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REMOTE SENSING OF SURFACE VISIBILITY FROM SPACE:  

A LOOK AT THE UNITED STATES EAST COAST 

Amy L. Kessner, M.S. 

University of Nebraska, 2013 

Advisor: Jun Wang 

While important for the management of air quality, human health and 

transportation, surface visibility data currently are only available through ground-based 

measurements, such as the Automated Surface Observing System (ASOS), and therefore 

lack spatial coverage.  In analogy to the recent work of using satellite-based aerosol 

optical depth (AOD) to derive surface dry aerosol mass concentration at continental-to-

global scale for cloud-free conditions, this study evaluates the potential of AOD retrieved 

from the MODerate Resolution Imaging Spectroradiometer (MODIS) for deriving 

surface visibility.  For this purpose of evaluation, the truncated and discrete visibility data 

from daily weather reports are not suitable and the ASOS-measured one-minute raw 

surface extinction coefficient (bext) values have to be used.  Consequently, a method for 

quality control on the bext data is first developed to eliminate frequent problems such as 

extraneous points, poor calibration, and bad formatting, after which reliable bext data are 

obtained to estimate the surface visibility that can be considered as ground truth.  

Subsequent analysis of the AOD and bext relationship on the East Coast of the United 

States reveals their average linear correlation coefficient (R) of 0.61 for all 12 (2000-

2011) years of data at 32 ASOS stations, with the highest R value in summer and the 

lowest in winter. Incorporating the Goddard Earth Observing System, Version 5 (GEOS-

5) modeled vertical profile of aerosols into the derivation of visibility from AOD is 



  

evaluated for five different methods that are commonly used in the estimate of dry 

aerosol mass from AOD.  For three years of available GEOS-5 data, scaling the modeled 

surface bext with the ratio between MODIS AOD and the modeled AOD is found to 

produce the best overall estimate of surface visibility that correlates with ASOS-based 

visibility with an R of 0.72 and a small negative bias of -0.03 km
-1

. This study is among 

the first to demonstrate the use of the MODIS aerosol product over land to derive surface 

visibility.
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1. Introduction  

Visibility is the greatest horizontal distance at which it is just possible to observe 

and identify particular objects. Therefore, accurate measurement and forecast of 

atmospheric visibility is important for the safety of both aviation and ground 

transportation, as well as for aesthetic reasons.  Visibility can be reduced by natural 

conditions, such as clouds and fog, and also by the presence of aerosols, which can be 

natural or anthropogenic.  Since heavy concentrations of aerosol (also known as 

particulate matter, PM) at Earth’s surface are a component of poor air quality, accurate 

measurement and forecast of horizontal visibility can be useful for health applications.   

Clear sky visibility decreased globally, with the exception of Europe, between 

1973 and 2007 (Wang et al., 2009).  During the 1970’s, an increase in sulfate aerosols 

from coal consumption was the dominant cause of haziness (visibility decrease) in the 

eastern U.S. (Husar et al., 1981).  A study by Bäumer et al. (2008) of an aging air mass in 

Germany shows a distinct decrease of surface visibility along with an increase in both 

particulate matter (PM) and aerosol optical depth (AOD).  Several studies have shown a 

relationship between distinct atmospheric aerosols and their individual contributions to 

horizontal visibility (e.g. Malm et al., 1994). 

Prior to 1990, most measurements of surface visibility were made by a human 

observer and thus were largely subjective.  However, by the early 1990’s, the Automated 

Surface Observing System (ASOS) began to replace human observation in the United 

States at ~1000 airports (NOAA et al., 1998).  Yet, with coverage restricted to U.S. 

airports, the ASOS measurements cannot produce a complete picture of surface visibility.  

Satellite observations, on the other hand, are global, and can be used to retrieve aerosol 
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properties.  Additionally, with the implementation of automated visibility measurements 

from ASOS, the definition of visibility has been altered from a horizontal surface 

measurement to essentially a point measurement since ASOS does not consider the 

horizontal variation of aerosol beyond the path length of air (~1.0 m) that ASOS samples.  

This change is favorable for using satellite data to derive surface visibility because 

satellite data (such as AOD) often are columnar quantities at high spatial resolution, and 

similar to ASOS visibility, they are meant to be representative over a finite area (such as 

over 10x10 km
2
, even though the ASOS-reported visibility can be larger than 10 km).   

There have been many studies that characterize the relationship between AOD 

and surface PM (e.g., Hoff and Christopher, 2009). A global study by van Donkelaar et al. 

(2006) showed correlations between 0.58 and 0.69 for daily AOD compared to PM2.5 

(PM having diameter ≤ 2.5 um) averaged between 10:00 a.m. and 12:00 p.m. Local Time 

for the United States.  These correlations were improved globally to between 0.77 and 

0.83 when a chemical transport model (CTM) was incorporated to account for the vertical 

distribution of aerosol (van Donkelaar et al., 2010).  Other studies have shown significant 

correlation (R > 0.6) over portions of the United States, but also that the correlation 

varies by season (e.g., Wang and Christopher, 2003; Zhang et al., 2009; Green et al., 

2009).  This is because there are many factors that complicate the AOD-PM relationship 

such as aerosol size, aerosol type, diurnal variation, relative humidity, and the vertical 

structure of aerosol extinction (van Donkelaar et al., 2006, 2010; Gupta and Christopher, 

2009a, 2009b).  For example, the measurements of PM mass (for air quality applications) 

are usually taken in dry conditions (at temperature ~50°C, Watson et al., 1998; Allen et 

al., 1997), and hence do not take into account the ambient conditions of the atmosphere.  
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However, relative humidity (RH) can affect the size and water content of an aerosol, and 

thus the scattering and absorbing properties (Tang and Munkelwitz, 1994; Tsay et al., 

1991; Wang et al., 2008). These factors can be partially overcome in the study of AOD-

visibility relationship because AOD and visibility are both ambient optical quantities, 

affected by the same RH effect on particle extinction. 

While there is a clearer relationship between AOD and visibility, few studies have 

attempted to use satellite-retrieved AOD to infer visibility.  An early study by Kaufman 

and Fraser (1983) showed a strong correlation of 0.85 between AOD and inverse 

visibility (1/Visibility) at Dulles airport during 1980 while a weaker correlation of 0.51 

was found during 1981. Vermote et al. (2002) established a relation between AOD and 

visibility to be used for Visible/Infrared Imager/Radiometer Suite (VIIRS) data onboard 

the National Polar-orbiting Operational Environmental Satellite System (NPOESS).  This 

relation developed for VIIRS was then used by Retalis et al. (2010) to determine AOD 

from visibility data in Cyprus.  Fei et al. (2006) used principal component regression to 

retrieve visibility data over water in coastal China from NOAA/AVHRR satellite data 

within two emitted-infrared bands.  A more recent study by Hadjimitsis et al. (2010) used 

the darkest pixel atmospheric correction algorithm on Landsat-5 TM data in cooperation 

with radiative transfer calculations to produce a horizontal visibility product.  

