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ABSTRACT 

The maximum mass of homogeneous stars which are stable against nuclear-energized pulsations has 
been redetermined by using a full opacity formula and an accurate treatment of the equilibrium struc
ture of the outer layers where nonscattering sources of opacity are important damping agents. Sixteen 
composition mixtures were used, covering the range 0 ~ y ~ (1 - Z) and 0 ~ Z ~ 0.05. The nuclear
energy sources were taken to be the CN cycle and the triple-a process. Due to the primary influence of 
bound-free absorption by metals (and, to a lesser extent, of free-free absorption by hydrogen and helium), 
the critically stable nondimensional mass of hydrogen-burning stars, (M 1M 0)1-'2, can range from 27 to 94, 
depending on the chemical composition. For likely chemical compositions of extreme Population I, the 
actual critical mass is probably 80-120 M 0' For homogeneous helium-burning stars, the critical mass 
ranges from 13 to 19 M 0, depending on the metal abundance. 

1. INTRODUCTION 

The pulsational stability of stars against nuclear-energy release was first discussed 
in 1918 by Eddington, even though at that time the existence of the nuclear sources was 
not yet proved. Subsequent developments up to Ledoux's important investigation of 
1941 have been summarized by Rosseland (1949), while more recent work, beginning 
with that of Ledoux, is abstracted for convenience in Table 1 in the case of chemically 
homogeneous stars of high mass. 

One very important factor which has been largely neglected so far is the opacity 
source; this is the main subject of the present paper. Boury (1964) and Noels-Grotsch 
(1967) have, indeed, considered the effect of introducing Compton scattering in place 
of the customarily adopted Thomson scattering. However, this relatively small correc
tion will be replaced in the present paper by a complete opacity formula which takes 
into account sources of atomic absorption as well. Since atomic absorption is important 
only in the outer envelope of the star (where most of the pulsational damping occurs), 
a treatment of the structure of the surface layers that is more accurate than that yielded 
by the zero boundary conditions heretofore used is also in order. Finally, the maximum 
mass for pulsational stability will be determined for a broad range of homogeneous 
models, constituted principally of hydrogen and helium (in differing ratios) with the 
metals abundance taken to be 0 < Z < 0.05. 

II. ASSUMPTIONS 

The basic equilibrium equations for the structure of chemically homogeneous stars 
have been written in complete form by Schwarzschild (1958), while the basic perturba
tion equations for small radial pulsations have been written in linearized, adiabatic 
form by Schwarzschild and Harm (1959). The problem is to determine, for a selected 
chemical composition, the critical mass at which the net gain or loss rate of pulsational 
energy over a cycle vanishes, viz., Lp* = 0, in the notation of Schwarzschild and Harm 
(but where the asterisk denotes our omission of running waves at the surface). The 
following subsections are devoted to the physical parameters needed to evaluate this 
quantity and to the adopted modifications of the procedure of Schwarzschild and Harm. 
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TABLE 1 

PREVIOUS DETERMINATIONS OF THE MAXIMUM STABLE MASS OF HOMOGENEOUS STARS 

M/M0 
Chemical 

Composition 

700-1200........ X=1, Y=1O-4 

"'280. . . . . . . . . X = 1, traces of He, C, N 

"'260. . . . . . . . . X = 1, traces of He, C, N 

>280......... X=I,tracesofHe,C,N 

,....,100 ",-2 ..... . 

21 ",-2 .. , .. . 

19 ",-2 ...•.. 

7-8....... Y=1 
9.2....... Y=1 

Model 

Standard 
Cowling 

Cowling 

Cowling 

Standard 
Cowling 
Cowling 

Cowling 
Cowling 

Radiation 
Pressure Opacity 

Yes Thomson 
Yes Thomson 

Yes Thomson 

Yes Compton 

Yes Kramers 
Yes Thomson 
Yes Thomson 

Yes Thomson 
Yes Compton 

Energy Generation 
in·the Core Author 

p-p chain Ledoux and Boury 1960 
p-p chain and CN Boury 1963 

cycle 
p-p chain, CN cycle, Boury et al. 1964 

and convection 
p-p chain and CN Boury 1964 

cycle 
CN cycle (,,= 16) Ledoux 1941 
CN cycle (,,= 13) Schwarzschild and Harm 1959 
CN cycle (,,= 13) Boury et aI. 1964 

