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Population characteristics and long-term population trends of pallid sturgeon 

Scaphirhynchus albus in the lower Missouri River are relatively unknown.  As recovery 

efforts continue, understanding and quantifying these characteristics and trends are 

critical for species recovery and future management decisions.  Therefore, the 

objectives of this study were to determine the pallid sturgeon population 

characteristics, predict changes to the pallid sturgeon population based on different 

management and life history scenarios, and examine trot line catch dynamics in the 

lower Missouri River.  Catch rates for pallid sturgeon collected with gill nets did not 

significantly change while catch rates using trot lines significantly declined for wild pallid 

sturgeon (P=0.0001) but did not differ among years for hatchery-reared fish (P=0.0610).  

The proportion of reproductively ready females to non-reproductively ready females 

was 1:2.0, compared to the male ratio of 1:0.9.  The minimum female length-at-maturity 

was 788 mm and 798 mm for males while the minimum age-at-maturity for known aged 

hatchery-reared fish was age-9 for females and age-7 for males.  The mean relative 

fecundity was 7%.  Our population viability model was most sensitive to ≥age-1 survival 

rates.  Fluctuating female spawning frequency by one year had minimal effect on the 



 
 

overall population growth and age-at-maturity was less sensitive than spawning 

frequency.  Catch per unit effort was 14.6 fish per trot line rigged with hook timers to 

study the catch dynamics; however, several hook timers were activated but did not 

capture a fish.  Therefore, the corrected CPUE was 17.7 fish per line with over half of the 

hook timer activations occurring 4-h post-deployment.  Detecting shifts in population 

characteristics is essential for understanding population dynamics as hatchery inputs 

and natural perturbations continue to change the population structure.  Barring any 

unforeseen natural catastrophes, the pallid sturgeon population in the lower Missouri 

River is not in immediate danger of local extirpation; however, the population appears 

to be a far from viable nor self-sustaining. 
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CHAPTER 1:  

THESIS INTRODUCTION AND STUDY OBJECTIVES 

 

The Missouri River originates at the confluence of the Jefferson and Madison 

rivers and is joined by the Gallatin River shortly downstream.  The Missouri River flows 

3,734 km to its confluence with the Mississippi River and drains approximately 

1,371,017 km2 in the United States and Canada (USFWS 2000; USFWS 2003).  The 

Missouri River is the second longest river in the United States.  Historically, the Missouri 

River was a large, free-flowing, dynamic river system; however, it has been highly 

modified and regulated over the past 150 years.  Approximately 35% of the river has 

been impounded by mainstem dams, 32% has been channelized for navigation, and 33% 

remains riverine but is interspersed among reservoirs where temperature, flows, and 

turbidity have been greatly altered (Keenlyne 1989; Hesse and Mestl 1993; Poff et al. 

1997).  Dams and water management altered the natural hydrograph and changed the 

sediment transport system that historically created elements of the dynamic habitat 

necessary for native fauna and flora survival (Welker and Drobish 2011).  Channelization 

also reduced or eliminated habitat diversity (Mosley 1983) including shallow water 

habitat and river connections with off-channel areas (Ward and Stanford 1995).  Specific 

to the fishery, these modifications have blocked fish movement, destroyed or altered 

spawning areas, reduced food sources, altered water temperatures, reduced turbidity, 

and changed the hydrograph (Dryer and Sandvol 1993; Pegg et al. 2003).  These major 

river modifications have resulted in a decline in native fish stocks including: blue sucker 

Cycleptus elongatus, sturgeon chub Macrhybopsis gelida, sicklefin chub M. meeki, 
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paddlefish Polyodon spathula, lake sturgeon Acipenser fluvescens, and pallid sturgeon 

Scaphirhynchus albus (Hesse and Mestl 1993).  Today, pallid sturgeon natural 

recruitment is minimal to nonexistent (Snyder 2000; Hrabik et al. 2007; USFWS 2007) 

across the lower reach of the Missouri River. 

Pallid sturgeon is a benthic fish species endemic to the Yellowstone River, 

Missouri River, middle and lower Mississippi River basins and has evolved to survive in 

the riverine conditions associated with these large river systems (Bailey and Cross 1954).  

These river systems were characterized as having turbid, free-flowing, warm water with 

diverse habitats that are constantly changing (Dryer and Sandvol 1993).  The Missouri 

River’s dynamic changing conditions created multiple macrohabitats (i.e., islands, off-

channel backwaters and chutes, and alluvial bars) that are required for all life stages of 

pallid sturgeon. 

 Pallid sturgeon were first described as a unique species in 1905 from specimens 

collected on the Mississippi River (Forbes and Richardson 1905).  Most similar to pallid 

sturgeon are shovelnose sturgeon Scaphirhynchus platorynchus, which are the smallest 

and one of the most abundant sturgeon in the Mississippi and Missouri river basins.  

Conversely, pallid sturgeon is one of the largest and rarest species (Bettoli et al. 2009).  

Both species are long-living, highly-migratory, and late-maturing with multiple year 

intervals between spawning.  The frequency of occurrences of pallid sturgeon suggests a 

probable decline since the species was differentiated from the shovelnose sturgeon 

(Kallemeyn 1983; Dryer and Sandvol 1993).  Subsequent recruitment failures by pallid 

sturgeon are likely related to extensive modification of river corridors by dam 
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construction, reservoir development, and river channelization.  These modifications 

blocked pallid sturgeon migration corridors, affected their spawning areas, and reduced 

food availability.  Overfishing and pollution also likely contributed to the species’ 

population decline.  Pallid sturgeon remained one of the rarest fish in the Missouri and 

Mississippi river basins throughout the 20th Century.  Continued downward population 

trends into the latter 1900s ultimately resulted in the species being listed as federally 

endangered (55 FR 36641-36647) on September 6, 1990 (USFWS 1990).  Many recovery 

actions were identified in the species recovery plan to assist in pallid sturgeon 

population improvement, including: (1) restore habitats and functions of the Missouri 

and Mississippi river ecosystems, (2) protect pallid sturgeon and their habitat from 

anthropogenic activities, (3) establish a captive broodstock population, (4) obtain 

information of population status and trends, (5) develop a pallid sturgeon propagation 

and stocking program, and (6) reintroduce pallid sturgeon and/or augment existing 

populations.  Although all of these aforementioned recovery actions are critical to 

species recovery, preventing pallid sturgeon extirpation may depend largely on the 

success of the artificial propagation program (USFWS 2008).  The primary goals of 

stocking pallid sturgeon in the lower Missouri River (Gavins Point Dam [river kilometer 

(rkm) 1,305.2] to the confluence of the Missouri and Mississippi rivers [rkm 0.0]) are to 

(1) establish multiple year-classes capable of recruiting to spawning age to reduce the 

threat of local extirpation; (2) establish or maintain refugia populations within the 

species’ historic range; (3) mimic haplotype and genotype frequencies of the wild 
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populations in hatchery broodstock and progeny; and (4) prevent the introduction of 

disease into the wild population (Dryer and Sandvol 1993; Steffensen 2010). 

The artificial propagation program was initiated at the Missouri Department of 

Conservation’s Blind Pony State Fish Hatchery in 1992 with broodstock that were 

captured from the Mississippi River (Krentz et al. 2005; USFWS 2008).  These fish were 

later stocked in the lower Missouri and middle Mississippi rivers in 1994.  Spawning of 

locally collected broodstock occurred again in 1997; however, from 1999 to 2007 the 

lower Missouri River pallid sturgeon stocking events were based on surplus from Upper 

Basin (Fort Peck, MT to headwaters of Lake Sakakawea) broodstock.  Due to genetic 

concerns, the Pallid Sturgeon Recovery Team placed a moratorium on stocking Upper 

Basin origin fish in the lower Missouri River.  Therefore, a need for local broodstock 

became apparent and local intensive broodstock collection efforts began.  Since 2008, 

hatchery-reared pallid sturgeon have been produced from broodfish collected in the 

lower Missouri River, primarily around the Platte River, NE.  Since the propagation 

program has started, multiple hatcheries have stocked pallid sturgeon at a variety of 

sizes, year-classes, and locations since 1994 (Krentz et al. 2005; Steffensen et al. 2010; 

Huenemann 2012). 

Steffensen et al. (2010) completed a survival estimate analysis for these 

hatchery-reared pallid sturgeon and population estimates have also been quantified for 

a 80.5-rkm reach of the lower Missouri River (Steffensen et al. 2012).  However, more 

work is needed to expand our understanding of population throughout the entire lower 

Missouri River.  Further development and expansion of the information initially 
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described by Steffensen et al. (2010) and Steffensen et al. (2012) that depicts the 

population characteristics of pallid sturgeon and development of a population viability 

model for the lower Missouri River will aid in assessing the recovery efforts by being 

able to model theoretical population management scenarios and evaluate potential 

changes to the population if aspects of pallid sturgeon life-histories (e.g., shifts in 

mortality rates, continuation of the stocking program) change.  Continued monitoring 

and assessment of the pallid sturgeon population will likely detect shifts in population 

characteristics that are essential for understanding population dynamics as hatchery 

inputs or natural perturbations continue to change the population structure.  The 

monitoring effort will also be valuable for assessing species’ recovery efforts to ensure 

long-term species sustainability and will allow researchers to better quantify the 

model’s input parameters and to validate its predictions.   

 

Study Area 

The lower Missouri River is defined as the reach from Gavins Point Dam (rkm 

1,305) at Yankton, SD to the confluence of the Missouri and Mississippi rivers (rkm 0.0) 

at St. Louis, MO and consists of an unchannelized segment (Gavins Point Dam to Ponca, 

NE [rkm 1,211]) and a channel segment (Ponca, NE to confluence of the Missouri and 

Mississippi river).  The upper-most section (Gavins Point Dam to confluence of the 

Missouri and Platte river [957.6]) is highly influence by water management from Gavins 

Point Dam while major tributaries (i.e., Platte River, Kansas River [rkm591.4], Grand 

River [rkm 402.3], and Osage River [rkm 209.2]) provide a more natural hydrograph 
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downstream.  The population viability model (Chapter 3) was created for the entire 

reach of the lower Missouri River as described above, while the characterization of the 

pallid sturgeon population (Chapter 2) study area included the upper channelized reach 

of the lower Missouri River from the Lower Ponca Bend (rkm 1,211.8) to the Nebraska / 

Kansas state line (rkm 788.4), and the catch dynamics (Chapter 4) study area included an 

80.5-rkm reach of the upper channelized Missouri River from the confluence of the Platte and 

Missouri rivers (rkm 957.6) to Lower Barney Bend (rkm 877.1).  

 

Thesis Objectives 

Information and knowledge about pallid sturgeon in the lower Missouri River is 

limited.  An increase in knowledge of population characteristics for wild and hatchery-

reared pallid sturgeon populations and how the current Propagation Program’s stocking 

rates are contributing to the pallid sturgeon population in the lower Missouri River will 

aid in the species recovery efforts.  Therefore, the objectives of my study are to: 

 

(1) Determine the population characteristics of the pallid sturgeon population in 

the lower Missouri River (Chapter 2). 

a. Determine the population demographics (i.e., size, gender ratio, 

reproductive readiness ratio) of pallid sturgeon by origin (hatchery-

reared versus wild). 

b. Determine minimum size of maturity for wild pallid sturgeon and age 

of maturity for known-aged hatchery-reared pallid sturgeon. 
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c. Determine if condition indices vary by reproductive conditions and 

gender. 

d. Determine fecundity rates for pallid sturgeon successfully spawned at 

Gavins Point National Fish Hatchery and Blind Pony State Fish 

Hatchery. 

e. Document the number of progeny that survive the hatchery-rearing 

process and are stocked into the Missouri River. 

 

(2) Use data from Objective #1, along with existing known population 

information (i.e., survival estimate and population estimate), to develop a 

population viability model for the lower Missouri River (Chapter 3). 

a. Estimate the wild pallid sturgeon population size in the lower 

Missouri River and predict local responses to halting the propagation 

program. 

b.  Estimate the survival and contribution of hatchery-reared pallid 

sturgeon to the population. 

c. Evaluate the overall population change (λ) under different levels of 

natural production. 

d. Determine which model input parameters are most sensitive to 

influence λ. 
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(3) Examine trot line catch dynamics in a large river system by using information 

gathered from LP Hook Timers (Chapter 4). 

a. Determine activation rate of LP Hook Timers and if size affects 

activation. 

b. Determine retention rate of trot lines and how fish escapement 

affects CPUE. 

c. Document real time catch rates with information gathered from LP 

Hook Timers. 

d. Document if activation rates increase around sunset and/or sunrise 

due to increase in fish feeding patterns. 

e. Determine if hook duration affects the number of mortalities, stress, 

and distended mouth syndrome.   
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CHAPTER 2 

Population Characteristics of Pallid Sturgeon in the Lower Missouri River 

 

Abstract 

Population characteristics of pallid sturgeon Scaphirhynchus albus in the lower 

Missouri River are relatively unknown.  As recovery efforts continue, understanding and 

quantifying these characteristics are critical for predicting future population trends.  

Therefore, we synthesized data collected from the Nebraska Game and Parks 

Commission Pallid Sturgeon Population Assessment Program to (1) document the 

population structure of pallid sturgeon by origin (hatchery-reared or wild), gender, and 

reproductive readiness, (2) document the minimum size and age-at-maturity by gender, 

and (3) document the fecundity rates of the fish that were successfully spawned in the 

hatchery.  During this four year study (2008-2011), relative abundance for wild and 

hatchery-reared pallid sturgeon collected with gill nets did not significantly change while 

relative abundance using trot lines significantly declined.  The proportion of hatchery-

reared pallid sturgeon increased annually with the population primarily being composed 

of hatchery-reared fish.  The proportion of reproductively ready females to non-

reproductively ready females was 1:2.0, compared to male ratios at 1:0.9.  Minimum 

length-at-maturity was estimated for females at 788 mm and for male at 798 mm.  The 

minimum age-at-maturity for hatchery-reared released fish was age-9 for females and 

age-7 for males.  The highest relative fecundity, based on the Gonadosomatic Index, was 

10% with an overall mean of 7%.  The number of eggs / ml (egg size) was not correlated 
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with fork length (P = 0.0615) or weight (P = 0.0957).  Relative condition factor (Kn) for 

females was significantly different by reproductive condition (P = 0.0014) and Kn for 

males did not differ between reproductive condition (P = 0.2634).  Detecting shifts in 

population characteristics is essential for understanding population dynamics as 

hatchery inputs and natural perturbations continue to change the population structure 

and to assess species recovery efforts to ensure long-term species sustainability. 