As discussed, past studies have greatly focused on remote sensing of PM.  Studies 

focusing on remote sensing of visibility are far sparser, and none of these studies, to our 

knowledge, have used remotely sensed AOD in conjunction with modeled aerosol 

vertical profile to infer surface visibility.  In this study, we first develop a method of 

quality control for ASOS one-minute visibility data.  Next, we conduct remote sensing of 
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surface visibility on the East Coast of the United States in four parts: 1) a four-day case 

study of a high-AOD event on the East Coast, 2) a long-term study of AOD versus 

visibility data, 3) incorporation of the vertical profile of aerosol using modeled data 

through five methods, and 4) application of one method to the original East Coast high-

AOD event case study. 
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2. Relating AOD, Visibility, and Surface PM  

2.1 Visibility 

Visibility is defined as the length of path in the atmosphere required to reduce the 

luminous flux in a collimated beam from an incandescent lamp, at a color temperature of 

2700 K, to 5 percent of its original value (WMO, 2008).  In order to define visibility 

mathematically, it is important to first define the visual contrast.  The visual contrast can 

be defined as follows: 

 � � �� � �
��  

(1) 

where I is the radiant intensity of an object and I’ is the brightness of the surroundings.  If 

the assumption is made of single-scattered radiation along a finite horizontal path (S), 

then the radiative transfer equation (RTE) can be written as follows: 

 ��
���	
��
 � �� � � 

(2) 

where �	
� is the extinction coefficient and J is the scattering source function.  Assuming 

a horizontally homogenous atmosphere �	
� and J become constant along the line-of-

sight, and the above equation can be integrated to get: 

 ���
 � ��0
������� � �1 � �������
� (3) 

where I(0) is the radiance of the scene as seen without any attenuation from the 

atmosphere, and I(S) is the brightness of the scene at an observer’s distance S.  If the 

object is a blackbody then I(0) = 0 when considering reflected radiation only.  If the 

background has intensity I ′(0), then ���
 � �, and equation 1 can be written as: 

 � � ���0
�
���0
� � �1 � �
� 

(4) 
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where � � �������.  Finally, if we assume the background intensity is constant with 

distance, then ���0
 � �, and the visual contrast becomes: 

 � � � � �������. (5) 

Solving for S, we can now define visibility (V) as: 

  � 1
�	
�

ln � . (6) 

Setting the visual contrast equal to two percent (0.02) gives Koschmieder’s equation: 

  � 3.912
�	
�

 . (7) 

However, in this study the meteorological optical range (MOR) is used, and thus the 

visual contrast is set to 5% (0.05) giving the definition of visibility to be (WMO, 2008; 

NCDC, 2003): 

  � 3.0
�	
�

 . (8) 

 

2.2 Aerosol Optical Depth (AOD), Surface PM, and Visibility 

AOD, PM, and visibility are physically related. AOD is defined as the integral of 

the aerosol extinction due to scattering and absorption: 

 &'( � ) �	
��*+�,


-

.
�, . (9) 

where bext is the atmospheric aerosol extinction coefficient, rh is the relative humidity, 

and z is the altitude. 

To relate PM to AOD many complicating factors are involved: 
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 &'( � / · 3
4 · 23�,456
 · 7�*+8,4569


: · ;<5=
*	66

 . (10) 

where f(rh(zsfc)) is the relative humidity factor, Qdry is the extinction efficiency under dry 

conditions, reff is the effective radius, ρ is the aerosol mass density, and / �

> �����5?�-


�����5?8-@AB9
 �,-

. , the shape of aerosol extinction profile (Koelemeijer et al., 2006). 

As described earlier, the Koschmieder equation defines visibility mathematically  

and when the visual contrast (C) is set to five percent (0.05), visibility can be defined as 

(WMO, 2008; NCDC, 2003): 

  � 3.0
�	
��*+8,46C9
 . (11) 

Thus, the relationship between visibility and AOD can be defined as: 

 &'( � 3.0
 · /. (12) 

Comparing equation 12 with equation 10, the simplicity of the AOD-visibility 

relationship when compared with the AOD-PM relationship can be seen.  Additionally, 

the shape of the aerosol extinction profile (H) is an important link between AOD and the 

surface parameters PM and visibility. 
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3. Data 

3.1 MODerate Resolution Imaging Spectroradiometer (MODIS) 

This study uses the MODIS level 2 AOD product collection 5.1 (MOD04_L2 and 

MYD04_L2) from both Terra (morning observations) and Aqua (afternoon observations).  

MODIS measures spectral radiances at the top of the atmosphere in a wide spectral range 

from 0.41-15 µm (Remer et al., 2005).  Radiances in the 0.47-2.13 µm range are used for 

aerosol retrieval (Levy et al., 2007; Tanré et al., 1997).  This wide spectral range allows 

MODIS to retrieve aerosol optical depth (AOD) with greater accuracy than previous 

satellite sensors (Tanré et al., 1996; Tanré et al., 1997).  Furthermore, MODIS can 

retrieve parameters characterizing aerosol size, such as the effective radius of the aerosol 

(ocean only) and the fraction of optical depth attributable to fine mode aerosol, which can 

be used to separate anthropogenic aerosols from natural aerosols (Remer et al., 2005).  

The MODIS Deep Blue aerosol retrieval algorithm allows for accurate retrieval of 

aerosol signals from background with highly reflective surfaces, such as deserts, 

providing thorough global coverage (Hsu et al., 2006). However, this study uses AOD 

retrieved from MODIS Dark Target algorithm only since the main focus is over a dark 

land surface (Levy et al., 2007).  Data are in 10 km nominal spatial resolution, and for the 

latitudes studied here there is approximately one retrieval (if cloud free) per day, per 

satellite.  Valid ranges for AOD in the mid-visible are -0.05 to 5.0.  During the retrieval 

process, quality assurance (QA) confidence flags with value between 0 (bad) and 3 

(good) are assigned to the AOD retrieval (Remer et al., 2009).  In this study, only AOD 

values with QA flag values of 2 or 3 are used.   
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3.2 The Goddard Earth Observing Systems Model, Version 5 (GOES-5) 

The Goddard Earth Observing Systems Model, Version 5 (GEOS-5) is an Earth 

system modeling including an atmospheric general circulation model, a module for 

treatment of atmospheric aerosols, and a data assimilation system (Rienecker et al. 2008).  