and convection 
30. process (,,=24) Boury and Ledoux 1965 
30. process (,,=24) Noels-Grotsch 1967 

http://adsabs.harvard.edu/abs/1970ApJ...160.1019S
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PULSATIONAL STABILITY OF MASSIVE STARS 1021 

a) Thermodynamics 

The equation of state is represented accurately throughout our models by the sum 
of perfect-gas pressure and radiation pressure, with the mean molecular weight of the 
gas given by the appropriate expression for a completely ionized gas. In our models 
hydrogen and helium are completely ionized out to the stellar surface. 

b) Opacity 

The opacity has been expressed as an analytical formula in terms of p, T, X, Y, and 
Z, in accordance with the precepts of Christy (1966), who fitted his own formula from 
tables of opacities similar to those published by Cox and Stewart (1965). We have 
found that Christy's formula works very well for the temperature-density conditions 
in our models except at high temperatures, where two improvements have been made. 
The first is the replacement of the formula for Thomson scattering by an approximate 
expression for Compton scattering (Deinzer and Salpeter 1965). The second is a more 
accurate representation of the contribution from bound-free absorption by metals 
(Morris and Demarque 1966). The complete opacity formula is 

K = PE[4.85 X 1O-13[pT4(1 + 2.2 X 1O-oT4)]-1 

+ X {T41/2(2 X 106T4-4 + 2.1T46)-1 + [4.5T46 + T4-1(4 X 1O-3T4-4 

+ 2 X 10-4p-I/4)-lt1} + Y[(1.4 X 103T4 + T46)-1 . (1) 

+ 1.5(106 + 0.lT46)-1] + Z {T41/2[20T4 + 35T44 

+ 18(1 + X)O.88 pO.88T44.71]-1}] 

where T4 = T X 10-40 K and PE is the electron pressure. At all points, we have found 
that PE can be accurately represented by the proper expression for a completely ionized 
gas. 

The four successive terms inside the double bracket for K represent essentially the 
following contributions: (1) scattering by free electrons, (2) free-free absorption by 
hydrogen, (3) free-free absorption by helium, and (4) bound-free and bound-bound 
absorption by metals. Christy has discussed in detail the form of the opacity formula. 

Using typical runs of temperature and density from our models, we have checked 
the opacity formula against the Cox-Stewart (1965) tables for several normal and 
extreme choices of chemical composition in the ranges 0.009 < Y < 0.999, 0.001 < 
Z < 0.044. Even in the worst cases (temperatures below 2 X 1050 K) the errors were 
always less than 30 percent, the estimated error of the tabulated opacities according to 
Cox and Stewart. For temperatures above 2 X 1060 K, the errors were less than 10 
percent, becoming completely negligible at the temperatures characteristic of the con
vective-core boundary of our models, where electron scattering dominates. 

The great advantages in our work of using a formula rather than a table of opacity 
are that the formula is more convenient to use if a variety of chemical compositions is 
being introduced, and that the formula provides a smooth opacity as a function of 
temperature and density, which is helpful when computing the thermodynamic deriva
tives of the opacity in the pulsation equations. 

By writing K = Kopa.T-TI over a small range of density and temperature, the perturbed 
equation of radiative transfer can be expressed as 

(2) 
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1022 RICHARD STOTHERS AND NORMAN R. SIMON Vol. 160 

where d/dT refers to the spatial run of temperature. It is simple to evaluate a and 'f/ 
from the thermodynamic derivatives of equation (1). In view of the coarseness of the 
grid of the tabulated opacities, it is impossible to estimate the error in a and 'f/, which 
critically affect the calculation of damping in the envelope. But we may hope that in 
the hot, adiabatic regions, which contribute most to the damping in our models, the 
opacities and the opacity exponents are reasonably well determined. 

c) Nuclear-Energy Generation 

In the homogeneous hydrogen-burning stars, the simple CN cycle operates because 
160 requires a long time to reach equilibrium. Therefore we have adopted XCN = !Z, 
which is the approximate fractional abundance of carbon and nitrogen derived from 
analyses of early-type stars (Traving 1966). 

