 1)
(τj + ν − 1− (j − 1)(ν − 2))ν−1

≤ 1

Γ(ν)

(b+ j − 2)!Γ(b)

Γ(b+ ν − 1)
(τj + ν − 1− (j − 1)(ν − 2))ν−1

≤ 1

Γ(ν)

(b+ j − 2)!Γ(b)

Γ(b− 1)
(τj + ν − 1− (j − 1)(ν − 2))ν−1

=
1

Γ(ν)

(b+ j − 2)!(b− 1)!

(b− 2)!
(τj + ν − 1− (j − 1)(ν − 2))ν−1

=
(b− 1)(b+ j − 2)!

Γ(ν)
(τj + ν − 1− (j − 1)(ν − 2))ν−1.
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Now

max
t∈Nb+j(ν−2)

j(ν−2)

b+(j−1)(ν−2)∑
τj=(j−1)(ν−2)

Gj(t, τj)

≤
b+(j−1)(ν−2)∑
τj=(j−1)(ν−2)

(b− 1)(b+ j − 2)!

Γ(ν)
(τj + ν − 1− (j − 1)(ν − 2))ν−1

=
(b− 1)(b+ j − 2)!

Γ(ν)
· 1

ν
(τj + ν − 1− (j − 1)(ν − 2))ν

∣∣∣b+(j−1)(ν−2)+1

τj=(j−1)(ν−2)

=
(b− 1)(b+ j − 2)!

νΓ(ν)
[(b+ ν)ν − (ν − 1)ν ]

=
(b− 1)(b+ j − 2)!

Γ(ν + 1)
(b+ ν)ν

=
(b− 1)(b+ j − 2)!Γ(b+ ν + 1)

Γ(ν + 1)Γ(b+ 1)

=
(b+ j − 2)!Γ(b+ ν + 1)

Γ(ν + 1)b(b− 2)!

≤ (b+ n− 2)!Γ(b+ ν)

bΓ(ν + 1)(b− 2)!

=
(b+ n− 2)nΓ(b+ ν)

bΓ(ν + 1)
.

Therefore,

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn) =

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(t, τn)

b+(n−2)(ν−2)∑
τn−1=(n−2)(ν−2)

Gn−1(τn, τn−1)

· · ·
b∑

τ1=0

G1(τ2, τ1)

≤
[

(b+ n− 2)nΓ(b+ ν)

bΓ(ν + 1)

]n
,

giving us our result.

Here we prove a uniqueness theorem when f satisfies a Lipschitz condition.
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Theorem 2.15. Suppose f(t, y) satisfies a Lipschitz condition in y with Lipschitz

constant α, i.e., |f(t, y2) − f(t, y1)| ≤ α|y2 − y1| for all (t, y1), (t, y2). Then if[
(b+n−2)nΓ(b+ν)

bΓ(ν+1)

]n
< 1

α
, the fractional BVP (2.4.1) has a unique solution.

Proof. Let y1, y2 ∈ B, where B is the Banach space from (2.4.2). Then

‖Ty2 − Ty1‖

≤ max
t∈Nb+n(ν−2)

n(ν−2)

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

∣∣Gn(t, τn)
∣∣∣∣f(τ1, y2(τ1 + n(ν − 2)))

− f(τ1, y1(τ1 + n(ν − 2)))
∣∣

≤ α

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(τn + ν − 1, τn)
∣∣y2(τ1 + n(ν − 2))− y1(τ1 + n(ν − 2))

∣∣
≤ α‖y2 − y1‖

b+(n−1)(ν−2)∑
τn=(n−1)(ν−2)

Gn(τn + ν − 1, τn)

≤ α‖y2 − y1‖
[

(b+ n− 2)nΓ(b+ ν)

bΓ(ν + 1)

]n
,

which implies, by Theorem 2.3 (the Banach Contraction Theorem), we have a unique

solution since α
[

(b+n−2)nΓ(b+ν)
bΓ(ν+1)

]n
< 1.

Example 2.16. In the case n = 2, ν = 1.3, and α = 0.01, if f in 2.4.1 is Lipschitz

continuous with Lipschitz constant α, then Theorem 2.15 guarantees we will have a

unique solution if (
b(b− 1)Γ(b+ 1.3)

bΓ(2.3)

)2

< 100.

Solving for b (numerically) implies that bmax ≈ 4.011, where bmax is the largest value

of b such that the hypotheses of Theorem 2.15 are satisfied. If instead we have

α = 0.001, then bmax ≈ 5.182.
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Chapter 3

Discrete q-Calculus

This chapter is largely the result of joint collaboration to produce a paper that in-

corporates and extends some results regarding calculus on a q-time scale [12]. In this

chapter, we introduce the q-calculus, highlight definitions and properties of important

functions and operators on a q-time scale, and solve initial value problems.

3.1 Preliminaries

The functions that we are considering are defined on sets of the form

aqN0 :=
{
a, aq, aq2, . . .

}
,

where a, q ∈ R, a > 0 and q > 1. We will also consider sets of the form

aqN
n
0 :=

{
a, aq, aq2, . . . , aqn

}
,

where n ∈ N.
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Definition 3.1. We define the forward jump operator σ by

σ(t) := qt

for t ∈ aqNn−1
0 .

3.2 The q-Difference and q-Integral

The derivative is the rate of change from one point to the next. For our domain, aqN0 ,

the horizontal change is σ(t)− t, and the vertical change is f(σ(t))− f(t). Thus, we

have the following definition.

Definition 3.2. Let f : aqN
n
0 → R. We define the q-difference ∆q by

∆qf(t) :=
f(σ(t))− f(t)

µ(t)

where µ(t) = σ(t)− t = t(q− 1) and t ∈ aqNn−1
0 . We also define ∆n

q f(t), n = 1, 2, 3, ...

recursively by ∆q(∆
n−1
q f(t)) and ∆0

q to be the identity operator.

Remark 3.3. We could suppress the subscript on ∆q since throughout this chapter,

the difference represented by ∆ will always be the q-difference, but we will leave it

there as other works have shown the subscript throughout (both in places where ∆

would and would not be ambiguous).

Theorem 3.4. Assume f, g : aqN
n
0 → R and α ∈ R. Then for t ∈ aqNn−1

0

(i) ∆qα = 0;

(ii) ∆qαf(t) = α∆qf(t);

(iii) ∆q(f(t) + g(t)) = ∆qf(t)+∆qg(t);
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(iv) ∆q(f(t)g(t)) =f(σ(t))∆qg(t) + ∆q(f(t))g(t);

(v) ∆q
f(t)
g(t)

=g(t)∆qf(t)−f(t)∆qg(t)

g(σ(t))g(t)
,

where in (v) we assume that g(t) 6= 0 for t ∈ aqNn0 .

Proof. The proofs of (i), (ii), and (iii) follow easily from the definition of the q-

difference as

∆qα =
α− α
µ(t)

= 0,

∆qαf(t) =
αf(σ(t))− αf(t)

µ(t)
= α

f(σ(t))− f(t)

µ(t)
= α∆qf(t),

and

∆q(f(t) + g(t)) =
(f(σ(t)) + g(σ(t)))− (f(t) + g(t))

µ(t)

=
(f(σ(t))− f(t)) + (g(σ(t))− g(t))

µ(t)

=
f(σ(t))− f(t)

µ(t)
+
g(σ(t))− g(t)

t(q − 1)

= ∆qf(t) + ∆qg(t).

To see (iv), consider

∆q(f(t)g(t)) =
f(σ(t))g(σ(t))− f(t)g(t)

µ(t)

=
f(σ(t))g(σ(t))− f(σ(t))g(t) + f(σ(t))g(t)− f(t)g(t)

µ(t)

=
f(σ(t))[g(σ(t))− g(t)] + g(t)[f(σ(t))− f(t)]

µ(t)

= f(σ(t))∆qg(t) + g(t)∆qf(t).
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The proof of (v) employs a similar trick to that of (iv), for

∆q
f(t)

g(t)
=

f(σ(t))
g(σ(t))

− f(t)
g(t)

µ(t)

=
f(σ(t))g(t)− f(t)g(σ(t))

µ(t)g(σ(t))(g(t))

=
f(σ(t))g(t) + f(t)g(t)− f(t)g(t)− f(t)g(σ(t))

µ(t)g(σ(t))g(t)

=
g(t)[f(σ(t))− f(t)]

µ(t)g(σ(t))g(t)
− f(t)[g(σ(t))− g(t)]

µ(t)g(σ(t))g(t)

=
g(t)∆qf(t)− f(t)∆qg(t)

g(σ(t))g(t)
.

Definition 3.5. For n ∈ R, we define [n]q by

[n]q :=
qn − 1

q − 1
.

Note that when n ∈ N

[n]q := 1 + q + q2 + . . .+ qn−1.

Also, we define [n]q! by

[n]q! := [n]q[n− 1]q . . . [2]q[1]q, [0]q! := 1.

Next we define the q-falling function. While we do not extend the definition to

fractional falling powers for q ∈ (1,∞) here, one can do this similarly to previous

work in this thesis with respect to the time scale Na while using a Gamma function

as presented in [26], [33], or [40].
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Definition 3.6. On the time scale aqN0 , and for n ∈ N, the q-falling function, (β−α)n,

is defined to be

(β − α)n :=
n−1∏
k=0

(β − αqk), (β − α)0 := 1,

for β, α ∈ R.

Remark 3.7. Though the definition above only requires β, α ∈ R, in application, we

generally have β, α ∈ aqN0 .

Remark 3.8. We may note that earlier on Na, we defined

(t− c)n = (t− c)(t− c− 1)(t− c− 2) · · · (t− c− n+ 1).

We may view this definition as either

(i) (t− c)n =
n−1∏
k=0

(t− σk(c)), or as

(ii) (t− c)n =
n−1∏
k=0

ρk(t− c).

The definition above takes the view of case (i). It tends to imply that t, c ∈ aqN0

and is consistent with [33]; it is the definition that will be used in what follows in

this chapter. The view of case (ii) tends to imply t − c ∈ aqN0 ; it is consistent with

the definition of the falling function on a mixed time scale, as seen in [25] and in

the following chapter. While this difference in views of definition is not of utmost

importance to this work overall, one might find that there are could be significant

differences in results by taking one view over the other.

Remark 3.9. When looking at the domain aqN0 , there is interest in results for the

case when q ∈ (0, 1) [6]. On a domain of this type, one can define a fractional q-falling
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function. To motivate the definition of the q-falling function where n is not a positive

integer, note the following:

(β − α)n =
n−1∏
k=0

(β − αqk) = βn
n−1∏
k=0

(1− α

β
qk)

= βn
∏n−1

k=0(1− α
β
qk)
∏∞

r=n(1− α
β
qr)∏∞

r=n(1− α
β
qr)

= βn
∏∞

k=0(1− α
β
qk)∏∞

k=0(1− α
β
qk+n)

.

Using this motivation, we define the fractional q-falling function for

q ∈ (0, 1).

Definition 3.10. With respect to aqN0 , the fractional q-falling function is defined as

(β − α)ν := βν
∏∞

k=0(1− α
β
qk)∏∞

k=0(1− α
β
qk+ν)

for β, α, ν ∈ R.

Remark 3.11. Note that in the above definition, both products can be shown to

converge here for q ∈ (0, 1): we have that
∏∞

k=0

(
1 +

(
−α
β
qk
))

converges if and only

if
∑∞

k=0

(
−α
β
qk
)

converges, and
∑∞

k=0

(
−α
β
qk
)

= −α
β

∑∞
k=0 q

k converges since it is a

geometric series with ratio q ∈ (0, 1).

The next two theorems highlight some results for such q.

Theorem 3.12. The following are properties of the q-falling function for ν, γ, α, β ∈ R

and q ∈ (0, 1):

(i) (β − α)ν+γ = (β − α)ν(β − qνα)γ;

(ii) (γβ − γα)ν = γν(β − α)ν;
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(iii) For t, s ∈ aqN0 such that t ≥ s and ν /∈ N0, (t− s)ν = 0.

Proof. (i) Given ν, γ, α, and β as above,

(β − α)ν+γ = βν+γ

∏∞
k=0(1− α

β
qk)∏∞

k=0(1− α
β
qk+ν+γ)

= βν+γ

∏∞
k=0(1− α

β
qk)∏∞

k=0(1− α
β
qk+ν+γ)

∏∞
k=0(1− αqν

β
qk)∏∞

k=0(1− α
β
qk+ν)

= βν
∏∞

k=0(1− α
β
qk)∏∞

k=0(1− α
β
qk+ν)

βγ
∏∞

k=0(1− αqν

β
qk)∏∞

k=0(1− α
β
qk+ν+γ)

= (β − α)ν(β − qνα)γ.

(ii) Given ν, γ, α, and β as above,

(γβ − γα)ν = (γβ)ν
∏∞

k=0(1− αγ
βγ
qk)∏∞

k=0(1− αγ
βγ
qk+ν)

= γνβν
∏∞

k=0(1− α
β
qk)∏∞

k=0(1− α
β
qk+ν)

= γν(β − α)ν .

(iii) Let t = aqn and s = aqm such that n ≥ m, and let ν /∈ N0.

(t− s)ν = (aqn − aqm)ν

= (aqn)ν
∏∞

k=0(1− aqm

aqn
qk)∏∞

k=0(1− aqm

aqn
qk+ν)

= (aqn)ν
∏∞

k=0(1− qm−nqk)∏∞
k=0(1− qm−nqk+ν)

= (aqn)ν(1− qm−nqn−m)

∏n−m−1
k=0 (1− qm−nqk)

∏∞
k=n−m+1(1− qm−nqk)∏∞

k=0(1− qm−nqk+ν)

= 0
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Remark 3.13. Regarding part (iii) of the previous theorem, if ν ∈ N0, then for

t = aqn and s = aqm such that n ≥ m the result still holds if ν ≥ n−m + 1 for any

q ≥ 0.

Theorem 3.14. For t ∈ aqN0 and α, ν ∈ R, n ∈ N and q ∈ (0, 1), the following

equalities hold.

(i) ∆q(t− α)ν = qν−1[ν]1/q(σ(t)− α)ν−1;

(ii) ∆q(α− t)ν = −qν−1[ν]1/q(α− t)ν−1.