This study uses results of the GEOS-5 model driven with meteorological analyses 

provided by the Modern-Era Retrospective Analysis for Research and Applications 

(MERRA, Rienecker et al. 2011) and incorporating an aerosol module based on the 

Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model (Colarco et al. 

2010), which simulates the distributions of dust, sulfate, carbonaceous, and sea salt 

aerosols.  The model was run at a horizontal spatial resolution of 0.625° longitude x 0.5° 

latitude (approximately 50 km-sized grid cells) with 72 vertical levels for the period 2003 

– 2006.  Results incorporate assimilation of aerosol optical depth derived from MODIS 

observations (da Silva et al., 2012, manuscript in preparation).  The aerosol assimilation 

impacts the overall loading of aerosols in the model, but not their partitioning between 

simulated species or vertical profile.  

3.3 The Automated Surface Observing System (ASOS) 

ASOS utilizes the Belfort Model 6220 Visibility Sensor to measure forward 

scattering in a small volume of ambient air.  As many as three ASOS Visibility Sensors 

may be installed at any given station in order to provide more thorough coverage of an 

area (e.g. multiple runways) as well as provide back-up sensors in case the primary 

sensor fails.  The transmitter contains a xenon flashtube that produces light in the ~300 

nm to 1100 nm wavelengths (EG&G Electro-Optics, 1983).  The receiver is located at 

~45° angle from the transmitter and is used to detect the scattered xenon light.  The 
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receiver contains an optical longpass filter that attenuates any wavelengths below 515 nm, 

and through intercomparison testing, the model 6220 was found to have the same 

response to aerosols as it would if the emitter were a 690 nm source (C. Greenblatt, 

Belfort Instrument, 2012, personal communication).  However, the sensor was initially 

calibrated by operating it near an Optec Transmissometer (Molenar et al., 1992).  The 

Optec Transmissometer is an instrument that measures the attenuation of light (both 

scattering and absorption) at 550 nm, defining the standard value for the extinction 

coefficient in relation to visibility (NOAA et al., 1998).  Thus, the calibration of the 

ASOS visibility sensor measurement of forward scattering leads to the assumption:  

 �4CD � �	
��550FG
 (13) 

Where bsca is the scattering coefficient and bext is the extinction coefficient at 550 nm.  

Errors may be introduced by this assumption by absorption in the atmosphere.  However, 

for the U.S. East Coast the single scattering albedo is approximately 0.95, so these errors 

should be minimal (Takemura et al., 2002).  Therefore, this study will refer to the output 

from the ASOS visibility sensor’s measurement of forward scattering as the extinction 

coefficient measured at 550nm (bext). 

The ASOS network consists of the National Weather Service (NWS) and Federal 

Aviation Association (FAA) sites.  Visibility observations are made at a one-minute time 

resolution, but the standard product is reported hourly and at values of: M1/4SM, (less 

than ¼ statute mile), 1/4SM, 1/2SM, 3/4SM, 1SM, 1 1/4SM, 1 1/2SM, 1 3/4SM, 2SM, 2 

1/2SM, 3SM, 4SM, 5SM, 6SM, 7SM, 8SM, 9SM and 10SM (1 SM = 1.60934 km).  Any 

observation of visibility greater than 10 miles is truncated into the reportable value of 

10SM.  Typical values of visibility under light, moderate, and heavy aerosol conditions 
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are greater than 40 km (> 25 SM), 15-40 km (9 – 25 SM), and less than 15 km (< 9 SM), 

respectively.  The coarse increments used for the hourly data are therefore unsuitable for 

our study as information under light and moderate aerosol conditions are binned up into a 

single bin (10 SM).  Because of this limitation we employ the one-minute ASOS data, 

which are found online in the form of the National Climatic Data Center’s Data Set 6405 

and 6406 (NCDC’s DSI-6405 and DSI-6406).  These datasets contain raw meteorological 

measurements, such as temperature, pressure, wind, and visibility (in the form of bext [km
-

1
]), taken at one-minute intervals, and thus are more appropriate for the applications in 

this study. Thus, this study uses the one-minute ASOS data for the years 2000-2011.  

However, it is important to note that there are currently no quality controls in place for 

the one-minute ASOS data.   
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4. ASOS One-minute Data Quality Control Method and 

Results 

4.1 Method 

The stored ASOS one-minute extinction coefficient data do not undergo any 

quality control like the ASOS hourly data.  Common problems with the ASOS one-

minute data include unrealistic variability, poor calibration, and inconsistent formatting.  

A possible cause of inconsistent formatting is noise in the wires when data are being 

transmitted.  Furthermore, spider webs have also been known to cause a problem in 

measurements of visibility using the ASOS sensor as they affect the attenuation of light 

being received by the visibility sensor. Hence, before they are used to evaluate the 

visibility derived from MODIS AOD, the 1-minute surface extinction data need to 

undergo quality control. Here, a quality control method based upon work done by 

Richards et al. (1996), the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) nephelometer (an instrument that measures ambient light scattering, bscat) 

protocol (Cismoski, 1994), and the accuracy of the Belfort Model 6220 Visibility Sensor 

(Crosby, 2003) is developed.   

Since any ASOS station may contain between one and three visibility sensors, the 

quality control implemented in this study needs to apply to stations with single sensors as 

well as stations with multiple sensors (two or three).  To ensure reliable and repeatable 

ASOS visibility data, we applied the following criteria to filter the ASOS 1-minute bext 

data. A particular ASOS bext observation was retained if:   

1) 0.05 km
-1

 < bext ≤ 7.5 km
-1

.  The IMPROVE protocol flags bscat data when they 

exceed 5.0 km
-1

.  To include more low visibility measurements, a cut-off value of 
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7.5 km
-1

 (¼ mile visibility) was selected for this study.  Also, the ASOS one-

minute data are truncated at 0.05 km
-1

, so data of this value are excluded from this 

study. 

2) Relative Humidity ≤ 95%.  Relative humidity data are obtained from ASOS one-

minute measurements.  This quality control is an IMPROVE qualification, and 

was chosen for this study to eliminate data where fog or precipitation may be 

occurring. 

3) The difference between one bext measurement and a 3-minute running average of 

bext measurements ≤ 20%.  The 3-minute rolling average is computed by taking 

the average of ±1 minute of data for each data point.  This quality control was 

implemented to eliminate unrealistic variability and extraneous points within the 

data. 

Additionally, for multi-sensor sites we require: 

4) The difference between a 3-minute running average of any two visibility sensors ≤ 

20%.  This quality control was implemented to eliminate poor calibration between 

sensors, as well as unrealistic variability that may exist in one sensor, but not the 

other(s).  The value of 20% was chosen (a) because the Belfort visibility sensor 

has an accuracy of ±10% (Crosby, 2003), and (b) to obtain the data with highest 

quality as possible for the evaluation of our estimate of visibility from MODIS 

AOD.  