By writing E = EOP"P, we find that the equilibrium rate of nuclear-energy generation 
is represented adequately as follows (Reeves 1965): 

E = 10-91.3X(!Z)pTI3. -(3) 

Since, over the range of central temperatures and of temperature profiles for our core 
models, P varies by only ± 1, we have adopted uniformly P = 13. Changing P by a unit 
affects only the third significant figure of computed quantities in the equilibrium 
models. 

The perturbed rate of nuclear-energy generation may be written in terms of effective 
exponents of the density and temperature as follows: 

OE op oT - = Aeff - + Peff -- • (4) 
E p T 

Phase delays in the hydrogen-burning rate during the course of a pulsation have been 
approximately treated by following a standard prescription (e.g., Cox 1955; Ledoux 
and Boury 1960). We find that Aeff = 1 and that P - Peff lies in the range 0.6-3.0. For 
simplicity, we have set Peff = P = 13. 

In the helium-burning models, the triple-a process is adopted as an exclusive source 
of energy since the contributions from a-particle captures on carbon and heavier ele
ments are very small. The equilibrium rate of energy generation may be written as 
(Reeve~ 1965) 

(5) 

This expression represents adequately the rate in the cores of all our helium-burning 
models. The effective exponents of the perturbed rate have been investigated by 
Perdang (1965), who finds that Aeff = 2 and Peff = P, to an excellent approximation. 
Therefore, we are justified in setting Peff = 19. Neutrino losses due to the direct electron
neutrino weak interaction have been shown to be negligible in massive helium-burning 
stars (Cimino et al. 1964; Masevich et al. 1965). 

d) Convection 

Convection in the stellar core has been treated as fully adiabatic. In the models with 
the highest helium content, a thin convective region occurs just below the photosphere 
due to the behavior of the helium opacity at low temperature; for simplicity, the equilib
rium structure of such a region has been treated as fully adiabatic. 

In the pulsation equations, the luminosity amplitudes of the convective core were 
computed by means of an average involving quantities evaluated at the center and the 
boundary of the core only (cf. Schwarzschild and Harm 1959). The adiabatic luminosity 
amplitudes in the thin convection zone at the surface of our models (which never covered 
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No.3, 1970 PULSATIONAL STABILITY OF MASSIVE STARS 1023 

more than 2 percent of the radius) were calculated by ignoring the convection entirely 
and by adopting the perturbed equation of radiative transfer (but see § IIf). 

e) Surface Boundary Conditions 

The outermost layers of the star have been found to be in radiative equilibrium. 
The Eddington approximation has been adopted for the temperature structure, and 
an accurate integration of the equation of hydrostatic equilibrium has been performed 
for the pressure structure. As usual, we define the photosphere as the layer where the 
temperature is equal to the effective temperature of the star. 

The bouridary conditions for the pulsation equations have been derived by adopting 
adiabaticity of the thermodynamic equations out to the photosphere and by requiring 
regularity of the mechanical equation atr = ex>. (All the pulsation amplitudes above 
the photosphere are assumed to be constant.) Thus, in the latter case, the following 
equation applies: 

(6) 

where w2 = (2'1T/Period)2 R3/GM. Baker and Kippenhahn (1965) have discussed other 
possible atmospheric boundary conditions. 

f) N onadiabatic Effects in Outer Envelope 

The question of nonadiabatic regions is usually not discussed for pulsations in hot 
stars, and indeed is not important so long as the opacity is taken as due to scattering 
only. However, with the more realistic opacity used here, the adiabatic approximation 
leads to a region of unusually strong damping very near the surface. In the hydrogen
burning models, this surface region is composed of two subzones: an upper zone with 
positive damping just below the photosphere, and a deeper zone with strong negative 
damping. In the helium-burning models, only the zone with negative damping appears. 
This negative damping is due primarily to the characteristics of the helium opacity 
which dominates at low temperatures, since the essentially Kramers-like form of the 
opacity due to metals which dominates at much higher temperatures in the deeper 
interior provides a normal positive damping. 