 

Introduction 

Pallid sturgeon Scaphirhynchus albus is a benthic fish species endemic to the 

Yellowstone River, Missouri River, middle and lower Mississippi River basins that has 

evolved to survive in the riverine conditions associated with these large river systems 

(Bailey and Cross 1954; Kallemeyn 1983).  Pallid sturgeon was first differentiated from 

shovelnose sturgeon Scaphirhynchus platorynchus in 1905 from specimens collected on 

the Mississippi River (Forbes and Richardson 1905) and occurs sympatrically with 

shovelnose sturgeon throughout the Mississippi and Missouri river basins.  However, 

shovelnose sturgeon is one of the most abundant sturgeon species in North American 

while pallid sturgeon is one of the rarest (Bettoli et al. 2009).  The frequency of historic 

records of pallid sturgeon collections suggests this species has always been relatively 

rare (Dryer and Sandvol 1993).  Few captures of pallid sturgeon in the latter half of the 

20th Century eventually led to listing the species as endangered on September 6, 1990 

(55 FR 36641-36647; USFWS 1990), yet remains a species that has not been well 

studied.  Initial declines were believed to be correlated with commercial harvest but 
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subsequent recruitment failures are likely related to extensive modification of river 

corridors by dam construction, reservoir development, and river channelization.  Many 

efforts were identified in the species recovery plan to assist pallid sturgeon populations.  

However, preventing pallid sturgeon extirpation may depend largely on the success of 

the artificial propagation component of the recovery program to augment the 

population (USFWS 2008a) because pallid sturgeon natural recruitment is currently 

minimal to nonexistent  across the lower reach of the Missouri River and the Mississippi 

River (Snyder 2000; Hrabik et al. 2007; USFWS 2007). 

The artificial propagation program was initiated in 1992 at the Missouri Department 

of Conservation’s Blind Pony State Fish Hatchery (USFWS 2008a) and has continued at 

multiple hatcheries (Krentz et al. 2005; Huenemann 2012).  Hatchery-reared pallid 

sturgeon have been stocked at a variety of sizes, ages, and locations since 1994 (Krentz 

et al. 2005; Steffensen et al. 2010; Huenemann 2012).  Early stocking decisions were 

based on the number of progeny produced without knowledge of population 

characteristics.  Survival rates of hatchery-reared pallid sturgeon have been quantified 

for the lower Missouri River (Steffensen et al. 2010).  Similarly, estimates of population 

size have been quantified for an 80.5 river kilometer (rkm) reach of the lower Missouri 

River (Steffensen et al. 2012) but more work is needed to expand this estimate 

throughout the entire Missouri River.  An accurate assessment of the population 

characteristics of pallid sturgeon in the lower Missouri River is critical for species 

recovery.  As the number of reproductively ready fish in the system increases, the 

likelihood of capturing a reproductively ready fish for the propagation program and the 
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probability of successful recruitment through natural spawning will also increase 

(Paragamian et al. 2005).   Furthermore, an understanding of the population status 

guides the artificial propagation program as stocking rates should depend on population 

levels in the river relative to targeted recovery goals.  Therefore, the objectives of this 

study are to (1) document the population abundance and structure of pallid sturgeon by 

origin (hatchery-reared vs. wild), gender, and reproductive readiness, (2) document the 

minimum size and age of maturity of pallid sturgeon by gender and if condition indices 

vary by reproductive condition, and (3) document fecundity for female pallid sturgeon 

that successfully spawned at the hatcheries. 

 

Methods 

The study area included the upper channelized reach of the lower Missouri River 

from the Lower Ponca Bend (rkm 1,211.8) to the Nebraska / Kansas state line (rkm 

788.4; Figure 2-1) and is characterized by uniform channel morphology where the 

outside bends are revetted by limestone rock and the inside bends have a series of dike 

structures to direct flow toward the thalweg.  The Platte River bisects this reach and has 

a major influence by altering the Missouri River’s hydrograph, water temperature, 

turbidity, substrate, and sediment load below their confluence (Welker and Drobish 

2011a). 

Data used for our analyses were acquired from the Nebraska Game and Parks 

Commission (NGPC) Pallid Sturgeon Population Assessment Program (PSA Program), 

including data collected during standardized sampling efforts and an annual intensive 
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broodstock collection effort from 2008 to 2011.  Annual samples were collected in the 

fall when water temperatures were below 12.7oC until winter river conditions did not 

allow safe sampling conditions.  Sampling then resumed when ice flow subsided until 

water temperature exceeded 12.7oC.  The intensive broodstock collection effort 

targeted sexually mature pallid sturgeon and was conducted during early April in an 

attempt to collect broodstock for the propagation program. 

Gill nets and baited trot lines were used, following protocols outlined for the PSA 

Program (Welker and Drobish 2011a; Welker and Drobish 2011b).   Depths and 

velocities on outside bends prevented sampling in those habitats, so sampling occurred 

on the inside bend between and around the wing dikes structures.  The gill nets were 

eight panel, 91-m long experimental gill nets with a height of 2.4 m and had 7.6-m 

panels consisting of 38.1-mm, 50.8-mm, 76.2-mm, and 101.6-mm multifilament bar 

mesh.  Gill nets were fished overnight with a maximum set time of 24 hours and catch 

per unit effort (CPUE) was calculated as the number of fish per net night. 

Trot lines were 61 m long with 40 3/0 circle hooks per line and baited with night 

crawlers Lumbricus terrestris.  Hooks were tied to a 38 cm leader and fastened to the 

main line using trot line snaps.  Hooks were spaced every 1.5 m to avoid hook and fish 

entanglement.   All trot lines were deployed parallel to the river’s current on the inside 

bend.  Trot lines were deployed in the early afternoon, pulled the following morning, 

and fished for a maximum of 24 hours (USFWS 2008b).  CPUE was calculated as the 

number of fish per 40 hooks. 
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Mean annual CPUE data were checked for normality (PROC UNIVARIATE) in SAS 

9.2 (SAS Institute, Cary, North Carolina).  Data did not follow a normal distribution were 

log10 transformed; however, normality assumptions were still not met a.  Therefore, to 

compare mean annual CPUE between years, Kruskal-Wallis non-parametric ANOVA 

statistical analysis were conducted.  Significance was determined at α = 0.05 for all tests. 

All captured pallid sturgeon were examined for passive integrated transponder 

(PIT) tags, coded wire tags (CWT), elastomer marks, and scute removal to determine the 

origin of the individual (i.e., naturally produced [wild] or hatchery-reared; USFWS 

2008b).  If no tags were present, a genetic sample was collected from the caudal fin and 

analyzed to confirm origin (Schrey et al. 2007; Schrey and Heist 2007; DeHaan et al. 

2008).  Fish that genetically did not match any known parental crosses were presumed 

wild origin.  Fish were then categorized by origin (wild or hatchery-reared) for this 

analysis. 

All pallid sturgeon collected over 750-mm without tags or marks indicating that  

were hatchery-reared were transferred to Gavins Point National Fish Hatchery (Yankton, 

SD) or the Missouri Department of Conservation’s Blind Pony State Fish Hatchery (Sweet 

Springs, MO) for reproductive assessment.  Gender and reproductive readiness was 

determined using ultrasound and endoscope techniques (Bryan et al. 2007; Divers et al. 

2009).  Fish were categorized as either reproductive, meaning they were sexually 

mature and ready to spawn the year collected, or non-reproductive, meaning they 

would not spawn during the year they were collected.  All reproductively ready fish 

were held in the hatchery until egg polarity indices indicated they were ready to spawn 
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(USFWS 2005); whereas, non-reproductive fish were returned to the river as quickly as 

possible. 

The ratios of hatchery-reared pallid sturgeon to naturally produced pallid 

sturgeon, gender distribution of potential broodfish, and reproductively ready to non-

reproductively ready pallid sturgeon collected annually were determined using the 

reproductive assessments provided by USGS staff.  Minimum sizes-at-maturity of pallid 

sturgeon were determined by using the smallest reproductively ready fish from the 

reproductive assessment conducted at the hatcheries while minimum ages-at-maturity 

were determined using the youngest hatchery-reared pallid sturgeon that were 

reproductively ready.  Ages were established for hatchery stocked fish by identification 

marks present (i.e., PIT tags or scute removal) when captured (Steffensen et al. 2008). 

 Relative condition indices were calculated using the formula: 

Kn = (W / W’), 

where W is weight of the individual and W’ is the length-specific mean weight predicted 

by the weight-length equation calculated for that population.  Genders were statically 

compared (ANOVA) by reproductive condition using SAS 9.2.  Shuman et al. (2011) 

provided a length-weight regression for pallid sturgeon throughout its range:  

log10 W’ = -6.2561 + 3.2932 *(log10 L), 

where L is the fork length of the individual. 

Relative fecundity was estimated using the Gonadosomatic Index (GSI), where: 

GSI = (Gonad Weight / Total Body Weight) x 100. 
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As females were spawned, the hatchery staff calculated the number of eggs released 

using volumetric estimation by counting the number of eggs / ml and multiplying by the 

number of ml’s extracted from each female.  The hatchery count estimation and the 

mean number of eggs per gram (100 eggs / gram; James Candrl, USGS pers. comm.) 

were used to determine the overall gonad weight. 

 

Results 

 Crews deployed 997 gill nets and 2,280 trot lines from 2008 to 2011.  A total of 

1,174 pallid sturgeon were caught, 203 were genetically determined to be wild origin, 

957 were hatchery-reared origin, and 14 remain unknown because their PIT tag number 

could not be linked to any stocking records or capture history (Table 2-1).  Catch rates of 

wild pallid sturgeon sampled with gill nets did not change during this study (P = 0.8991) 

but catch rates with trot lines declined (P = 0.0001; Figure 2-2).  The highest CPUE (0.14 

fish per 40 hook nights) was observed in 2008 and declined to 0.06 fish per 40 hook 

nights in 2011.  Catch rates of hatchery-reared pallid sturgeon sampled with gill nets (P = 

0.2290) and trot lines (P = 0.0610) were variable but did not differ among years. 

 A total of 178 pallid sturgeon were transferred to Gavins Point National Fish 

Hatchery or Blind Pony State Fish Hatchery as potential broodstock in the artificial 

propagation program.  Sixty-three (35%) were determined to be females and 21 of these 

were determined to be reproductively ready (Table 2-2).  This resulted in a ratio of 1:2.0 

for reproductively ready females to non-reproductive females.  By comparison, the ratio 
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for males was 1:0.9 with 61 males being reproductively ready.  The overall ratio of 

reproductively ready pallid sturgeon was 1 female to 2.9 males. 

 Minimum length-at-maturity was 788 mm for females and for males at 798 mm.  

Both fish were captured in 2008.  Minimum age-at-maturity for known-aged hatchery-

reared fish, was age-9 for females and age-7 for males.  The female was 950 mm and 

3,248 g from the 2001 year class while the male, also from the 2001 year class, was 826 

mm and 1,678 g. 

 Length frequency distributions for hatchery-reared pallid sturgeon sampled by 

year were similar during the first three years; however, the hatchery-reared pallid 

sturgeon collected during 2011 (range 290 – 983 mm) were smaller than 2008 (P < 

0.0001; range 300 – 1,006 mm), 2009 (P < 0.0001; range 301 – 1,001 mm), and 2010 (P < 

0.0001; range 306 – 950 mm; Figure 2-3).  The length frequency distribution of wild 

pallid sturgeon ranged from 404 to 1,095 mm and were similar during the first three 

years; however, the wild pallid sturgeon collected during 2011 were larger than 2008 (P 

= 0.0087), 2009 (P = 0.0222), and 2010 (P = 0.0041;Figure 2-3) with the majority (82%) 

being broodfish sized (> 750 mm). 

 The 2002 hatchery-reared year class was the most frequently sampled year class 

during the first three years of sampling (2008, N = 74; 2009, N = 75; 2010, N = 76) 

followed by the 2001 year class (2008, N = 50; 2009, N = 56; 2010, N = 42; Table 2-3 and 

Figure 2-4).  However, during the 2011 sampling season, the 2009 year class (N = 95) 

was the most frequently collected while only 35 pallid sturgeon from the 2002 year class 
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and 24 from the 2001 year class were sampled.  Age-0 fish were not sampled with gill 

nets or trotlines and age-1 were collected infrequently. 

Of the 21 reproductively ready female pallid sturgeon collected during this study, 

12 released eggs at the hatchery, four never released eggs, one was genetically 

determined to be of hatchery origin, and four were genetically not approved to be used 

for the artificial propagation program (Table 2-4).  Absolute fecundity (total number of 

eggs released) varied from 12,220 to 54,705 (two fish were verified via surgical 

telemetry tag implantation as incomplete spawn and are not included in these 

calculations; A. DeLonay, USGS pers. comm.).  The number of eggs / ml (egg size) was 

not correlated with fork length (P = 0.1987) or weight (P = 0.2848); however, fork length 

(P = 0.0114) and weight (P = 0.0042) were correlated with the number of eggs released 

(Figure 2-5).  The highest relative fecundity was 10% with a mean of 7% (SD = 1.5%; 

Table 2-4).  The mean survival rate from egg to stock sized fish was 15.1% (SD = 14.7%) 

but was highly variable ranging from 1.9% to 42.8% (four parental fish were not included 

in this range as their progeny are still being reared at Neosho National Fish Hatchery). 