Proof. (i) By direct calculation,

∆q(t− α)ν = ∆qt
ν

∏∞
k=0(1− α

t
qk)∏∞

k=0(1− α
t
qk+ν)

=

(
t

q

)ν ∏∞
k=0(1− α

t
qk+1)∏∞

k=0(1− α
t
qk+ν+1)

− tν
∏∞

k=0(1− α
t
qk)∏∞

k=0(1− α
t
qk+ν)

µ(t)

=

(
t

q

)ν ∏∞
k=0(1− α

t
qk+1)∏∞

k=0(1− α
t
qk+ν+1)

(1− α
t
qν)

(1− α
t
qν)
− tν

∏∞
k=0(1− α

t
qk)∏∞

k=0(1− α
t
qk+ν)

µ(t)

= tν
∏∞

k=0

(
1− α

t
qk+1

)∏∞
k=0

(
1− α

t
qk+ν

)

(

1
q

)ν (
1− α

t
qν
)
−
(
1− α

t

)
t
(

1
q
− 1
)


= tν−1

∏∞
k=0

(
1− α

t
qk+1

)∏∞
k=0

(
1− α

t
qk+ν

)

(

1
q

)ν
− α

t
− 1 + α

t

1
q
− 1


= qν−1

(
t

q

)ν−1 ∏∞
k=0

(
1− α

t
qk+1

)∏∞
k=0

(
1− α

t
qk+ν

) [ 1
qν
− 1

1
q
− 1

]

= qν−1[ν]1/q(σ(t)− α)ν−1.
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(ii) Again, by direct calculation,

∆q(α− t)ν = ∆qα
ν

∏∞
k=0(1− t

α
qk)∏∞

k=0(1− t
α
qk+ν)

=

αν
∏∞

k=0(1− t
α
qk−1)∏∞

k=0(1− t
α
qk+ν−1)

− αν
∏∞

k=0(1− t
α
qk)∏∞

k=0(1− t
α
qk+ν)

µ(t)

=

αν
∏∞

k=0(1− t
α
qk−1)∏∞

k=0(1− t
α
qk+ν−1)

− αν
∏∞

k=0(1− t
α
qk)∏∞

k=0(1− t
α
qk+ν)

(1− t
α
qν−1)

(1− t
α
qν−1)

µ(t)

= αν
∏∞

k=0(1− t
α
qk)∏∞

k=0(1− t
α
qk+ν−1)

(1− t
α
q−1)− (1− t

α
qν−1)

t
(

1
q
− 1
)


= αν

∏∞
k=0(1− t

α
qk)∏∞

k=0(1− t
α
qk+ν−1)

· t
α

[
qν−1(1− 1

qν
)

t(1
q
− 1)

]

= αν−1

∏∞
k=0(1− t

α
qk)∏∞

k=0(1− t
α
qk+ν−1)

(−qν−1)[ν]1/q

= −qν−1[ν]1/q(α− t)ν−1

Definition 3.15. The nth Taylor monomial, hn(t, α) , is defined as

hn(t, α) :=
(t− α)n

[n]q!

for t ∈ aqN0 , α ∈ R, and n ∈ N.

Remark 3.16. We also define the Taylor monomials for a mixed time scale in the

following chapter, of which aqNa is a particular example. For other examples of Taylor

monomials calculated for different time scales, see [31].
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Theorem 3.17. For t ∈ aqN0 and α, ν ∈ R, n ∈ N,

∆qhn(t, α) = hn−1(t, α).

Proof. Given t, α, ν, and n as in the statement of the theorem,

∆qhn(t, α) = ∆q
(t− α)n

[n]q!

= [n]q
(t− α)n−1

[n]q!

=
(t− α)n−1

[n− 1]q!

= hn−1(t, α).

Remark 3.18. With regard to what follows, especially the next definition, any sum

or product should be understood to only consider elements of our domain, aqN0 . For

example,

t∑
s=a

f(s) =
∑

s∈aqN
logq

t
a

a

f(s) = f(a) + f(aq) + · · ·+ f(t/q) + f(t).

At times, however, the operators will function normally. How the operator functions

will be clear from context. By observing the expression within the operator, one can

know how the operator itself is to be handled. If we let t = aqn, then one can consider

the sum above given in the equivalent form

n∑
k=0

f(aqk) = f(a) + f(aq) + · · ·+ f(aqn−1) + f(aqn).
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One could also make use of an index function as seen in the next chapter.

Definition 3.19. Let f : aqN0 → R and c, t ∈ aqN0 . We define the integral by

∫ t

c

f(s) ∆qs :=


∑t/q

s=c f(s)µ(s), t > c

0, t ≤ c

.

Note that the integral is simply a left-hand Riemann sum.

The following theorem gives some properties of the integral.

Theorem 3.20. Assume f, g : aqN
n
0 → R and b, c, d ∈ aqNn−1

0 , with

b < c < d. Then, for α ∈ R,

(i)
∫ c
b
αf(t) ∆qt = α

∫ c
b
f(t) ∆qt;

(ii)
∫ c
b
(f(t) + g(t)) ∆qt =

∫ c
b
f(t) ∆qt+

∫ c
b
g(t) ∆qt;

(iii)
∫ b
b
f(t) ∆qt = 0;

(iv)
∫ d
b
f(t) ∆qt =

∫ c
b
f(t) ∆qt+

∫ d
c
f(t) ∆qt;

(v) |
∫ c
b
f(t) ∆qt| ≤

∫ c
b
|f(t)|∆qt;

(vi) if f(t) ≥ g(t) for t ∈ {b, bq, . . . , c
q
}, then

∫ c
b
f(t) ∆qt ≥

∫ c
b
g(t) ∆qt;

(vii) if F (t) :=
∫ t
b
f(s) ∆qs, then ∆qF (t) = f(t), t ∈ {b, bq, . . . , n}.

Proof. Recall that the integral is defined to be a sum. Thus, properties (i)-(vi)

regarding the integral hold since the corresponding properties for sums hold.

To prove (vii), consider

∆qF (t) =

∑t
s=b f(s)µ(s)−

∑t/q
s=b f(s)µ(s)

µ(t)
=
f(t)µ(t)

µ(t)
= f(t).
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Using the product rules proved in Theorem 2.2, we can prove the following inte-

gration by parts theorem.

Theorem 3.21. (Integration By Parts) Given two functions

u, v : aqN0 → R and b, c ∈ aqN0 , b < c, we have the following integration by parts

formulas:

(i)
∫ c
b
u(t)∆qv(t) ∆qt = u(t)v(t)

∣∣∣c
b
−
∫ c
b
v(σ(t))∆qu(t) ∆qt;

(ii)
∫ c
b
u(σ(t))∆qv(t) ∆qt = u(t)v(t)

∣∣∣c
b
−
∫ c
b
v(t)∆qu(t) ∆qt.

Proof.

(i) Assume u, v : aqN0 → R and b, c ∈ aqN0 , b < c. Using the product rule we can

obtain

∆q(u(t)v(t)) = ∆q(u(t))v(σ(t)) + u(t)∆qv(t)

=⇒ u(t)∆qv(t) = ∆q(u(t)v(t))−∆q(u(t))v(σ(t)).

Integrating both sides we obtain the following:

∫ c

b

u(t)∆qv(t) ∆qt =

∫ c

b

∆q(u(t)v(t)) ∆qt−
∫ c

b

∆qu(t)v(σ(t)) ∆qt

=⇒
∫ c

b

u(t)∆qv(t) ∆qt = u(t)v(t)
∣∣∣c
b
−
∫ c

b

v(σ(t))∆qu(t) ∆qt.

(ii) Assume u, v : aqN0 → R and b, c ∈ aqN0 , b < c. Using a variation of the product
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rule we can obtain

∆q(u(t)v(t)) = ∆q(u(t))v(t) + u(σ(t))∆qv(t)

=⇒ u(σ(t))∆qv(t) = ∆q(u(t)v(t))−∆q(u(t))v(t).

Integrating both sides we obtain the following:

∫ c

b

u(σ(t))∆qv(t) ∆qt =

∫ c

b

∆q(u(t)v(t)) ∆qt−
∫ c

b

∆qu(t)v(t) ∆qt

=⇒
∫ c

b

u(σ(t))∆qv(t) ∆qt = u(t)v(t)
∣∣∣c
b
−
∫ c

b

v(t)∆qu(t) ∆qt.

Definition 3.22. Assume f : aqN
n
0 → R. F(t) is an antidifference of f(t) on aqN

n
0

provided

∆qF (t) = f(t), t ∈ aqN
n−1
0 .

Theorem 3.23. If f : aqN
n
0 → R and G(t) is an antidifference of f(t) on aqN

n
0 , then

F (t) = G(t) + C is a general antidifference of f(t).

Proof. Assume G(t) is an antidifference of f(t) on aqN
n
0 .

Let F (t) = G(t) + C, where C is constant and t ∈ aqNn0 . Then

∆qF (t) = ∆q(G(t) + C) = ∆qG(t) + ∆qC = ∆qG(t) + 0 = f(t), t ∈ aqN
n−1
0

and so F (t) is an antidifference of f(t) on aqN
n
0 . Conversely, assume F (t) is an
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antidifference of f(t) on aqN
n
0 . Then

∆q(F (t)−G(t)) = ∆qF (t)−∆qG(t) = f(t)− f(t) = 0

for t ∈ aqNn−1
0 . This implies F (t)−G(t) = C, for t ∈ aqNn0 . Hence

F (t) = G(t) + C, t ∈ aqNn0 .

Theorem 3.24. (Fundemental Theorem of q-Calculus)

Assume f : aqN
n
0 → R and F (t) is any antidifference of f(t) on aqN

n
0 . Then

∫ t

a

f(s) ∆qs =

∫ t

a

∆qF (s) ∆qs = F (s)
∣∣∣t
a
.

Proof. Assume F (t) is any antidifference of f(t) on aqN
n
0 . Let

G(t) :=

∫ t

a

f(s) ∆qs, t ∈ aqNn0 .

By Theorem 2.13 (vii), G(t) is an antidifference of f(t). Hence, by the previous

theorem, F (t) = G(t) + C, where C is a constant. Then

F (s)
∣∣∣t
a

= F (t)− F (a)

= (G(t) + C)− (G(a) + C))

= G(t)−G(a).
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By Theorem 2.13 (iii), G(a) = 0

=⇒ F (s)
∣∣∣t
a

=

∫ t

a

f(t) ∆qt.

3.3 The q-Exponential

Recall from traditional calculus that x(t) = ept is the unique solution of the following

initial value problem 
x′ = px,

x(0) = 1.

We will define our exponential function in this manner by finding the solution to the

following initial value problem

 ∆qx(t) = p(t)x(t),

x(a) = 1.

To see what the solution of the initial value problem will be, we will generate a pattern

recursively. We start at t = a to find x(aq):

∆qx(a) =
x(aq)− x(a)

µ(a)
= p(a)x(a) = p(a)

=⇒ x(aq) = 1 + µ(a)p(a).

Similarly, we find x(aq2):

∆qx(aq) =
x(aq2)− x(aq)

µ(aq)
= p(aq)x(aq) = p(aq)(1 + µ(a)p(a)),
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which implies

x(aq2) = 1 + µ(a)p(a) + µ(aq)p(aq)(1 + µ(a)p(a))

= (1 + µ(a)p(a))(1 + µ(aq)p(aq)).

Solving for x(aq3) we obtain

x(aq3) = (1 + µ(a)p(a))(1 + µ(aq)p(aq))(1 + µ(aq2)p(aq2)).

Continuing inductively, the solution of the initial value problem can be written as

t/q∏
s=a

(1 + µ(s)p(s)).

This analysis leads to the definition of the exponential function on our domain. Later,

it will be shown this does satisfy the above initial value problem.

Definition 3.25. The q-exponential function ep(t, a) is defined to be

ep(t, a) :=

t/q∏
s=a

(1 + µ(s)p(s)).

Remark 3.26. If c > d in
∏d

s=c f(s), then we consider this an empty product. In

other words,
∏d

s=c f(s) = 1.

Remark 3.27. It is worth noting that the definition above differs from the two q-

exponential function definitions given in [33]. For examples of exponential functions

on other time scales, see [20].

In order to develop analogues of certain familiar laws of exponents, we can define

circle operators which, in the discrete q-calculus, will behave similarly to the related
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operators in real calculus.

Definition 3.28. We define ⊕ by

(p⊕ r)(t) := p(t) + r(t) + µ(t)p(t)r(t).

Theorem 3.29. ep(t, a)er(t, a) = ep⊕r(t, a).

Proof.

ep(t, a)er(t, a) =

t/q∏
s=a

[1 + µ(s)p(s)]

t/q∏
`=a

[1 + µ(`)r(`)]

=

t/q∏
s=a

[(1 + µ(s)p(s))(1 + µ(s)r(s))]

=

t/q∏
s=a

[1 + µ(s)r(s) + µ(s)p(s) + µ2(s)p(s)r(s)]

=

t/q∏
s=a

[1 + µ(s)[p(s) + r(s) + µ(s)p(s)r(s)]]

=

t/q∏
s=a

[1 + µ(s)[p(s)⊕ r(s)]]

= ep⊕r(t, a).

Definition 3.30. We define the set of regressive functions, Rq, by

Rq :=
{
p : aqN0 → C | 1 + µ(t)p(t) 6= 0 ∀t

}
.
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We also define the set of regressive constant functions in the following way.

Rc
q := C ∩Rq = {α ∈ C : α 6= − 1

µ(t)
∀t},

where C is the set of all complex constant functions.

Theorem 3.31. Rq, ⊕ is an Abelian group.

Proof. Let p(t), `(t), r(t) ∈ Rq throughout. First we check for commutativity:

p(t)⊕ r(t) = p(t) + r(t) + µ(t)p(t)r(t)

= r(t) + p(t) + µ(t)r(t)p(t)

= r(t)⊕ p(t).

Next we check for associativity:

(p(t)⊕ `(t))⊕ r(t) = (p(t) + `(t) + µ(t)p(t)`(t))⊕ r(t)

= (p(t) + `(t) + µ(t)p(t)`(t)) + r(t)

+ µ(t)[p(t) + `(t) + µ(t)p(t)`(t)]r(t)

= p(t) + `(t) + r(t) + µ(t)p(t)`(t)

+ µ(t)p(t)r(t) + µ(t)`(t)r(t) + µ2(t)p(t)`(t)r(t)

= p(t) + `(t) + r(t) + µ(t)`(t)r(t)

+ p(t)`(t)µ(t) + p(t)r(t)µ(t) + µ2(t)p(t)`(t)r(t)

= p(t) + [`(t) + r(t) + µ(t)`(t)r(t)]

+ p(t)[`(t) + r(t) + µ(t)`(t)r(t)]µ(t)

= p(t)⊕ (`(t)⊕ r(t)).
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To check for closure, keep in mind that 1 + µ(t)p(t) 6= 0 and 1 + µ(t)`(t) 6= 0 since

p(t), `(t) ∈ Rq. We want to show that 1 + µ(t)[p(t)⊕ `(t)] 6= 0:

1 + µ(t)[p(t)⊕ `(t)] = 1 + µ(t)[p(t) + `(t) + µ(t)p(t)`(t)]

= 1 + µ(t)p(t) + µ(t)`(t) + µ2(t)p(t)`(t)

= (1 + µ(t)p(t))(1 + µ(t)`(t))

6= 0

=⇒ p(t)⊕ `(t) ∈ Rq.

Now we show that the zero function, 0, is the identity element in Rq: we see that

0 ∈ Rq since 1 + µ(t)(0) = 1 6= 0, and

0⊕ p(t) = p(t)⊕ 0 = 0 + p(t) + µ(t)(0)p(t) = p(t).

To show that every element in Rq has an additive inverse in Rq, let p̃(t) := −p(t)
1+µ(t)p(t)

.

We have that

1 + µ(t)p̃(t) = 1 +
−µ(t)p(t)

1 + µ(t)p(t)
=

1

1 + µ(t)p(t)
6= 0.