According to a procedure described in the Appendix, it is found that the surface 
region in the hydrogen-burning models lies within the nonadiabatic layers where the 
flux is frozen in, and therefore contributes negligibly to the overall damping of the star. 
Since the subzones of positive and negative damping which appear in the adiabatic 
calculation cancel each other completely, we have, for simplicity, ignored the non
adiabatic effects entirely in determining the critical masses for the hydrogen-burning 
models. On the other hand, no such convenient cancellation occurs in the surface region 
of the helium-burning models, and we have therefore resorted to the nonadiabatic 
procedure outlined in the Appendix, which considerably modifies the apparently strong 
negative damping yielded by the adiabatic calculation. We might note here that the 
region of apparent negative damping lies wholly within the nonadiabatic layers where 
the flux is frozen in. 

III. CRITICAL MODELS 

A summary of the results of our cal\ulations is presented in Tables 2 and 3, which 
contain the interpolated characteristics for models with Lp* = 0 (critical models). 
The influence of nonscattering sources of opacity is seen to be highly important. 

There are two ways in which a Kramers-like source of opacity raises the critical mass 
over the value yielded by pure scattering alone: (1) by directly exerting positive damping 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1970ApJ...160.1019S


1970ApJ...160.1019S

© 
> 
:3 
~ .... 
n 
~ = > 
'" .... 
8 
= 9 .... 
n e:. 
rJJ 
o 
n .... 
('0 

~ 
• 
~ 
o 
~ 

~ 
Q., 

'a' 
~ .... 
g 

~ 
rJJ 
> 
> 
'" .... .., 
o 
'C 

~ 
'" ;::;. 
'" ~ 
~ 

Ei 
rJJ 
~ 

'" ~ 
:3 

VARIABLE 

M/M 0 ········ 
(M/M0)p.2 .... . 
qj ............ . 
flc . •.......... 
log Tc ... ..... . 
log pc . ....... . 
Pc/(p) . ...... . 
log (L/L 0 ) . .. . 
log (R/Rd ... . 
log Te ........ . 
Mv .......... . 
Wl ........... . 
Period (hr) .... . 

Z=0.05 

y= y= y= 
0.0 0.200 0.400 

165 140 114 
45 50 56 

0.82 0.83 0.84 
0.50 0.47 0.45 
7.64 7.65 7.66 
0.10 0.15 0.22 
30 32 34 

6.30 6.30 6.28 
1.25 1.22 1.17 
4.71 4.73 4.75 

- 6.7 - 6.6 - 6.4 
2.8 2.7 2.7 
9.7 9.4 9.0 

TABLE 2 

CRITICAL MODELS FOR THE HYDROGEN MAIN SEQUENCE (Lp* = 0) 

Z=0.03 Z=O.Ol 

y= y= y= y= y= y= y= y= 
0.900 0.0 0.200 0.400 0.920 0.0 0.200 0.400 

60 134 110 88 41 110 90 70 
94 35 38 42 63 28 30 32 

0.87 0.80 0.81 0.82 0.86 0.77 0.78 0.79 
0.37 0.54 0.53 0.51 0.43 0.59 0.57 0.56 
7.73 7.62 7.63 7.64 7.71 7.64 7.65 7.66 
0.54 0.12 0.18 0.25 0.60 0.25 0.31 0.39 
43 27 28 29 36 24 25 25 

6.27 6.15 6.13 6.11 6.05 6.00 5.98 5.94 
1.00 1.20 1.15 1.11 0.91 1.11 1.06 1.00 
4.83 4.70 4.72 4.74 4.82 4.71 4.73 4.75 

- 5.8 - 6.4 - 6.2 - 6.0 - 5.4 - 5.9 - 5.8 - 5.5 
2.6 2.9 2.9 2.8 2.7 2.9 2.9 2.9 
7.1 8.9 8.5 8.0 6.0 7.1 6.8 6.3 