4.2 Results of ASOS Quality Control 

To demonstrate our quality control method, we select time series of visibility data 

for the Thurgood Marshall Baltimore/Washington International Airport (KBWI) during 
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11-13 August and 24-26 August 2005 (Fig. 1).  These two time periods are selected not 

only to show the contrast between a period of poor visibility and a period of good 

visibility, but to demonstrate the effectiveness of multiple visibility sensors as well.  

Low visibilities occurred during 11-13 August 2005 (Fig. 1a-f).  A diurnal cycle 

in visibility can be seen with the peak during the early afternoon each day and then 

decreasing into the night hours.  When comparing the ASOS visibility data before quality 

control (Fig. 1a-c) and after quality control (Fig. 1d-f), most of the data (95%) are 

retained during quality control.  This shows that the ASOS visibility sensors at KBWI are 

in good agreement during this period, and thus the data quality is very high. 

However, during 24-26 August 2005, a discernible difference can be seen 

between the ASOS visibility data before quality control (Fig. 1g-i) and after quality 

control (Fig. 1j-l) as only 69% of the data are retained during this period.  This can be 

attributed to several factors: 1) the first visibility sensor reaching the truncation point (60 

km or 0.05 km
-1

), 2) a calibration difference between the first and second sensor, and 3) 

extraneous data points found in both sensors.  Calibration differences between visibility 

sensors at a given ASOS station are, unfortunately, common.  For this reason, during our 

long-term analysis only ASOS stations with 2 or 3 visibility sensors will be used. 

To illustrate the effectiveness of our data quality control, the histograms of KBWI 

visibility data for 2005 before and after quality control are plotted (Fig. 2).  Before 

quality control, a noticeable difference in the shape of the histograms for each visibility 

sensor can be seen.  Sensor 1 has a high relative frequency of visibilities in the 60 km bin 

while sensor 2 has a low relative frequency of visibilities in the same bin.  This implies 

that sensor 1 is calibrated to output higher visibilities than sensor 2, which agrees with the 
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time series shown in Fig. 1.  After the data have undergone quality control, data with 

calibration differences greater than 20% have been removed.  This results in the 

histograms becoming more consistent between the two sensors.  During this process 

34.0% of the ASOS visibility data are lost.  

To further explore data loss due to our quality control, Table 1 lists the 32 ASOS 

stations within our study region and how much data is lost for each station for each 

quality control criteria for the year 2005.  The station with the greatest data loss during 

this period is the Norfolk International Airport (KORF) with a loss of 99.9% of the data.  

This loss is contributed almost entirely to a calibration difference between the two 

sensors at this station.  The station that retained the most data is the Ronald Reagan 

Washington National Airport (KDCA) with a loss of 32.7% of the data.  For all stations a 

majority of data was lost during the 4th quality control criteria with an average of 52.2% 

data loss for 2 sensor stations and 73.7% data loss for 3 sensor stations.  The fewest data 

were lost during the 3
rd

 quality control criteria with an average of 1.2% data loss for all 

stations.  Again, it is important to reiterate that our purpose here is to keep the data that 

are assured with our best information to be in the highest quality.  This assurance can 

come with a steep cost of data loss but is necessary for the most accurate results in the 

following sections. 
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5. Derivation of Visibility from MODIS AOD 

5.1 Method 

 The establishment of a quality control regime for the ASOS one-minute bext data 

allows these data to be used in the analysis of surface visibility versus AOD.  In order to 

analyze these data, ASOS bext data are collocated with the MODIS AOD data.  A 

temporal average of either ±30 or ±90 minutes from the MODIS overpass time is used for 

the ASOS one-minute data.  In both the hourly (±30 minutes) and 3-hourly (±90 minutes) 

averages, at least 50% of the data must be retained after ASOS quality control is 

performed.  A spatial average of 5x5 pixel (50 km x 50 km) is used for the MODIS AOD 

data (e.g. Ichoku et al., 2002).  In order for a pixel to be considered in the averaging, it 

must be cloud-free.  Furthermore, at least 5 out of 25 cloud-free pixels are required to 

perform the spatial averaging and all pixels must have a QA of 2 or 3.  

5.2 A Case Study 

A high-AOD event occurred over the East Coast of the United States during 11-

14 August 2005 (Fig. 3).  During this period, a high-pressure system moved from the 

Kentucky region to the Atlantic Ocean, transporting and suppressing removal of smoke 

and sulphate aerosols in this area.  Very high values of AOD (shown by red/pink color) 

correspond with this high-pressure system throughout the 4-day period.  Furthermore, a 

strong degradation in visibility (orange/red circles) can be seen with the increase of AOD.   

Fig. 4a shows comparison of MODIS AOD (5x5 pixel spatial average) against 

ASOS bext (3-hour temporal average) from the first two days of the study. A correlation 

of 0.59 is found for all the data during this time period, and an averaged correlation of 

0.92 is found between the bin-averages of AOD and bext.  This method of binning is 
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similar to that of Wang and Christopher (2003) as well as Gupta et al. (2006), which 

found correlations of 0.98 and 0.96, respectively, for bin-averaged daily mean PM2.5 and 

AOD.  Both correlation values in Fig. 4a are statistically significant with p < 0.0001.  The 

dashed line represents the linear regression for all data points while the solid black line 

represents the weighted linear regression based on binned data giving a regression line of 

Vis = 0.26 AOD + 0.11 for both binned and non-binned data.  

Consequently, this equation is used to create a basic model for ambient visibility 

from MODIS AOD: 

  � 3.0
0.26 · &'( � 0.11. (14) 

This model (equation 14) is then used to calculate ambient visibility from MODIS AOD 

for 13-14 August, 2005 and is compared to the visibility recorded by ASOS (Fig. 4b).  A 

good correlation of 0.68 is found with a linear regression of VASOS=1.21VMODIS - 2.12.  

With this basic model, the mean bias in the estimate of surface visibility from AOD is -

0.61 km, indicating that the model slightly underestimates visibility.  Furthermore, it is 

important to note that the upper limit of this model is ~27km, and thus this model is only 

useful during periods of high aerosol loading and will not be useful during relatively 

good visibility days.  This is understandable because: (1) MODIS AOD retrieval is more 

accurate for moderate and high AOD conditions, and (2) ASOS sensors have a detection 

limit for clean conditions in which they lack the accuracy to capture the change of bext.  