Thus p̃(t) ∈ Rq, and

p(t)⊕ p̃(t) = p(t)⊕ −p(t)
1 + µ(t)p(t)

= p(t) +
−p(t)

1 + µ(t)p(t)
+
−µ(t)p2(t)

1 + µ(t)p(t)

=
p(t)(1 + µ(t)p(t))− p(t)− µ(t)p2(t)

1 + µ(t)p(t)

= 0,
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showing that p̃(t) is the additive inverse of p(t). Thus, we have that Rq, ⊕ is an

Abelian group.

Definition 3.32. We define 	 by

	p(t) =
−p(t)

1 + µ(t)p(t)
,

the additive inverse of p(t) in Rq. As a binary operator, we define 	 by

p(t)	 `(t) := p(t)⊕ [	`(t)]

= p(t)− `(t)

1 + µ(t)`(t)
− µ(t)p(t)`(t)

1 + µ(t)`(t)

=
p(t)− `(t)

1 + µ(t)`(t)
.

Theorem 3.33. Assume p(t), `(t) ∈ Rq and t, s ∈ aqN0. Then

(i) e0(t, a) = 1 and ep(t, t) = 1;

(ii) ep(t, a) 6= 0, for any t ∈ aqN0;

(iii) if 1 + µ(t)p(t) > 0, then ep(t, a) > 0;

(iv) ep(σ(t), a) = [1 + µ(t)p(t)]ep(t, a);

(v) ∆qep(t, a) = pep(t, a);

(vi) ep(t, s)ep(s, a) = ep(t, a);

(vii) e	p(t, a) = 1
ep(t,a)

;

(viii) ep(t,a)

e`(t,a)
= ep	`(t, a);

(ix) for p, ` ∈ Rc
q and |p| < |`|, limt→∞ ep	`(t, a) = 0.
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Proof.

(i) e0(t, a) =
∏t/q

s=a(1 + 0) = 1, and ep(t, t) =
∏t/q

s=t(1 + µ(s)p(s)) = 1 by our

convention on products.

(ii) By way of contradiction, assume that there is a t ∈ aqN0 such that ep(t, a) = 0.

Since, by definition, ep(t, a) =
∏t/q

s=a(1+µ(s)p(s)), then there must be an s such

that 1 + µ(s)p(s) = 0. However, this contradicts the fact that p(t) ∈ Rq. Thus

we have that ep(t, a) 6= 0.

(iii) Assume that 1 + µ(t)p(t) > 0 for all t. Then,∏t/q
s=a(1 + µ(s)p(s)) > 0. Therefore, we conclude that ep(t, a) > 0.

(iv) By direct calculation,

ep(σ(t), a) =
t∏

s=a

(1 + µ(s)p(s))

= [1 + µ(t)p(t)]

t/q∏
s=a

(1 + µ(s)p(s))

= [1 + µ(t)p(t)]ep(t, a).

(v) By definition of the delta difference and property (iv) above,

∆qep(t, a) =
ep(σ(t), a)− ep(t, a)

µ(t)

=
(1 + µ(t)p(t))ep(t, a)− ep(t, a)

µ(t))

=
ep(t, a)(1 + p(t)µ(t)− 1)

µ(t)

= p(t)ep(t, a).
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(vi) By definition of our exponential function,

ep(t, s)ep(s, a) =

s/q∏
r=a

(1 + µ(r)p(r))

t/q∏
k=s

(1 + µ(k)p(k))

=

t/q∏
r=a

(1 + µ(r)p(r))

= ep(t, a).

(vii) By definition of 	,

e	p(t, a) =

t/q∏
s=a

(
1 +

−p(s)
1 + µ(s)p(s)

µ(s)

)

=

t/q∏
s=a

1

1 + µ(s)p(s)

=
1∏t/q

s=a(1 + µ(s)p(s))

=
1

ep(t, a)
.
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(viii) By direct calculation,

ep(t, a)

e`(t, a)
=

∏t/q
s=a(1 + µ(s)p(s))∏t/q
s=a(1 + µ(s)`(s))

=

t/q∏
s=a

(1 + µ(s)p(s))

(1 + µ(s)`(s))

=

t/q∏
s=a

(1 + µ(s)p(s)) + µ(s)`(s)− µ(s)`(s)

1 + µ(s)`(s)

=

t/q∏
s=a

[1 +
µ(s)p(s)− µ(s)`(s)

1 + µ(s)`(s)
]

=

t/q∏
s=a

[1 + µ(s)
p(s)− `(s)

1 + µ(s)`(s)
]

=

t/q∏
s=a

[1 + µ(s)(p(s)	 `(s))]

= ep	`(t, a).

(ix) Assume p, ` ∈ Rc
q such that |p| < |`|. Then

lim
t→∞
|ep	`(t, a)| = lim

t→∞

∣∣∣∏t/q
s=a(1 + µ(s)p)∏t/q
s=a(1 + µ(s)`)

∣∣∣ =
∞∏
s=a

∣∣∣(1 + µ(s)p)

(1 + µ(s)`)

∣∣∣.
Consider the limit

lim
t→∞

∣∣∣(1 + µ(t)p)

(1 + µ(t)`)

∣∣∣ =
|p|
|`|

< 1.

We can then assert that there is a t0 such that for all t ≥ t0

∣∣∣(1 + µ(t)p)

(1 + µ(t)`)

∣∣∣ ≤ δ0,
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for some constant δ0 such that |p||`| ≤ δ0 < 1.

=⇒ 0 ≤ lim
t→∞
|ep	`(t, a)|

=

t0/q∏
s=a

∣∣∣(1 + µ(s)p)

(1 + µ(s)`)

∣∣∣ ∞∏
r=t0

∣∣∣(1 + µ(r)p)

(1 + µ(r)`)

∣∣∣
≤

t0/q∏
s=a

∣∣∣(1 + µ(s)p)

(1 + µ(s)`)

∣∣∣ ∞∏
r=t0

δ0

= 0.

To define a circle dot multiplication, we consider using circle plus addition, ⊕,

multiple times on an element from our set. From this, one can see a pattern that

motivates the definition for circle dot multiplication.

n terms︷ ︸︸ ︷
p⊕ p⊕ · · · ⊕ p =

n∑
k=1

(
n

k

)
µk−1(t)pk(t)

=
1

µ(t)

n∑
k=1

(
n

k

)
µk(t)pk(t)

=

∑n
k=0

(
n
k

)
µk(t)pk(t)− 1

µ(t)

=
(1 + µ(t)p(t))n − 1

µ(t)
.

Definition 3.34. We define a circle dot multiplication, �, by

α� p :=
(1 + µ(t)p(t))α − 1

µ(t)
,

for α ∈ R.
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Theorem 3.35. If α ∈ R and p(t) ∈ Rq, then

eαp (t, a) = eα�p(t, a).

Proof. Assume that α ∈ R and p(t) ∈ Rq.

eαp (t, a) =

 t/q∏
s=a

(1 + µ(s)p(s))

α

=

t/q∏
s=a

(1 + µ(s)p(s))α

=

t/q∏
s=a

(
1 + µ(s)

(1 + µ(s)p(s))α − 1

µ(s)

)

=

t/q∏
s=a

(1 + µ(s)(α� p))

= eα�p(t, a).

Lemma 3.36. If p(t), `(t) ∈ Rq and ep(t, a) = e`(t, a), then p(t) = `(t).

Proof. We assume that p(t), `(t) ∈ Rq and ep(t, a) = e`(t, a). Thus, we have that

∆qep(t, a) = ∆qe`(t, a), which implies that p(t)ep(t, a) = `(t)eq(t, a). Dividing by

ep(t, a) = e`(t, a), we get that p(t) = `(t).

Definition 3.37. The set of positively regressive functions, R+
q , is defined by

R+
q := {p(t) : 1 + µ(t)p(t) > 0} .

Notice that R+
q is a sub-group of Rq. The details of this proof are left to the reader.
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Theorem 3.38. The set R+
q with ⊕ and � is a vector space.

Proof. Since we have already proved that R+
q with ⊕ is an Abelian group, it only

remains to show the following, where α, β ∈ R and p(t) ∈ R+
q .

First, we show associativity of scalar multiplication.

eα�(β�p)(t, a) = [eβ�p(t, a)]α

= [ep(t, a)β]α

= [ep(t, a)]αβ

= eαβ�p(t, a).

Therefore, by the previous lemma, α� (β � p) = (αβ)� p.

Next, we show the distributivity of scalar sums.

e(r+s)�p(t, a) = [ep(t, a)]r+s

= [ep(t, a)]r[ep(t, a)]s

= er�p(t, a)es�p(t, a)

= e(r�p)⊕(s�p)(t, a).

Therefore, by the previous lemma, (r + s)� p(t) = (r � p(t))⊕ (s� p(t)).
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Now, we show a distributive property involving ⊕. Let r ∈ R and p(t), `(t) ∈ Rq.

er�(p⊕`)(t, a) = [ep⊕`(t, a)]r

= [ep(t, a)e`(t, a)]r

= [ep(t, a)]r[eq(t, a)]r

= er�p(t, a)er�`(t, a)

= e(r�p)⊕(r�`)(t, a).

Therefore, by the previous lemma,

r � (p(t)⊕ `(t)) = (r � p(t))⊕ (r � `(t)).

Finally, we show that we have a scalar multiplicative identity.

1� p =
1 + µ(t)p(t)− 1

µ(t)
=
µ(t)p(t)

µ(t)
= p(t).

Thus, we have that the constant function 1 is our multiplicative identity.

Definition 3.39. For ±p(t) ∈ Rq ,the generalized hyperbolic sine and cosine func-

tions are defined as follows:

coshp(t, a) :=
ep(t, a) + e−p(t, a)

2
,

sinhp(t, a) :=
ep(t, a)− e−p(t, a)

2
.

Following these definitions, we arrive at the following theorem concerning some

properties of the generalized hyperbolic sine and cosine functions on aqN0 .

Theorem 3.40. Assume ±p(t) ∈ Rq, t ∈ aqN0. Then
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(i) cosh2
p(t, a)− sinh2

p(t, a) =
∏t/q

s=a(1− µ2(s)p2(s));

(ii) ∆q coshp(t, a) = p(t) sinhp(t, a);

(iii) ∆q sinhp(t, a) = p(t) coshp(t, a);

Proof. We can see that (i) holds by direct calculation:

cosh2
p(t, a)− sinh2

p(t, a) =
(ep(t, a) + e−p(t, a))2 − (ep(t, a)− e−p(t, a))2

4

= ep(t, a)e−p(t, a)

= ep⊕−p(t, a)

= e−µp2(t, a)

=

t/q∏
s=a

[1 + µ(s)(−µ(s)p2(s))]

=

t/q∏
s=a

[1− µ2(s)p2(s)].

Similarly, (ii) holds by direct calculation:

∆q coshp(t, a) =
1

2
∆qep(t, a) +

1

2
∆qe−p(t, a)

=
1

2
p(t)ep(t, a)− 1

2
p(t)e−p(t, a)

= p(t)
ep(t, a)− e−p(t, a)

2

= p(t) sinhp(t, a).

The proof of (iii) is similar.

Next, we define the generalized sine and cosine functions.
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Definition 3.41. For ±ip(t) ∈ Rq, t ∈ aqN0 ,

cosp(t, a) =
eip(t, a) + e−ip(t, a)

2
,

sinp(t, a) =
eip(t, a)− e−ip(t, a)

2i
.

The following theorem relates the generalized hyperbolic trigonometric functions

and the generalized trigonometric functions.

Theorem 3.42. Assume ±p(t) ∈ Rq, t ∈ aqN0. Then

(i) sinip(t, a) = i sinhp(t, a);

(ii) cosip(t, a) = coshp(t, a, ).

Proof.

(i) By definition,

sinip(t, a) =
1

2i
(ei2p(t, a)− e−i2p(t, a))

=
i(ep(t, a)− e−p(t, a))

2

= i sinhp(t, a).

(ii) Again by definition,

cosip(t, a) =
ei2p(t, a) + e−i2p(t, a)

2

=
e−p(t, a) + ep(t, a)

2

= coshp(t, a).
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The following theorem gives various properties of the generalized sine and cosine

functions.

Theorem 3.43. Assume µ(t)p(t) 6= ±i. Then, for t ∈ aqN0,

(i) cos2
p(t, a) + sin2

p(t, a) =
∏t/q

s=a(1 + µ2(s)p2(s));

(ii) ∆q cosp(t, a) = −p(t) sinp(t, a);

(iii) ∆q sinp(t, a) = p(t) cosp(t, a);

Proof. By direct calculation, (i) holds:

cos2
p(t, a) + sin2

p(t, a) =
(eip(t, a) + e−ip(t, a))2 − (eip(t, a)− e−ip(t, a))2

4

= eip(t, a)e−ip(t, a)

= eip⊕−ip(t, a)

= eµp2(t, a)

=

t/q∏
s=a

[1 + µ(s)(µ(s)p2(s))]

=

t/q∏
s=a

[1 + µ2(s)p2(s)].

Again, by direct calculation, (ii) holds:

∆q cosp(t, a) =
1

2
∆qeip(t, a) +

1

2
∆qe−ip(t, a)

=
1

2
ip(t)ep(t, a)− 1

2
ip(t)e−p(t, a)

= −p(t)eip(t, a)− e−ip(t, a)

2i

= −p(t) sinp(t, a).

The proof of (iii) is similar.
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3.4 The q-Laplace Transform

Recall that the traditional Laplace transform is

L{f}(s) =

∫ ∞
0

e−stf(t) dt.

We define the q-Laplace transform in a similar manner using our definition of the

exponential.

Definition 3.44. Assume f : aqN0 → R and t0 ∈ aqN0 . Then the q-Laplace transform

of f is defined by

Lt0{f}(s) = Ft0(s) :=

∫ ∞
t0

e	s(σ(t), a)f(t) ∆qt

for s ∈ C \
{
− 1

µ(aqn)
: n ∈ N0

}
such that this improper integral

converges.

If we suppose t0 = aqm for some m ∈ N0, we can also write the q-Laplace transform

as a sum, using the definition of the integral

Lt0{f}(s) =
∞∑
n=m

f(aqn)µ(aqn)∏n
k=0(1 + µ(aqk)s)

.

For more on whole-ordered and fractional-ordered Laplace transforms on discrete

domains, see [7] and [19]. To help identify functions whose Laplace transforms exist,

we introduce the next definition.

Definition 3.45. A function f : aqN0 → R is of exponential order r > 0, r ∈ R, if for

some constant A > 0

|f(aqn)| ≤ A(µ(a)q
n−1
2 )nrn
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for all sufficiently large n ∈ N0.

Theorem 3.46. (Existence of q-Laplace Tranform) If f : aqN0 → R is of exponential

order r > 0, then La {f} (s) exists for |s| > r.