Z=0.002 

y= y= y= y= y= 
0.940 0.0 0.200 0.400 0.948 

26 106 86 64 21 
40 27 28 29 32 

0.82 0.77 0.78 0.78 0.79 
0.52 0.60 0.58 0.58 0.57 
7.73 7.68 7.69 7.70 7.76 
0.79 0.39 0.46 0.54 0.96 

28 23 23 24 25 
5.75 5.97 5.94 5.87 5.59 
0.74 1.05 1.00 0.93 0.63 
4.83 4.73 4.75 4.77 4.85 

- 4.5 - 5.7 - 5.5 - 5.2 - 4.0 
2.8 2.8 2.8 2.9 2.9 
4.2 5.9 5.6 5.1 3.2 
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through the behavior of the temperature and density exponents of the opacity law 
and (2) by indirectly increasing the central condensation of the star. 

The first effect requires no discussion since it has been abundantly reviewed in the 
literature. With regard to the second effect, dimensional arguments show that an opacity 
source which decreases inward into the star leads to an expanded radius; the mean 
density is therefore lowered while the central density remains practically fixed by the 
nuclear-reaction rate. The necessity of a higher radiation pressure to compensate the 
higher central condensation (which, between them, determine the size of the pulsation 
amplitudes in the energy-producing region) requires a larger mass. 

The two foregoing effects of variable opacity are easily discernible in Tables 2 and 3 
by observing that, for constant /.L, Merit/ M0 increases with increasing Z, Prj <p), and 
1 - f3r. In this connection, it is interesting, but not surprising, to note that w2 is nearly 

TABLE 3 

CRITICAL MODELS FOR THE HELIUM 
MAIN SEQUENCE (Lp* = 0) 

VARIABLE 

M/M 0 · .... ··············· 
q, ........ ................ . 

f<;g ·r;. : : : : : : : : : : : : : : : : : : : : 
log ~c • •.....•.•.•......•.. 
pc/(p) . .................. . 
log (LjL0)' .............. . 
log (R/R0)' .............. . 
log Te . ................... . 
WI- ....................... . 
Period (hr) ................ . 

0.05 

19 
0.76 
0.54 
8.30 
2.58 
33 

5.64 
0.12 
5.11 
3.5 
0.52 

z 

0.02 

15 
0.72 
0.60 
8.28 

'2.64 
28 

5.44 
0.04 
5.11 
3.4 
0.45 

0.0 

13 
0.70 
0.63 
8.28 
2.68 

25 
5.33 

-0.01 
5.10 
3.3 
0.41 

constant for all our models, confined to the narrow range 2.6-2.9 for the hydrogen-burn
ing models and 3.3-3.5 for the helium-burning models. We have pointed out elsewhere 
(Simon and Stothers 1969) that this constancy is a general phenomenon of nuclear
energized pulsation (wcrit2 "" 3); in fact, this characteristic helped us considerably in 
locating the critical masses of the present paper. 

a) Hydrogen-Burning Models 

Two outstanding features appear in connection with the chemical composition of the 
hydrogen-burning models. First, the well-known trend of the critical mass with mean 
molecular weight (the chief effect of X and Y) is plainly exhibited. However, (Merit/ 

M 0)/.L2 is not a constant, as it is for homologous stars "built on the same model." This 
leads to examination of the second feature, namely, the extraordinary sensitivity of the 
critical mass tononscattering sources of opacity in the envelope. Bound-free absorption 
by metals is the dominant source when Z> 0.03, as (Merit/M0)/.L2 for these models is 
closer to Ledoux's value of ",,100 than to Schwarzschild and Harm's value of 21. How
ever, even when Z is reduced essentially to zero, the opacity does not go over into pure 
electron scattering, on account of the contribution from free-free absorption by hydrogen 
and helium; therefore, (Merit/M0 )/.L2 never becomes as low as the uniform value cal
culated by Schwarzschild and Harm for the pure-scattering case. The computations of 
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1026 RICHARD STOTHERS AND NORMAN R. SIMON Vol. 160 

(Mcrit/M0)J.L2 for constant Z show that the helium opacity is slightly more important 
than the hydrogen opacity in determining the critical mass. 

b) Helium-Burning Models 

The effect of the helium opacity is equally striking in the hotter and denser models 
for the helium-burning stars. This effect alone approximately doubles the critical mass 
found earlier by Boury, Ledoux, and Noels-Grotsch (7-9 M0)' 