  Relative condition factor for females was significantly different by reproductive 

condition (P = 0.0014; Figure 2-6).  The mean for reproductively ready females was 0.97 

(SE = 0.02) compared to 0.90 (SE = 0.01) for non-reproductively ready fish.  Conversely, 

relative condition factor for males was not different between reproductively ready 0.88 

(SE = 0.01) and non-reproductive fish 0.86 (SE = 0.0.01). 
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Discussion 

Recovering an endangered species presents substantial challenges because 

understanding and quantifying the life history characteristics are difficult when the 

population size is reduced to the point species detection is very difficult.  Also, detecting 

trends in species abundance on rare species needs to be viewed with caution because 

the collection of a few more or less fish can affect annual catch rates and therefore 

provide a statistical trend that is not necessarily representative.  Catch rates of wild and 

hatchery-reared pallid sturgeon collected with gill nets did not change while catch rates 

of trot lines declined during this study.  We suspect the decline observed with trot lines 

may be attributed to the gear’s catchability in varying river conditions.  The majority of 

trot lines deployed during 2011 were fished in above average river discharge and 

temperatures compared to previous years.  Conversely, gill nets showed no change in 

abundance were fished during more similar conditions throughout the study therefore, 

minimizing the affects from changing river conditions.  After taking these factors into 

consideration, these results suggest a stable population during our study.  Continuing to 

monitor abundance of pallid sturgeon is vital to detect future population changes and to 

monitor the contribution and survivability of hatchery-reared fish as the propagation 

program continues stocking in the lower Missouri River. 

Over 120,000 pallid sturgeon have been stocked into the lower Missouri River 

since the propagation program’s inception (Huenemann 2012) and the impact of this 

effort is evident on the pallid sturgeon population structure.  Peters and Parham (2008) 

reported the collection of 15 pallid sturgeon in the lower Platte River from 2001 to 2004 
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where six fish were known hatchery-reared individuals resulting in an approximate ratio 

of 1:1 for hatchery-reared to wild fish.  This equal origin ratio was observed during the 

first several years (2003-2005) of sampling under the PSA Program (Steffensen and 

Mestl 2004; Steffensen and Mestl 2005; Barada and Steffensen 2006; Steffensen and 

Barada 2006) but has since diverged.  Throughout our study (2008-2011), the ratio of 

wild to hatchery-reared pallid sturgeon increased annually.  The population is now 

primarily hatchery-reared fish.  As stocking hatchery-reared pallid sturgeon continues 

and these fish fully recruit to our gears and in the absence of natural recruitment, this 

population will likely continue to reflect greater proportions of hatchery-reared 

individuals.  Until such time as there is natural recruitment this population of hatchery-

reared pallid sturgeon will aid in understanding life-history and habitat requirements 

given the current population of wild pallid sturgeon is small.  This is predicated on the 

assumption that hatchery fish behave similar to wild fish.  More research is needed, but 

evidence from related species suggests little or no difference between wild and 

hatchery produced fish (Pracheil 2010).  

Male pallid sturgeon were collected at twice the frequency as females while 

reproductive males were collected almost three times as frequently as reproductive 

females.  Adult male pallid sturgeon were collected at a rate of one reproductively ready 

fish for every one non-reproductive fish suggesting that males may be able to spawn 

every other year in the upper channelized Missouri River.  Adult female pallid sturgeon 

were collected at the rate of one reproductively fish for every two non-reproductive 

fish.  This suggests that females could spawn every third year.  A similar spawning 
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periodicity was described for shovelnose sturgeon in the Missouri River in South Dakota 

(Moos 1978) and suggests the population would need to be 60% female to maintain a 

balanced (1 to 1) annual spawning ratio between males and females (Koch et al. 2009).   

Spawning ratios for most sturgeon species are not known because most were 

heavily exploited over a century ago or were affected by anthropogenic (i.e., flow and 

temperature alterations due to river modifications, pollution) modifications (Birstein 

1993; Boreman 1997) and are in a global decline (Birstein et al. 1997).  Other studies 

have reported variable gender ratios for the sympatric shovelnose sturgeon.  Jackson 

(2004) reported only 20% of the shovelnose sturgeon collected in the middle Mississippi 

River were females while Colombo et al. (2007) reported a 1:1 gender ratio.  Koch et al. 

(2009) indicated the gender ratios (> 1.5:1) were skewed toward females in three pools 

from the Mississippi River; whereas on the open Wabash River, Kennedy et al. (2007) 

estimated the population to be 36% female.  Similar variability has been observed in 

white sturgeon Acipenser transmontanus in the segmented Columbia River.  Ward 

(1998) reported a female to male ratio of 1.6:1 from the Ice Harbor Reservoir reach 

compared to 1:2.1 ratio from the John Day Reservoir reach. We observed 35% females 

during this study and have no way of knowing if this a departure from the historic ratio 

or if this may be contributing to the lack of natural reproduction and recruitment.  

During this study, genetically confirmed hybrid sturgeon were collected ranging from 

100 to 1000 mm, indicating ongoing hybridization (Steffensen and Huenemann 2012a; 

Steffensen and Huenemann 2012b). 
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Another major concern associated with pallid sturgeon recovery and perhaps the 

unbalanced gender ratio is the exploitation by commercial fishing.  An increased 

demand for an additional caviar source, as harvest closed on Eurasian sturgeon stock, 

may result in increased exploitation of local Acipenseridae species.   Commercial fishing 

for sturgeon along the Nebraska border has been closed since 1955 (Zuerlein 1988); 

however, commercial fishing was open to shovelnose sturgeon harvest in parts of the 

lower Missouri River through Missouri and the Mississippi River.  The USFWS only 

recently closed commercial harvest of shovelnose sturgeon throughout their sympatric 

range of pallid sturgeon (55 CFR Part 17 53598-53606; USFWS 2010) thus protecting 

pallid sturgeon from incidental take.  Pallid sturgeon have long migration routes 

(DeLonay et al. 2010; DeLonay et al. 2012) and can easily travel hundreds of miles 

through areas that were previously open to commercial fishing making females 

susceptible to incidental take for their eggs’ market value.  Bettoli et al. (2009) 

estimated 169 mature pallid sturgeon were harvested during two seasons in the 

Tennessee waters of the Mississippi River and suggest this is a conservative estimate.  It 

is unlikely fish from Bettoli’s study area would migrate into our study area but 

commercial fishing remained open in parts of the lower Missouri River until 2010 

(USFWS 2010).   If similar incidental take did occur on the lower Missouri River, as 

observed on the Mississippi River, this could be a substantial source of pallid sturgeon 

mortality and explains the unequal gender proportions observed in our reach as fish 

move throughout the system.  Consistent protective management actions, provided by 
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the similarity of appearance ruling (USFWS 2010), is likely to benefit the recovery of 

pallid sturgeon throughout their range as harassment and the incidental take is reduced. 

Keenlyne and Jenkins (1993) studied reproductive characteristics of 14 pallid 

sturgeon (five males and nine females) that were incidentally collected by state and 

federal agencies from 1983 to 1991 in the Mississippi River drainage.   They used fin rays 

to determine age, compared to our study where we used known-aged, hatchery-reared 

pallid.  Several validation studies for aging sturgeon using fin rays have concluded that 

fin rays are not a reliable method and the results should be viewed with caution (Hurley 

et al. 2004; Whiteman et al. 2004; Koch et al. 2011).  Keenlyne and Jenkins (1993) 

reported two male pallid sturgeon were in stage four of gonadal development and were 

age-8 (738-mm) and age-9 (710-mm) but based on annuli spacing they reported males 

mature at ages 5-7.  Egg development was first observed in female pallid sturgeon at 9-

12 years old  and suggested that  first spawning may not occur until age-17 or older.  

The only reproductively ready female pallid sturgeon available for the Keenlyne et al. 

(1992) study was a 41 year old specimen from North Dakota that was 1,404 mm.  The 

use of known-aged, hatchery-reared pallid sturgeon in this study provided accurate and 

reliable ages.  The youngest female pallid sturgeon we documented as reproductively 

ready was age-9 while the youngest male was age-7.  Females appear to be maturing 

earlier in our reach of the Missouri River than that reported by Keenlyne and Jenkins 

(1993) and males are maturing within their reported range.  Wild reproductively ready 

pallid sturgeon, both females (min FL = 788 mm) and males (min FL = 798 mm), were 

collected at smaller fork lengths then the known-aged reproductively ready hatchery-
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reared fish (female min FL = 950 mm; male min FL = 826 mm).  These known aged 

hatchery-reared pallid sturgeon are progeny of parental stock captured from the upper 

basin (Fort Peck Dam [rkm 2,851] to the headwaters of Lake Sakakawea [rkm 2,524]) in 

more northern latitudes.  The size and age-at-maturity of these hatchery-reared upper 

Missouri River fish may be genetically predisposed to mature at a later age and larger 

size than the local wild fish.  This difference in size-at-maturity needs to be better 

understood because of its effects on recovery efforts as additional years would be 

needed before they potentially could contribute to the population.  Therefore, 

continuing to monitor the age-of-maturity and maximum age for hatchery-reared fish is 

necessary to improve the understanding of pallid sturgeon life history. 

Assuming wild pallid sturgeon exhibit similar growth rates as the hatchery-reared 

pallid sturgeon stocked into the Missouri River, this suggests that wild origin individuals 

of both genders may have the ability to become reproductively ready as early as age-7.  

The observed earlier maturation compared to other published studies of females may 

be a local adaptation in the lower Missouri River compared to other basins or is 

potentially a species response to a low population.  For example, Zweiacker (1967) 

reported female shovelnose sturgeon in the Missouri River become sexually mature as 

small as 414 mm compared to the Mississippi River were females mature around 600 

mm (Koch et al. 2009).  If a similar trend occurs with pallid sturgeon, this could also 

account for the earlier age-at-maturity seen during this study. 

Keenlyne et al. (1992) reported the mass of mature eggs (fecundity) of a single 

reproductively ready female pallid sturgeon collected in North Dakota at 11.4%.  George 
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et al. (2012) estimated fecundity (GSI) of two reproductive females (827-mm and 886-

mm) from the lower Mississippi River at 13.8% and 20.0%.  Our fecundity estimates are 

variable, ranging from 5% to 10%, and much lower than other published rates (Table 2-

4).  However ovarian mass was not measured, so our estimates are based on a mean of 

100 eggs / gram rather than the entire gonads which may explain some of the observed 

differences.  Siberian sturgeon Acipenser baeri and Danube sturgeon Acipenser 

gueldenstaedti have shown declines in fecundity, growth, spawning frequency, 

spawning success, and egg quality following habitat alteration and destruction 

(Artyukhin et al. 1978; Votinov and Kas’yanov 1978).  Major modifications have occurred 

on the lower Missouri River with impoundment and channelization; therefore, pallid 

sturgeon in the lower Missouri River may be expressing similar responses.  The upper 

channelized Missouri River’s water velocities are swifter with fewer refugia than the 

Mississippi River.   Potentially energy that is expended to survive in the higher velocity 

riverine conditions associated with the channelized Missouri River may result in less 

energy being put toward egg development.  A similar phenomenon was observed in 

white sturgeon where fish captured in pooled-reservoir reaches had average fecundities 

slightly higher than in unimpounded reaches of the lower Columbia River (Beamesderfer 

et al. 1995). 

Wei et al. (2004) reviewed the Chinese Acipenseriformes aquaculture industry 

(the world’s largest sturgeon production) and determined the current sturgeon-rearing 

techniques results in an egg to “grow-out” (~ 12 months) survival estimate of 25%.  

Comparatively, within the pallid sturgeon propagation program, survival rates for pallid 
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sturgeon from egg to stock-sized averaged 14.8% (range 1.9% to 42.8%).  The best 

survival rates were observed from the smaller sized (< 860-mm) female pallid sturgeon 

during this study.  This was likely their first spawning cycle based on the length-at-

maturity analysis.  Although not significant, absolute fecundity did increase with length 

and weight.  Fecundity and egg size increase with body size in most sturgeon species 

(DeVore et al. 1995; Beamesderfer et al. 2007); however, Gisbert et al. (2000) concluded 

that egg size has no direct implications for larval survival of Siberian sturgeon.  Other 

factors that contribute to survival of pallid sturgeon during the rearing process (i.e., 

males milt quality, hatchery water variables, etc.) and a detailed analysis throughout the 

entire propagation process could aid in identifying any rearing mortality bottlenecks. 

Knowing population characteristics is essential for understanding population 

dynamics and assessing species recovery efforts.  There is no single answer to species 

recovery, especially when dealing with a long-lived species that is highly-migratory and 

late-maturing; however, the artificial propagation program has greatly increased the 

number of pallid sturgeon in the system.  As these hatchery-reared pallid sturgeon 

continue to mature, the number of reproductively ready pallid sturgeon will likely 

increase assuming their behavior is similar to wild fish.  Known hatchery-reared pallid 

sturgeon have been documented to spawn in the lower Missouri River (DeLonay et al. 

2012); however, survival and recruitment is yet to be documented and may be the 

major bottleneck that needs to be overcome to have a successful recovery process.  The 

ultimate recovery goal of a self-sustaining population is still decades away and 
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continued assessment is needed to document and describe population characteristic 

changes to ensure recovery efforts are moving in the correct direction. 
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Table 2-1.  Number of hatchery-reared, wild and unknown origin pallid sturgeon 
collected in the upper channelized reach of the lower Missouri River from Lower Ponca 
Bend (rkm 1,211.8) to the Nebraska / Kansas state line (rkm 788.4) from 2008 to 2011, 
including the ratio of wild to hatchery-reared fish.  Genetic records for parental stocks 
are incomplete; therefore, fish are classified as “potentially wild.”  Pallid sturgeon of 
unknown origin did not have a genetic sample taken when captured and their stocking 
or capture history could not be determined by their passive integrated transponder (PIT) 
tag number. 
 

Year 
Pallid sturgeon origin 

Annual total 
Wild : Hatchery  

ratio Hatchery-reared Wild Unknown 

      

2008 188 54 5 247 1 : 3.5  

2009 236 54 5 295 1 : 4.4 

2010 241 46 3 290 1 : 5.2 

2011 292 49 1 342 1 : 5.9 

      

Totals 957 203 14 1,174 1 : 4.7 
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Table 2-2.  Number of potential broodstock pallid sturgeon transferred to Gavins Point 
National Fish Hatchery or Blind Pony State Fish Hatchery from the upper channelized 
reach of the lower Missouri River from Lower Ponca Bend (rkm 1,211.8) to the Nebraska 
/ Kansas state line (rkm 788.4) from 2008 to 2011 for reproduction assessment and the 
ratios of reproductive or non-reproductive fish by gender. 
 