Proof. Assume f(t) is of exponential order r. Then there is a constant A > 0 and a

t0 = aqN ∈ aqN0 such that |f(t)| ≤ A(µ(a)q
n−1
2 )nrn for all t ∈ aqNN . We now show

that

La {f} (s) =

∫ ∞
a

e	s(σ(t), a)f(t)∆qt =
∞∑
n=0

f(aqn)µ(aqn)∏n
k=0(1 + µ(aqk)s)

converges for |s| > r. Since

∞∑
n=N

f(aqn)µ(aqn)∏n
k=0(1 + µ(aqk)s)

≤
∞∑
n=N

A(µ(a)q
n−1
2 )nrnµ(aqn)∏n

k=0 |1 + µ(aqk)s|
,

and noting µ(aqn+1) = aqn+1(q − 1) = µ(a)qn+1, consider

lim
n→∞

A(µ(a)q
n
2 )n+1rn+1µ(aqn+1)∏n+1

k=0 |1 + µ(aqk)s|
A(µ(a)q

n−1
2 )nrnµ(aqn)∏n

k=0 |1 + µ(aqk)s|

= µ(a)r lim
n→∞

qn+1

|1 + µ(a)qn+1s|

= µ(a)r lim
n→∞

1

| 1
qn+1 + µ(a)s|

=
µ(a)r

µ(a)|s|
=

r

|s|
.

Therefore, by the ratio test, for |s| > r,

∞∑
n=N

A(µ(a)q
n−1
2 )nrnµ(aqn)∏n

k=0 |1 + µ(aqk)s|

converges. It follows that La {f} (s) converges absolutely for |s| > r.

Remark 3.47. Notice from above that for t = aqn,
∑∞

n=0
µ(aqn)f(aqn)∏n
k=0(1+µ(aqk)s)

converges
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for |s| > r, which implies that
∑∞

n=0 e	s(σ(aqn), a)f(aqn)µ(aqn) converges for |s| > r.

Therefore,

lim
t→∞

e	s(σ(t), a)f(t)µ(t) = 0

by the nth term test. Since µ(t) = t(q − 1) > 1 for large t, we have that

lim
t→∞

e	s(σ(t), a)f(t) = 0.

Theorem 3.48. (Linearity) Assume f, g : aqN0 → R are of exponential order r > 0.

Then for |s| > r and α, β ∈ C,

La {αf + βg} (s) = αLa {f} (s) + βLa {g} (s).

Proof. Let f, g : aqN0 → R be of exponential order r > 0. Then for |s| > r and

α, β ∈ C we have

La {αf + βg} (s) =

∫ ∞
a

e	s(σ(t), a)(αf + βg) ∆qt

=

∫ ∞
a

(
e	s(σ(t), a)αf + e	s(σ(t), a)βg

)
∆qt

=

∫ ∞
a

e	s(σ(t), a)αf∆qt+

∫ ∞
a

e	s(σ(t), a)βg∆qt

= α

∫ ∞
a

e	s(σ(t), a)f∆qt+ β

∫ ∞
a

e	s(σ(t), a)g∆qt

= αLa {f} (s) + βLa {g} (s).

Remark 3.49. Clearly La{0}(s) = 0, and, according to [18], if La{f}(s) = 0, then
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f ≡ 0. Therefore, by the linearity of the q-Laplace transform, we can show that the

q-Laplace transform is unique. To see this, suppose we have functions f, g such that

La{f}(s) = La{g}(s). Then

0 = La{f}(s)− La{g}(s) = La{f − g}(s) = La{0}(s)

=⇒ f ≡ g.

Theorem 3.50. Let m ∈ N0 be given, and suppose f : aqN0 → R is of exponential

order r > 0. Then for |s| > r,

Laqm{f}(s) = La{f}(s)−
m−1∑
n=0

µ(aqn)f(aqn)∏n
k=0(1 + µ(aqk)s)

.

Proof. Assume m ∈ N0 and f is of exponential order r > 0. Then for |s| > r,

Laqm{f}(s) =

∫ ∞
aqm

e	s(σ(t), a)f(t)∆qt

=
∞∑
n=m

µ(aqn)f(aqn)∏n
k=0(1 + µ(aqk)s)

=
∞∑
n=0

µ(aqn)f(aqn)∏n
k=0(1 + µ(aqk)s)

−
m−1∑
n=0

µ(aqn)f(aqn)∏n
k=0(1 + µ(aqk)s)

= La{f}(s)−
m−1∑
n=0

µ(aqn)f(aqn)∏n
k=0(1 + µ(aqk)s)

.

Theorem 3.51. The function f(t) = ep(t, a) for p ∈ Rc
q is of exponential order

r = |p|+ ε for all ε > 0.
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Proof. For t = aqn, n ∈ N0, we have

|ep(t, a)| = |ep(aqn, a)| =

∣∣∣∣∣
n−1∏
k=0

(1 + µ(aqk)p)

∣∣∣∣∣ =
n−1∏
k=0

|1 + µ(aqk)p|.

By applying the triangle inequality to each term in the product we obtain

|ep(t, a)| ≤
n−1∏
k=0

(1 + µ(aqk)|p|).

Let ε > 0 be given. Then there exists N such that for all n ≥ N we have µ(aqn)ε > 1,

which implies

µ(aqN)(|p|+ε) ≥ µ(aqk)|p|+ 1

for all k ≤ N , and

µ(aqk)(|p|+ε) ≥ µ(aqk)|p|+ 1

for all k ∈ NN . So, for n sufficiently large, we have

|ep(t, a)| ≤
n−1∏
k=0

(1 + µ(aqk)|p|) =
N∏
k=0

(1 + µ(aqk)|p|)
n−1∏

s=N+1

(1 + µ(aqs)|p|)

< (µ(aqN)(|p|+ ε))N+1

n−1∏
s=N+1

µ(aqs)(|p|+ ε)

< (a(q − 1)qN(|p|+ ε))N+1(a(q − 1)(|p|+ ε))n−N−1q
n(n−1)

2 q−
N(N+1)

2

= an(q − 1)n(|p|+ ε)nq
N(N+1)

2 q
n(n−1)

2

= q
N(N+1)

2 (µ(a)q
n−1
2 )n(|p|+ ε)n.

Since this holds for an arbitrary ε > 0, it holds for any ε > 0. Since N is a finite
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number, we have the exponential order of ep(t, a) as r = |p|+ ε for all ε > 0.

Theorem 3.52. For p ∈ Rc
q and |s| > |p|,

La {ep(t, a)} (s) =
1

s− p

Proof. We previously defined the q-exponential function ep(t, a) to be

ep(t, a) =

t/q∏
s=a

(1 + µ(s)p(s)).

Let ε > 0 be given. Since, for any ε > 0, ep(t, a) is of exponential order |p| + ε, we

have for |s| > |p|+ ε

La{ep(t, a)}(s) =

∫ ∞
a

e	s(σ(t), a)ep(t, a)∆qt

=

∫ ∞
a

ep(t, a)∏t
r=a(1 + µ(r)s)

∆qt

=

∫ ∞
a

ep(t, a)

(1 + µ(t)s)
∏t/q

r=a(1 + µ(r)s)
∆qt

=

∫ ∞
a

e	s(t, a)ep(t, a)

1 + µ(t)s
∆qt

=

∫ ∞
a

ep	s(t, a)

1 + µ(t)s
∆qt

=
1

p− s

∫ ∞
a

(p	 s) ep	s(t, a) ∆qt

=
1

p− s

∫ ∞
a

∆qep	s(t, a) ∆qt

=
1

p− s
ep	s(t, a)

∣∣∣∞
a

=
1

p− s
(0− 1)

=
1

s− p
.
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Hence, for |s| > |p|+ ε,

La{ep(t, a)}(s) =
1

s− p
.

Since ε > 0 is arbitrary, then this holds for all |s| > |p|.

Remark 3.53. Since ep(t, a) ≡ 1 when p = 0, the q-Laplace transform of a constant

function follows from the above theorem and the linearity of the q-Laplace transform:

La {c} (s) = cLa{e0(t, a)} =
c

s
,

where |s| > 0.

Theorem 3.54. The function f(t) = hm(t, a) for m ∈ N0 is of exponential order

r = ε for all ε > 0.

Proof. For t = aqn ∈ aqN0 ,

|hm(t, a)| = (t− a)m

[m]q!
≤ (t− a)m ≤ tm = (aqn)m = am(qm)n

For any fixed δ > 0 and any constant α > 1

lim
n→∞

α
n2

2 δn =∞

which implies that there exists N such that for all n > N we have

αn
2

δn > 1.

Let ε > 0 be given and take δ = (aq−
1
2 (q − 1)εq−m) and α = q. Then for all n > N
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such that the above inequality holds, we have

q
n2

2 (aq−
1
2 (q − 1)εq−m)n = µn(a)q

(n−1)(n)
2 (εq−m)n > 1

=⇒ |tm| < am(qm)nµn(a)q
(n−1)(n)

2 εn(q−m)n = am(µ(a)q
(n−1)

2 )nεn.

Since ε > 0 is arbitrary, then for all ε > 0, hm(t, a) is of exponential order r = ε with

A = am.

Theorem 3.55. For |s| > 0

La{hn(t, a)}(s) =
1

sn+1
.

Proof. For the nth order Taylor monomial, hn(t, a), for |s| > ε for all ε > 0 we have,

using integration by parts,

La{hn(t, a)}(s) =

∫ ∞
a

hn(t, a)e	s(σ(t), a)∆qt

=
1

	s
hn(t, a)e	s(σ(t), a)

∣∣∣∞
t=a
−
∫ ∞
a

hn−1(t, a)e	s(σ(σ(t)), a)

	s
∆qt

= 0 −
∫ ∞
a

hn−1(t, a)

(
1

−s
1 + µ(σ(t))s∏σ(t)
r=a(1 + µ(r)s)

)
∆qt

= −
∫ ∞
a

hn−1(t, a)

(
1

−s
1∏t

r=a(1 + µ(r)s)

)
∆qt

=
1

s

∫ ∞
a

hn−1(t, a)e	s(σ(t), a) ∆qt,

where the 0 in the third line of the equation results from an earlier remark. Repeating
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the integration steps above we can obtain for any ε > 0 and |s| > ε

La{hn(t, a)}(s) =
1

sn

∫ ∞
a

e	s(σ(t), a) ∆qt

=
1

sn
La {1} (s)

=

(
1

sn

)(
1

s

)
=

1

sn+1
.

Since ε is an arbitrarily small constant greater than 0, we can thus say that this holds

for |s| > 0.

Lemma 3.56. For t ∈ aqN0 and p ∈ Rq,

|ep(t, a)± e−p(t, a)| ≤ 2e|p|(t, a).

Proof. Since

|ep(t, a)± e−p(t, a)| ≤ |ep(t, a)|+ |e−p(t, a)|.

We can apply the triangle inequality to each exponential in a similar way done in the

proof of Theorem 3.51 (|ep(t, a)| ≤ e|p|(t, a)) to obtain

|ep(t, a)± e−p(t, a)| ≤ e|p|(t, a) + e|p|(t, a) = 2e|p|(t, a).

Theorem 3.57. For t ∈ aqN0, the exponential order of the following functions is

|p|+ ε for any ε > 0:

(i) coshp(t, a);
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(ii) sinhp(t, a);

(iii) cosp(t, a);

(iv) sinp(t, a).

Proof. (i) Consider

| coshp(t, a)| = |ep(t, a) + e−p(t, a)|
2

.

By the previous lemma,

| coshp(t, a)| ≤
2e|p|(t, a)

2
= e|p|(t, a)

By steps similar to those in Theorem 4.7, we can conclude

| coshp(t, a)| ≤ e|p|(t, a) ≤ A(µ(a)q
n−1
2 )n(|p|+ ε)n

for any fixed ε > 0 and A defined in the same way as in the proof of Theorem

4.7. Therefore, coshp(t, a) is of exponential order |p|+ ε.

(ii) Similar to that above,

| sinhp(t, a)| = |ep(t, a)− e−p(t, a)|
2

.

By the previous lemma,

| sinhp(t, a)| ≤
2e|p|(t, a)

2
= e|p|(t, a)

By steps similar to those in Theorem 4.7, we can conclude

| sinhp(t, a)| ≤ e|p|(t, a) ≤ A(µ(a)q
n−1
2 )n(|p|+ ε)n
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for any fixed ε > 0 and A defined in the same way as in the proof of Theorem

4.7 . Therefore, sinhp(t, a) is of exponential order |p|+ ε.

(iii) Using an earlier theorem

| cosp(t, a)| = | coship(t, a)|.

By part (i) of this theorem, cosp(t, a) must be of exponential order |ip| + ε =

|p|+ ε for any fixed ε > 0.

(iv) Also using an earlier theorem

| sinp(t, a)| =
∣∣∣sinhip(t, a)

i

∣∣∣ = | sinhip(t, a)|.

By part (ii) of this theorem, we know that sinp(t, a) must be of exponential

order |ip|+ ε = |p|+ ε for any fixed ε > 0.

Theorem 3.58. For t ∈ aqN0 and |s| > |p|,

(i) La{coshp(t, a)}(s) = s
s2−p2 , for ± p(t) ∈ Rc

q;

(ii) La{sinhp(t, a)}(s) = p
s2−p2 , for ± p(t) ∈ Rc

q;

(iii) La{cosp(t, a)}(s) = s
s2+p2

, for ± ip(t) ∈ Rc
q;

(iv) La{sinp(t, a)}(s) = p
s2+p2

, for ± ip(t) ∈ Rc
q.

Proof.
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(i) For |s| > |p|,

La{coshp(t, a)}(s) = La
{ep(t, a) + e−p(t, a)

2

}
(s)

=
1

2

(
La{ep(t, a)}(s) + La{e−p(t, a)}(s)

)
=

1

2

( 1

s− p
+

1

s− (−p)

)
=

2s

2(s− p)(s+ p)

=
s

s2 − p2
.

(ii) For |s| > |p|,

La{sinhp(t, a)}(s) = La
{ep(t, a)− e−p(t, a)

2

}
(s)

=
1

2

(
La{ep(t, a)}(s)− La{e−p(t, a)}(s)

)
=

1

2

( 1

s− p
− 1

s− (−p)

)
=

2p

2(s− p)(s+ p)

=
p

s2 − p2
.
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(iii) For |s| > |p|,

La{cosp(t, a)}(s) = La
{
eip(t, a) + e−ip(t, a)

2

}
(s)

=
1

2

(
La{eip(t, a)}(s) + La{e−ip(t, a)}(s)

)
=

1

2

(( 1

s− ip

)
+
( 1

s− (−ip)

))

=
1

2

( 1

s− ip
+

1

s+ ip

)
=

2s

2(s2 − i2p2)

=
s

s2 + p2
.

(iv) For |s| > |p|,

La{sinp(t, a)}(s) = La
{eip(t, a)− e−ip(t, a)

2i

}
(s)

=
1

2i

(
La{eip(t, a)}(s)− La{e−ip(t, a)}(s)

)
=

1

2i

( 1

(s− ip)
− 1

(s− (−ip))

)
=

1

2i

( 2ip

s2 + p2

)
=

p

s2 + p2
.

Lemma 3.59. If f : aqN0 → R and f(t) is of exponential order r > 0, then ∆qf is

also of exponential order r > 0.