Evolution during core helium burning turns out also to have a stabilizing effect, 
which we have assessed by calculating the critical mass for models with Z = 0 in the 
envelope, Z = 0.5 in the core, and a chemical discontinuity between envelope and core. 
Such a structure does represent a realistic stage in the evolution because the convective 
core of helium-burning stars increases monotonically in time. For simplicity, we have 
used the triple-a. process as the energy source at this stage of evolution, although, 
correctly, some of the energy production will come from 12C(a.,'Y)160.1 The critical mass 
is found to be 45 M 0 , which is much larger than the critical mass for the initial homo
geneous stars because the reduction in temperature sensitivity of the nuclear reactions 
and the increase of central condensation overcompensate the increase of radiation 
pressure and the reduced effect of atomic absorption on the damping. The pulsational 
characteristics of the model are w2 = 2.9 and Period = 0.84 hour. Our result indicates 
that evolution rapidly stabilizes helium stars just as it does hydrogen stars (see Schwarz
schild and Harm [1959] for evolution during hydrogen burning). 

IV. DISCUSSION OF APPROXIMATIONS 

Four important approximations have been made in our work. It is useful to try to 
estimate the effect of each on the critical mass. Two are concerned with destabilization 
in the core and two with damping in the envelope. 

1. In the hydrogen-burning models, we made the simplifying approximation that 
Veff = Y. Reducing YeH by a unit results in an increase of the critical mass by typically 
",,3 percent (but this is dependent somewhat on the mass). 

2. A more accurate procedure than the Schwarzschild-Harm approximation for 
evaluating luminosity amplitUdes in the convective core should take account of non
adiabatic effects. A step in this direction has been made by Boury, Gabriel, and Ledoux 
(1964), with the following result: The assumption of adaptive convection results in 
essentia'lly no modification at all, whereas the assumption of nonadaptive convection 
provides some additional destabilization, reducing the critical mass by at most 10 percent. 

3. Nonadiabatic effects on the envelope pulsation have been estimated by the 
procedure described in the Appendix. Our complete neglect of such effects in the hydro
gen-burning models leads to an overestimation of the positive damping, and hence of 
the critical hydrogen-burning masses, by ""to percent.2 The accuracy of our estimation 
can probably be considered fair because of the very narrow extent of the uncertain 
transition region-in all of the models of Tables 2 and 3 it covers ",,2 percent of the 
radius and less than 10-4 of the stellar mass. 

4. Our neglect of running waves in the atmosphere is more difficult to assess since 
the star may also be ejecting matter. In the coarse approximation of Schwarzschild 
and Harm (1959), the inclusion of running waves would increase the critical mass by 
",,4 percent in all cases, but this estimate should not be considered reliable. 

Since the uncertainties in Yeff and running waves on the one hand, and in nonadaptive 
convection and outer-envelope damping on the other hand, tend to cancel each other, 

1 The error incurred by our simplification is small, since the temperature exponents for the two 
processes are nearly equal at the relevant central temperature. 

2 For pure-scattering models, the overestimation is ,......5 percent. In contrast, a standard adiabatic 
treatment of the present helium-burning models would allow negative damping to dominate in the outer 
envelope and thereby lower the critical helium-burning mass to about 5 M 0 (for Z = 0). 
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the formal error in our models might seem slight. However, the surface regions are still 
poorly treated, and the unknown effect of inaccuracies in the opacity exponents a and 71 
do not permit us to claim any great precision in the critical masses of Tables 2 and 3. 

V. CONCLUSION 

An interesting possibility arises of fixing the Y and Z content of extreme Population I 
stars by combining our theoretical results with observations of stars at the very top of 
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the main sequence. These observations may consist of (1) the temperature and lumi
nosityof the tip of the main sequence, (2) periodic variations in light and radial velocity 
of the brightest stars, and (3) masses of the brightest binary stars. Figure 1 displays 
our predictions for the main sequence on the H-R diagram. It is apparent that the lu
minosity is affected far more by Z than by Y, whereas the effective temperature has 
the opposite sensitivity. However, the narrowness of the ranges in luminosity and ef
fective temperature does not provide much hope of being able to use them to fix the 
chemical composition. Figure 2 shows our predictions in the mass-luminosity plane. 
Unfortunately, the requisite observational data are, at present, too sparse or unreliable 
to make a detailed comparison with our theoretical results. 