Year 

Pallid sturgeon by  gender  Repro 
ratio 

Female : 
Male 

Female  Male  

Repro Non-
repro 

Total 
Repro 
ratio 

 Repro Non- 
repro 

Total 
Repro 
ratio 

 

            

2008 3 3 6 1 : 1.0  22 6 28 1 : 0.3  1 : 7.3 

2009 4 8 12 1 : 2.0  13 19 32 1 : 1.5  1 : 3.3 

2010 6 11 17 1 : 1.8  11 14 25 1 : 1.3  1 : 1.8 

2011 8 20 28 1 : 2.5  15 15 30 1 : 1.0  1 : 1.9 

            

Totals 21 42 63 1 : 2.0  61 54 115 1 : 0.9  1 : 2.9 
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Table 2-3.  Number of hatchery-reared pallid sturgeon stocked in the lower Missouri 
River from the Gavins Point Dam (rkm 1,305.2) to the confluence of the Missouri and 
Mississippi rivers (rkm 0.0) from 1992 to 2011 and the number recaptured by year class.  
Number stocked does not account for the estimated survival rates associated with age-
at-stocking and year class was not determined on all recaptured fish.  Stocked numbers 
reported are from Huenemann (2012). 
 

Year Class 
Number 
stocked 

Number recaptured 

2008 2009 2010 2011 

      

1992 4,182 0 0 0 0 

1997 2,851 3 1 0 0 

1999 532 3 1 2 2 

2001 7,453 50 56 42 24 

2002 9,241 74 75 76 35 

2003 10,129 22 22 15 10 

2004 39,255 17 14 15 14 

2005 3,654 11 25 27 23 

2006 3,642 2 11 16 18 

2007 4,515 0 18 12 27 

2008 6,963 ----- 0 13 21 

2009 14,593 ----- ----- 1 95 

2010 6,812 ----- ----- ----- 2 

2011 5,289 ----- ----- ----- ----- 
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Table 2-4.  Number of eggs released and relative fecundity estimates for the 12 
reproductively ready female pallid sturgeon captured in the upper channelized reach of 
the lower Missouri River from Lower Ponca Bend (rkm 1,211.8) to the Nebraska / Kansas 
state line (rkm 788.4) from 2008 to 2011 that were successfully spawned at Gavins Point 
National Fish Hatchery or Blind Pony State Fish Hatchery.  Number of progeny stocked 
for each female contributed and survival rate from egg to stock size are also included.  
Numbers of progeny stocked was provided from Huenemann (2012).  The superscripted 
“1” denotes a complete spawn (verified via telemetry tag implantation; A. DeLonay, per. 
comm.) while the superscripted “2” denotes an incomplete spawn.  The asterisk denotes 
not all progeny have been stock from the individual female, therefore survival rates 
were not calculated. 
 

Year PIT Tag 
Fork 

length 
Weight 

Number 
of eggs / 

ml 

Absolute 
fecundity 

Relative 
fecundity 

Number 
of 

progeny 
stocked 

 

Survival 
rate 

         

2008 470C467335 
1
 788 2,074 49 15,484 8% 4,466 28.8% 

2009 434D30680D 816 2,084 46.3 18,289 9% 7,835 42.8% 

2009 4704265B0C 1,067 4,778 42 26,752 6% 1,827 6.8% 

2009 412C20001A 1,075 5,450 40 50,495 10% 3,647 6.7% 

2010 434C38070F 
1
 829 2,014 40 12,220 6% 431 3.5% 

2010 486866124D 
1
 860 2,480 39 19,600 8% 4,368 22.3% 

2010 412C240973 
2
 1,034 4,456 37 20,400 5% 1,452 7.1% 

2010 48665E2D76 
1
 1,060 5,334 31 28,950 5% 561 1.9% 

2011 4868364835 864 2,714 33 24,155 9% 2,264 *  

2011 4626553E42 948 3,530 37 18,885 5% 3,165 *  

2011 4627111945 966 3,376 29 22,575 7% 2,177 *  

2011 412C275E0A 
2
 1,079 5,136 22 885 2% 0 *  
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Figure 2-1.  Map of the Missouri River basin with the 423 river kilometer (rkm) study 
reach of the lower Missouri River indicated in the oval. 
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Figure 2-2.  Catch per unit effort (CPUE; +/- 2 SE) for (A) gill nets and (B) trot lines by 
origin during 2008 to 2011 from Lower Ponca Bend (rkm 1,211.8) to the Nebraska / 
Kansas state line (rkm 788.4).  Black bars represent wild fish while white bars are 
hatchery-reared fish.  Letters denote significant differences (α = 0.05) in mean CPUE 
between years for each gear. 
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Figure 2-3.  Length-frequency distribution of hatchery-reared pallid sturgeon (black bars) 
and wild pallid sturgeon (grey bars) collected in the upper channelized reach of the 
lower Missouri River from Lower Ponca Bend (rkm 1,211.8) to the Nebraska / Kansas 
state line (rkm 788.4) from 2008 to 2011 by year. 
  



48 
 

2008

F
re

q
u
e
n
c
y
 (

N
)

0

20

40

60

80

100
2009

2010

Age (yrs)

0 1 2 3 4 5 6 7 8 9 10 11 12

F
re

q
u
e
n
c
y
 (

N
)

0

20

40

60

80

100
2011

Age (yrs)

0 1 2 3 4 5 6 7 8 9 10 11 12

 
 

Figure 2-4.  Age distribution of hatchery-reared pallid sturgeon collected in the upper 
channelized reach of the lower Missouri River from Lower Ponca Bend (rkm 1,211.8) to 
the Nebraska / Kansas state line (rkm 788.4) from 2008 to 2011 by year. 
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Figure 2-5.  Number of eggs released by (A) length and (B) weight for the 11 
reproductively ready female pallid sturgeon that were collected in the upper 
channelized reach of the lower Missouri River from Lower Ponca Bend (rkm 1,211.8) to 
the Nebraska / Kansas state line (rkm 788.4) from 2008 to 2011 and were successfully 
spawned at Gavins Point National Fish Hatchery or Blind Pony State Fish Hatchery. 
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Figure 2-6.  Relative condition factor (Kn) for (A) reproductively ready female, (B) non-
reproductively ready female, (C) reproductively ready male, and (D) non-reproductively 
ready male pallid sturgeon collected in the upper channelized reach of the lower 
Missouri River from the Lower Ponca Bend (rkm 1,211.8) to the Nebraska / Kansas state 
line (rkm 788.4) from 2008 to 2011 by reproductive condition.  The horizontal line 
represents the mean Kn. 
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CHAPTER 3 

Population Prediction and Viability Model for Pallid Sturgeon in the Lower Missouri 

River 

 

Abstract 

The long-term population trends of pallid sturgeon Scaphirhynchus albus in the 

lower Missouri River were evaluated via a population viability model.  The model 

incorporated published and unpublished studies throughout the range to predict how 

past and future management actions affect population trends and ultimately recovery.  

The intent of this model was to provide managers with an easy, straight forward 

(Microsoft Excel based) method to estimate and predict population trends for wild and 

hatchery-reared pallid sturgeon in the lower Missouri River.  The model’s input 

parameters can easily be changed to investigate and understand recruitment and 

recovery bottlenecks and determine the most sensitive input parameter(s).  The model 

was most sensitive to survival rates for fish ≥ age-1 and less sensitive to age-0 survival 

rates and fecundity.  Decreasing or increasing female spawning frequency by one year 

had minimal effect on the overall population trajectory.  Recovering a species, such as 

pallid sturgeon, that is slow-growing, late-maturing, and does not reach reproductive 

readiness annually requires several years to quantify recovery and management 

decisions.  Barring any unforeseen natural catastrophe, the pallid sturgeon population in 

the lower Missouri River is not in immediate danger of local extirpation; however, the 

population appears to be far from viable and self-sustaining.  Therefore, continuation of 
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the artificial propagation and stocking program appears to be essential until successful 

natural production and recruitment is documented.  Continued monitoring and 

assessment of the pallid sturgeon population will allow researchers to better quantify 

critical input parameters for this model and validate the model predictions to assist 

managers with recovery decisions. 

 

Introduction 

Pallid sturgeon Scaphirhynchus albus is a native, benthic fish species adapted to 

what were historically large, turbid, free-flowing systems of the Mississippi and Missouri 

rivers (Forbes and Richardson 1905; Bailey and Cross 1954; Kallemeyn 1983).  Pallid 

sturgeon have always been rare but declining populations led to the fish being listed as 

federally endangered in 1990 (55 FR 36641-36647, USFWS 1990; Dryer and Sandvol 

1993).  Declines have been attributed to the loss and modification of pallid sturgeon 

habitat by human activities.  These activities have blocked fish movement, destroyed or 

altered spawning areas, reduced food sources or their ability to obtain food, altered 

water temperatures, reduced turbidity, and changed the hydrograph (Keenlyne and 

Evenson 1989; Dryer and Sandvol 1993; Pegg et al. 2003) which caused an apparent lack 

of reproduction and recruitment (Snyder 2000; Hrabik et al. 2007; USFWS 2007). 

The short-term recovery objectives for pallid sturgeon are to establish a captive 

broodstock program, implement suitable habitat restoration actions, and develop an 

artificial propagation program while providing protection for the remaining wild 

individuals from harm, harassment, or death (Dryer and Sandvol 1993).  Artificial 
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propagation and subsequent population augmentation (i.e., stocking) may be the only 

viable option to maintain pallid sturgeon populations in the lower Missouri River in the 

near term as recruitment appears nonexistent.  Targeted collection efforts for sexually-

mature wild pallid sturgeon began shortly after listing and the first successful 

propagation effort occurred at the Missouri Department of Conservation’s Blind Pony 

State Fish Hatchery in 1992 and has continued at several state and federal hatcheries 

(Krentz et al. 2005, Huenemann 2012).  The primary goals of stocking pallid sturgeon in 

the lower Missouri River are: (1) establish multiple year-classes capable of recruiting to 

spawning age to reduce the threat of local extirpation; (2) establish or maintain refugia 

populations within the species’ historic range; (3) mimic the wild populations’ haplotype 

and genotype frequencies in hatchery broodstock and progeny; and (4) prevent the 

introduction of disease into the wild population. 

Since the inception of the stocking program, stocking rates of pallid sturgeon were 

primarily based on the number of reproductive adults collected by field crews.  Their 

progeny were stocked without quantifying the stocking effects on the overall pallid 

sturgeon population.  Although researchers are starting to learn more about the local 

population structure and population trends, the overall contribution of the stocking 

program (i.e., number of hatchery-reared pallid sturgeon expected to reach maturity) 

has not been quantified.  Therefore, increased understanding of the effects of the 

stocking program on the population is a critical element to species recovery.  

The goal of this study is to use the data from published and unpublished studies 

throughout the range of pallid sturgeon to develop a population viability analysis (PVA) 
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model for the lower Missouri River.  Population viability analysis models use 

mathematical iterations on given population dynamics parameters to simulate the 

sustainability of the population (Gao et al. 2009) and to identify which input parameters 

are most sensitive to change (Bajer and Wildhaber 2007).  We developed a 

demographically (pallid sturgeon origin [i.e., naturally produced versus hatchery-

reared]) structured, age-based (year-class for hatchery-reared fish) model to predict 

change in the pallid sturgeon population (λ).  More specifically the objectives were to (1) 

estimate wild pallid sturgeon population size and predict local extirpation if natural 

recruitment remains low to nonexistent, (2) estimate the survival and contribution of 

hatchery-reared pallid sturgeon to the population, (3) evaluate the overall population 

change (λ) under different survival rates for natural production, and (4) determine 

which of the model parameters are most sensitive in terms of change in λ. 

 

Methods 

Model parameterization 

The PVA model was created in Microsoft Excel and allows input parameters to be 

adjusted to examine different life history and management scenarios.  Input parameters 

included in the model were gender ratio, maximum age, reproductive cycle (number of 

years between spawning events once mature), age-at-maturity, fecundity, and age 

specific survival rates.  The model was constructed to allow different maximum age, 

reproductive cycles, and age-at-maturity by gender.  A conceptual outline of the model 

illustrates how the model’s parameters interact (Figure 3-1).  Stochastic values for the 
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input parameters were generated around a normal distribution of the mean estimate 

and standard deviation to allow for natural variation within the model.   The model 

matrices were run through 1,000 iterations to account for natural variability. 

Model sensitivity 

We evaluated sensitivity of the model input parameters to determine the 

parameter’s influence on λ.  The tested parameter was changed by ± 5% (i.e., survival 

rates, fecundity) or by ± year(s) (i.e., spawning frequency, age-at-maturity) while all 

other life history parameters were fixed at their initial input values.  We evaluated the 

individual age classes (i.e., age-1, age-2, age-3) survival rate sensitivity independently 

then we evaluated the model’s sensitivity by life stage (i.e., sub-adult and adult).  The 

model’s sensitivity was calculated by comparing the change in λ to the initial population 

estimate.  Only 5% increase to the model parameters are presented and discussed as a 

5% decrease produced identical but negative values.  The population size input 

parameters were also kept constant during the sensitivity analysis to avoid the effect of 

change in population distributions when assessing other life history parameters; 

therefore, variability around the estimate is not available.  

 

Study area 

Our study area was the lower Missouri River from Gavins Point Dam at Yankton, 

South Dakota (river kilometer [rkm] 1305.2) to the confluence with the Mississippi River 

at St. Louis, Missouri (rkm 0.0; Figure 3-2).  Gavins Point Dam is a barrier to upriver 

migration; however, fish can readily pass between the Missouri and Mississippi rivers.  
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The probability emigration has not been analyzed, but some inter-basin movements 

have been documented.  Immigration and emigration is accounted for in the robust 

design that Steffensen et al. (2012) used to estimate the population size of pallid 

sturgeon.  Therefore, the wild population extrapolation method would include any 

movement probabilities while hatchery-reared fish movement has not been quantified.  

Therefore, we assumed the hatchery-reared population was closed in the lower 

Missouri River for this analysis. 

 

Pallid sturgeon parameters.  

Initial model input parameters were derived from Chapter 2 and other published 

data (Table 3-1).  The starting date of the model was set at 1992 when pallid sturgeon 

propagation efforts started in the lower Missouri River and continued to 2050.  