Nevertheless, since days with low visibility are of high interest in transportation and air 

quality management (visibility greater than 10 miles is truncated in daily weather reports), 

the results from this case analysis warrant the assessment of the feasibility of using long-

term MODIS AOD data to derive surface visibility. 
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5.3 Long-term Analysis of AOD vs. Visibility 

ASOS stations used in the long-term (2000-2011) analysis of AOD and visibility 

are shown in Fig. 5a, including 25 2-sensor stations and 7 3-sensor stations.  Correlation 

coefficients of ASOS hourly-averaged bext data vs. a MODIS AOD 5x5 pixel average for 

the 32 stations are shown in Fig. 5b for all years of data.  Circles outlined in red are 

insignificant according to the two-tailed t-statistic test (p > 0.01) or have 3 or fewer 

available collocated points.  The maximum correlation is 0.93 at the Chicago Midway 

International Airport (KMDW) and the minimum significant correlation is 0.24 at the 

Rayleigh County Memorial Airport (KBKW).  The reason for this large difference in 

correlation is uncertain, but may be attributable to a small number of collocated points for 

KMDW (N=7) and a poor correlation during the spring and fall for KBKW (R=0.19 and 

R=0.08, respectively).  The mean of all statistically significant correlation coefficients is 

0.61 and the median correlation value is 0.63 for all 12 years of data. 

Seasonally, geographical distributions of correlation coefficients are also shown 

for spring (MAM, Fig. 5c), summer (JJA, Fig. 5d), fall (SON, Fig. 5e), and winter (DJF, 

Fig. 5f) for all 12 years of data.  Summer shows the highest correlations with a mean and 

median of 0.69 for statistically significant data.  Following summer is fall with a mean 

and median of 0.56.  Spring has a mean of 0.55 and a median of 0.59 while winter has the 

lowest correlations with a mean of 0.53 and a median of 0.45. 

To further explore the seasonal relationship between AOD and bext, monthly 

correlations are explored for the years 2000-2011 (Fig. 6).  Once again, the highest 

correlations are found in the summer months with the highest value R=0.70 in July.  The 

lowest correlations are in the winter months with the lowest correlation, R=0.30, in 
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November. Interestingly, there is a strong correlation (R=0.75) between the monthly R-

values and the number of collocated points for that month.  This behavior of monthly R-

values and correlations with number of points has many possible reasons:  

1) There are high correlations in the summer because both AOD and 

surface visibility have a larger signal range. While the absolute 

uncertainties for each dataset may be large, their relative uncertainties 

are smaller.   

2) There are low correlations in winter because the relative uncertainties 

of both measurements are large.   

3) In the winter months the PBL is often stable, suppressing aerosol 

mixing, and, regardless of the magnitudes of either AOD or visibility, 

the column measurement of bext is not a good representation of the 

surface measurement of bext, and  

4) ASOS one-minute bext measurements truncate at 0.05 km
-1

, which 

reduces the number of valid collocation points. This happens most 

often in winter. 

5.4 Incorporation of GEOS-5 Modeled Aerosol Vertical Profile 

 As suggested above, one of the greatest challenges in using remote sensing 

technique to map geophysical parameters near the surface is to the treatment of the shape 

of the vertical profile for that quantity. While most of aerosol mass reside in the boundary 

layer near the surface, there are cases where aerosol is transported at elevation. Thus, 

knowing the vertical profile a priori can help to specify the column/surface relationship. 

Many past studies have incorporated vertical profile information from various sources 
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such as LIDAR (e.g., Engel-Cox et al., 2006; Schaap et al., 2009) and global models (e.g., 

Liu et al., 2004; van Donkelaar et al., 2006, 2010; Gupta et al., 2009a, 2009b) to relate 

the AOD to surface PM2.5. A similar strategy is applied here. 

 Five methods of modeling visibility from MODIS AOD are developed in this study.  

Four of these methods incorporate simulated data from the NASA GEOS-5 MERRA 

Aerosol Reanalysis, such as planetary boundary layer height (PBLH) and surface 

extinction.  For each method, 3 years of summer data (JJA) are analyzed (2003-2004, 

2006) and then one summer of data is used as a ‘test’ summer (2005).  Only summer data 

are used in this next section as the long-term analysis results showed the best correlations 

between AOD and surface visibility during the summer months, and thus summer time is 

the most favorable to evaluate different methods. For comparison purposes, the basic 

method of applying regression equations between MODIS AOD and ASOS bext without 

any treatment of aerosol vertical profile will be called Method 0 (M0). 

5.4.1 Method 1 – “AOD / PBLH” 

 When aerosols are well-mixed within the planetary boundary layer (PBL), it may 

be assumed that the AOD within the PBL will be representative of the extinction at the 

surface.  Thus, the PBLH has been used in previous work (e.g., Tsai et al., 2011) to 

determine the surface bext for comparison with surface parameters.  Under this context, 

the following equation is used as Method 1 (M1):   

 �	
� � 3'(�� &'(
IJ'�5 2KL/. (15) 

5.4.2. Method 2 – “AOD/PBLH + Rayleigh” 

 In an atmosphere free of aerosols, Rayleigh scattering, the scattering of visible light 

due to air molecules, is the predominant form of visibility impairment.  To account for 
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the amount of Rayleigh scattering near the surface, a method from Bodhaine et al. (1999) 

was used.  First, the scattering cross-section was calculated: 

 M4CD�N 10�OPQGO
 � 1.0455996 � 341.29061R�O � 0.90230850RO
1 � 0.0027059889R�O � 85.968563RO  

(16) 

where λ = 0.55 µm.  This equation is accurate to better than 0.002% when λ = 0.55 µm 

(Bodhaine et al., 1999).  Then, Rayleigh scattering at the surface was calculated from the 

formula: 

 �UD= � M4CD
&:D
GD

 
(17) 

where A is Avogadro’s number, ρa is the air density at the surface, and ma is the mean 

molecular weight of dry air calculated from the formula: 

 GD � 15.0556��'O
 � 28.9595 (18) 

where CO2 is the concentration of CO2 in the atmosphere expressed in parts per volume 

(Bodhaine et al., 1999).  In this study, the concentration of CO2 was calculated by 

averaging the June, July, and August monthly average CO2 concentration for the years 

2003-2006 as recorded at Mauna Loa, Hawaii (Keeling et al., 2009).  This value was 

found to be 0.00037923 ppv. 