If one simply adopts the best current estimates for the chemical composition of 
extreme Population I, 0.2 < Y < 0.4 and 0.02 < Z < 0.04 (Morton 1968), then the 
critical mass is expected to lie in the range 80-120 Mo. 

N. R. S. acknowledges the support of an NAS-NRC research associateship under the 
National Aeronautics and Space Administration. 

APPENDIX 

CALCULATION OF NONADIABATIC EFFECTS IN THE OUTER ENVELOPE 

Criteria for determining the importance of nonadiabatic contributions to the pulsational 
damping integral have been discussed, for example, by Ledoux and Walraven (1958) and by 
Ledoux and Whitney (1961). In these discussions the star is divided into three regions: (1) 
r> r*, where the heat capacity of the gas is so small that the pulsation has virtually no effect 
on the luminosity; (2) r < rt, where the pulsation is essentially adiabatic; and (3) the transition. 
region r*' > r> rt, where nonadiabatic terms can make important contributions. To usetJhese 
criteria in practice, we have adopted the following prescription. C'.,'_p 

The point r* may be fixed roughly by considering the ratio 

M 

foUdM(r) 
1/1 _M...:,<r_*:-) --.,---::--:--....,-

= L(Period/211')' 

where L is taken to be the equilibrium luminosity (constant in the envelope), U is the internal 
energy of the matter and radiation, and OU is the change in U over a quarter-period of the 
pulsation. It is sufficient for our purposes to use the adiabatic temperature amplitude to evaluate 
the change in U, 

oU = .f. (24 - 21(1) (!~) 
p 8-6/1 Ta 

Since the denominator in the expression for if! gives approximately the energy fed by the flux into 
mass M - M(r*') in the same quarter-period, the ratio if!' measures the ability of the layers in 
question to alter the flux via their pulsation. As we go inward from the stellar surface, as long as 
if! remains small the luminosity will be unaffected by the pulsation and we may take oL(r) = 
constant. On the other hand, when some point r = r* is reached, 1/1 becomes sizable and the 
transition region begins. 

As one goes farther into the star, the transition region extends down to the point r = rt, 
where nonadiabatic contributions to the pulsation become small. We may approximately fix the 
beginning of the adiabatic region by considering the ratio 4J of the nonadiabatic part to the 
adiabatic part of the temperature amplitude, 

(oT)n ( 2 ) p d (oL) L(Period/211') 
4J = (oT)a = 24 - 21{j P dM(r) T (oT/T)a . 

The pulsation may be said to be adiabatic when this ratio becomes sufficiently small. 
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In calculating models, we have proceeded as follows: (1) the amplitudes are taken throughout 
to be the adiabatic ones, with the adiabatic boundary conditions described in the main text; 
(2) the transition region is taken to extend from r* = r(if; = 0.01) to rt = r(cf> = 0.01); and (3) 
the true contribution from this region to the damping integral is taken to be half the value given 
by the adiabatic calculation, i.e., 

LpH -.l Mf<r*) d (oL) (oT) ( ) MJ<rt) d (oL) (oT) ( ) 
L - 2 M(rt) dM(r) TaT adM r + 0 dM(r) TaT adM r . 

Since the true amplitudes will approach the adiabatic ones for r < rt, our first assumption will 
provide an accurate evaluation of the damping in the adiabatic region. In the transition region, 
the adiabatic amplitudes will always overestimate the damping. Thus the maximum contribu
tion from this region is the adiabatic value, while the minimum contribution is obviously zero. 
By adopting a value halfway between these extremes, we reduce the uncertainty. The limiting 
values we have chosen for if; and cf> give the transition region a rather generous extent. However, 
in the stellar models considered here, this region turns out to be thin enough that the net damping 
it contributes is small compared with the whole damping of the star. 
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