Proof. Since f is of exponential order r > 0, then we know for all sufficiently large n,

|f(aqn)| ≤ |A(µ(a)q
n−1
2 )nrnµ(aqn)| for some constant A. Thus, for sufficiently large
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n ∈ N, we have

|∆qf(aqn)| =
∣∣∣∣f(aqn+1)− f(aqn)

µ(aqn)

∣∣∣∣ =

∣∣∣∣f(aqn+1)− f(aqn)

aqn+1 − aqn

∣∣∣∣ =

∣∣∣∣f(aqn+1)− f(aqn)

aqn(q − 1)

∣∣∣∣
≤ |f(aqn+1)|+ |f(aqn)|

aqn(q − 1)

≤ A(µ(a)q
n
2 )n+1rn+1 + A(µ(a)q

n−1
2 )nrn

aqn(q − 1)

=
A(µ(a))n+1q

n(n+1)
2 rn+1 + A(µ(a))nq

(n−1)n
2 rn

aqn(q − 1)

=
A(µ(a))nq

(n−1)n
2 rn[µ(a)qnr + 1]

aqn(q − 1)

= A(µ(a)q
n−1
2 )nrn

[
µ(a)r

a(q − 1)
+

1

aqn(q − 1)

]
≤ A(µ(a)q

n−1
2 )nrn

[
µ(a)r

a(q − 1)
+ 1

]
= B(µ(a)q

n−1
2 )nrn,

where B := A
[
µ(a)r
a(q−1)

+ 1
]
. So by definition, ∆qf is of exponential order r > 0.

Remark 3.60. By inductively applying the previous lemma, one can conclude that if

f is of exponential order r > 0, then ∆n
q f is of exponential order r > 0 for all n ∈ N.

Theorem 3.61. If f : aqN0 → R and f(t) is of exponential order r > 0, then for

|s| > r

La{∆n
q f}(s) = snFa(s)−

n−1∑
k=0

sn−1−k∆k
qf(a),

where n ∈ N.

Proof. If n = 1 then we get the following for |s| > r.

La{∆1
qf}(s) =

∫ ∞
a

e	s(σ(t), a)∆qf(t) ∆qt.



93

Using integration by parts (ii) (and an earlier remark) we can rewrite the integral as

La{∆1
qf}(s) = e	s(t, a)f(t)

∣∣∣∞
a
−
∫ ∞
a

	se	s(t, a)f(t) ∆qt

= −f(a) + s

∫ ∞
a

e	s(σ(t), a)f(t) ∆qt

= sFa(s)− f(a).

Now assume that the theorem is true for some k ∈ N. By the previous lemma,

note that ∆k
qf is of exponential order r > 0. So consider

La{∆k+1
q f}(s) = La{∆q∆

k
qf}(s)

= sLa{∆k
qf}(s)−∆k

qf(a)

= s(skFa(s)−
k−1∑
r=0

sk−1−r∆r
qf(a))−∆k

qf(a)

= sk+1Fa(s)−
k−1∑
r=0

sk−r∆r
qf(a)−∆k

qf(a)

= sk+1Fa(s)−
k∑
r=0

sk−r∆r
qf(a).

Therefore, inductively, the theorem holds for any n ∈ N.

Theorem 3.62. Assume α, β ∈ Rc
q, ±

β
1+αµ(t)

∈ Rq. Then, for

|s| > max{|α + β|, |α− β|},

(i) La
{
eα(t, a) cosh β

1+αµ(t)
(t, a)

}
(s) = s−α

(s−α)2−β2 ;

(ii) La
{
eα(t, a) sinh β

1+αµ(t)
(t, a)

}
(s) = β

(s−α)2−β2 .

Proof.
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(i) For α and β as above,

La
{
eα(t, a) cosh β

1+αµ(t)
(t, a)

}
(s)

= La
{
eα(t, a)

(1

2

(
e β

1+αµ(t)
(t, a) + e −β

1+αµ(t)
(t, a)

))}
(s)

=
1

2
La
{
eα(t, a)e β

1+αµ(t)
(t, a)

}
+

1

2
La
{
eα(t, a)e −β

1+αµ(t)
(t, a)

}
=

1

2
La
{
eα⊕ β

1+αµ(t)
(t, a)

}
+

1

2
La
{
eα⊕ −β

1+αµ(t)
(t, a)

}
=

1

2
La
{
eα+β(t, a)

}
+

1

2
La
{
eα−β(t, a)

}
.

For |s| > max{|α + β|, |α− β|},

La
{
eα(t, a) cosh β

1+αµ(t)
(t, a)

}
(s) =

1

2

( 1

s− (α + β)
+

1

s− (α− β)

)
=

1

2

( 1

(s− α)− β
+

1

(s− α) + β

)
=

1

2

( 2(s− α)

(s− α)2 − β2

)
=

s− α
(s− α)2 − β2

.

(ii) For α and β as above,

La
{
eα(t, a) sinh β

1+αµ(t)
(t, a)

}
(s)

= La
{
eα(t, a)

(1

2

(
e β

1+αµ(t)
(t, a)− e −β

1+αµ(t)
(t, a)

))}
(s)

=
1

2
La
{
eα(t, a)e β

1+αµ(t)
(t, a)

}
− 1

2
La
{
eα)(t, a)e −β

1+αµ(t)
(t, a)

}
=

1

2
La
{
eα⊕ β

1+αµ(t)
(t, a)

}
− 1

2
La
{
eα⊕ −β

1+αµ(t)
(t, a)

}
=

1

2
La
{
eα+β(t, a)

}
− 1

2
La
{
eα−β(t, a)

}
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For |s| > max{|α + β|, |α− β|},

La
{
eα(t, a) sinh β

1+αµ(t)
(t, a)

}
(s) =

1

2

( 1

s− (α + β)
− 1

s− (α− β)

)
=

1

2

( 1

(s− α)− β
− 1

(s− α) + β

)
=

1

2

( 2β

(s− α)2 − β2

)
=

β

(s− α)2 − β2
.

Similarly to Theorem 3.62, one can prove the following theorem.

Theorem 3.63. Assume α(t) ∈ Rq, ± β
1+αµ(t)

6= i. Then, for

|s| > max{|α + iβ|, |α− iβ|},

(i) La
{
eα(t, a) cos β

1+αµ(t)
(t, a)

}
(s) = s−α

(s−α)2+β2 ;

(ii) La
{
eα(t, a) sin β

1+αµ(t)
(t, a)

}
(s) = β

(s−α)2+β2 .

Proof.

(i) For α and β as above,

La
{
eα(t, a) cos β

1+αµ(t)
(t, a)

}
(s)

= La
{
eα(t, a)

(1

2

(
e iβ

1+αµ(t)
(t, a) + e −iβ

1+αµ(t)
(t, a)

))}
(s)

=
1

2
La
{
eα(t, a)e iβ

1+αµ(t)
(t, a)

}
+

1

2
La
{
eα(t, a)e −iβ

1+αµ(t)
(t, a)

}
=

1

2
La
{
eα⊕ iβ

1+αµ(t)
(t, a)

}
+

1

2
La
{
eα⊕ −iβ

1+αµ(t)
(t, a)

}
=

1

2
La
{
eα+iβ(t, a)

}
+

1

2
La
{
eα−iβ(t, a)

}
.
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For |s| > max{|α + iβ|, |α− iβ|},

La
{
eα(t, a) cos β

1+αµ(t)
(t, a)

}
(s) =

1

2

( 1

s− (α + iβ)
+

1

s− (α− iβ)

)
=

1

2

( 1

(s− α)− iβ
+

1

(s− α) + iβ

)
=

1

2

( 2(s− α)

(s− α)2 + β2

)
=

s− α
(s− α)2 + β2

.

(ii) For α and β as above,

La
{
eα(t, a) sin β

1+αµ(t)
(t, a)

}
(s)

= La
{
eα(t, a)

( 1

2i

(
e iβ

1+αµ(t)
(t, a)− e −iβ

1+αµ(t)
(t, a)

))}
(s)

=
1

2i
La
{
eα(t, a)e iβ

1+αµ(t)
(t, a)

}
− 1

2i
La
{
eα)(t, a)e −iβ

1+αµ(t)
(t, a)

}
=

1

2i
La
{
eα⊕ iβ

1+αµ(t)
(t, a)

}
− 1

2i
La
{
eα⊕ −iβ

1+αµ(t)
(t, a)

}
=

1

2i
La
{
eα+iβ(t, a)

}
− 1

2i
La
{
eα−iβ(t, a)

}
.

For |s| > max{|α + iβ|, |α− iβ|},

La
{
eα(t, a) sin β

1+αµ(t)
(t, a)

}
(s) =

1

2i

( 1

s− (α + iβ)
− 1

s− (α− iβ)

)
=

1

2i

( 1

(s− α)− iβ
− 1

(s− α) + iβ

)
=

1

2i

( 2iβ

(s− α)2 + β2

)
=

β

(s− α)2 + β2
.
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Next, we provide an example of solving an initial value problem using the q-Laplace

transform.

Example 3.64. Use the q-Laplace transform to solve the following initial value prob-

lem:  ∆2
qf(t)− 2∆qf(t)− 8f(t) = 0

∆qf(a) = 0, f(a) = −3/2.

Taking the Laplace transform of both sides, we have

(
s2Fa(s)−∆qf(a)− sf(a)

)
− 2
(
sFa(s)− f(a)

)
− 8Fa(s) = 0.

Plugging in the initial conditions, we have

s2Fa(s) +
3s

2
−2sFa(s)− 3− 8Fa(s) = 0

=⇒ (s2 − 2s− 8)Fa(s) = 3− 3s

2

=⇒ Fa(s) =
3− 3s

2

s2 − 2s− 8
=
−1/2

s− 4
− 1

s+ 2

=⇒ f(t) = −1

2
e4(t, a)− e−2(t, a).

Remark 3.65. Note that in the second to last line above, we could have split the

fraction as follows to find a different, but equivalent, form of the solution.

Fa(s) =
3− 3s

2

s2 − 2s− 8
= −3

2

(
s− 1

(s− 1)2 − 9

)
+

1

2

(
3

(s− 1)2 − 9

)
=⇒ f(t) = −3

2
e1(t, a) cosh 3

1+µ(t)
(t, a) +

1

2
e1(t, a) sinh 3

1+µ(t)
(t, a).

The following Leibniz formula will be useful for later theorems.

Lemma 3.66. (Leibniz formula) Assume t ∈ aqNn, n ∈ Z, and
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f : aqNn × aqN0 → R. Then

∆q

tq−n∑
s=a

f(t, s)µ(s)

 =

tq−n∑
s=a

∆qf(t, s)µ(s) + f(tq, tq−n+1)q−n+1.

Proof.

∆q

tq−n∑
s=a

f(t, s)µ(s)

 =

∑tq−n+1

s=a f(tq, s)µ(s)−
∑tq−n

s=a f(t, s)µ(s)

µ(t)

=

∑tq−n

s=a [(f(tq, s)− f(t, s))µ(s)]

µ(t)
+
f(tq, tq−n+1)µ(tq−n+1)

µ(t)

=

tq−n∑
s=a

∆qf(t, s)µ(s) + f(tq, tq−n+1)q−n+1.

We will now use the Leibniz formula to prove the following theorem.

Theorem 3.67. (Variation of Constants Formula) Assume n ≥ 1 is an integer. Then

the solution to the initial value problem

 ∆n
q y(t) = f(t)

∆i
qy(a) = 0, i = 0, 1, . . . , n− 1.

is given by

y(t) =

∫ t

a

hn−1(t, σ(s))f(s) ∆qs.
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Proof. First note that if n = 1, then

y(t) =

∫ t

a

h0(t, σ(s))f(s) ∆qs

=

t/q∑
s=a

f(s)µ(s).

Then y(a) = 0 and

∆qy(t) =

∑t
s=a f(s)µ(s)−

∑t/q
s=a f(s)µ(s)

µ(t)

=
f(t)µ(t)

µ(t)
= f(t).

So the result holds for n = 1. If now n > 1,

y(t) =

∫ t

a

hn−1(t, σ(s))f(s) ∆qs

=

t/q∑
s=a

hn−1(t, σ(s))f(s)µ(s).

Taking the q-difference of this summation and applying the Leibniz formula, we have

∆qy(t) =

t/q∑
s=a

∆qhn−1(t, σ(s))f(s)µ(s) + hn−1(tq, tq)f(t)µ(t)

=

t/q∑
s=a

∆qhn−1(t, σ(s))f(s)µ(s).

Continuing inductively, we find for i = 0, 1, 2, . . . , n− 1,

∆i
qy(t) =

t/q∑
s=a

∆i
qhn−1(t, σ(s))f(s)µ(s),
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which implies

∆i
qy(a) =

a/q∑
s=a

∆i
qhn−1(a, σ(s))f(s)µ(s)

=

∫ a

a

∆i
qhn−1(a, σ(s))f(s) ∆qs

= 0

by definition of the integral. Thus, the initial conditions hold.

From above, we have for i = 0, 1, 2, . . . , n− 1,

∆i
qy(t) =

t/q∑
s=a

∆i
qhn−1(t, σ(s))f(s)µ(s),

which implies

∆n−1
q y(t) =

t/q∑
s=a

∆n−1
q hn−1(t, σ(s))f(s)µ(s)

=

t/q∑
s=a

f(s)µ(s),

and

∆q

t/q∑
s=a

f(s)µ(s) = f(t).

Thus,

∆n
q y(t) =

t/q∑
s=a

0 + f(t) = f(t).

Example 3.68. Use the variation of constants formula to solve the initial value
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problem  ∆2
qy(t) = ep(t, 1)

y(1) = ∆qy(1) = 0.

From the Variation of Constants formula, the solution of this initial value problem is

given by

y(t) =

∫ t

1

h1(t, σ(s))ep(s, 1) ∆qs.

Integrating by parts, we have

y(t) =

∫ t

1

h1(t, σ(s))ep(s, 1) ∆qs

=
1

p

[
h1(t, s)ep(s, 1)

∣∣∣t
s=1

]
− 1

p

∫ t

1

ep(s, 1)∆qh1(t, s) ∆qs

=
1

p
(h1(t, t)ep(t, 1)− h1(t, 1)ep(s, s))−

1

p

∫ t

1

ep(s, 1) ∆qs

=
1

p

(
− h1(t, 1)

)
+

1

p2

[
ep(s, 1)

∣∣∣t
s=1

]
= −1

p
h1(t, 1) +

1

p2
ep(t, 1)− 1

p2
ep(1, 1)

= −1

p
h1(t, 1) +

1

p2
ep(t, 1)− 1

p2
.

We can verify the initial conditions:

y(1) = −1

p
h1(1, 1) +

1

p2
ep(1, 1)− 1

p2

= 0 +
1

p2
− 1

p2

= 0,
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and

∆qy(1) = ∆q

(
− 1

p
h1(t, 1) +

1

p2
ep(t, 1)− 1

p2

)∣∣∣
t=1

=

(
−1

p
+

1

p
ep(t, 1)− 0

) ∣∣∣
t=1

=
1

p
ep(1, 1)− 1

p

=
1

p
− 1

p

= 0.