Steffensen et al. (submitted) described the gender ratio, reproductive cycle, age-at-

maturity, and fecundity estimates observed during annual intensive broodstock 

collection efforts from 2008-2011 for an 80.5 rkm reach of the lower Missouri River.  

Maximum age was set at 41 years (Keenlyne et al. 1992; Bajer and Wildhaber 2007).  

Steffensen et al. (2010) estimated survival rates for hatchery-reared pallid sturgeon 

based on stocking age for the lower Missouri River.  Survival estimates for hatchery-

reared pallid sturgeon increased from 0.051 for age-0 fish to 0.686 for age-1 to 0.922 for 

fish greater than age-1.  Natural production was divided into four categories to allow 

better understanding of pallid sturgeon recruitment bottlenecks and transition 

probabilities, as conceptualized in Wildhaber et al. (2007): (1) gametes to developing 
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embryos, (2) developing embryos to free embryos, (3) free embryos to exogenous 

feeding larva and (4) exogenous feeding larva to age-1.  However, the lack of available 

information required that we use combined survival estimates from egg to age-1 of 

0.00000, 0.00001, 0.00005, and 0.00010 to predict the annual number of naturally 

produced pallid sturgeon and the overall affects to the entire population.  Egg to age-1 

survival estimates were chosen post-hoc to account for zero chance of survival, a 

minimal chance of survival (Ø = 0.00001 and 0.00005), and to create a sustainable 

population (Ø = 0.00010).  Hatchery-reared pallid sturgeon stocking information was 

obtained from Huenemann (2012).  Steffensen et al. (2012) determined the population 

estimates for wild pallid sturgeon varied from 2.8 to 4.8 fish per rkm and from 22.5 to 

25.6 fish per rkm for hatchery-reared pallid sturgeon in an 80.5 rkm reach of the lower 

Missouri River.  Therefore, we used the estimated number of wild fish in the 2010 super 

population (N = 459) for this reach to extrapolate across the entire reach of the lower 

Missouri River.  This method assumed similar distributions of pallid sturgeon across the 

entire lower river.  The population was then back-calculated to 1992 and then projected 

through 2050 assuming an annual survival rate of 0.922 (Steffensen et al. 2010).  We 

assumed all wild pallid sturgeon were mature because successful reproduction and 

recruitment has not been documented in the lower Missouri River.  To estimate the 

population size of hatchery-reared pallid sturgeon, the stocking history was categorized 

by year-class and age-at-stocking then processed though a survival matrix and iterated 

1,000 times to estimate an annual population mean and variance. 
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Pallid sturgeon population sensitivity   

Life history input parameters (i.e., survival rates, fecundity, spawning frequency, 

age-at-maturity) were fixed while the wild pallid sturgeon population was modeled 

under ±5% error scenario.  Finally, the effect of continuing the hatchery-reared 

supplemental project was evaluated by modeling the change to λ by stocking 10,000 

age-1 fish annually.  Changes in λ were recorded to assess the change in estimated 

population size predicted from the base model estimates.  

 

Results 

Initial model estimates 

Our model estimates the wild, adult population size of pallid sturgeon at 5,991 (± 

515) in 2012 (Figure 3-3).  We predict the wild pallid sturgeon population size will 

decline to 2,659 (± 269) individuals in ten years, 1,181 (± 140) in twenty years, and 524 

(± 73) in thirty years.  However, a 5% increase in the survival estimate altered the 2012 

projected population to 6,647 (± 545) and the 30 year estimate to 1,320 (± 182).  

Conversely, a 5% decrease reduced the 2012 predicted population to 5,645 (± 486) and 

the 30 year estimate to 202 (± 29) remaining fish.  

 

Influence of stocking 

Over the past two decades, 134,864 hatchery reared pallid sturgeon have been 

stocked in the lower Missouri River representing 14 year classes (Table 3-2).  The 

majority have been stocked at age-0 (46.0%) and age-1 (49.7%) but some advanced age 
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(≥ age-2; N = 5,858) stocking has occurred.  Our model predicted 42,343 (± 4,570) 

hatchery-reared pallid sturgeon remain in the lower Missouri River population in 2012 

(Figure 3-4) with an estimated 13,867 (age-9 females = 3,537 [± 864]; age-7 males = 

10,330 [± 1,787]) reproductively mature fish.  The number of hatchery-reared pallid 

sturgeon peaked in 2004 at an estimated 49,142 (± 4,570) fish when over 30,000 age-0 

fish were stocked; however the numbers quickly declined because of the low survival 

rates associated with stocking  age-0 fish.  The number of reproductively viable, based 

on age, hatchery-reared pallid sturgeon would peak in 2018 with an estimated 20,238 

fish when the females from the 2009 year class and males from the 2011 year class 

reach reproductive readiness. If stocking efforts ceased, the number of hatchery-reared 

pallid sturgeon would rapidly decline.  The population would decline to 17,192 (± 2,969) 

in ten years, 7,632 (± 1,393) in twenty years, and only 3,277 (±626) hatchery-reared 

pallid sturgeon would remain in thirty years.   

 

Influence of natural reproduction and recruitment 

The total (wild and hatchery-reared) pallid sturgeon population is estimated at 

48,334 fish with 659 wild and 989 hatchery-reared reproductively ready female pallid 

sturgeon.  Under an assumption of no natural recruitment, the population will continue 

to decline at approximately 8% annually with only 3,801 pallid sturgeon remaining in 30 

years (Figure 3-5).  If the naturally produced pallid sturgeon survival rate is 0.00001 from 

egg to age-1 then the annual population decline changed to 7% and the population size 

in 30 years would be estimated at 5,854 fish (Figure 3-6).  A fivefold increase in the egg 
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to age-1 survival rate (Ø = 0.00005) would result in an estimated population size in 2042 

of 20,621 fish, an approximate 4% annual decline (Figure 3-7).  Finally, an egg to age-1 

survival rate of 0.00010 would result in a 1% annual decline and a projected population 

of estimate of 62,831 individuals in 2042 (Figure 3-8).  An annual egg to age-1 survival 

rates of 0.00011 is predicted to maintain a stable population over the next 30 years. 

 

Model sensitivity 

Our sensitivity analyses suggest the pallid sturgeon population is most sensitive 

to ≥ age-1 survival rates.  Changing age-1 survival by ±5% caused a ± 2.8% change in the 

population of pallid sturgeon (Figure 3-9).  The influence on the overall pallid sturgeon 

population declined as age increased from age-1 but was less sensitive.  Changing the 

hatchery-reared age-0 fish survival rates, natural production survival rates, and 

fecundity parameters by ± 5% yielded minimal effects (< 0.26% change in λ) on the 

model predictions.  Testing the sensitivity for each life stage, an increase or decrease in 

the survival estimates of 5% for the age-1 to 8 age-group (sub-adults) changed the 

overall pallid sturgeon population by 16.9% (Figure 3-10), whereas changing the survival 

rates (± 5%) for adult (age-8 +) pallid sturgeon resulted in a 5% change to the predicted 

population size. 

The original population estimates were based on female pallid sturgeon 

becoming reproductively ready at age-9 and spawning every three years.  A change in 

the spawning frequency parameter to every other year would affect the overall 

population growth by 2.7% (Figure 3-11).  Underestimation of this parameter with a 
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spawning frequency of 4 or 5 years would predict a population decrease of 1.3% for 4 

years and 2.0% for 5 years.  Early female maturation by one year (age-8) only increased 

λ by 0.4% while early maturation by two years (age-7) resulted in a 1.0% increase in the 

overall population compared to the original estimate.  Conversely, delaying the age-at-

maturity to age-10 would decrease λ by 0.3% and by 0.6% for age-11. 

 

Stocking projections 

If no natural reproduction occurred and hatchery supplementation ceased, our 

model predicts 3,801 pallid sturgeon would remain in 30 years.  Stocking 10,000 age-1 

hatchery-reared pallid sturgeon for the next five years would double (N = 7,981) the 

predicted overall pallid sturgeon population size in 2042 while continuing that stocking 

effort for the next 10 years would increase λ by 375% and result in over 30,000 mature 

pallid sturgeon in the population by 2021 (Figure 3-12).  To maintain the current pallid 

sturgeon population, 10,000 age-1 hatchery-reared fish would need to be stocked for 

the next 23 years. 

 

Discussion 

Understanding life history processes are critical components to species 

management or recovery.  We used available pallid sturgeon life history data to develop 

a population viability model to predict the demographic rates and determine sensitivity 

of these life history processes.  Minor changes in key life history processes (i.e., survival 

estimates) can greatly affect the predicted population size and alter management 
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actions.  For example, if survival for egg to age-1 naturally produced pallid sturgeon 

would be increased to a rate similar to Gulf sturgeon Acipenser oxyrinchus desotoi (Ø = 

0.0004; Pine et al. 2001), our model predicts the pallid sturgeon population in the lower 

Missouri River would increase exponentially and hatchery supplementation would not 

be required.  Pine et al. (2001) and Kennedy and Sutton (2007) showed high levels of 

sensitivity of egg to age-1 survival rates whereas age-1-8 were the more sensitive age 

groups for our model.  The difference may be an artifact of the poor egg to age-1 

survival probability theorized with pallid sturgeon in this reach of the Missouri River and 

used in our model.  Increasing our egg to age-1 survival rates by 5% had little influence 

on an individual’s chance of survival.  Conversely, increasing egg to age-1 survival an 

order of magnitude (i.e., from 0.00001 to 0.00011) could provide a mechanism for 

population sustainability.  However, egg to age-1 survival likely varies annually making 

this difficult to predict or manage. 

Steffensen et al. (2012) estimated the wild and hatchery-reared populations in 

an 80.5 rkm reach in the lower Missouri River, a known pallid sturgeon “hot spot”.  The 

wild pallid sturgeon population estimate used here assumes similar distribution of pallid 

sturgeon throughout the lower Missouri River as the data are extrapolated from the 

80.5 rkm reach.  This extrapolation may overestimate the real population size in the 

lower Missouri River as more adult pallid sturgeon are captured in the upper reach of 

the lower Missouri River (Huenemann 2012).  However, over or under estimating the 

initial population estimate by ±5% does not significantly affect the long-term 

population. 
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Our 2010 estimate of hatchery-reared pallid sturgeon (N = 35,709 ± 3,680) 

resulted in an average of 27.4 (± 2.8) fish per rkm.  Steffensen et al. (2012) estimated 

the 2010 population for hatchery-reared fish at 32.3 (± 0.96) fish per rkm.  Steffensen’s 

estimate is slightly higher than our model predicted.  However, the reach where 

Steffensen estimated the hatchery-reared population had several more stocking events 

than in the lower half of the lower Missouri River (Huenemann 2012).  Therefore, we 

conclude our model is valid and accurately predicts the current population estimate as 

the estimated hatchery-reared population size predicted by this model is comparable to 

the population estimate (mark-recapture) method previously used. 

In most sturgeon populations, adults comprise a small part of the total 

population (Jaric et al. 2010).  Beamesderfer et al. (2007) estimated adult green 

sturgeon Acipenser medirostris in the Sacramento River comprised only 12% of the total 

population at equilibrium whereas Jaric et al. (2010) reported the proportion of adults in 

the Danube sturgeon population varied between 2.7% and 15.1%.  We estimate adult 

pallid sturgeon comprise approximately 55% of the population and approximately 8% of 

the population are reproductively ready females annually.  This confirms that natural 

recruitment in the lower Missouri River is very limited to non-existent as all the sub-

adults being captured are known hatchery-reared fish. 

Quantifying the age structure of the wild pallid sturgeon population was not 

possible as length-at-age information is not available in this reach of the Missouri River.  

Therefore, quantifying local extirpation of the wild pallid sturgeon population is difficult.  

Pallid sturgeon in the upper Missouri River (below Fort Peck Dam, Montana) have been 
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documented at 50+ years (USFWS 2000) compared to estimates of pallid sturgeon in the 

middle and lower Mississippi River only surviving to age 14-21 (Killgore et al. 2007).  Our 

model is based on a maximum age of 41 year old as described by Keenlyne et al. (1992) 

from a single female taken from the Missouri River near Fort Rice, ND.  An issue this 

model did not address for and is lacking in the sturgeon literature is whether or not 

sturgeon senesce before they reach maximum age.  Jaric et al. (2010) suggest 

senescence would not affect population viability unless sturgeon senescence is reached 

many years prior to their maximum age.  Over-estimating the maximum age or if 

senescence occurs in pallid sturgeon affects the number of reproductive adults needed 

for the population to remain viable as the number of reproductive cycles each female 

could contribute to the population would be reduced. 

Our model estimates approximately 20,000 (wild = 6,000; hatchery-reared = 

14,000) mature pallid sturgeon were present in the lower Missouri River in 2012.  Some 

evidence does exist that natural spawning has occurred (DeLonay et al. 2010; DeLonay 

et al. 2012).  However, survival and recruitment has not been documented across the 

lower reach of the Missouri River and is minimal in the Mississippi River (Snyder 2000; 

Hrabik et al. 2007; USFWS 2007).  Clearly, understanding the limitations to recruitment 

will be crucial in understanding pallid sturgeon population dynamics.  Continuation of 

the stocking program can maintain a stock of pallid sturgeon in the lower Missouri River.  

However, egg to age-1 survival would likely need to be > 0.00010 for the population to 

approach a sustainable size that would likely result in the decision to reduce hatchery 

efforts. 
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Increasing survival of stocked hatchery-reared pallid sturgeon should be a priority in 

the short-term.  Age-1 survival was the most sensitive parameter in our model.  For 

example, stocking 10,000 age-0 hatchery-reared fish would yield approximately 220 

(age-7 males = 155; age-9 females = 65) individuals that reach age-of-maturity.  

Conversely, stocking 10,000 age-1 hatchery-reared fish would yield approximately 4,300 

(age-7 males = 3,000; age-9 females = 1,300) individuals that reach age-of maturity.  We 

do not know the operational cost differences within the hatchery production system 

between the two described rearing scenarios, but we recommend maximizing the 

number of age-1 + fish stocked to optimize the number of individuals in the population 

for longer periods of time.  Further efforts to determine age-specific survival rates 

beyond what is known would also benefit model sensitivity. 