 The amount of Rayleigh scattering is added to M1 to create the second method 

(M2): 

 �	
� � 3'(�� &'(
IJ'�5 2KL/ � �UD=. (19) 

5.4.3. Method 3 – “GEOS-5 Scalar Extinction” 

 The third method (M3) is based on a method used by Liu et al. (2004).  In this 

method, the GEOS-5 model is used to develop a scalar to multiply the MODIS AOD in 

order to derive bext.  First, the mixing ratio of five species of aerosol (dust, sea salt, 
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sulphate, black carbon, and organic carbon) is taken from GEOS-5 and then multiplied by 

the pressure thickness and the mass extinction efficiency of the aerosol in order to 

determine a simulated surface bext value.  Then, the following equation is used to 

determine a simulated extinction coefficient value: 

 �	
� � IJ'�5 �V*7WQ� �	
�
IJ'�5 &'( · 3'(�� &'( � �UD=. (20) 

5.4.4. Method 4 – “Combined Method” 

 The fourth and final method (M4) is the most complicated method as it incorporates 

aspects of M1, M2, and M3.  This method uses GEOS5 data to remove the bext above the 

PBLH and then divides the remaining bext by the PBLH: 

 

�	
� �
IJ'�5 &'( � IJ'�5 &'(D�XY	 Z[\IJ'�5 &'( · 3'(�� &'(

2KL/ � �UD=. 
(21) 

5.4.5 Results 

 A Taylor Diagram is used to demonstrate the results for each method (Fig. 7).  The 

Taylor Diagram, designed by Taylor (2001), is useful in interpreting model performance 

by providing a statistical summary including the correlation, root-mean-square-difference 

(RMSD), and standard deviation.  In Fig. 7, six Taylor Diagrams are shown where the 

cosine of the angle represents the correlation, the radius of the circles centered at “Obs” 

represents the normalized RMSD, and the radius of the polar plot (both the x- and y-axis) 

represents the normalized standard deviation.  The closer to the “Obs” point, the better 

the modeled result.  Fig. 7a – 7e contains a Taylor Diagram for 22 stations for June, July, 

and August in 2003, 2004, and 2006 for M0 – M4, respectively.  Stations with p > 0.01 

and the number of collocated points ≤ 3 are not shown or included in the analysis (10 

stations total). 
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 Results are generally good for MODIS AOD-ASOS bext correlations (M0) during 

the summers of 2003, 2004, and 2006 with a mean correlation of 0.74 and a median 

correlation of 0.73.  However, the normalized RMSD and normalized standard deviation 

for all 22 stations are greater than the optimal value of 1.0 (e.g., “Obs” point). M3 and 

M4 improve the mean correlation by 0.02 and 0.04, respectively, and they improve the 

median correlation by 0.05 and 0.05, respectively.  M3 and M4 also show normalized 

RMSD and normalized standard deviation values much closer to “Obs” point for all 22 

stations.  M1 and M2 did not improve the mean correlation or the median correlation.  It 

is important to note that none of the methods universally improved the correlation for all 

stations.  Furthermore, the correlation does not change between M1 and M2, showing that 

Rayleigh scattering does not contribute enough to the overall extinction to affect the 

correlation.  However, it is important to include the amount of extinction due to Rayleigh 

scattering in order to have a more complete, and improved, physical relationship between 

MODIS AOD and ASOS bext.   

 Fig. 7f shows the Taylor Diagram comparison for all 32 stations for all methods.  

As expected, M3 and M4 not only show the highest average correlation values (0.72 and 

0.74, respectively), but they also show normalized RMSD values and normalized 

standard deviation values much closer to 1.0 compared to M0 – M2.  The results between 

M3 and M4 are very similar, and thus further analysis is performed on M3 and M4 for the 

year 2005. 

 The correlation between MODIS AOD and ASOS bext (M0 method) for all stations 

is 0.71, and the linear regression is bext,ASOS =0.32 bext, M0 + 0.05 (Fig. 8a).  The mean bias 

is 0.17 km
-1

.  The correlation between the bext from M3 and ASOS bext for the same three 
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years is 0.72, and the linear regression is bext,ASOS =0.71 bext, M3 + 0.07 (Fig. 8b).  The 

mean bias is greatly improved for M3 compared to M0 and is equal to -0.03.  

Furthermore, M3 shows an improvement in correlation of 0.01 when compared to M0.  

The correlation between bext from M4 and ASOS bext for the same three years is 0.74, and 

the linear regression is bext,ASOS =0.76 bext, M4 + 0.07 (Fig. 8c).  The mean bias is also 

greatly improved when compared to M0 and is equal to -0.04. 

 The regression equations from Fig. 8a, 8b, and 8c are used to create three models to 

be tested in the year 2005.  The first model (Mod0) is based on M0 and defines bext as: 

 �	
� � 0.32 · 3'(�� &'( � 0.05. (22) 

The second model (Mod3) is based on M3 and defines bext as: 

 �	
� � 0.71 · IJ'�5 �V*7WQ� �	
�
IJ'�5 &'( · 3'(�� &'( � 0.07. (23) 

The third model (Mod4) is based on M4 and defines bext as: 

 

�	
� � 0.76 ·
IJ'�5 &'( � IJ'�5 &'(D�XY	 Z[\IJ'�5 &'( · 3'(�� &'(

2KL/ � 0.07. 
(24) 

Results for the year 2005 are shown in Fig. 8d-e.  Mod0 resulted in a correlation of 0.65 

with a linear regression of bext,ASOS = 0.82 bext,Mod0 + 0.05 (Fig. 8d).  Mod3 shows an 

improvement in both correlation and regression over M0 with a correlation of 0.69 and a 

linear regression of bext,ASOS = 1.01 bext,Mod3 + 0.02 (Fig. 8e).  The mean bias for both 

Mod0 and Mod3 is -0.02 km
-1

, an improvement from M0 and M3.  Mod4 shows an 

improvement in both correlation and regression over M0 as well with a correlation of 

0.67 and a linear regression of bext,ASOS = 0.94 bext,Mod4 + 0.03 (Fig. 8e).  The mean bias 

for Mod4 is -0.01 km
-1

. 

 Since the difference in correlation between Mod3 and Mod4 is trivial, it is the 
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improvement in linear regression (i.e., closer to 1:1) that is most important.  Mod3 shows 

the most improvement in correlation and, especially, in linear regression when compared 

to Mod0 and Mod4, and thus this model is also used to determine visibility for the case 

study presented at the beginning of this section (Fig. 3).  A visibility map for 11-14 

August 2005 can be seen in Fig. 9.  The correlation between ASOS visibility and Mod3 

visibility for all four days of data is 0.68 (Fig. 10a).  For comparison against Fig. 4b, the 

correlation between ASOS visibility and Mod3 visibility is also shown for just 13-14 

August 2005 (Fig. 10b).  This correlation is 0.71, which is an improvement of 0.03 over 

the basic model developed from 11-12 August, 2005 (equation 14).  There is also an 

improvement in slope and intercept.  Furthermore, it is important to note that the upper 

range of this model is ~43 km, showing a great improvement in model range when 

compared to the basic model developed from 11-12 August, 2005 (~27 km).  However, 

the root mean square error (RMSE) and bias both increase for Mod3 visibility when 

compared to the results from equation 14, which may reflect that the optimal results from 

the climatology (3-year) analysis may not be optimal for the individual cases.  