Thus, the initial conditions hold, and we can also verify that we have a solution by

finding ∆2y(t):

∆2
qy(t) = ∆2

q

(
− 1

p
h1(t, 1) +

1

p2
ep(t, 1)− 1

p2

)
= ∆q

(
− 1

p
+

1

p
ep(t, 1)− 0

)
= ep(t, 1).

Thus,

y(t) = −1

p
h1(t, 1) +

1

p2
ep(t, 1)− 1

p2

is the solution to the given initial value problem.
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Chapter 4

Green’s Functions on Mixed Time

Scales with Lidstone Boundary

Conditions

This chapter focuses on finding a Green’s function and its properties for a boundary

value problem on a mixed time scale, i.e., a time scale whose elements may be thought

of as being recursively defined according to a linear function. A mixed time scale

“mixes” together our previous two experiences with time scales in this thesis. Whereas

earlier, our forward jumps in a time scale were determined either by strictly adding

or strictly multiplying, our forward jumps here will be determined by a combination

of both multiplying and adding.

4.1 Preliminaries

In this section, we introduce some fundamental concepts and properties of a mixed

time scale. Rather than determining a formula for the jump operators after one
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has defined a particular time scale, we might think of mixed time scales as being

recursively defined through the following jump operators.

Definition 4.1. For a, b ∈ R with a ≥ 1, b ≥ 0, and a+ b > 1, we define the forward

jump operator by

σa,b(t) := at+ b.

Throughout this chapter, and anytime there is no ambiguity, we can refer to σa,b

simply as σ. Additionally, any reference to a and b will refer to these constants from

the definition of σ. As any case in which a = 1 results in a time scale that is simply

an analogue of the traditional discrete time scale Na, we will generally be interested

here in the case when a > 1. The q-time scale discussed in the previous chapter is

simply a particular mixed time scale in which a here is equivalent to q and b = 0.

Definition 4.2. The nth forward jump operator is recursively defined for n ∈ N0 as

σn(t) :=


σ(σn−1(t)), n ≥ 1,

1, n = 0.

We can also similarly define a backward jump operator as follows.

Definition 4.3. Given σ = σa,b, we can define the backward jump operator as

ρa,b(t) = ρ(t) :=
t− b
a

,

and, for n ∈ N0,

ρn(t) :=


ρ(ρn−1(t)), n ≥ 1,

1, n = 0,

where the subscript on ρ will be suppressed in this chapter as there is no ambiguity.
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We now define our time scale Tα based on our jump operators.

Definition 4.4. Given α ∈ R such that α > b
1−a (where a > 1), we define the mixed

time scale

Tα := {α, σ(α), σ2(α), . . .}.

Remark 4.5. In [25], for a > 1 and α > b
1−a ,

Tα := {. . . , ρ2(α), ρ(α), α, σ(α), σ2(α), . . .}.

Note that this is not technically a time scale. This can be remedied by defining

Tα := {. . . , ρ2(α), ρ(α), α, σ(α), σ2(α), . . .} ∪
{

b

1− a

}

or by considering Definition 4.4 above. This is a minor point since in any uses of

the time scale that follow, we only consider Tα as in Definition 4.4, though one could

easily consider

Tα := {ρk(α), . . . , ρ2(α), ρ(α), α, σ(α), σ2(α), . . .},

for some k ∈ N0.

We may note that Tα in either the definition or remark above is bounded below by

b
1−a (though in the remark, we are actually dealing with the infimum instead of just

a lower bound), a proof of which may be found in [25]. This property does not hold

if a = 1. Additionally, if α = b
1−a , then Tα = {α}, and if α < b

1−a , then σ as defined

earlier would function as a backward jump operator (and ρ as the forward jump

operator) while Tα will be bounded above by b
1−a . For simplicity, we will consider

α ≥ 0 > b
1−a .
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Definition 4.6. For c, d ∈ Tα such that d ≥ c, we define

T[c,d] := Tα ∩ [c, d] = {c, σ(c), σ2(c), . . . , ρ(d), d}.

We define T(c,d),T(c,d], and T[c,d) similarly. Additionally, we may use the notation Tdα

where

Tdα := T[α,d].

Definition 4.7. As before, we define a graininess function (or, as in [25], a forward

distance operator)

µ(t) := σ(t)− t = (at+ b)− t = (a− 1)t+ b.

Below are some properties of µ, as found in [25].

Theorem 4.8. For t ∈ Tα and n ∈ N0, the following hold:

(i) µ(t) > 0;

(ii) µ(σn(t)) = anµ(t);

(iii) µ(ρn(t)) = a−nµ(t).

We now define an index function, whose value gives the number of forward jumps

in Tα between two elements of the time scale.

Definition 4.9. We define the index function K : Tα × Tα → Z by

K(t, s) := loga

(
µ(t)

µ(s)

)
.

For simplicity, we will use the notation K(t) := K(t, α).
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As presented in [25], some properties of the index function are below.

Theorem 4.10. For t, s, r ∈ Tα such that t = σk(s), the following hold:

(i) K(t, t) = 0;

(ii) K(t, s) = k;

(iii) K(s, t) = −K(t, s);

(iv) K(t, s) = K(t, r) +K(r, s).

We define the difference operator here exactly as before. Thus, all relevant prop-

erties from before hold since they are simply based on the following definition.

Definition 4.11. For f : Tα → R, the forward difference operator (or delta differ-

ence) is defined as

∆a,bf(t) = ∆f(t) :=
f(σ(t))− f(t)

µ(t)
.

Here, again, we will suppress the subscript on ∆ throughout this chapter.

We also define a definite integral on Tα. As before, it is essentially a left-hand

Riemann sum associated with Tdc ⊆ Tα.

Definition 4.12. For f : Tα → R and c, d ∈ Tα,

∫ d

c

f(t) ∆t :=


K(d,c)−1∑
j=0

f(σj(c))µ(σj(c)), c < d

0, c ≥ d.

Remark 4.13. As we are considering a time scale Tα that can be considered a

generalization of the time scale aqN0 from the previous chapter, we can note that the

properties in Theorem 3.20 similarly hold for this definition of a definite integral.
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As in the previous two chapters, it is important to have functions that are factorial

in nature with respect to our time scale. We also define bracket and brace functions.

Definition 4.14. For n ∈ N and t ∈ Tα, we define the rising function by

tn :=
n−1∏
j=0

σj(t).

Additionally, we define

t0 := 1.

We also define

tn :=
n−1∏
j=0

ρj(t), t0 := 1.

Definition 4.15. For n ∈ Z, we define the a-bracket function by

[n]a :=

(
an − 1

a− 1

)

and the a-brace function by

{n}a :=

(
an − 1

(a− 1)an−1

)
.

Remark 4.16. We may note from the definitions above that [0]a = 0, [1]a = 1,

{0}a = 0, and {1}a = 1. Also, in [25], we can see that the following hold:

(i) ∆tn = [n]a(σ(t))n−1;

(ii) ∆tn = {n}atn−1.

In anticipation of defining Taylor monomials, we also define the following factorial

functions.
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Definition 4.17. For n ∈ N0 we recursively define the a-bracket factorial and a-brace

factorial functions, respectively, by

[0]a! := 1, [n]a! := [n]a · [n− 1]a!,

and

{0}a! := 1, {n}a! := {n}a · {n− 1}a!.

We now define the Taylor monomials on Tα.

Definition 4.18. For s ∈ Tα, we define the Taylor monomials h(·, s) : Tα → R by

hn(t, s) :=
n∑
i=0

(−1)isitn−i

[i]a!{n− i}a!
.

From [25] we have the following two theorems regarding some properties and an

application of Taylor monomials.

Theorem 4.19. For n ∈ N and t, s ∈ Tα we have

(i) h0(t, s) = 1;

(ii) hn(s, s) = 0;

(iii) ∆hn(t, s) = hn−1(t, s);

(iv) h1(t, s) = t− s;

(v) hn(t, s) =
∏n

i=1
t−σi−1(s)

[i]a
.

Theorem 4.20. (Taylor’s Formula) Let f : Tα → R and s ∈ Tα. Then for any

n ∈ N0 we have for all t ∈ Tα

f(t) = pn(t, s) +Rn(t, s),
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where pn(·, s) : Tα → R is given by

pn(t, s) :=
n∑
k=0

∆kf(s)hk(t, s),

and Rn(·, s) : Tα → R is given by

Rn(t, s) :=

∫ t

s

hn(t, σ(τ))∆n+1f(τ) ∆τ.

4.2 Green’s Function on a Mixed Time Scale

In this section, we will find a Green’s function on a mixed time scale where a > 1

and investigate some of its properties. We will first provide a theorem regarding the

existence of nontrivial solutions for a certain boundary value problem. Many of the

results in this section can be viewed as analogues to Green’s function results in [34].

Some other results on mixed time scales can also be found in [24].

Theorem 4.21. Given that y : Tα → R, β ∈ Tα, and A,B,C,D ∈ R, the homoge-

neous boundary value problem


−∆2y(t) = 0, t ∈ Tα

Ay(α)−B∆y(α) = 0

Cy(β) +D∆y(β) = 0

has only the trivial solution if and only if

γ := AC(β − α) +BC + AD 6= 0.
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Proof. Given that −∆2y(t) = −∆∆y(t) = 0, we have

∆y(t) = c0h0(t, α) = c0.

Summing both sides from α to t− 1 gives

t−1∑
τ=α

∆y(t) =
t−1∑
τ=α

c0

=⇒ y(t)− y(α) = c0(t− α)

=⇒ y(t) = y(α) + c0(t− α)

and letting y(α) = c1 gives

y(t) = c1 + c0(t− α).

Using our boundary conditions, we have

Ay(α)−B∆y(α) = Ac1 −Bc0 = 0,

and

Cy(β) +D∆y(β) = C(c1 + c0(β − α) +Dc0 = 0.

Thus, we have the following sytem of equations

c0(−B) + c1A = 0,

c0(Cβ − Cα +D) + c1C = 0,
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which has only the trivial solution if and only if the determinant

−γ =

∣∣∣∣∣∣∣
−B A

Cβ − Cα +D C

∣∣∣∣∣∣∣ 6= 0.

From above, we can see

γ = −[(−B)C − A(Cβ − C − Cα +D)]

= BC + ACβ − ACα + AD

= AC(β − α) +BC + AD.

Lemma 4.22. For y : Tα → R, β ∈ Tα, and A1, A2 ∈ R, the boundary value problem


−∆2y(t) = 0, t ∈ Tα,

y(α) = A1, y(β) = A2

has the solution

y(t) = A1 +
A2 − A1

β − α
(t− α).

Proof. The general solution to the difference equation is

y(t) = c1 + c0(t− α).

Using the first boundary condition,

y(α) = c1 + 0 = c1,
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and, using the second boundary condition,

y(β) = A1 + c0(β − α) = A2

=⇒ c0 =
A2 − A1

β − α
.

So then

y(t) = A1 +
A2 − A1

β − α
(t− α).

Remark 4.23. We might notice that the solution to the boundary value problem

above is essentially just a line connecting the points (α,A1) and (β,A2) (though, of

course, the solution y(t) only exists at t ∈ Tα).

Theorem 4.24. For y, f : Tα → R and β ∈ Tα such that β > α, the boundary value

problem 
−∆2y(t) = f(t), t ∈ Tα

y(α) = 0 = y(β)

(4.2.1)

has solution

y(t) =

∫ β

α

G(t, τ)f(τ) ∆τ =

K(β)−1∑
j=0

G(t, σj(α))f(σj(α))µ(σj(α)),

where G : Tβα × Tρ(β)
α → R is defined by

G(t, τ) :=


h1(β, σ(τ))

h1(β, α)
h1(t, α)− h1(t, σ(τ)), 0 ≤ K(τ) ≤ K(t)− 1 ≤ K(β)− 1,

h1(β, σ(τ))

h1(β, α)
h1(t, α), 0 ≤ K(t) ≤ K(τ) ≤ K(β)− 1.

Proof. We may note that the related homogeneous boundary value problem, i.e., the
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case when f(t) ≡ 0, does not have only the trivial solution as γ (defined in Theorem

4.21) is not equal to 0:

γ = AC(β − α) +BC + AD = (β − α) 6= 0.

By an application of Taylor’s theorem from [31] the general solution to (4.2.1) is given

by

y(t) = c0h0(t, α) + c1ht(t, α)−
∫ t

α

h1(t, σ(τ))f(τ) ∆τ

= c0 + c1h1(t, α)−
K(t)−1∑
j=0

h1(t, σ(σj(α)))f(σj(α))µ(σj(α))

Using the first boundary condition,

y(α) = c0 + c1h1(α, α)−
∫ α

α

h1(t, σ(τ))f(τ) ∆τ

= c0 + 0− 0 = 0

=⇒ c0 = 0,

and using the second boundary condition,

y(β) = c1h1(β, α)−
K(β)−1∑
j=0

h1(β, σj+1(α))f(σj(α))µ(σj(α)) = 0

=⇒ c1 =

∑K(β)−1
j=0 h2(β, σj+1(α))f(σj(α))µ(σj(α))

h1(β, α)
.
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Thus,

y(t) =

∑K(β)−1
j=0 h1(β, σj+1(α))f(σj(α))µ(σj(α))

h1(β, α)
h1(t, α)

−
K(β)−1∑
j=0

h1(t, σj+1(α))f(σj(α))µ(σj(α))

= µ(σj(α))

[K(t)−1∑
j=0

(
h1(β, σj+1(α))

h1(β, α)
h1(t, α)− h1(t, σj+1(α))

)

+

K(β)−1∑
j=K(t)

h1(β, σj+1(α))

h1(β, α)
h1(t, α)

]
f(σj(α))

=

K(β)−1∑
j=0

G(t, σj(α))f(σj(α))µ(σj(α))

=

∫ β

α

G(t, τ)f(τ) ∆τ,

for G(t, τ) defined in the statement of the theorem.

Remark 4.25. We can also simplify the Green’s function above as

G(t, τ) :=


h1(β, σ(τ))

h1(β, α)
h1(t, α)− h1(t, σ(τ)), 0 ≤ K(τ) ≤ K(t)− 1 ≤ K(β)− 1,

h1(β, σ(τ))

h1(β, α)
h1(t, α), 0 ≤ K(t) ≤ K(τ) ≤ K(β)− 1,

=


β − σ(τ)

β − α
(t− α)− (t− σ(τ)), 0 ≤ K(τ) ≤ K(t)− 1 ≤ K(β)− 1,

β − σ(τ)

β − α
(t− α), 0 ≤ K(t) ≤ K(τ) ≤ K(β)− 1,

=


(β − α)(t− σ(τ))

β − α
, 0 ≤ K(τ) ≤ K(t)− 1 ≤ K(β)− 1,

(β − σ(τ))(t− α)

β − α
, 0 ≤ K(t) ≤ K(τ) ≤ K(β)− 1.
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This is symmetric in t and σ(τ) and closely resembles


(b− s)(t− a)

b− a
, a ≤ t ≤ s ≤ b,

(b− t)(s− a)

b− a
, a ≤ s ≤ t ≤ b,

which is the Green’s function for the conjugate boundary value problem on [a, b] ⊂ R


− y′′(t) = 0,

y(a) = 0 = y(b),

as can be seen in [35].