Recovering a species, such as pallid sturgeon, that is slow-growing, late-maturing, 

and does not achieve reproductive readiness annually require several years to quantify 

recovery and management decisions.  As large numbers of hatchery-reared fish 

approach sexual maturity, continued evaluation of the benefits from the artificial 

propagation project are critical.  Barring any unforeseen natural catastrophe, the pallid 

sturgeon population in the lower Missouri River is not in any immediate danger of local 

extirpation; however, the population appears to be far from viable and self-sustaining 

without continued supplementation.  Continued monitoring and assessment of the 

pallid sturgeon population will allow researchers to better quantify the critical input 

parameters for this model and to validate its predicted numbers in providing 

information for recovery decision makers.  
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Table 3-1.  Input parameters and model default values used in the pallid sturgeon 
population viability model for the lower Missouri River. 
 

Variable Value Reference 

   

Gender ratio (female : male) 0.33 :  0.66 Steffensen et al. (submitted) 

Maximum age Age 41 
Keenlyne 1992 
Bajer and Wildhaber 2007 

Reproductive cycle 
Female – 3 years 
Males – 2 years 

Steffensen et al. (submitted) 

Age-at-maturity 
Female – 9 years 
Males – 7 years 

Steffensen et al. (submitted) 

Fecundity 19,064 Steffensen et al. (submitted) 

Survival rates 
Age-0 – 0.051 
Age-1 – 0.686 

≥ Age-2 – 0.922 
Steffensen et al. (2010) 

Stocking history See Table 3-2 Huenemann (2012) 

Wild population size 5.4 fish / rkm* Steffensen et al. (2011) 

* 2010 population estimate extrapolated for the entire lower Missouri River. 
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Table 3-2.  Number of hatchery-reared pallid sturgeon stocked in the lower Missouri 
River from 1992, when the artificial propagation program began, to the fall of 2012 by 
age-at-stocking (Huenemann 2012). 
 

 Age-at-stocking 

Year Class Age-0 Age-1 Age-2 Age-3 Age-4 Age-5 Age-6 Age-7 

         

1992   4083    84 15 

1993         

1994         

1995         

1996         

1997 2816     35   

1998         

1999    532     

2000         

2001  7453       

2002  9241       

2003 5364 4765       

2004 30628 8612 15      

2005  3654       

2006  3642       

2007 2000 1421 1094      

2008 6663        

2009 3981 10612       

2010 2974 3838       

2011 7606 13736       

2012         
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Figure 3-1.  Conceptualization of the population viability analysis (PVA) model for the 
lower Missouri River.  Open boxes are input parameters gathered from published and 
unpublished data while the gray boxes represent input parameters that can be adjusted 
within the model. 
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Figure 3-2.  Map of the lower Missouri River from Gavins Point Dam at Yankton, SD (rkm 
1,305.2) to the confluence (rkm 0.0) with the Mississippi River at St. Louis, MO. 
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Figure 3-3.  Annual population estimates for wild pallid sturgeon in the lower Missouri 
River from 1992 to 2050.  Error bars represent the variation around the predicted mean 
population estimate.  The solid line shows the mean population if the survival estimate 
were under estimated by 5% while the dashed line shows a 5% over estimate of survival 
rate. 
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Figure 3-4.   Annual population estimate for hatchery-reared pallid sturgeon in the lower 
Missouri River from 1992 to 2050, assumes artificial supplementation ceases in 2012 
(solid vertical line).  Error bars represent the variation around the mean. 
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Figure 3-5.  Predicted population change for all pallid sturgeon under the assumption of 
0.00000 recruitment from egg to age-1 and assumes artificial supplementation ceased in 
2012 (solid vertical line).  Predicted number of (A) reproductively ready female pallid 
sturgeon by origin in the lower Missouri River, (B) number of naturally produced pallid 
sturgeon that survive to age-1, and (C) overall pallid sturgeon population. 
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Figure 3-6.  Predicted population change for all pallid sturgeon under the assumption of 
0.00001 recruitment from egg to age-1 and assumes artificial supplementation ceased in 
2012 (solid vertical line).  Predicted number of (A) reproductively ready female pallid 
sturgeon by origin in the lower Missouri River, (B) number of naturally produced pallid 
sturgeon that survive to age-1, and (C) overall pallid sturgeon population. 
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Figure 3-7.  Predicted population change for all pallid sturgeon under the assumption of 
0.00005 recruitment from egg to age-1 and assumes artificial supplementation ceased in 
2012 (solid vertical line).  Predicted number of (A) reproductively ready female pallid 
sturgeon by origin in the lower Missouri River, (B) number of naturally produced pallid 
sturgeon that survive to age-1, and (C) overall pallid sturgeon population. 
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Figure 3-8.  Predicted population change for all pallid sturgeon under the assumption of 
0.00010 recruitment from egg to age-1 and assumes artificial supplementation ceased in 
2012 (solid vertical line).  Predicted number of (A) reproductively ready female pallid 
sturgeon by origin in the lower Missouri River, (B) number of naturally produced pallid 
sturgeon that survive to age-1, and (C) overall pallid sturgeon population. 
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Figure 3-9.  Sensitivity analysis for the survival input parameters incorporated in our 
population viability analysis with the predicted change (%) in λ developed for pallid 
sturgeon in the lower Missouri River.  Individual parameter values were increased and 
decreased by 5% while the stochasticity was removed on all remaining parameters. 
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Figure 3-10.  Sensitivity analysis of the survival estimates by life stage with the predicted 
change in λ (%).  Age-0 represents hatchery-reared fish stocked at age-0 and any natural 
reproduction that occurs, sub-adult included age-1 through age-8, and adults included 
age-9 through predicted maximum age. 
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Figure 3-11.  Predicted change in λ (%) with (A) increasing and decreasing spawning 
frequency and (B) changing age-at-maturation for pallid sturgeon in the lower Missouri 
River. 
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Figure 3-12.  Predicted change in λ (%) for pallid sturgeon in the lower Missouri River 
when continuing the artificial propagation program and stocking 10,000 age-1 hatchery-
reared pallid sturgeon annually through 2022.  Survival from egg to age-1 was fixed at 
0.00001. 
  



84 
 

CHAPTER 4 

Trotline Efficiencies and Catch Dynamics in a Large River System 

 

Abstract 

Trotlines have proven to be an effective collection method for riverine species.  

However, an understanding of fish-gear interaction post-deployment is lacking.  

Lindgren-Pitman (LP) Hook Timers are a proven means to evaluate such fish-gear 

interactions because they identify when a fish activated the timer, allowing researchers 

to identify when fish are captured and the escapement rate of hooked fish.  The 

objectives of this study were to determine the activation rate of LP Hook Timers, 

determine retention rate of trot lines and how fish escapement affects CPUE, document 

real time catch rates, and document if hook duration causes stress or mortalities.  

Sampling occurred during the spring 2011 in the upper channelized Missouri River.  Trot 

lines rigged with 40 LP hook timers were deployed, resulting in 3,997 hook timer 

deployments and collected 1,423 fish (9 species).  Catch per unit effort (CPUE) for all 

species was 14.6 fish per line; however, 307 hook timers were activated but did not 

capture a fish.  Assuming a fish was hooked and consequently escaped before gear 

retrieval, the resulting CPUE for lost fish per line was 3.1.  Therefore, a corrected CPUE 

was 17.7 fish per line when escaped individuals were included.  Overall, 20% of the hook 

timer activations occurred within 1 h of deployment and over half of the activations 

occurred within 4 h post-deployment.  Stress associated with trotlines does not appear 

to be correlated with hook duration.   Detailed information can be ascertained from the 
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use of trotlines rigged with LP Hook Timers that will aid in understanding trotline 

dynamics. 

 

Introduction 

Trotlines are generally used in warmwater inland fisheries (Starrett and Barnickol 

1955) and have proven to be an effective method for collecting large river species, 

especially Ictalurid (Graham 1997; Vokoun and Rabeni 1999; Arterburn and Berry 2001) 

and Scaphirhynchus species, including the federally endangered pallid sturgeon S. albus 

(Killgore et al. 2007; Peters and Parham 2008; Bettoli et al. 2009; Steffensen 2011).  Trot 

lines are an attractant, passive gear where bait and hooks need to be available to 

capture a fish.  The gear’s ability to collect fish is greatest immediately after deployment 

as all the hooks are available and baited; however, catchability declines throughout the 

set time as fish are captured and bait is lost (Steffensen et al. 2011).  Ward et al. (2005) 

reported the probability of an animal being captured (hooked) is dependent on the 

target species’ local abundance, vulnerability to the fishing gear, and the availability of 

the gear.  Catch rates with trotlines are generally measured as the number of fish 

captured divided by the number of hooks over a period of time (e.g., number of fish / 40 

hook nights) and are influenced by hook availability where a fish that encounters a 

trotline can only be captured (hooked) if baited hooks are available.  However, number 

of fish / hook night is not a good indicator of true effort because hook night catch rates 

are dependent on hook availability throughout the gear’s deployment.  Further, this 

approach to estimating abundance does not account for gear saturation issues like the 



86 
 

number of fish already hooked or the number of fishless hooks that have bait remaining.  

Therefore, whenever a fish is captured and retained, the probability of collecting 

another fish on that hook approaches zero.  Also, bait such as nightcrawlers Lumbricus 

terrestris may fall off during deployment, deteriorate over time, or be removed by fish 

that are not retained.  As this happens, the probability of collecting a fish on a baitless 

hook is assumed to be near zero. 

Gear saturation affects catch rates, efficiency, and catchability, especially for 

trotlines (Hubert and Fabrizio 2007).  Ricker (1975) reported gear saturation occurs as 

the number of baited hooks approach zero before the gear is retrieved and cannot 

continuously collect fish.  As fish are hooked or as bait is removed from the hooks, 

trotlines become unavailable to additional fish encounters. Therefore, trotline 

saturation can easily be determined when all the hooks have collected a fish or had the 

bait removed.  The difficulty is determining at what rate gear saturation occurs, which 

influences relative abundance estimates because catch is not continuously increasing as 

a function of time (Ricker 1975). 

Finally, interspecific competition for the available hooks in a multi-species fishery 

also influences catch rate information.  By-catch depletes the gear’s fishing ability (# of 

hooks) within the area being fished, especially if the abundance of a non-targeted 

species greatly out numbers the targeted species.  The ability to measure the exact 

capture time would allow  researchers to determine if and when trotlines reach 

saturation, if interspecific competition is affecting the catch rates of other target 

species, and  if fish are escaping the hook prior to the gear’s retrieval. 
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Lindgren-Pitman (Pompano Beach, Florida, USA) developed a timing device 

designed for underwater use.  It was designed to acquire accurate data for bait take or 

time of interaction for longline fishing.  These battery powered digital clocks are 

encased in a plastic housing and are activated when a fish strikes the hook, pulling a 

magnetic reed switch and activating the timer (Somerton et al. 1988; Steffensen et al. 

2011).  Similar timer devices have assisted marine longline fishers to target optimal 

times, depths, areas, and temperatures as their lines sink to a predetermined depth 

(Somerton et al. 1988; Boggs 1992; Somerton and Kikkawa 1995; Berkeley and Edwards 

1998; Erickson et al. 2000; Bach et al. 2002) and have also provided information useful 

to determine feeding times of targeted species, reduce mortalities, and increase capture 

efficiency through identifying optimal soak duration. 

 A preliminary, small-scale assessment of trot lines rigged with hook timers (8 

trotline deployments [320 hook timers]) in the lower Missouri River concluded that 

hook timers do not affect catch rates compared to trot lines without hook timers, that 

hook timers can withstand harsh riverine conditions, and 69% of fish caught activated 

the timer (Steffensen et al. 2011).  However, this preliminary study occurred during the 

fall resulting in lower catch rates as fish activity levels declined going into the cold water 

months.  Our study was conducted during spring (early-April) when riverine species, 

especially sturgeon, are more readily collected to better aid the understanding of fish / 

trotline interactions.  Our objectives were to (1) verify the activation rate of LP Hook 

Timers and determine if fish size affected activation, (2) document retention rates of 

trot lines and determine how fish escapement affects CPUE, (3) document real-time 
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catch rates and determine if catch rates are influenced by set times or increase around 

sunset and sunrise due to an increase in fish activities during crepuscular periods, (4) 

determine the rate at which gear saturation occurred, and (5) determine if hook 

duration affects the number of fish exhibiting stress or distended mouth syndrome. 

 

Methods 

The study area included an 80.5 rkm reach of the upper channelized Missouri 

River from the confluence of the Platte and Missouri rivers (rkm 957.6) to Lower Barney 

Bend (877.1; Figure 4-1).  Sampling occurred from 28 March 2011 to 14 April 2011 

following the Pallid Sturgeon Population Assessment Project protocols (Welker and 

Drobish 2011) with water temperatures ranging from 3.0o to 13.4oC.  Trot lines were 

deployed in channel border habitats, parallel to the river’s current on inside bends.  The 

channel border habitat is immediately downstream of the pool habitats formed by wing 

dikes and is between the bank and thalweg where depths are greater than 1.2 m.  Trot 

lines were deployed in the early afternoon and pulled the following morning, not 

exceeding 24 hours soak duration (USFWS 2008). 

Trot lines were 61-m long with 40, 3/0 circle hooks per line baited with 

nightcrawlers.  Hooks were spaced every 1.5 m to avoid hook and fish entanglement.  

The LP Hook Timers were attached to the dropper line between the main line and the 

hook with a 38-cm leader and fastened to the main line using trot line snaps (Figure 4-

2).  The timer’s digital display was activated by the removal of the plug which had a 

magnetic trigger located on the hook end of the timer.  The timer recorded when the 
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timer was activated (up to 24 h,) and we assumed the timers were activated 

immediately after the fish being hooked.  Timers were constructed to activate at 

approximately 0.5 to 1 kg of pull.  Hook timers that were activated less than 5 minutes 

after deployment and were fishless were assumed to have been pulled during 

deployment and were omitted from analysis.  Similarly, hook timers activated less than 

5 minutes prior to retrieval and fishless were assumed to have been pulled during the 

retrieval process were also omitted from the analysis.  Any other hook that had the 

hook timer activated and was without bait was assumed to be a fish lost during the 

trotline’s soak time.  Set and retrieval times were recorded for each deployment and the 

hook timer display was recorded for every activated timer. 