Nevertheless, it appears that the model we established in the analysis of 3-years of the 

data is representative for the summer in our study region, and can be applied in future 

years, but could be improved upon in future studies. 
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6. Summary and Conclusions  

Surface visibility has important implications for air quality, but current 

measurements of visibility lack spatial coverage.  This study aims to discover the 

feasibility of using satellite retrievals of AOD to determine surface visibility.   First, a 

quality control regime was developed for the ASOS one-minute extinction coefficient 

(bext) data.  This regime includes four criteria that must be met by each data point, 

resulting in an average data loss of 66.9% for all 32 stations used in this study.  This large 

quantity of data lost is justified by the assurance that only the data of the highest quality 

is retained and analyzed. 

A case study of a high-AOD event over the East Coast of the United States was 

studied to determine the basic relationship between MODIS AOD and ASOS bext.  

Results show a decrease in visibility with an increase in AOD.  Furthermore, a good 

correlation was found (0.68) and a slight negative bias was present (-0.61 km
-1

) when 

comparing visibility derived from MODIS AOD to ASOS visibility.   

Following the case study, a long-term analysis of 32 East Coast ASOS stations for 

the years 2000-2011 was performed, and an average correlation between MODIS AOD 

and ASOS bext of 0.61 was found for all stations.  This analysis shows that the 

relationship between MODIS AOD and ASOS bext is greatest during the summer months 

and lowest during the winter months.  The highest monthly correlation of 0.70 is found in 

July, while the lowest correlation of 0.30 is found in November.  The good correlation 

during the summer months is likely due to a well-mixed PBL during the summer, and 

thus the column measurement of bext is a good representation of the surface measurement 

of bext.   
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Finally, data from the NASA GEOS-5 MERRA Aerosol Reanalysis were used to 

determine the vertical profile of aerosol in order to develop five methods for deriving 

visibility from MODIS AOD (M0-M4).  These methods were compared with a basic 

method that uses regression between MODIS AOD to ASOS bext.  The third and fourth 

methods (M3 and M4) were found to produce the best results.  M3 scales the modeled 

surface extinction coefficient with the ratio between MODIS AOD and the modeled AOD, 

and M4 scales the modeled AOD in the PBL with the ratio between MODIS AOD and 

modeled AOD and divides by the height of the PBL.  These methods, along with the 

basic MODIS AOD – ASOS bext correlation (M0), were used to develop 3 models to be 

tested for the summer of 2005 (Mod0, Mod3, and Mod4).  The Mod3 correlation was 

0.04 higher when compared with Mod0 for the summer of 2005.  Both Mod0 and Mod3 

had a very small negative bias (-0.02 km
-1

), but the RMSE of Mod3 was slightly smaller 

(0.07) compared to that of Mod0 (0.08).  Mod4 also showed a higher correlation when 

compared to Mod0, but not as high as Mod3.  Furthermore, Mod3 had a regression line 

closer to the 1:1 line when compared to both Mod0 and Mod4.  Thus, Mod3 was applied 

to the 11-14 August, 2005 case study to determine modeled visibility from MODIS AOD.  

Results were generally good with a correlation of 0.68 for all four days and a correlation 

of 0.71 for the last two days, an increase of 0.03 against the basic model of derived 

visibility from MODIS AOD.  An increased positive bias was found when Mod3 was 

applied to the case study data. 

Currently, there is a lack of spatial coverage of surface visibility measurements.  

Satellites have the capability of global spatial coverage on cloud-free days.  This study 

showed a good relationship between remotely sensed AOD and surface visibility at 
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airports across the East Coast of the United States.  This relationship can generally be 

improved with the incorporation of modeled aerosol vertical profile information.  These 

results promote the possibility of global surface visibility measurements from remotely 

sensed AOD.  However, this study focused on regions that are often located in or near 

cities, and thus have high levels of aerosol.  Remote sensing of visibility will likely prove 

to be more difficult in regions and times (e.g. winter) where visibility is generally good 

due to the limitation that satellite remote sensing of aerosols is more challenging in low 

AOD conditions, especially over land.  Interestingly, any visibility larger than 10 miles is 

truncated to 10 miles in the operational weather observation report.  Hence, this study at 

least shows the potential of using satellite AOD to derive the surface visibility that can be 

comparable with operationally reported visibility from ground observations.  But, further 

studies are needed to evaluate the method of this study with visibility date from regions 

that have low AOD such as the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) sites that are located at national parks and wilderness areas.  

Another challenge to the derivation of surface visibility from remotely sensed AOD is the 

incorporation of the vertical profile of aerosol.  Five possible methods were shown in this 

study.  These methods can be improved by using model simulated aerosol vertical profile 

in conjunction with in situ data from instruments such as lidar.  
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Tables 

 

Table 1. Percentage of data lost to each step of quality control for individual ASOS 

stations for the year 2005.  Stations with 3 visibility sensors are marked with an asterisk*.  

Letters in first column correspond to the Taylor Diagrams in Fig. 7. 

 

 

  

Station QC 1 (%) QC 2 (%) QC 3 (%) QC 4 (%) TOTAL (%) 

 