Theorem 4.26. For G(t, τ) defined in Theorem 4.24, G(t, τ) ≥ 0 on its domain and

max
t∈Tβα

G(t, τ) = G(σ(τ), τ).

Proof. First, note that

G(α, τ) =
h1(β, σ(τ))

h1(β, α)
h1(α, α) =

h1(β, σ(τ))

h1(β, α)
(α− α) = 0,

and

G(β, τ) =
h1(β, σ(τ))

h1(β, α)
h1(β, α)− h1(β, σ(τ)) = 0.

To prove our result, we will show that ∆G(t, τ) ≥ 0 for t < τ , ∆G(t, τ) ≤ 0 for τ < t,

and G(σ(τ), τ) ≥ G(τ, τ) (which then shows ∆G(t, τ) ≥ 0 for t ≤ τ). First consider
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the domain 0 ≤ K(t) < K(τ) ≤ K(β)− 1:

∆G(t, τ) =
h1(β, σ(τ))

h1(β, α)
∆h1(t, α)

=
β − σ(τ)

β − α
h0(t, α)

=
β − σ(τ)

β − α

≥ 0.

Now consider the domain 0 ≤ K(τ) ≤ K(t)− 1 ≤ K(β)− 1:

∆G(t, τ) =
h1(β, σ(τ))

h1(β, α)
∆h1(t, α)−∆h1(t, σ(τ))

=
β − σ(τ)

β − α
h0(t, α)− h0(t, σ(τ))

=
β − σ(τ)

β − α
− 1

≤ 0,

as β − σ(τ) ≤ β − α. Since G is increasing for t < τ and decreasing for τ < t, we

need to see which is larger: G(σ(τ), τ) or G(τ, τ). We can observe

G(σ(τ), τ)−G(τ, τ) =
β − σ(τ)

β − α
(σ(τ)− α)− (σ(τ)− σ(τ))− β − σ(τ)

β − α
(τ − α)

=
β − σ(τ)

β − α
[σ(τ)− α− τ + α]

=
β − σ(τ)

β − α
(σ(τ)− τ)

≥ 0,

which implies that maxt∈Tβα G(t, τ) = G(σ(τ), τ). Also, since ∆G(t, τ) ≥ 0 for

t ∈ T[α,τ ], ∆G(t, τ) ≤ 0 for t ∈ T(τ,β), and G(α, τ) = 0 = G(β, τ), we have G(t, τ) ≥ 0
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on its domain.

Remark 4.27. Note that in the above proof, we have ∆G(t, τ) > 0 for t ≤ τ < ρ(β),

∆G(t, τ) < 0 for α < τ < t.

Corollary 4.28. For G(t, τ) defined in Theorem 4.24, we have

−∆2G(t, τ) =
δtτ
µ(τ)

,

on its domain, where δtτ is the Kronecker delta, i.e., δtτ = 1 for t = τ and δtτ = 0

for t 6= τ .

Proof. We will show this by direct computation. First, for t ≤ τ ,

−∆2G(t, τ) = −∆∆G(t, τ)

= −∆

(
h1(β, σ(τ))

h1(β, α)
h0(t, α)

)
= −∆

(
h1(β, σ(τ))

h1(β, α)

)
= 0.

Now, for t > τ ,

−∆2G(t, τ) = −∆∆G(t, τ)

= −∆

(
h1(β, σ(τ))

h1(β, α)
h0(t, α)− h0(t, σ(τ))

)
= −∆

(
h1(β, σ(τ))

h1(β, α)
− 1

)
= 0.
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Finally now for t = τ ,

−∆2G(t, τ)

= −∆∆G(t, τ)

= −∆

(
G(σ(t), τ)−G(t, τ)

µ(t)

)
= −

G(σ2(t),τ)−G(σ(t),τ)
µ(σ(t))

− G(σ(t),τ)−G(t,τ)
µ(t)

µ(t)

= − 1

µ(t)

[
β−σ(τ)
β−α (σ2(t)− α)− (σ2(t)− σ(τ))− β−σ(τ)

β−α (σ(t)− α) + (σ(t)− σ(τ))

µ(σ(t))

−
β−σ(τ)
β−α (σ(t)− α)− (σ(t)− σ(τ))− β−σ(τ)

β−α (t− α)

µ(t)

]

= − 1

µ(τ)

[
β−σ(τ)
β−α (σ2(τ)− α− σ(τ) + α)− σ2(τ) + σ(τ) + σ(τ)− σ(τ)

µ(σ(τ))

−
β−σ(τ)
β−α (σ(τ)− α− τ + α)− σ(τ) + σ(τ)

µ(τ)

= − 1

µ(τ)

[
β−σ(τ)
β−α µ(σ(τ))− µ(σ(τ))

µ(σ(τ))
−

β−σ(τ)
β−α µ(τ)

µ(τ)

]

= − 1

µ(τ)

[
β − σ(τ)

β − α
− 1− β − σ(τ)

β − α

]
=

1

µ(τ)
.

Therefore,

−∆2G(t, τ) =
δtτ
µ(τ)

.

Remark 4.29. As a result of the above corollary, we can verify the solution to the
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difference equation of Theorem 4.24 (where i = K(t)):

−∆2y(t) =

K(β)−1∑
j=0

(−∆2G(t, σj(α)))f(σj(α))µ(σj(α))

=
1

µ(σi(α))
f(σi(α))µ(σi(α))

= f(σi(α))

= f(t).

Corollary 4.30. As defined in Theorem 4.24, G(t, τ) is the unique function defined

on Tβα × Tρ(β)
α such that G(α, τ) = 0 = G(β, τ) and −∆2G(t, τ) = δtτ

µ(τ)
.

Proof. If there exists another such function, say H(t, τ), then fix τ ∈ Tρ(β)
α and let

y(t) := G(t, τ)−H(t, τ).

Then

−∆2y(t) = −∆2G(t, τ) + ∆2H(t, τ) = 0

=⇒ y(t) = c0 + c1h1(t, α).

But then

y(α) = G(α, τ)−H(α, τ) = 0,

and

y(β) = G(β, τ)−H(β, τ) = 0,
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so

y(t) = G(t, τ)−H(t, τ) ≡ 0.

As τ ∈ Tρ(β)
α was arbitrary, we have G(t, τ) ≡ H(t, τ) on Tβα × Tρ(β)

α .

Theorem 4.31. The unique solution of


−∆2y(t) = f(t), t ∈ Tα,

y(α) = A1, y(β) = A2

is given by

y(t) = u(t) +

∫ β

α

G(t, τ)f(τ) ∆τ = u(t) +

K(β)−1∑
j=0

G(t, σj(α))f(σj(α))µ(σj(α)),

where u(t) solves 
−∆2y(t) = 0, t ∈ Tα,

y(α) = A1, y(β) = A2

and G(t, τ) is the Green’s function as defined in Theorem 4.24.

Proof. Let us first verify that the solution satisfies the initial conditions. At t = α

we have

y(α) = u(α) +

∫ β

α

G(α, τ)f(τ) ∆τ

= u(α) +

∫ β

α

0 · f(τ) ∆τ

= u(α) = A1,
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and, similarly, at t = β, we have

y(β) = u(β) +

∫ β

α

G(β, τ)f(τ) ∆τ = A2.

Now

−∆2y(t) = −∆2
[
u(t) +

∫ β

α

G(t, τ)f(τ) ∆τ
]

= −∆2u(t)−∆2

∫ β

α

G(t, τ)f(τ) ∆τ

= 0 + f(t) = f(t).

Since G(t, τ) is the unique Green’s function with the properties from Corollary 4.30,

we have our result.

We now prove a comparison theorem for solutions of boundary value problems

like that in Theorem 4.31.

Theorem 4.32. If u(t) and v(t) satisfy


∆2u(t) ≤ ∆2v(t), t ∈ Tβα,

u(α) ≥ v(α),

u(β) ≥ v(β),

then u(t) ≥ v(t) on Tβα.

Proof. Let w(t) := u(t)− v(t). Then for t ∈ Tβα

f(t) := −∆2w(t) = −∆2u(t) + ∆2v(t) ≥ 0.
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If A1 := u(α)− v(α) ≥ 0 and A2 := u(β)− v(β) ≥ 0, then w(t) solves the boundary

value problem 
−∆2w(t) = f(t),

w(α) = A1, w(β) = A2.

Thus, by Theorem 4.31

w(t) = y(t) +

∫ β

α

G(t, τ)f(τ) ∆τ,

where G(t, τ) is the Green’s function defined in Theorem 4.24 and y(t) is the solution

of 
−∆2y(t) = 0, t ∈ Tα,

y(α) = A1, y(β) = A2.

Since −∆2y(t) = 0 has solution

y(t) = c0 + c1ht(t, α) = c0 + c1(t− α),

and both y(α), y(β) ≥ 0, then we have y(t) ≥ 0. By Theorem 4.26 G(t, τ) ≥ 0, and,

thus, we have

w(t) = y(t) +

∫ β

α

G(t, τ)f(τ) ∆τ ≥ 0.

4.3 Even-Ordered Boundary Value Problems

with Even-Ordered Boundary Conditions

We will now focus our attention on problems similar to those from Chapter 2, of which

the second-order boundary value problems in Section 4.2 are a special case. A minor
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difference here is that we will make the problem a little more general by allowing the

boundary conditions to be nonzero. Note that in the iterated integrals that follow,

many Green’s functions will only take into account a domain of Tρ(β)
α ×Tρ(β)

α , but this

only neglects domain elements where the Green’s function’s value is zero.

Theorem 4.33. For y : Tσ
2n(β)
α → R, f : Tβα → R, and n ∈ N, the boundary value

problem 
(−1)n∆2ny(t) = f(t),

(−1)k∆2ky(α) = Ak,

(−1)k∆2ky(β) = Bk,

where k = 0, 1, 2, . . . , n− 1, has the unique solution

y(t) = u0(t) +
n∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn)G(τn, τn−1) · · ·

G(τn−k+2, τn−k+1)uk(τn−k+1) ∆τn−k+1 ∆τn−k+2 · · ·∆τn,

where un(t) ≡ f(t) and uk(t) is the solution to


−∆2y(t) = 0,

y(α) = Ak, y(β) = Bk.

Proof. By Theorem 4.31, we already have the result for the case n = 1. Before we

do the inductive step, let us see what happens in the case n = 2, which results in the

boundary value problem


∆4y(t) = f(t),

y(α) = A0, y(β) = B0,

−∆2y(α) = A1, −∆2y(β) = B1.
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Let w(t) := −∆2y(t). We may then turn our attention to the problem


−∆2w(t) = f(t),

w(α) = A1, w(β) = B1,

which, from the case n = 1 has solution

w(t) = u1(t) +

∫ β

α

G(t, τ1)f(τ1) ∆τ1.

We also have 
−∆2y(t) = w(t) = u1(t) +

∫ β

α

G(t, τ1)w(τ1) ∆τ1

y(α) = A0, y(β) = B0,

which has solution

y(t) = u0(t) +

∫ β

α

G(t, τ2)w(τ2) ∆τ2

= u0(t) +

∫ β

α

G(t, τ2)
[
u1(τ2) +

∫ β

α

G(τ2, τ1)f(τ1)∆τ1

]
∆τ2

= u0(t) +

∫ β

α

[
G(t, τ2)u1(τ2) +G(t, τ2)

∫ β

α

G(τ2, τ1)f(τ1) ∆τ1

]
∆τ2

= u0(t) +

∫ β

α

G(t, τ2)u1(τ2)∆τ2 +

∫ β

α

∫ β

α

G(t, τ2)G(τ2, τ1)f(τ1) ∆τ1 ∆τ2

= u0(t) +

∫ β

α

G(t, τ2)u1(τ2)∆τ2 +

∫ β

α

∫ β

α

G(t, τ2)G(τ2, τ1)u2(τ1) ∆τ1 ∆τ2,

thus showing the result holds when n = 2.

Now suppose the result holds for some n ∈ N. We will then consider the boundary
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value problem 
(−1)n+1∆2(n+1)y(t) = f(t),

(−1)2i∆2iy(α) = Ai,

(−1)2i∆2iy(β) = Bi,

where i = 0, 1, 2, . . . , n. Let w(t) := (−1)2ny(t). We may then consider the boundary

value problem 
(−1)n∆2ny(t) = w(t),

(−1)2i∆2iy(α) = Ai,

(−1)2i∆2iy(β) = Bi,

where i = 0, 1, 2, . . . , n− 1, which, by the inductive step, has solution

y(t) = u0(t) +
n−1∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn)G(τn, τn−1) · · ·

G(τn−k+2, τn−k+1)uk(τn−k+1) ∆τn−k+1 ∆τn−k+2 · · ·∆τn

+

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn)G(τn, τn−1) · · ·G(τ2, τ1)w(τ1) ∆τ1 ∆τ2 · · ·∆τn

= u0(t) +
n−1∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn)G(τn, τn−1) · · ·

G(τn−k+2, τn−k+1)uk(τn−k+1) ∆τn−k+1 ∆τn−k+2 · · ·∆τn

+

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·G(τ3, τ2)w(τ2) ∆τ2 ∆τ3 · · ·∆τn+1

= u0(t) +
n−1∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·

G(τn−k+3, τn−k+2)uk(τn−k+2) ∆τn−k+2 ∆τn−k+3 · · ·∆τn+1

+

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·G(τ3, τ2)w(τ2) ∆τ2 ∆τ3 · · ·∆τn+1.
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Now, as 
−∆2w(t) = f(t),

w(α) = An, w(β) = Bn,

we have

w(t) = un(t) +

∫ β

α

G(t, τ1)f(τ1) ∆τ1

= un(t) +

∫ β

α

G(t, τ1)un+1(τ1) ∆τ1,
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where un+1 ≡ f . Therefore,

y(t)

= u0(t) +
n−1∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·

G(τn−k+3, τn−k+2)uk(τn−k+2) ∆τn−k+2 ∆τn−k+3 · · ·∆τn+1

+

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·G(τ3, τ2)w(τ2) ∆τ2 ∆τ3 · · ·∆τn+1

= u0(t) +
n−1∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·

G(τn−k+3, τn−k+2)uk(τn−k+2) ∆τn−k+2 ∆τn−k+3 · · ·∆τn+1

+

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·

G(τ3, τ2)
[
un(τ2) +

∫ β

α

G(τ2, τ1)un+1(τ1) ∆τ1

]
∆τ2 ∆τ3 · · ·∆τn+1

= u0(t) +
n−1∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·

G(τn−k+3, τn−k+2)uk(τn−k+2) ∆τn−k+2 ∆τn−k+3 · · ·∆τn+1

+

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·G(τ3, τ2)un(τ2) ∆τ2 ∆τ3 · · ·∆τn+1

+

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·

G(τ3, τ2)

∫ β

α

G(τ2, τ1)un+1(τ1) ∆τ1 ∆τ2 ∆τ3 · · ·∆τn+1

= u0(t) +
n+1∑
k=1

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn+1)G(τn+1, τn) · · ·

G(τn−k+2, τn−k+1)uk(τn−k+1) ∆τn−k+1 ∆τn−k+2 · · ·∆τn+1,

which gives the result.