Catch rates were calculated as catch per unit effort (CPUE), or the number of 

individuals collected per trotline (40 hooks) set.  Exact capture times were determined 

for each individual fish by determining when the fish activated the hook timer minus the 

retrieval time of the trot line.  For hourly CPUE comparisons, CPUE was calculated based 

on real time hook availability.  For example, when the trotline was first deployed the 

number of available hooks was 40.  However, after a fish was captured (hooked), the 

number of available hooks was reduced to 39 to adjust catch rates throughout the 

entire soak time.  However, this method only accounted for hook timers that were 

successfully activated.  We could not account for fish that unsuccessfully activated the 

hook timer. 
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Results 

We deployed 100 trot lines rigged with LP hook timers, but three of the hook 

timers were lost due to snags; therefore, we had 3,997 successful hook timer 

deployments.  Timed trotlines collected 1,423 fish (9 species) and an additional 307 

hook timers were activated but did not result in a capture (Table 4-1).  Catches on any 

one line ranged from 0 to 40 fish per line.  Of the fish collected, 813 (57%) successfully 

activated the hook timers while 610 fish were unable to activate the hook timers.  

Shovelnose sturgeon S. platorynchus were the most frequently collected species (N = 

1,308) and activated hook timers 58% of the time, followed by pallid sturgeon (N = 58; 

53% activation rate) and channel catfish Ictalurus punctatus (N = 29; 14% activation 

rate). 

 The size of pallid sturgeon that successfully activated hook timers (mean fork 

length (FL) = 750 mm; SE = 175) versus those that did not (mean FL = 447 mm; SE = 72) 

was significantly different (P < 0.001; Table 4-1).  However, the size of shovelnose 

sturgeon (P = 0.191) and channel catfish (P = 0.175) that activated the timers were not 

different.  All other species were collected at low frequencies (N < 15); therefore, 

comparing hook timer activation by size was not completed. 

  Mean catch per unit effort for all species collected on trotlines rigged with hook 

timers was 14.6 fish per line with sturgeon species accounting for 14.0 fish per line 

(Table 4-2).  However, 307 hook timers were activated but did not capture a fish, 

resulting in a mean CPUE of 3.1 lost fish per line.  Therefore, retention rate for trotlines 
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is estimated at 73%.  Consequently, adjusting for the lost fish would result in an 

extrapolated CPUE of 17.7 fish per line if all fish hooked were retained. 

 Overall, 20% of the hook timer activations occurred within 1 h of deployment 

with an additional 13% in the second hour and 12% in the third hour of deployment 

(Figure 4-3).  Over half (55%) of all fish were collected within 4 h of deployment and only 

15% (N = 121) of fish were collected after trotlines were deployed for greater than 10 h.  

Hook timers that were activated but did not capture a fish mimicked the distribution of 

collected fish with 18% activated within 1 h and 51% in the first four hours.  When 

accounting for reduced hook availability as fish are collected, the percentage of fish 

collected per h declines through time (Figure 4-4).  Fish were collected on 8% of the 

available hooks during the first hour of deployment and this declined to 5% for each of 

the next 2 hrs. 

Species specific hourly catch rates (based on hook availability, not total number 

of hooks) indicate that the highest CPUE (0.0029; SE = 0.0011) for pallid sturgeon 

occurred during 0-1 h post deployment followed by the 3-4 h post deployment (CPUE = 

0.0018; SE = 0.0007; Figure 4-5).  Overall, 68% of pallid sturgeon were collected within 4 

h but were collected as late as 19 h 57 min post-deployment.  Shovelnose sturgeon were 

also most frequently collected during the first hour (CPUE = 0.051; SE = 0.006) and catch 

rates continued to decline through time (Figure 4-5). 

The median set time for the trotlines was 1437 hours (range, 1156 to 1643).  

Over half, 62% (N = 508) of the fish collected were collected before sunset (median 

sunset, 1956).  An additional 266 fish (33%) were collected after sunset and before 
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sunrise (median sunrise, 0654) whereas only 39 fish (5%) were captured after sunrise 

(median pull time, 1047 [range, 0839 to 1245]).  The highest CPUE for pallid sturgeon 

occurred from 1500 to 1600 hours (0.0019; SE = 0.0007) followed by the period from 

1700 to 1800 hours (CPUE = 0.0014; SE = 0.0006; Figure 4-6).  Similar to pallid sturgeon, 

CPUE for shovelnose sturgeon was highest during the 1500 to 1600 hours. 

Six fish (one pallid sturgeon and five shovelnose sturgeon) were thought to be 

stressed (visually red in color and swelling of small blood vessels around the mouth and 

in the fins) upon trotline retrieval.  Only two of the stressed individuals (both shovelnose 

sturgeon) activated the hook timer.  One individual was hooked for at least 14 hours 14 

minutes and the other fish was hooked for at least 9 hours 49 minutes.  In addition to 

the stress, 46 sturgeon (five pallid sturgeon and 41 shovelnose sturgeon) were suffering 

from distended mouth syndrome.  Hook duration for fish suffering from distended 

mouth syndrome was highly variable (range, 6 hours 37 minutes to 20 hours 50 

minutes).  Finally, one mortality occurred during this study; however, the fish did not 

activate the hook timer so hook time duration could not be determined.  The fish was an 

adult shovelnose sturgeon (FL = 565 mm; W = 665 g) and was not abnormally hooked. 

 

Discussion 

Trotlines are primarily used recreationally and commercially in freshwater 

systems but have proven to be a useful gear for research.  Trot lines are used to track 

relative abundance, target sampling areas (i.e., areas full of snags) where other sampling 

methods are not feasible, and target reproductively ready adult fish for propagation 
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purposes or telemetry projects.  Integrating hook timers provides more detailed 

information such as real-time catch rates, retention rates, and the effect of retention 

rate on relative abundance measurements.  In our study, the main intent was to collect 

pallid sturgeon in reproductive condition for artificial propagation.  With the use of hook 

timers, it is possible to discern any collection patterns when these targeted fish are 

collected. 

Hubert (1996) noted that trotlines are rarely used to sample or monitor inland 

fish stocks because they are very selective and catch rates vary widely.  Our results 

support this statement because in the season and conditions that our study was 

conducted, the majority (96%) of fish collected was sturgeon with catch rates averaging 

14.6 fish per line but varying from 0 to 40 fish per line.  Researchers can take advantage 

of this bias, when the goal is to target a species known to be susceptible to trotlines.  

The impetus for our study was to gain an understanding of trotlines and their capacity 

to catch a target species (i.e., pallid sturgeon) and to gain a better understanding of how 

trotlines temporally collect fish.  However, trotlines may be a viable gear for sampling 

other species (i.e., catfish) when temporal and spatial conditions make a particular 

species susceptible to being captured by trotlines. 

Understanding the interaction of fish with the gears used to collect them is a 

critical element of our understanding of that gear’s efficacy and application.  This is 

especially true for trot lines because they have a limited number of possible catches 

based on the number of hooks available.  We observed little evidence of stress on the 

fish collected by trotlines.  In our study, trotline effects on sturgeon species appeared 
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minimal as only one shovelnose sturgeon mortality occurred and only six fish showed 

signs of stress.  These conditions did not appear to be correlated with hook duration, 

but rather entanglement with the main line.  Sturgeon have a soft cartilaginous mouth 

and some sturgeon experienced distended mouth syndrome (the inability to retract 

their mouth for a short period of time) as a result of being hooked.  Similar to stress, this 

did not appear to be correlated with hook duration and sturgeon quickly recovered after 

removal from the hook. 

As trotlines are used more frequently as an assessment tool, the associated gear 

biases need to be understood.  For example, the size structure trotlines collect is 

affected by the size of hook selected.  Our study used a 3/0 circle hook and collected 

sturgeon from 333 to 999 mm; therefore, this gear was not effective at sampling small 

bodied fishes.  Using smaller hooks could possibly increase the likelihood of capturing 

smaller fish but would likely result in increased by-catch of other smaller bodied fish and 

increase the likelihood of a hooking mortality of target species that swallow the hook. 

Catch rates are affected by the number of baited hooks available because the 

probability of capturing a fish on a hook without bait is likely zero.  We observed, during 

retrieval of the gear, that the majority of hooks (approximately 95%) no longer had bait 

and had likely been unable to attract fish for at least some portion of the soak time.  

Bait can be depleted due to a fish removing the bait and escaping the hook prior to gear 

retrieval, small fish “picking” the worm off the hook without activating the hook timer, 

or the worm physically falling off due to deterioration.  Therefore, future studies should 
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quantify the rate bait loss occurs to assess when hooks become unavailable to capture 

fish. 

Further investigation using hook timers may determine the optimal time to 

deploy gear to better improve catch rates.  The median deployment time during our 

study was 1437 hours (range, 1156 to 1643).  Determining optimal deployment time 

was not part of our study design; rather, sampling crews pulled trotlines in the morning 

and depending on crew size, experience, and number of fish collected, redeployment 

generally occurred in early afternoon.  Future studies should include deploying gear at 

other times of the day to evaluate deployment times and the influence on catch rates. 

The information gathered from this study and further investigation with hook 

timers could aid in targeting specific times of day and set duration to more efficiently 

collect target species.  We found that more than half of all fish were caught within the 

first four hours of deployment.  Therefore, short duration trotline deployments (i.e., 4-

h) would collect approximately 50% of the fish and may reduce escapement rates.  

Multiple, short duration sets per day could also keep bait on the hooks, potentially 

improve catch and retention rates, and reduce stress and possible mortalities.  Detailed 

information can be ascertained from the use of trotlines rigged with hook timers and 

will aid our understanding of fish-trotline interactions. 
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Table 4-1.  Total number of fish collected on hook timer trotlines, the total number that 
did and did not activate the timer, and their mean fork length (FL) including the 
minimum and maximum size by species in the upper channelized Missouri River, 
Nebraska. 
 

Species 
Total 

collecte
d 

Hook timer activated 

Yes  No 

           
Numbe

r 
Mea
n FL 

SD 
Mi
n 

Ma
x 

 
Numbe

r 
Mea
n FL 

SD 
Mi
n 

Ma
x 

             
Blue sucker 7 7 767.1 63.6 693 858       
Channel 
catfish 

29 4 310.5 87.5 208 415  25 299.8 
55.
8 

192 390 

Common 
carp 

3 3 667.6 
101.

5 
592 783       

Freshwater 
drum 

2 1 439.0     1 310.0    

Grass carp 3 3 630.3 41.5 593 675       
Pallid 
sturgeon 

58 31 749.9 
175.

3 
385 979  27 446.9 

71.
8 

333 696 

Shovelnose 
sturgeon 

1308 761 568.9 47.7 395 742  547 538.6 
50.
2 

353 701 

Smallmout
h buffalo 

2 2 609.5 34.6 585 634       

Stonecat 11 1 163.0     10 163.6 
12.
2 

150 186 

Lost fish 307 307           
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Table 4-2.  Mean catch per unit effort (fish / line) for all species collected during this 
study on hook timer trotlines that did or did not activate the timer in the upper 
channelized Missouri River, Nebraska. 
 

Species 
Activated hook timers  Non-activated hook timers  Overall 

CPUE SE  CPUE SE  CPUE SE 

         
Blue sucker    0.1 < 0.1        0.1 < 0.1 
Channel catfish < 0.1 < 0.1     0.3    0.1     0.3    0.1 
Common carp < 0.1 < 0.1     < 0.1 < 0.1 
Freshwater drum < 0.1 < 0.1  < 0.1 < 0.1  < 0.1 < 0.1 
Grass carp < 0.1 < 0.1     < 0.1 < 0.1 
Pallid sturgeon    0.3    0.1     0.3    0.1     0.6 < 0.1 
Shovelnose sturgeon    7.8    0.6     5.6    0.1   13.4    1.1 
Smallmouth buffalo < 0.1 < 0.1     < 0.1 < 0.1 
Stonecat < 0.1 < 0.1     0.1 < 0.1     0.1    0.1 
Lost fish    3.1    0.3     N/A    N/A    

         
Overall    14.6    1.5 

Extrapolated overall CPUE    17.7    1.3 
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Figure 4-1.  The study area encompassing the 80.5 river-kilometer (rkm) sampling reach 
from the confluence of the Missouri and Platte River at rkm 957.6 downstream to rkm 
877.1 in the upper channelized Missouri River, Nebraska. 
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Figure 4-2.  Rigged Lindgren-Pitman hook timer, the timer on the top has the activation 
plug in place while the bottom timer was activated by removing the magnetic plug 17 
minutes ago. 
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Figure 4-3.  Number of hook timers activated during this study in the upper channelized 
Missouri River for all fish by 1-h intervals post deployment.  Open circles are fish that 
activated the hook timer and were retained until the trotline was retrieved.  Solid circles 
represent hook timers that were activated but did not collect a fish. 
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Figure 4-4.  Percent of total fish collected during this study in the upper channelized 
Missouri River based on hook availability by 1-h intervals post deployment.  Hook 
availability is based on real-time effort and adjusted when a fish is collected by reducing 
the number of hook available. 
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Figure 4-5.  Mean catch per unit effort during this study in the upper channelized 
Missouri River based on hook availability for (A) pallid sturgeon and (B) shovelnose 
sturgeon by 1-h intervals post deployment.   Hook availability is based on real-time 
effort and adjusted when a fish is collected by reducing the number of hooks available.  
Error bars represent ±2SE.  
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Figure 4-6.  Mean catch per unit effort during this study in the upper channelized 
Missouri River based on hook availability for (A) pallid sturgeon and (B) shovelnose 
sturgeon by time of day (1-h intervals).  Hook availability is based on real-time effort and 
adjusted when a fish is collected by reducing the number of hook available.  Error bars 
represent ±2SE.  
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CHAPTER 5:  

CONCLUSIONS AND MANAGEMENT RECOMMENDATIONS 

 

Pallid sturgeon range from the upper Missouri River to the lower Mississippi and 

Atchafalaya rivers and are currently managed within four management units (USFWS 

2008; Figure 1).  These units are based on being reproductively isolated (i.e., Great 

Plains Management Unit [GPMU]) and genetic and morphologic differences (i.e., Central 

Lowlands Management Unit [CLMU], Interior Highlands Management Unit [IHMU], and 

Coastal Plains Management Unit [CPMU]).   Inter-jurisdictional management within 

state and federal governmental agencies is necessary because the lower Missouri River 

fishery is under the jurisdiction of the Federal Endangered Species Act (USFWS 1990), 

five states (South Dakota, Nebraska, Iowa, Missouri, and Kansas), and two pallid 

sturgeon management units (CLMU and IHMU).  The Middle Basin Pallid Sturgeon 

Workgroup {MBPSW), under the guidance of the Pallid Sturgeon Recovery Team, has 

brought together state and federal agencies to cooperatively manage pallid sturgeon 

across the lower Missouri River.  This collaboration has increased the understanding of 

pallid sturgeon but several key components are yet to be quantified. 