A KATL 0.9 9.6 1.3 66.7 70.1 

B KBDR 10.5 8.1 0.4 60.4 67.3 

C KBKW 9.4 13.2 1.1 95.8 97.0 

D KBNA 10.9 2.5 0.7 27.4 37.0 

F KBWI 8.2 6.4 0.3 24.5 34.0 

G KCLT 7.0 9.9 0.5 25.1 34.3 

 KCMH 7.7 6.9 0.5 58.6 60.8 

H KCVG 8.9 6.9 0.6 57.4 61.5 

I KDCA 11.0 16.7 0.4 10.3 32.7 

 KDTW 27.7 11.9 0.5 85.2 88.9 

 KERI 18.0 58.7 9.4 72.8 89.0 

J KEWR 3.0 6.5 0.9 26.9 32.8 

K KGRR 15.7 10.7 0.8 65.5 69.3 

L KISP 27.3 37.7 0.7 45.8 74.8 

 KMDW 24.3 10.9 1.0 85.2 86.1 

N KMEM 6.2 1.6 0.4 43.1 45.1 

O KMKE 20.6 5.9 0.6 62.5 74.8 

P KMKG 10.1 11.4 2.4 56.2 64.0 

 KORD 20.8 11.3 0.9 57.3 69.1 

 KORF 15.5 16.2 0.5 99.4 99.9 

Q KPIT 29.3 30.2 1.4 57.6 71.6 

R KPVD 18.3 11.5 0.4 23.9 43.1 

S KPWM 8.0 61.5 0.6 23.7 70.4 

T KRDU 1.5 12.6 1.4 26.2 34.0 

U KSYR 32.2 6.2 1.1 47.1 70.7 

 KBDL* 27.3 15.3 15.3 58.0 76.7 

E KBOS* 27.1 8.3 1.1 62.1 76.5 

 KCLE* 1.5 1.4 0.8 70.9 71.6 

L KIAD* 15.1 5.9 1.7 88.1 92.2 

 KJFK* 7.6 5.1 0.8 95.7 96.3 

M KLGA* 21.0 5.8 0.5 75.4 78.6 

 KPHL* 12.6 6.2 3.2 66.0 70.9 

All Station Average: 14.5 13.5 1.2 56.9 66.9 

2 Sensor Average: 14.1 15.4 1.1 52.2 63.1 

3 Sensor Average: 16.0 6.9 1.4 73.7 80.4 



  

Figures 

 

 

Figure 1. Time series of ASOS visibility data at Baltimore/Washington International 

Thurgood Marshall Airport (KBWI) for (A

August 2005 before and after quality control.  (A, D, G, and J) Time series for the first 

visibility sensor located at KBWI. (B, E, H, and K) Time series for the second visibility 

sensor located at KBWI. (C, F, I, and L) Time series average for both sensor

KBWI.  Time shown is in Local Time (EST).

 

Figure 1. Time series of ASOS visibility data at Baltimore/Washington International 

Thurgood Marshall Airport (KBWI) for (A-F) 11-13 August 2005 and (G

August 2005 before and after quality control.  (A, D, G, and J) Time series for the first 

visibility sensor located at KBWI. (B, E, H, and K) Time series for the second visibility 

sensor located at KBWI. (C, F, I, and L) Time series average for both sensor

Time shown is in Local Time (EST). 
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Figure 1. Time series of ASOS visibility data at Baltimore/Washington International 

13 August 2005 and (G-L) 24-26 

August 2005 before and after quality control.  (A, D, G, and J) Time series for the first 

visibility sensor located at KBWI. (B, E, H, and K) Time series for the second visibility 

sensor located at KBWI. (C, F, I, and L) Time series average for both sensors located at 



  

 

Figure 2. Relative frequency histograms of ASOS visibility data at KBWI for 2005 

before and after quality control.

 

Figure 2. Relative frequency histograms of ASOS visibility data at KBWI for 2005 

before and after quality control. 
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Figure 2. Relative frequency histograms of ASOS visibility data at KBWI for 2005 



  

 

Figure 3. Map of MODIS AOD and ASOS visibility for (a) 11 August 2005, (b) 12

August 2005, (c) 13 August 2005, and (d) 14 August 2005.  ASOS visibility is denoted 

by circles.  Pink lines represent North American Regional Reanalysis (NARR) 700

geopotential heights. Gray coloring represents cloud.

 

Figure 3. Map of MODIS AOD and ASOS visibility for (a) 11 August 2005, (b) 12

August 2005, (c) 13 August 2005, and (d) 14 August 2005.  ASOS visibility is denoted 

by circles.  Pink lines represent North American Regional Reanalysis (NARR) 700

Gray coloring represents cloud. 
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Figure 3. Map of MODIS AOD and ASOS visibility for (a) 11 August 2005, (b) 12 

August 2005, (c) 13 August 2005, and (d) 14 August 2005.  ASOS visibility is denoted 

by circles.  Pink lines represent North American Regional Reanalysis (NARR) 700-hPa 
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Figure 4. (a) Correlation plot of MODIS AOD versus ASOS bext for 11-12 August 2005.  

Binned data are shown in black. (b) Correlation plot of modeled ambient visibility from 

MODIS AOD versus visibility from ASOS for 13-14 August 2005. 
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Figure 5. (a) Map of ASOS stations used in long-term analysis.  Blue circle stations have 

two visibility sensors.  Red circle stations have three visibility sensors.  (b)  Map of the 

correlation between ASOS bext and MODIS AOD for the stations shown in (a) for the 

years 2000-2011.  (c) Similar to (b) but for spring (MAM). (d) Similar to (b) but for 

summer (JJA).  (e) Similar to (b) but for fall (SON). (f) Similar to (b) but for winter 

(DJF). In (b-f), circles outlined in red are not significant data. 
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Figure 6. Monthly correlation plot of ASOS σext versus MODIS AOD for the years 2000-

2011 shown by black circles.  Number of points used in monthly correlation calculation 

shown by gray diamonds. 
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Figure 7. Taylor Diagram showing correlation, normalized standard deviation, and 

normalized RMSD for 22 ASOS stations using (a) M0, (b) M1, (c) M2, (d) M3, and (e) 

M4.  (f) Taylor Diagram comparing all 5 methods using all 32 ASOS stations.  Note scale 

is different for (f).  Key for diagrams (a) – (e) is located in Table 1.   
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Figure 8. Correlation plots of (a) MODIS AOD versus ASOS bext for 2003-2004 and 

2006 (M0), (b) bext from M3 versus ASOS bext for 2003-2004 and 2006, (c) bext from M4 

versus ASOS bext for 2003-2004 and 2006, (d) modeled bext from Mod0 versus ASOS bext 

for 2005, (e) modeled bext from Mod3 versus ASOS bext for 2005, and (f) modeled bext 

from Mod4 versus ASOS bext for 2005. 

  



  

 

Figure 9. Map of modeled visibility from Mod3 and ASOS 

2005, (b) 12 August 2005, (c) 13 August 2005, and (d) 14 August 2005.  ASOS visibility 

is denoted by circles.  Pink lines represent North American Regional Reanalysis (NARR) 

700-hPa geopotential heights.  Gray coloring represen

 

Map of modeled visibility from Mod3 and ASOS visibility for (a) 11 August 

2005, (b) 12 August 2005, (c) 13 August 2005, and (d) 14 August 2005.  ASOS visibility 

is denoted by circles.  Pink lines represent North American Regional Reanalysis (NARR) 

hPa geopotential heights.  Gray coloring represents cloud. 
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visibility for (a) 11 August 

2005, (b) 12 August 2005, (c) 13 August 2005, and (d) 14 August 2005.  ASOS visibility 

is denoted by circles.  Pink lines represent North American Regional Reanalysis (NARR) 



  

 

Figure 10. Correlation plot

(a) 11-14 August 2005, and

 

 

 

Correlation plots of modeled visibility from Mod3 versus ASOS visibility for 

14 August 2005, and (b) 13-14 August 2005. 
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versus ASOS visibility for 
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