Remark 4.34. If, as in Chapter 2, we focus on Lidstone boundary conditions, we
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have that, according to Theorem 4.33,


(−1)n∆2ny(t) = f(t),

∆2ky(α) = 0,

∆2ky(β) = 0,

where k = 0, 1, 2, . . . , n− 1, has solution

y(t) =

∫ β

α

∫ β

α

· · ·
∫ β

α

G(t, τn)G(τn, τn−1) · · ·G(τ2, τ1)f(τ1) ∆τ1 ∆τ2 · · ·∆τn,

since uk(t) ≡ 0 for all k = 0, 1, 2, . . . , n− 1.

As in Chapter 2, we may find it convenient to make the following definition.

Definition 4.35. Let

Gn(t, τn) := G(t, τn)

K(β)−1∑
jn−1=0

G(τn, σ
jn−1(α))

K(β)−1∑
jn−2=0

G(σjn−1(α), σjn−2(α)) · · ·

K(β)−1∑
j1=0

G(σj2(α), σj1(α))µ(σj1(α))µ(σj2(α)) · · ·µ(σjn−1(α)).

Remark 4.36. We can note that

Gn(t, τn) = G(t, τn)

∫ β

α

G(τn, τn−1)

∫ β

α

G(τn−1, τn−2) · · ·
∫ β

α

G(τ2, τ1) ∆τ1 ∆τ2 · · ·∆τn−1,

but in the results that follow, we will typically use the summation form from the

definition above.
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Corollary 4.37. For any τn ∈ Tρ(β)
α

max
t∈Tβα
Gn(t, τn) = Gn(σ(τn), τn).

Proof. For each τ ∈ Tρ(β)
α , we have, from Theorem 4.26

max
t∈Tβα

G(t, τ) = G(σ(τ), τ),

and G(t, τ) ≥ 0 on its domain. So for all t ∈ Tβα, we have

Gn(t, τn)

= G(t, τn)

K(β)−1∑
jn−1=0

G(τn, σ
jn−1(α))

K(β)−1∑
jn−2=0

G(σjn−1(α), σjn−2(α)) · · ·

K(β)−1∑
j1=0

G(σj2(α), σj1(α))µ(σj1(α))µ(σj2(α)) · · ·µ(σjn−1(α))

= G(t, τn)

K(β)−1∑
jn−1=0

Gn−1(τn, σ
jn−1(α))µ(σjn−1(α))

≤ G(σ(τn), τn)

K(β)−1∑
jn−1=0

Gn−1(τn, σ
jn−1(α))µ(σjn−1(α))

= Gn(σ(τn), τn),

and

Gn(σ(τn), τn) = G(σ(τn), τn)

K(β)−1∑
jn−1=0

Gn−1(τn, σ
jn−1(α))µ(σjn−1(α)) = Gn(σ(τn), τn).

Thus, we have our result.
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4.4 Existence and Uniqueness Theorems

Similar to earlier work in this thesis, we will define the following domain and present

a lemma which will be used to help us provide some existence and uniqueness results.

Definition 4.38. Given the domain Tβα, let

D := [σdK(β)/4e(α), σb3K(β)/4c(α)] ∩ Tα.

Remark 4.39. Note that we have ∅ 6= D ( Tβα if K(β) ≥ 2.

Lemma 4.40. Given that D 6= ∅, there exists γ ∈ (0, 1) such that for any τn ∈ Tρ(β)
α ,

min
t∈D
Gn(t, τn) ≥ γ

(
max
t∈Tβα
Gn(t, τn)

)
= γGn(σ(τn), τn).

Proof. Note that this is trivially true if τn is chosen such that Gn(t, τn) = 0. Otherwise,

for any t ∈ D, a set of finite points, we have

Gn(t, τn)

maxt∈Tβα Gn(t, τn)
=

Gn(t, τn)

Gn(σ(τn), τn)
∈ (0, 1],

since maxt∈Tβα Gn(t, τn) ≥ Gn(t, τn) for any t ∈ Tβα and Gn(t, τn) 6= 0 for t ∈ D as a

result of Remark 4.27. Since t (and τn) comes from a domain with a finite number of

points, we can find γ such that

0 < γ < min
t∈D

Gn(t, τn)

Gn(σ(τn), τn)
≤ 1.

Therefore, we have γ ∈ (0, 1) such that

min
t∈D
Gn(t, τn) ≥ γ

(
max
t∈Tβα
Gn(t, τn)

)
= γGn(σ(τn), τn).
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Throughout this section, we will consider a problem of the form


(−1)n∆2ny(t) = f(t, y(t)), t ∈ Tβα, n ∈ N

∆2iy(α) = 0,

∆2iy(β) = 0,

(4.4.1)

where i = 0, 1, 2, . . . , n− 1, and f : Tβα × R→ R.

We can note that y solves this boundary value problem if and only if y is a fixed

point of the operator T : B → B defined by

Ty :=

K(β)−1∑
jn=0

Gn(t, σjn(α))f(σj1(α), y(σj1(α)))µ(σjn(α),

and where B is the Banach space

B := {y : Tα → R
∣∣ the boundary conditions of (4.4.1) hold}, (4.4.2)

equipped with the supremum norm ‖ · ‖.
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As in Chapter 2, we will define two constants:

η :=

(
K(β)−1∑
jn=0

Gn(σjn+1(α), σjn(α))µ(σjn(α)

)−1

λ :=

(
K(β)−1∑
jn=0

G(σ(α), σjn(α))

K(β)−1∑
jn−1=0

G(σjn(α), σjn−1(α)) · · ·

K(β)−1∑
j2=0

G(σj3(α), σj2(α))

b3K(β)/4c∑
j1=dK(β)/4e

G(σj2(α), σj1(α))µ(σj1(α))µ(σj2(α)) · · ·

µ(σjn(α))

)−1

As in Chapter 2, since G is nonzero and positive at least at some points in a non-

trivial domain, both η and λ will be positive real numbers. Also, let us consider two

conditions regarding f that will be used in the following theorem:

(C1) There exists a number r > 0 such that f(t, y) ≤ ηr whenever 0 ≤ y ≤ r.

(C2) There exists a number r > 0 such that f(t, y) ≥ λr whenever t ∈ D and

γr ≤ y ≤ r, where γ is as in Lemma 4.40.

Remark 4.41. As in Chapter 2, there would be many such functions f that satisfy

the above conditions since f is free to satisfy (C1) and (C2) at distinct values of r.

Also note a characterization of positive solutions mentioned in Remark 2.12.

Theorem 4.42. Suppose there exist positive and distinct r1 and r2 such that (C1)

holds at r = r1 and (C2) holds at r = r2. Suppose also that f(t, y) ≥ 0 and continuous.

Then the boundary value problem (4.4.1) has at least one positive solution y0 such that

‖y0‖ lies between r1 and r2.

Proof. Without loss of generality, suppose 0 < r1 < r2. We will consider the cone

K := {y ∈ B
∣∣ y(t) ≥ 0,mint∈D y(t) ≥ γ‖y‖} ⊆ B. Now whenever y ∈ K, we have
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(Ty)(t) ≥ 0, and

min
t∈D

(Ty)(t) = min
t∈D

K(β)−1∑
jn=0

Gn(t, σjn(α))f(σj1(α), y(σj1(α)))µ(σjn(α))

≥ γ

K(β)−1∑
jn=0

Gn(σjn+1(α), σjn(α))f(σj1(α), y(σj1(α)))µ(σjn(α))


= γ

(
max
t∈Tβα
Gn(t, σjn(α))f(σj1(α), y(σj1(α)))µ(σjn(α))

)
= γ‖Ty‖,

i.e., Ty ∈ K. So T : K → K. We can also note that T is a completely continuous

operator.

Now let Ω1 := {y ∈ K : ‖y‖ < r1}. For y ∈ ∂Ω1, we have ‖y‖ = r1, so condition

(C1) applies for all y ∈ ∂Ω1. Thus, for y ∈ K ∩ ∂Ω1, we have

‖Ty‖ = max
t∈Tβα

K(β)−1∑
jn=0

Gn(t, σjn(α))f(σj1(α), y(σj1(α)))µ(σjn(α))

≤
K(β)−1∑
jn=0

Gn(σjn+1(α), σjn(α))f(σj1(α), y(σj1(α)))µ(σjn(α))

≤ ηr1

K(β)−1∑
jn=0

Gn(σjn+1(α), σjn(α))µ(σjn(α))

= r1

= ‖y‖.

Therefore, ‖Ty‖ ≤ ‖y‖ whenever y ∈ K ∩ ∂Ω1, which implies that T is a cone

compression on K ∩ ∂Ω1.

Now let Ω2 := {y ∈ K : ‖y‖ < r2}. For y ∈ ∂Ω2, we have ‖y‖ = r2, so condition
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(C2) applies for all y ∈ ∂Ω2. Thus, for y ∈ K ∩ ∂Ω2, we have

‖Ty‖

≥ (Ty)(σ(α))

=

K(β)−1∑
jn=0

Gn(σ(α), σjn(α))f(σj1(α), y(σj1(α)))µ(σjn(α))

=

K(β)−1∑
jn=0

G(σ(α), σjn(α))

K(β)−1∑
jn−1=0

G(σjn(α), σjn−1(α)) · · ·

K(β)−1∑
j1=0

G(σj2(α), σj1(α))f(σj1(α), y(σj1(α)))µ(σj1(α))µ(σj2(α)) · · ·µ(σjn(α))

≥
K(β)−1∑
jn=0

G(σ(α), σjn(α))

K(β)−1∑
jn−1=0

G(σjn(α), σjn−1(α)) · · ·

b3K(β)/4c∑
j1=dK(β)/4e

G(σj2(α), σj1(α))f(σj1(α), y(σj1(α)))µ(σj1(α))µ(σj2(α)) · · ·µ(σjn(α))

≥ λr2

K(β)−1∑
jn=0

G(σ(α), σjn(α))

K(β)−1∑
jn−1=0

G(σjn(α), σjn−1(α)) · · ·

b3K(β)/4c∑
j1=dK(β)/4e

G(σj2(α), σj1(α))µ(σj1(α))µ(σj2(α)) · · ·µ(σjn(α))

= r2

= ‖y‖.

Therefore, ‖Ty‖ ≥ ‖y‖ whenever y ∈ K ∩ ∂Ω2, which implies that T is a cone

expansion on K ∩ ∂Ω2. So now, by Theorem 2.2 we have that T has a fixed point,

which implies that our boundary value problem has a positive solution y0 such that

r1 ≤ ‖y0‖ ≤ r2.

Now we introduce a Lemma that will help show uniqueness under a Lipschitz
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condition.

Lemma 4.43. For Gn(t, τn) defined previously, we have

max
t∈Tβα

K(β)−1∑
jn=0

Gn(t, τn) ≤
[

(β − α)2

4

]n
.

Proof. We know maxt∈Tβα G(t, τ) = G(σ(τ), τ), and

G(σ(τ), τ) =
β − σ(τ)

β − α
(σ(τ)− α)− (σ(τ)− σ(τ))

=
β − σ(τ)

β − α
(σ(τ)− α)

=
β − aτ − b
β − α

(aτ + b− α).

Now

d

dτ

[
β − aτ − b
β − α

(aτ + b− α)

]
=
−a
β − α

(aτ + b− α) +
β − aτ − b
β − α

(a)

=
1

β − α
[−a2τ − ab+ aα + aβ − a2τ − ab]

=
1

β − α
[−2a2τ − 2ab+ aα + aβ]

= 0

⇐⇒ τ =
aα + aβ − 2ab

2a2
=
α + β − 2b

2a
,

and

d2

dτ2

[
β − aτ − b
β − α

(aτ + b− α)

]
=

1

β − α
[−2a2] < 0,
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which implies

G(σ(τ), τ) ≤ G

(
σ

(
α + β − 2b

2a

)
,
α + β − 2b

2a

)
=
β − a

(
α+β−2b

2a

)
+ b

β − α

(
a

(
α + β − 2b

2a

)
+ b− α

)
=
β − 1

2
(α + β − 2b) + b

β − α

(
1

2
(α + β − 2b) + b− α

)
=

1
2
(β − α)

β − α

(
1

2
(β − α)

)
=
β − α

4
.

Thus,

K(β)−1∑
ji=0

G(σji+1(α), σji(α))µ(σji(α))

≤
K(β)−1∑
ji=0

β − α
4

µ(σji(α))

=
β − α

4
[(σ(α)− α) + (σ2(α)− σ(α)) + · · ·+ (σK(β)(α)− σK(β)−1(α)]

=
(β − α)2

4

for i = 1, 2, 3, . . . , n.
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Therefore,

max
t∈Tβα

K(β)−1∑
jn=0

Gn(t, τn)µ(σjn(α))

= max
t∈Tβα

K(β)−1∑
jn=0

G(t, σjn(α))µ(σjn(α))

K(β)−1∑
jn−1=0

G(σjn(α), σjn−1(α))µ(σjn−1(α)) · · ·

K(β)−1∑
j1=0

G(σj2(α), σj1(α))µ(σj1(α))

≤
[

(β − α)2

4

] [
(β − α)2

4

]
· · ·
[

(β − α)2

4

]
=

[
(β − α)2

4

]n
.

Finally, we prove a uniqueness theorem when f satisfies a Lipschitz condition.

Theorem 4.44. Suppose f(t, y) satisfies a Lipschitz condition in y with Lipschitz

constant ξ, i.e., |f(t, y2)− f(t, y1)| ≤ ξ|y2 − y1| for all (t, y1), (t, y2). Then if we have[
(β−α)2

4

]n
< 1

ξ
, the BVP (4.4.1) has a unique solution.

Proof. Let y1, y2 ∈ B, where B is the Banach space from (4.4.2). Then

‖Ty2 − Ty1‖ ≤ max
t∈Tβα

K(β)−1∑
jn=0

|Gn(t, σjn(α)||f(σj1(α), y2(σj1(α)))− f(σj1(α), y1(σj1(α)))|

≤ ξ

K(β)−1∑
jn=0

Gn(σjn+1(α), σjn(α))|y2(σj1(α))− y1(σj1(α))|

≤ ξ‖y2 − y1‖
K(β)−1∑
jn=0

Gn(σjn+1(α), σjn(α))

≤ ξ‖y2 − y1‖
[

(β − α)2

4

]n
,
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which implies, by Theorem 2.3 (the Banach Contraction Theorem), since ξ
[

(β−α)2

4

]n
< 1,

we have a unique solution.

Example 4.45. If we consider the time scale Tα = T0 such that σ(t) = 2t+ 1, i.e.,

T0 := {0, 1, 3, 7, 15, 31, 63, . . .},

then by the preceding theorem, if we let ξ = 1
250

and n = 2, the boundary value

problem (4.4.1) has a unique solution if

[
(β − 0)2

4

]2

< 250

=⇒ β4 < 4000

=⇒ βmax = 7,

where βmax is the largest value of β ∈ T0 such that the hypotheses of Theorem 4.44

are satisfied since 74 = 2401 whereas 154 = 50625.
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