Understanding pallid sturgeon population characteristics is critical for assessing 

species recovery efforts.  Many actions have been taken including, but not limited to, 

creation of a captive broodstock, habitat restoration, and development of an artificial 

propagation program while protecting the remaining wild individuals from harm, 

harassment, and death (Dryer and Sandvol 1993).  Although hatchery supplementation 

is not the sole solution to species recovery, it has greatly increased the population of the 
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lower Missouri River pallid sturgeon population.  These hatchery-reared pallid sturgeon 

have been documented reproductively ready and have successfully spawned (DeLonay 

et al. 2010, DeLonay et al. 2012); however, survival and recruitment is yet to be 

documented.  A self-sustaining population is the ultimate goal; however, understanding 

the effects of management actions is critical to species recovery.  In addition, continued 

monitoring and evaluation is necessary to assess the wild and hatchery-reared 

populations and to evaluate the effects of the stocking program to ensure proper 

management. 

The objective of my thesis was to characterize the pallid sturgeon population, 

predict the current and future wild and hatchery-reared pallid sturgeon populations, 

and examine the catch dynamics of pallid sturgeon in the lower Missouri River.  

Specifically, I evaluated the following objectives and conclude the following results. 

(1) Determine the population characteristics of the pallid sturgeon population in 

the lower Missouri River (Chapter 2). 

a. Catch rates of wild pallid sturgeon with gill nets did not change (P = 

0.8991) during this study while catch rates using trot lines declined (P = 

0.0001).  Comparatively, catch rates of hatchery-reared pallid sturgeon 

with gill nets (P = 0.2290) and trot lines (P = 0.0610) were variable but did 

not differ among years. 

b. The ratio for reproductively ready to non-reproductively ready females 

was 1:2.0 while the ratio for males was 1:0.9, resulting an overall ratio of 

reproductively ready fish of 1 female to 2.9 males. 
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c. Minimum length-at-maturity was 788 mm for females and 798 mm for 

males while minimum age-at-maturity, using tag information from 

known-aged hatchery-reared fish, was age-9 for females and age-7 for 

males.   

d. Relative condition factor for females was significantly different by 

reproductive condition (P = 0.0014).  The mean for reproductively ready 

females was 0.97 (SE = 0.02) compared to non-reproductively ready fish 

(Mean Kn = 0.90, SE = 0.01).  Conversely, males did not display a similar 

trend (P = 0.2634). 

e. Absolute fecundity varied from 12,220 to 54,705 with a mean relative 

fecundity of 7% (SD = 1.5%).   

f. Egg size was not correlated with fork length (P = 0.1987) or weight (P = 

0.2848); however, fork length (P = 0.0114) and weight (P = 0.0042) were 

correlated with the number of eggs released.   

g. The mean survival rate from egg to stock sized fish was 15.1% (SD = 

14.7%) but was highly variable (1.9% to 42.8%). 

(2) Use data from Objective #1, along with existing known population 

information (i.e., survival estimate and population estimate), to develop a 

population viability model for the lower Missouri River (Chapter 3). 

a. My model estimates the wild population size at 5,991 (± 499) in 2012 and 

predicts the wild pallid sturgeon population will decline to 2,659 (± 222) 
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individuals in ten years, 1,181 (± 98) in twenty years, and 524 (± 44) in 

thirty years. 

b. My model predicted 42,343 (± 4,570) hatchery-reared pallid sturgeon 

with an estimated 13,867 (age-9 females = 3,537 [± 864]; age-7 males = 

10,330 [± 1,787]) reproductively aged fish were in the lower Missouri 

River in 2012. 

c. The overall pallid sturgeon population is estimated at 48,334 fish with 

659 wild and 989 hatchery-reared reproductively ready female pallid 

sturgeon. 

d. If hatchery supplementation ceased and assuming no natural recruitment 

occurred, the population would decline at approximately 8% annually 

with only 3,801 pallid sturgeon remaining in 30 years.  If naturally 

produced pallid sturgeon survival rate is 0.00001 from egg to age-1 then 

the rates of decline would be 7% and the population size in 30 years 

would be 5,854 fish.  A fivefold increase in the egg to age-1 survival rate 

(Ø = 0.00005) means 2,151 pallid sturgeon would recruit to age-1 in 2012 

and the projected 30 year population size would increase to 20,621 fish.  

If an egg to age-1 survival rate of 0.00010 occurred then 5,543 pallid 

sturgeon would recruit to the age-1 in 2012 and the population size 

would be 62,831 in 2042. 

e. An annual egg to age-1 survival rates of 0.00011 is predicted to maintain 

a stable population over the next 30 years. 
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f. Our model simulations of the overall change in the pallid sturgeon 

population were most sensitive to ≥ age-1 survival rates.  Changing the 

age-1 survival estimate by ±5% caused a ± 2.8% change in the population 

of pallid sturgeon.  The population change was less sensitive to age-0 

survival rates from stocked hatchery-reared fish, survival rates for natural 

production, and fecundity. 

g. Changing the spawning frequency from every three years to every other 

year would affect the overall population growth by 2.7%.  

Underestimation of this parameter with a spawning frequency of 4 to 5 

years would predict a population decrease of 1.3% for 4 years and 2.0% 

for 5 years. 

h. Age-at-maturity is a less sensitive parameter than spawning frequency.  

Increasing female’s age-at-maturity by one year (age-8) changed λ by 

0.4%, while maturing at age-7 would result in a 1% overall population 

change.  A decrease in age-at-maturity to age-10 or 11 only changes λ by 

0.3% and 0.6%. 

(3) Examine trot line catch dynamics in a large river system by using information 

gathered from LP Hook Timers (Chapter 4). 

a. Shovelnose sturgeon were the most frequently collected species (N = 

1,308) and activated hook timers 58% of the time, followed by pallid 

sturgeon (N = 58; 53% activation rate) and channel catfish (N = 29; 14% 

activation rate). 
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b. The size of pallid sturgeon that successfully activated hook timers (mean 

FL = 750 mm; SE = 175) versus those that did not (mean FL = 447 mm; SE 

72) was different (P < 0.001).  However, the size of shovelnose sturgeon 

(P = 0.191) and channel catfish (P = 0.175) that activated the timers were 

not different. 

c. Mean catch per unit effort for trotlines rigged with hook timers was 14.6 

fish (SE = 1.5) per line, adjusting for the lost fish resulted in a CPUE of 

17.7 (SE = 1.3) fish per line. 

d.  Overall, 20% of the hook timer activations occurred within 1 h of 

deployment with over half (55%) collected within 4 h of deployment. 

e. Of the 1,423 fish collected, six fish (one pallid sturgeon and five 

shovelnose sturgeon) were visually stressed upon trotline retrieval while 

46 sturgeon (5 pallid sturgeon and 41 shovelnose sturgeon) had 

distended mouth syndrome.  Hook duration for fish with distended 

mouth syndrome was highly variable. 

f. One mortality occurred during this study; however, the fish did not 

activate the hook timer so hook time duration could not be determined. 
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Management and Research Recommendations 

 

As part of the results of this study, more information and research is required to 

continue the species recovery efforts; therefore, I present the following management 

considerations and recommendations: 

 

1. Continuation of the intensive broodstock collection efforts led by the Nebraska 

Game and Parks Commission (NGPC) is a vital part to local species recovery and 

acquiring important life history data.  Besides the capture of adult fish for the 

propagation and artificial supplementation program, the associated data being 

collected have contributed to a preliminary survival estimate (Steffensen et al. 

2010), a population estimate (Steffensen et al. 2012), and defining the 

population structure and characteristics (Chapter 1), which are critical input 

parameters in the population viability model (Chapter 2).  Also, since the Pallid 

Sturgeon Recovery Team placed a moratorium on stocking Upper Basin origin 

fish in the lower Missouri River and the need for local broodstock became the 

priority, the majority of broodfish have been collected by NGPC, primarily 

around the Platte River, NE. 

 

2. My model simulations of the overall change in the pallid sturgeon population 

were most sensitive to ≥ age-1 survival rates.  Validating Steffensen et al. (2010) 

estimates and expanding the age specific survival rates would greatly benefit the 
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population viability model’s accuracy and predictions.  Steffensen at al. (2010) 

estimates only provided survival estimates for three age classes (age-0, age-1, 

and ≥ age-2) because of limited pallid sturgeon stock / recapture data when the 

analysis was completed.  Expanding the age-specific survival rates may provide 

insights into critical life history events (i.e., ontogenetic diet changes). 

  

3. The wild population estimates used in our population viability model was 

derived from Steffensen et al. (2012) estimate of wild and hatchery-reared 

populations in an 80.5 rkm reach in the lower Missouri River.  The Steffensen’s 

estimate is based on fish collected during Nebraska Game and Parks 

Commission’s annual broodstock collection effort below the confluence of the 

Missouri and Platte rivers (rkm 957.5), a known pallid sturgeon “hot spot”.  The 

wild pallid sturgeon population estimate in this paper assumes equal distribution 

throughout the lower Missouri River as the data is extrapolated from the 80.5 

rkm reach.  This extrapolation may overestimate the real population size in the 

lower Missouri River as more adult pallid sturgeon are captured in the upper 

reach of the lower Missouri River (Huenemann 2012).  Completion of a river 

wide population estimate would provide real estimates rather than the basic 

extrapolation methods currently being used. 

 

4. Quantifying the age structure of the wild pallid sturgeon population was not 

possible as an age / length key is not available in this reach of the Missouri River.  
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Therefore, quantifying local extirpation of the wild pallid sturgeon population is 

difficult since the age structure of the wild population and the maximum age 

remains unknown in this reach.  Several validation studies for aging sturgeon 

have concluded that fin rays are not a reliable method and the results should be 

viewed with caution (Hurley et al. 2004; Whiteman et al. 2004; Koch et al. 2011).  

However, I would recommend removing fin rays from the broodfish collected 

and known aged hatchery-reared fish during future efforts to attempt to provide 

some age and growth information while using the known aged fish to validate 

and refine readers’ abilities.  Even if the age estimates are not precise, gaining 

information on the age structure would provide an estimated maximum age of 

pallid sturgeon in the lower Missouri River. 

 

5. Increasing the stocked hatchery-reared pallid sturgeon likelihood of survival 

should be a priority.  Age-1 survival was the most sensitive parameter in the 

population viability model followed closely by age-2, age-3, and so on.  For 

example, stocking 10,000 age-0 hatchery-reared fish, only 221 (age-7 males = 

156; age-9 females = 65) reach age-of-maturity compared to stocking 10,000 

age-1 hatchery-reared fish when 4,304 (age-7 males = 3,020; age-9 females = 

1,284) reach age-of maturity.  Under the current survival estimates and the 

importance of survival of younger individuals in our model, we would 

recommend maximizing the number of age-1 + fish stocked and only stocking 

age-0 fish when necessary (i.e., to reduce number to meet hatchery capacities).  
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Also, we recommend determining the cost difference associated with rearing 

age-0 fish compared to age-1 fish and determine the hatcheries capacities for 

each age class.  To achieve the similar numbers of fish that reach maturity, age-0 

fish would need to be stocked at a frequency of approximately 20 times that of 

age-1 fish.  It is unlikely that field crews can collect enough reproductively ready 

female pallid sturgeon annually to rely solely on age-0 stocking.    

 
6. The overall population objective is to reach an estimated 30,000 spawning-aged 

adults in the lower Missouri River (USFWS 2008).  To achieve this goal, the Pallid 

Sturgeon Range-Wide Stocking and Augmentation Plan (2008) recommends an 

annual stocking effort of  33,560 age-1 pallid sturgeon in the Missouri River 

below Gavins Point Dam (rkm 1,305) for the next eight years.  Since this 

recommendation was published in 2008, a total of 49,410 hatchery-reared pallid 

sturgeon have been stocked resulting in a deficit.  Continuation of the stocking 

program for the next 10 years (i.e., stocking 10,000 age-1 hatchery-reared pallid 

sturgeon) would result in greater than 30,000 spawning aged adults in the lower 

Missouri River.   At that point, reassessment of natural recruitment and mortality 

would be needed to evaluate artificial propagation. 

 

7.  Trot line catch rates are affected by the number of baited hooks available 

because the probability of capturing a fish on a hook without bait is likely zero.  

During retrieval of the gear, that the majority of hooks no longer had bait and 

had likely been unable to attract fish for at least some portion of the soak time.  
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Therefore, future studies should quantify the rate bait loss occurs to assess when 

hooks become unavailable to capture fish. 

 

8. Further investigation using hook timers may determine the optimal time to 

deploy gear to better improve catch rates.  Determining optimal deployment 

time was not part of my study design; rather, sampling crews pulled trotlines in 

the morning and depending on crew size, experience, and number of fish 

collected, redeployment generally occurred in early afternoon.  Future studies 

should include deploying gear at other times of the day to evaluate deployment 

times and the influence on catch rates. 

 
9. Finally, I recommend experimenting with short duration trot line deployments 

(i.e., 4-h).  Hook timers showed more than half of all fish were caught within the 

first four hours of deployment.  Therefore, short duration trotline deployments 

would collect approximately 50% of the fish and may reduce escapement rates.  

Multiple short duration sets per day could also keep bait on the hooks, 

potentially improve catch and retention rates, and reduce stress and possible 

mortalities. 
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Figure 5-1.  An outline of the current pallid sturgeon management units.  Management 
units were defined by the Pallid Sturgeon Recovery Team and are based on 
reproduction isolation and genetic and morphometric difference with the species range. 
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